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Introduction

Simplest quartic fields are defined by adjoining to Q a root of the polynomials X 4 -tX 3 -6X 2 +tX +1, where t 2 +16 is not divisible by an odd square. This ensures the irreducibility of the polynomial. The arithmetic properties of these fields have been vastly studied. For example, consult the works of Gras [START_REF] Gras | Table numérique du nombre de classes et des unités des extensions cycliques réelles de degré 4 de Q[END_REF], Lazarus [START_REF] Lazarus | Class numbers of simplest quartic fields, Number theory[END_REF][START_REF] Lazarus | On the class number and unit index of simplest quartic fields[END_REF], Louboutin [START_REF] Louboutin | The simplest quartic fields with ideal class groups of exponents less than or equal to 2[END_REF], Kim [START_REF] Kim | Evaluation of zeta functions at s = -1 of the simplest quartic fields[END_REF], Olajos [START_REF] Olajos | Power integral bases in the family of simplest quartic fields[END_REF], and Duquesne [START_REF] Duquesne | Elliptic curves associated with simplest quartic fields[END_REF][START_REF] Duquesne | Integral points on elliptic curves defined by simplest cubic fields[END_REF].

Inthis paper, we are studying elliptic curves Q t (so called associated with simplest quartic fields) given by the equation

(1.1)
Y 2 = X 4 -tX 3 -6X 2 + tX + 1 where t 2 + 16 is not divisible by an odd square. Using suitable rational transformations ( [START_REF] Duquesne | Elliptic curves associated with simplest quartic fields[END_REF], see also [START_REF] Washington | Elliptic Curves: Number Theory and Cryptography[END_REF]), the quartic curve (1.1) can be put into the Weierstrass form (1.2) C t : y 2 = x 3 -t 2 + 16 x.

The curve C t is elliptic for any rational values of t, and by [25, p. 347] the torsion subgroup of C t (or Q t ) is T = Z/2Z × Z/2Z or Z/2Z, depending on whether t 2 + 16 is square or not, respectively.

Remark 1.1. As stated in [START_REF] Duquesne | Elliptic curves associated with simplest quartic fields[END_REF], it is easy to prove that the condition of simplest quartic fields (t 2 + 16 not divisible by an odd square) implies that t 2 + 16 is not a square (if t = 0). As a consequence, T = Z/2Z in this work and is of course generated by T = (0, 0).

The works in [START_REF] Duquesne | Elliptic curves associated with simplest quartic fields[END_REF][START_REF] Duquesne | Integral points on elliptic curves defined by simplest cubic fields[END_REF] studied the rank and integral points on the curves arising from simplest cubic and quartic fields. Therein, the integral points of curves with generic ranks one and two have been studied. In this work we study the same notions on a subfamily of the families in [START_REF] Duquesne | Elliptic curves associated with simplest quartic fields[END_REF][START_REF] Duquesne | Integral points on elliptic curves defined by simplest cubic fields[END_REF] that has rank at least three. This subfamily, parametrized by m, is introduced in Section 2. In Section 3 we prove that the three independent points over Q(m) are in fact independent for each m. Using precise estimates of their canonical heights (computed in Section 4), we also prove that these three points can be extended to a Mordell-Weil basis for each m in Section 5. This allows to determine integral points of this rank-3 family in Section 6. Finally, we exhibit a subfamily of rank at least four in section [START_REF] Fujita | Generators for the elliptic curve y 2 = x 3 -nx of rank at least three[END_REF].

In [START_REF] Fujita | Generators for the elliptic curve y 2 = x 3 -nx[END_REF] Fujita and Terai studied a family of elliptic curves given by the equation

y 2 = x 3 -stx,
where s, t are non-square integers such that t -s = α 2 and c 4 s -t = β 2 for some integers c, α, β. Then they showed that the points (-s, sα) and c 2 s, csβ can be extended to a Mordell-Weil basis. In [START_REF] Fujita | Generators for the elliptic curve y 2 = x 3 -nx of rank at least three[END_REF] Fujita constructed a subfamily of rank at least three together with explicit generators.

It is easy to check that the curves we are proposing form another subfamily of the family in [START_REF] Fujita | Generators for the elliptic curve y 2 = x 3 -nx[END_REF]. Compared to the one given by Fujita in [START_REF] Fujita | Generators for the elliptic curve y 2 = x 3 -nx of rank at least three[END_REF], our subfamily has many integral points and a rank-4 subfamily can be deduced. We can also compute all the integral points on the quartic model Q t when the rank is exactly three which was not the case in previous works ( [START_REF] Fujita | Generators for congruent number curves of ranks at least two and three[END_REF], [START_REF] Fujita | Generators and integral points on twists of the Fermat cubic[END_REF], [START_REF] Fujita | Generators and integral points on the elliptic curve y 2 = x 3 -nx[END_REF]).

A family with rank at least three over Q(m)

In this section we exhibit a rank-3 elliptic curve over Q(m) associated with simplest quartic fields. Proof. According to [START_REF] Duquesne | Elliptic curves associated with simplest quartic fields[END_REF], the curve C t defined as in (1.2) is of generic-rank equal to two if t = 6k 2 + 2k -1 and has short Weierstrass form (2.2)

y 2 = x 3 -2k 2 -2k + 1 18k 2 + 30k + 17 x.
To get a rank-3 family, we need a third point on this curve. An experimental approach showed that -3 2k 2 -2k + 1 often appears as the x-coordinate of a point. Indeed, assuming k = m 2 -1 6 for some rational values of m, we get the new point -3

2k 2 -2k + 1 , 12m 2k 2 -2k + 1 .
Replacing k by m 2 -1 6 into equation (2.2) and scaling, we get the curve stated in Theorem 2.1. It is then associated with simplest quartic field for t = 6m 4 -7 6 (we have ab = 36(t 2 + 16)). The points P 1 (m) and P 2 (m) are corresponding to those of [START_REF] Duquesne | Elliptic curves associated with simplest quartic fields[END_REF] and P 3 (m) is the new point we get here.

We then use specialization arguments to prove that P 1 (m), P 2 (m) and P 3 (m) are free generators over Q(m): we can prove using Magma [START_REF] Bosma | The Magma algebra system. I. The user language[END_REF] that the curve E 2 (Q) has rank 3 and is generated by P 1 (2), P 2 (2), P 3 (2) and (0, 0). Hence, by the specialization theorem of Silverman ([24], [START_REF] Silverman | The Arithmetic of Elliptic Curves[END_REF]), the curve E m has rank at least three and the points P 1 (m), P 2 (m) and P 3 (m) are independent over Q(m).

To show that the exact rank of E m over Q(m) is three, we use the criterion of Gusić and Tadić ([12,Theorem 1.3]). If the curve is given in Legendre form y 2 = (x -e 1 )(x -e)(x -ē) in Z[t] and assuming that for every non-constant squarefree divisor h of e 2 1 -(e + ē)e 1 + eē or (e -ē) 2 in Z[t], h(t 0 ) is not a square in Q, this criterion states that the specialization homomorphism at t 0 is injective. In our case, we have

e 2 1 -(e + ē)e 1 + eē = -6 2 • 36m 4 + 48m 2 + 25 • 36m 4 -48m 2 + 25 , (e -ē) 2 = 12 2 • 36m 4 + 48m 2 + 25 • 36m 4 -48m 2 + 25 .
It is readily checked that m = 2 satisfies the condition of the criterion. As a consequence, the rank is exactly equal to three over Q(m) and the points P i (m) are free generators.

Remark 2.2. One can get other families of rank at least three arising from the rank two family of [START_REF] Duquesne | Elliptic curves associated with simplest quartic fields[END_REF]. For example, by considering k = sm 2 + tm -1 6 and forcing -3 18k 2 + 30k + 17 as the x-coordinate of a third point, we get that m(sm + t) must be a square, which has parametric solution m = u 2 t s(s-u 2 ) , giving rise to k = -1 6 -6t 2 u 2 +s 2 -2u 2 s+u 4 (s-u 2 ) 2

. In this way, a curve of rank at least three is found over

Q(s, t, u).
Our aim in the next three sections is to prove that E m has rank at least three over Q for all m.

Independence of the three points modulo torsion subgroup

Let E m be an elliptic curve as defined in Theorem 2.1. In order to prove the independence of P 1 (m), P 2 (m) and P 3 (m) for any value of m, we need the following lemma Lemma 3.1. Let P be a point in E m (Q). If P ∈ 2E m (Q), then the x-coordinate x(P ) of P is a square.

Proof. For an elliptic curve y 2 = x 3 -nx and P = 2Q with a rational point Q = (x 1 , y 1 ), the doubling formula gives

x(P ) = 3x 2 1 + n 2y 1 2 -2x 1 = x 2 1 + n 2y 1 2 .
For reader convenience and because the points P i (m) + P j (m) are used in several places, we give here their explicit coordinates: Next assume k 0 = 1. The addition formula trivially gives for any point P = T

P 1 (m) + P 2 (m) = 18b, 72 6m 2 -5 36m 4 -48m 2 + 25 , P 1 (m) + P 3 (m) = 6b 6m 2 + 6m + 7 2 (6m 2 + 6m -1) 2 , 144b 6m 2 + 6m + 7 -25 -43m -36m 2 + 36m 4 + 36m 5 (6m 2 + 6m -1)
x(P + T ) = -36ab x(P ) ≡ -ab x(P ) (mod

Q × 2 )
and so it suffices to show -ab x(k 1 P 1 + k 2 P 2 + k 3 P 3 ) are non-squares. Clearly -ab x(P 1 ) = 144ab is a non-square since 36ab is a non-square according to Remark 1.1. In the other cases it is not difficult to see the 2-or 3-primary components are non-squares since ab is neither divisible by 2 nor 3.

4.

Estimates of the canonical height of points on E m (Q)

The canonical height ĥ(P ) of a point P on an elliptic curve defined over Q is defined by the limit lim n→∞ h (2 n P )

4 n , where h(P ) = log max{|a|, |b|} for x(P ) = a/b, gcd(a, b) = 1. It is a quadratic form and the associated scalar product is called the height pairing

P, Q = 1 2 ĥ(P + Q) -ĥ(P ) -ĥ(Q) . (4.1)
The goal of this section is to estimate the canonical height of the P i (m) as well as their height pairings because it will enable us to estimate how far this set of independent points is from a Mordell-Weil basis by using Siksek's theorem (given below in the case of three points).

Theorem 4.1 ([23, Theorem 3.1]). Let E be an elliptic curve over Q of rank r ≥ 3. Let P 1 , P 2 and P 3 be independent points in

E(Q) modulo E(Q) tors . Choose a basis {G 1 , G 2 , . . . , G r } for E(Q) modulo E(Q) tors such that P 1 , P 2 , P 3 ∈ ZG 1 + ZG 2 + ZG 3 .
Suppose that E(Q) contains no point Q of infinite order with ĥ(Q) ≤ λ where λ is some positive real number. Then, the lattice index ν of

ZP 1 + ZP 2 + ZP 3 in ZG 1 + ZG 2 + ZG 3 satisfies ν ≤
2R(P 1 , P 2 , P 3 ) λ 3 where R(P 1 , P 2 , P 3 ) is the determinant of the height pairing matrix H(P 1 , P 2 , P 3 ) defined by H(P 1 , P 2 , P 3 ) = ( P i , P j ) 1≤i,j≤3 .

Before estimating these heights, let us determine the value λ, the lower bound of infinite order points on E m (Q). For this, we use a known result:

Lemma 4.2 ([10, Proposition 3.3]).
Let n be a positive, fourth-power-free integer and E the elliptic curve given by y 2 = x 3 -nx. If n ≡ 12 (mod 16), then ĥ(P ) > 0.125 log n + 0.3917 for any non-torsion point P in E(Q).

In our case we obtain the estimate:

Proposition 4.3. Let E m be as in Theorem 2.1 for m ≥ 5. For any non-torsion point P in E m (Q), we have (4.
2) ĥ(P ) > log m + 1.735.

Proof. As E m is associated with a simplest quartic field, 36ab is assumed to be not divisible by an odd square and so is fourth-power-free (remember a and b are odd). Moreover, 36ab ≡ 4 4m 4 + 9 

> log m + 1.7354 • • •
where the second inequality is given by a bit of calculus:

ab/m 8 ≥ ab/m 8 m=5 = 1295.19 • • • .
This is because ab/m 8 is growing for m ≥ 2 and we chose m = 5 to get a result close to the limit of this function which is 1296.

Next we should estimate the canonical heights of specific points. Though estimating directly following the definition is hard, we will instead use the local decomposition of the canonical height: ĥ(P ) = ĥfin (P ) + ĥ∞ (P ).

The finite part of this decomposition is obtained thanks to the following lemma of [START_REF] Fujita | Generators for the elliptic curve y 2 = x 3 -nx[END_REF] (Lemma 3.2) Lemma 4.4. Let n be a fourth-power-free integer and E the elliptic curve given by y 2 = x 3 -nx. For any point

P = α/δ 2 , β/δ 3 in E(Q) with α, β, δ ∈ Z, gcd(α, δ) = gcd(β, δ) = 1 and δ > 0, we have ĥfin (P ) = 2 log δ - 1 2 log 2 =pi|α,β,n p ei i + ĥ2 (P )
where p ei i n with e i ∈ {1, 2, 3} and ĥ2 (P ) is given by the following:

(i) if δ is even, then ĥ2 (P ) = 0; (ii) if δ is odd, then for v 2 denoting the valuation on Z normalized by v 2 (2) = 1, ĥ2 (P ) is given by Table 1. 

-1 2 log 2 v 2 (n) = 1 even even -1 2 log 2 v 2 (n) = 2 and n 4 ≡ 1 (mod 4) v 2 (α) = 1 v 2 (β) ≥ 3 -3 2 log 2 v 2 (n) = 2 and n 4 ≡ 3 (mod 4) v 2 (α) = 1 v 2 (β) = 2 -7 4 log 2 v 2 (n) = 2 v 2 (α) ≥ 2 v 2 (β) ≥ 2 -log 2 v 2 (n) = 3 v 2 (α) ≥ 3 v 2 (β) ≥ 3 -3 2 log 2
For a point P = α/δ 2 , β/δ 3 in E(Q) as in Lemma 4.4, we compute ĥ∞ (P ) using Tate's series [START_REF] Silverman | Computing heights on elliptic curves[END_REF]:

(4.3) ĥ∞ (P ) = log |x(P )| + 1 4 ∞ k=0 c k 4 k where c k = log |z 2 k P |, z(Q) = 1 + n/x(Q) 2 2
. Then we have

ĥ∞ (P ) = log α δ 2 + 1 4 log 1 + nδ 4 α 2 2 + 1 4 ∞ k=1 c k 4 k = log |α| -2 log δ + 1 2 log α 2 + nδ 4 - 1 2 log α 2 + 1 4 ∞ k=1 c k 4 k = -2 log δ + 1 2 log α 2 + nδ 4 + 1 4 ∞ k=1 c k 4 k .
Note that the series converges for any non-torsion point P ∈ E(Q) by the fact that 2 k P lies in the connected component of E containing O (called the identity component and denoted by E 0 ) so that x

2 k P ≥ √ n for k ≥ 1. As a consequence 0 ≤ 1 4 ∞ k=1 c k 4 k ≤ 1 4 ∞ k=1 log 2 2 4 k = 1 6 log 2.
And finally, we have ĥ

(P ) = 1 2 log α 2 + nδ 4 2 =pi|α,n p ei i + ĥ2 (P ) + S with 0 ≤ S ≤ 1 6 log 2. (4.4)
Before starting computation, we make a little change in choice of points we deal with. The set {P 1 (m), P 2 (m), P 3 (m)} can be extended to a basis if and only if {P 1 (m) + P 2 (m), P 2 (m), P 3 (m)} can be. So we put

Q 1 = P 1 (m) + P 2 (m), Q 2 = P 2 (m), Q 3 = P 3 (m)
and use this set to simplify forthcoming arguments. Indeed the height pairing Q i , Q j i =j will be bounded independently of m which is not the case for the P i (m). We also omitted the variable m for better readability. For later use (in Proposition 5.3), we define c j and c j to be the lower and upper bounds of c j , respectively. For example c 1 = 2.595 and c 1 = 2.713.

m (Q): ĥ(Q 1 ) = 2 log m + c 1 , ĥ(Q 2 ) = 2 log m + c 2 , ĥ(Q 3 ) = 2 log m + c 3 , ĥ(Q 1 + Q 2 ) = 4 log m + c 12 , ĥ(Q 1 + Q 3 ) = 4 log m + c 13 , ĥ(Q 2 + Q 3 ) = 4 log m + c 23 with some c i , c ij dependent on m, satisfying c 1 ∈ [2.
Proof. The points are explicitly

Q 1 = 18b, 72b 6m 2 -5 , Q 2 = -2b, 8b 6m 2 + 5 , Q 3 = ( -6b, -144bm) , Q 1 + Q 2 = -2 6 3 4 m 4 /5 2 , 2 4 3 3 m 2 252m 4 -625 /5 3 , Q 1 + Q 3 = -3 6m 2 + 6m -5 2 , -9 36m 4 -24m 3 -24m 2 + 20m + 25 6m 2 + 6m -5 , Q 2 + Q 3 = 12 6m 2 -6m + 5 2 , -36 36m 4 -96m 3 + 96m 2 -80m + 25 6m 2 -6m + 5 .
We use the formula (4.4) with n = 36ab to compute the heights. For this, we first need to determine 2 =pi|α,n p ei i and ĥ2 , where e i = v pi (36ab). Recall v 2 (ab) = v 3 (ab) = 0 and gcd(a, b) = 1 (otherwise 36ab is divisible by an odd square).

Let us treat in details the case P = Q 1 for which α = 18b, β = 72b 6m 2 -5 and δ = 1 with the notations of Lemma 4.4. Of course, gcd(α, 36ab) = 18b so we have 2 =pi|α,n p ei i = 2 =pi|α p ei i . Moreover, if p i ( = 2) divides α = 18b, then p i does not divide a (because gcd(a, b) = 1, and v 3 (a) = 0). So for p i dividing α we have v pi (36ab) = v pi (36b) = v pi (9b). Therefore 2 =pi|α,n p ei i = 9b. On the other hand, v 2 (n) = 2, v 2 (18b) = 1 and v 2 72b 6m 2 -5 = 3 so that Table 1 gives ĥ2 (Q 1 ) = -3 2 log 2. Similar arguments yield Table 2, where we use the Bezout identities

a (±6m + 1) + 6m 2 ± 6m + 5 ∓36m 3 + 30m 2 ∓ 48m + 15 = 100, b (∓6m + 1) + 6m 2 ± 6m + 5 ±36m 3 -30m 2 ∓ 48m + 65 = 300 for the cases Q 1 + Q 3 and Q 2 + Q 3 . Table 2. Values of 2 =pi|α,n p ei i and ĥ2 Q 1 Q 2 Q 3 Q 1 + Q 2 Q 1 + Q 3 Q 2 + Q 3 2 =pi|α,n p ei i 9b b 9b 9 9 9 ĥ2 -3 2 log 2 -3 2 log 2 -3 2 log 2 -log 2 0 -log 2
Let us back to the computation of ĥ(Q 1 ) using (4.4). We have

α 2 + nδ 4 2 =pi|α,n p ei i = 36b + 4a = m 4 1440 - 8 192m 2 -125 m 4 .
It can then be easily proved that f 1 (m) = 1440 -

8(192m 2 -125) m 4
is monotonically increasing for m ≥ 20 and so

1436 < f 1 (20) ≤ f 1 (m) ≤ lim m→∞ f 1 (m) = 1440.
Hence by (4.4) we get

2 log m + 1 2 log 1436 - 3 2 log 2 ≤ ĥ(Q 1 ) ≤ 2 log m + 1 2 log 1440 - 3 2 log 2 + 1 6 log 2
which results in the relevant estimate of c 1 .

Similarly we have

α 2 + nδ 4 2 =pi|α,n p ei i = m 4 f j (m) for Q j m 8 f jk (m) for Q j + Q k where f 2 (m) = 8 192m 2 + 125 /m 4 + 1440, f 3 (m) = 200/m 4 + 288 f 12 (m) = -2500 504m 4 -625 /m 8 + 6225984 f 13 (m) = 5184m 7 + 3456m 6 -7776m 5 -8280m 4 + 6480m 3 + 2400m 2 -3000m + 3125 /m 8 + 6480 f 23 (m) = -4 20736m 7 -48384m 6 + 72576m 5 -78120m 4 + 60480m 3 -33600m 2 + 12000m -3125 /m 8 + 25920.
Again, all of these functions are monotonic for m ≥ 20 and so

1440 = lim m→∞ f 2 (m) ≤ f 2 (m) ≤ f 2 (20) < 1444 288 = lim m→∞ f 3 (m) ≤ f 3 (m) ≤ f 3 (20) < 289 6225976 < f 12 (20) ≤ f 12 (m) ≤ lim m→∞ f 12 (m) = 6225984 6480 = lim m→∞ f 13 (m) ≤ f 13 (m) ≤ f 13 (20) < 6747 22222 < f 23 (20) ≤ f 23 (m) ≤ lim m→∞ f 23 (m) = 25920
which lead to the estimates of c 2 , c 3 , c 12 , c 23 , c 31 by using (4.4) with Table 2.

Corollary 4.6. For m ≥ 20 we have the following estimates of the height pairings:

Q 1 , Q 2 = d 12 , Q 1 , Q 3 = d 13 , Q 2 , Q 3 = d 23 ,
with some d ij dependent on m, satisfying

d 12 ∈ [0.850, 1.027], d 13 ∈ [-0.118, 0.069], d 23 ∈ [-0.157, 0.059].
Proof. This is a direct application of Proposition 4.5 and formula (4.1).

In a more general way, we can get an approximation of ĥ(k

1 Q 1 + k 2 Q 2 + k 3 Q
3 ) in terms of the k i 's that will be useful in the following. For this, we need some results on approximation of an eigenvalue of a matrix. 

Au -λ u 2 = (A + R)u -λ u 2 = Ru 2 = i   j r ij u j   2 ≤ i j r 2 ij j u 2 j = i,j r 2 ij .
Proposition 4.8. For m ≥ 20 and for any integers k 1 , k 2 , k 3 we have the estimate ĥ(k

1 Q 1 + k 2 Q 2 + k 3 Q 3 ) = k 2 1 + k 2 2 + k 2 3 (2 log m + γ) with some γ possibly dependent on m, k 1 , k 2 , k 3 , satisfying γ ∈ [1.454, 3.854].
Proof. By using the bilinearity of height pairings, ĥ(k Note that B is symmetric and so all the eigenvalues are real. Further by an elementary property of the Rayleigh quotient,

1 Q 1 + k 2 Q 2 + k 3 Q 3 ) = k 1 Q 1 + k 2 Q 2 + k 3 Q 3 , k 1 Q 1 + k 2 Q 2 + k 3 Q 3 = i=1,2,3 k 2 i ĥ(Q i ) + 2 1≤i<j≤3 k i k j Q i , Q j = 2 k 2 1 + k 2 1 + k 2 3 log m + k T Bk, where k = (k 1 , k 2 , k 3 ) T and
λ min k 2 1 + k 2 2 + k 2 3 ≤ k T Bk ≤ λ max k 2 1 + k 2 2 + k 2 3
where λ min and λ max are the minimal and maximal eigenvalues of B. In order to estimate λ min and λ max thanks to Lemma 4.7, we approximate B with the matrix B whose coefficients are the middle value of each interval for the coefficients of B given in Proposition 4.5 and Corollary 4. 

Generators of E m (Q)

In this section we prove the following.

Theorem 5.1. Let E m be an elliptic curve associated with a simplest quartic field and given by the equation (2.1). Let P 1 (m), P 2 (m) and P 3 (m) be as in Theorem 2.1. These three points can be extended to a basis for E m (Q). In particular, if the rank is three, then

E m (Q) = T, P 1 (m), P 2 (m), P 3 (m) .
As mentioned in Section 4, we will work with Q 1 , Q 2 and Q 3 instead of P 1 (m), P 2 (m) and P 3 (m). Let us first present the strategy of the proof.

If {G 1 , G 2 , G 3 } is a subset of a basis for E m (Q), then Q 1 , Q 2 , Q 3 ∈ ZG 1 + ZG 2 + ZG 3 modulo torsion,
and there exists a matrix M ∈ M 3×3 (Z) and l 1 , l 2 , l 3 ∈ {0, 1} such that  

P 1 P 2 P 3   = M   G 1 G 2 G 3   +   l 1 T l 2 T l 3 T   . The lattice index of {Q 1 , Q 2 , Q 3 } in {G 1 , G 2 , G 3 } is ν = | det(M )
| and we have to show that ν = 1 to prove Theorem 5.1.

As T is a 2-torsion point, for any prime p = 2, we have

  Q 1 Q 2 Q 3   ≡ M   G 1 G 2 G 3   (mod pE(Q)),
where M is the image of M in M 3×3 (Z/pZ). Then, if p | ν, there exists a matrix A ∈ M 3×3 (Z/pZ) with det(A) = 0 such that AM has a zero row, which means there exists a non-zero (k 1 , k 2 , k 3 ) ∈ (Z/pZ)

3 such that k 1 Q 1 + k 2 Q 2 + k 3 Q 3 ∈ pE(Q). ((k 1 , k 2 , k 3 )
corresponds to a row of such A.) This gives a criteria to check if p | ν, that allows to prove that ν is not divisible by 3. Proposition 5.2. For k i ∈ {0, ±1} none of the points The case of p = 2 is slightly different because T is a 2-torsion point. So the torsion part remains and we get

k 1 Q 1 + k 2 Q 2 + k 3 Q 3 lies in 3E m (Q) except O. Proof. Put Q = k 1 Q 1 + k 2 Q 2 + k 3 Q 3 . First assume m ≥ 20. If Q ∈ 3E(Q) \ T , say Q = 3R for some R ∈ E(Q) \ T ,
  Q 1 -l 1 T Q 2 -l 2 T Q 3 -l 3 T   ≡ M   G 1 G 2 G 3   (mod 2E(Q)).
Applying the same argument that when p = 2, we get that if 2 | ν, there exists a non-zero (k

0 , k 1 , k 2 , k 3 ) ∈ (Z/2Z) 4 such that k 0 T + k 1 Q 1 + k 2 Q 2 + k 3 Q 3 ∈ 2E(Q)
. Therefore Proposition 3.2 implies ν is not divisible by 2. To complete the proof of Theorem 5.1, we will use Siksek's theorem which gives an upper bound for ν.

Proposition 5.3. The lattice index ν is strictly less than 4.

Proof. Let us first assume that m ≥ 20. With the notations of Proposition 4.5 and Corollary 4.6, we have

H(Q 1 , Q 2 , Q 3 ) =   2 log m + c 1 d 12 d 13 d 12 2 log m + c 2 d 23 d 13 d 23 2 log m + c 3   .
Then, we have the expression

R(Q 1 , Q 2 , Q 3 ) = 8 log 3 m + C 2 log 2 m + C 1 log m + C 0 with    C 2 = 4 (c 1 + c 2 + c 3 ), C 1 = 2 (c 1 c 2 + c 1 c 3 + c 2 c 3 -d 2 12 -d 2 13 -d 2 23 ), C 0 = c 1 c 2 c 3 -c 3 d 2 12 -c 2 d 2 13 -c 1 d 2 23 + 2 d 12 d 13 d 23 .
Recall c j and c j are the lower and upper bounds for c j in Proposition 4.5. Similarly we define the bounds d ij , d ij for d ij by the values in Corollary 4.6. Then

C 2 ≤ 4(c 1 + c 2 + c 3 ) ≤ 29.35 C 1 ≤ 2(c 1 c 2 + c 1 c 3 + c 2 c 3 -d 12 2 -d 13 2 -d 23 2 ) ≤ 34 C 0 ≤ c 1 c 2 c 3 -c 3 d 12 2 -c 2 d 13 2 -c 1 d 23 2 + 2 d 12 d 13 d 23 ≤ 12.79.
As we can take λ = log m + 1.735 by Proposition 4.3, Siksek's Theorem 4.1 gives For 1 ≤ m < 20 we can estimate 2R(Q 1 , Q 2 , Q 3 )/λ 3 individually to be less than 4 (we used an algorithm of Cremona and Siksek to compute λ which is implemented in Sage as height_function().min()).

ν ≤ 2R(Q 1 , Q 2 , Q 3 ) λ 3 ≤ 2 

Integral points on E m

In the previous sections we got a parametrized family of curves of rank at least three with many integral points. Indeed, there are at least 23 integral points on E m (Q) according to the following theorem. Theorem 6.1. Let m ∈ Z such that the rank of E m (Q) is exactly three. Then all the integral points (up to their additive inverses) having their x-coordinate bounded by 36(t 2 + 13) are

{T, Q 1 , Q 2 , Q 3 , Q 1 + T, Q 2 + T, Q 3 + T, Q 1 -Q 2 , Q 1 ± Q 3 , Q 2 ± Q 3 } . Proof. Let P = [α, β] ∈ E m (Z) with |α| ≤ 36(t 2 +13
). Using wide bounds ( ĥ2 (P ) ≤ 0, p ei i ≥ 1) in (4.4), we get ĥ

(P ) ≤ 1 2 log(α 2 + 36ab) + 1 6 log 2.
The hypothesis on α means that |α| ≤ ab-3×36 (remember that ab = 36(t 2 +16)). Then we have

α 2 + 36ab ≤ (ab -3 × 36) 2 + 36ab ≤ (ab) 2 -36(5ab -9 × 36) ≤ (ab) 2 .
As a consequence and using the fact that ab < 36 2 m 8 if m ≥ 2, we get ĥ(P ) ≤ log ab + 1 6 log 2

≤ 8 log m + log(36 2 ) + 1 6 log 2 ≤ 8 log m + 7.283.
As the rank is assumed to be exactly three, the integral point P can be written as

P = k 0 T + k 1 Q 1 + k 2 Q 2 + k 3 Q 3 with k i ∈ Z. Then, if m ≥ 20, Proposition 4.8 gives ĥ(P ) ≥ (k 2 1 + k 2 2 + k 2 3 )(2 log m + 1.454)
which would not contradict the above upper bound only if all the k i belong to {-1, 0, 1} or if one of the k i is ±2 and the other ones are zero.

To conclude, we then have to prove that the points

Q 1 +Q 2 , Q 1 ±Q 2 +T , Q 1 ±Q 3 +T , Q 2 ± Q 3 + T , ±Q 1 ± Q 2 ± Q 3 + k 0 T , 2Q 1 + k 0 T , 2Q 2 + k 0 T , 2Q 3 + k 0 T (for k 0 = 0 or 1) are not integral. Q 1 + Q 2 is
the simplest to prove because its x-coordinate is -5184 25 m 4 which is an integer only if m ≡ 0 (mod 5). But in this case, 36ab is divisible by 25 which is an odd square so E m is not associated to a simplest quartic field. For the other points, the technique is always the same and is given here only for Q 2 ± Q 3 + T as an example. We have

x(Q 2 ± Q 3 + T ) = -3 ab (6m 2 ∓ 6m + 5) 2 .
Computing Bezout's coefficients between the numerator and the denominator, we get the identities a • (±6m + 1) + 6m 2 ± 6m + 5 ∓36m 3 + 30m 2 ∓ 48m + 15 = 100, b • (∓6m + 1) + 6m 2 ± 6m + 5 ±36m 3 -30m 2 ∓ 48m + 65 = 300.

Then, any prime dividing both the numerator and the denominator of x(Q 2 ±Q 3 +T ) is a divisor of 300. We deduce that there are no such prime because 6m 2 ∓ 6m + 5 is never divisible by 2, 3 or 5 (remember m ≡ 0 (mod 5) does not define a simplest quartic field). Then, the denominator of x(Q 2 ±Q 3 +T ) is always 6m 2 ∓ 6m + 5

2 and Q 2 ± Q 3 + T is never integral.
For m < 20 we use the Sage function S_integral_points.

Remark 6.2. For m = 1, the rank is three and E m has extra integral points

Q 1 -Q 2 -Q 3 , Q 1 -2Q 3 , 2Q 1 -Q 2 + Q 3
with the additive inverses. For m = 2, the rank is three and E m has extra integral points 2Q 1 -Q 2 , -Q 3 with the additive inverse. However, for all those points the x-coordinates are greater than 36(t 2 +13).

On the other hand for m = 7, the rank is five and extra integral points exist, coming from the other generators.

Corollary 6.3. Let m ∈ Z such that the rank of E m (Q) is exactly three. Then all the integral points (up to their additive inverses) in the compact component of

E m (R) are {T, Q 2 , Q 3 , Q 1 + T, Q 1 -Q 2 , Q 1 ± Q 3 } .
Proof. The x-coordinate of a point in the compact component of E m (R) is between -√ 36ab and 0, then it is a direct consequence of Theorem 6.1.

We conjecture that, when m ≥ 3 and the rank is exactly three, E m has no other integral point that the ones given in Theorem 6.1 also in the non-compact component. It can not be proven with our method because their x-coordinate is potentially not bounded. However, we can determine all the integral points on the original quartic model of the curves thanks to the following proposition which is a variant of Proposition 3.3 and Lemma 10.5 in [START_REF] Duquesne | Elliptic curves associated with simplest quartic fields[END_REF]. Proposition 6.4. Let t ∈ Q defining a simplest quartic field such that 6t ∈ Z and let [X, Y ] be an integral point on the quartic model Q t . Let P = ϕ([X, Y ]) + [0, 0] where ϕ is the isomorphism map from Q t to C t . Then, the coordinates x(P ) and y(P ) of P satisfy 6x(P ) and 6y(P ) ∈ Z and, if we assume that Y < 0, we have

|x(P )| ≤ t 2 + 13. Proof. If [X, Y ] is not [0, ±1], the map ϕ from Q t to C t is defined by      x = 2Y -2X 2 + tX + 2 X 2 y = Y + X 2 + 1 X x.
Then the coordinates of P are

x(P ) = 2Y + 2X 2 -tX -2, y(P ) = -4XY + tY -4X 3 + 3tX 2 + 12X -t.
These formulas are also valid if [X, Y ] = [0, ±1]. So finally, 6x(P ) and 6y(P ) ∈ Z.

We assume now that

Y = - √ X 4 -tX 3 -6X 2 + tX + 1. So x(P ) ≥ -t 2 -13 if and only if 2 X 4 -tX 3 -6X 2 + tX + 1 ≤ t 2 + 11 + 2X 2 -tX.
Then it is sufficient to prove that f (t, X) = 4(X 4 -tX 3 -6X 2 + tX + 1) -(t 2 + 11 + 2X 2 -tX) 2 ≤ 0 to ensure that x(P ) is greater than or equal to -t 2 -13. It is not difficult to check that f (t, X) is a polynomial of degree two in X whose discriminant is always negative as well as its leading term, so f (t, x) ≤ 0.

To prove that x(P ) ≤ t 2 + 13, we need

-2 X 4 -tX 3 -6X 2 + tX + 1 ≤ t 2 + 15 -2X 2 + tX. (6.1)
This is always true if the right hand side is positive which is obviously verified for X in the range t-

√ 9t 2 +120 4 , t+ √ 9t 2 +120 4
. Outside this range, t 2 + 15 -2X 2 + tX < 0 so that (6.1) is true if and only if g(t, X) = (t 2 + 15 -2X 2 + tX) 2 -4(X 4 -tX 3 -6X 2 +tX +1) ≤ 0. Again g(t, X) is a polynomial of degree 2 in X having a negative leading term. Its roots can be of course, explicitly computed and we can check that there are in the range t-

√ 9t 2 +120 4 , t+ √ 9t 2 +120 4
, so g(t, x) ≤ 0 outside this range and (6.1) is always true. Finally, we have |x(P )| ≤ t 2 + 13. Theorem 6.5. Let m ∈ Z such that t = 6m 4 -7 6 defines a simplest quartic field. The rank of Q t is at least three and if it is exactly three, then all the integral points on Q t are [0, ±1] and [-3, ±12m 2 ].

Proof. To get the curve E m from t, we first put t = 6k 2 +2k-1 and then k = m 2 -1 6 so that t = 6m 4 -7

6 . The curve Q t is then isomorphic to E m and has rank at least three thanks to Theorem 5.1. Let [X, Y ] be an integral point on Q t . We assume that Y ≤ 0 without loss of generality. Proposition 6.4 associates to [X, Y ] a point P on C t such that 6x(P ) and 6y(P ) are in Z and |x(P )| ≤ t 2 + 13. This point is then scaled on E m , via the map (x, y) → (6 2 x, 6 3 y), to an integral point having its x-coordinate bounded by 36(t 2 + 13). Theorem 6.1 gives all such points on E m when the rank is exactly three. Finally, we just have to send them back to Q t to check if there are integral or not.

An infinitude of curves of rank at least four

In this section, we deduce from the previous rank-3 family an infinite subfamily of curves of rank at least four. Proof. As we have seen in the proof of Theorem 2.1, the numbers which are multiples of a or b have more chance to be the x-coordinate of some point on E m . In order to get a fourth point P 4 (m) = (x 4 , y 4 ) on the curve, we then assume that x 4 = λb. It is easy to verify that it holds if and only if the quartic 36m 4 λ λ 2 -36 -48m 2 λ λ 2 + 36 m 2 + 25λ λ 2 -36 is a square. λ = ±6 clearly plays a special role and in fact it gives the point P 3 (m). More generally, this condition means that the values of m for which such a fourth point exists are parametrized by points on an elliptic curve. In order to have an infinite subfamily of curves E m of rank at least four, we need this elliptic curve to have infinitely many points. We found that for λ = 294, the associated elliptic curve has rank two and then will provide an infinite family of elliptic curves E m with a fourth point. In this case, m is parametrized by the rank-2 elliptic curve For any point (u, v) on e (and there are infinitely many because e has rank two), the corresponding curve E m then has a fourth point. The corresponding coefficients a and b are given by a = A 600 2 u 2 and b = B 600 2 u 2 . Rescaling the curve E m via X = 600 2 u 2 x, Y = 600 3 u 3 y, we get the curve E u with the four points P 1 (u), P 2 (u), P 3 (u) and P 4 (u) given in the theorem (from the points P i (m) on E m ).

The free part of e(Q) is generated by G 1 = (-1, 900) and G 2 = (-851, 42250). Using the specialization at (u, v) = G 1 , we observe that the four points P 1 (-1) = (-51840000, -28343411136000000), P 2 (-1) = (-1304442000000, -4242045384000000000), P 3 (-1) = (-3913326000000, 845278416000000000), P 4 (-1) = (191752974000000, 2654737745184000000000) have regulator 1809.9746... (according to Magma) on the rank-5 specialized curve E -1 : y 2 = x 3 -15496700520132000000000000x.

Theorem 2 . 1 .

 21 Let a = 36m 4 + 48m 2 + 25 and b = 36m 4 -48m 2 + 25 for some m ∈ Z and let E m be the elliptic curve defined by the equation (2.1) E m : y 2 = x 3 -36abx. E m is associated with simplest quartic fields and the points P 1 (m) = -144, 72 36m 4 -7 , P 2 (m) = -2b, 8 6m 2 + 5 b , P 3 (m) = (-6b, 144mb), are free generators of the Mordell-Weil group over Q(m).

Proposition 4 . 5 .

 45 For m ≥ 20, we have the following height estimates on E

Lemma 4 . 7 .

 47 Let A, A , R = (r ij ) be n×n real symmetric matrices with the equality A = A + R. Then for any eigenvalue λ of A there exists an eigenvalue λ of A such that|λ -λ | ≤ i,j r 2 ij = tr (R 2 ).Proof. Let λ be an eigenvalue of A and u = (u 1 , ..., u n ) a corresponding unit eigenvector. Then by[START_REF] Saad | Numerial Methods for Large Eigenvalue Problems[END_REF] Corollary 3.3] we have |λ -λ | ≤ Au -λ u 2 for some eigenvalue λ of A, where • 2 denotes the 2-norm of vectors. Now we have

  , using notations of Proposition 4.5 and Corollary 4.6,

6 .

 6 For example, taking c 1 = (c 1 + c 1 )/2 = 2.654 we have c 1 = c 1 + r with |r| ≤ |c i -c i |/2 = 0.059. Explicitly, The eigenvalues of B are 1.71378 • • • , 1.85116 • • • and 3.59454 • • • and B = B + R for some symmetric matrix R = (r ij ) such that |r 11 | ≤ 0.059, |r 22 | ≤ 0.059, |r 33 | ≤ 0.0595, |r 12 | ≤ 0.0885, |r 13 | ≤ 0.0935, |r 23 | ≤ 0.108. ⇒ i,j r 2 ij ≤ 0.259. Then by Lemma 4.7 we have λ min ≥ 1.713 -0.259 = 1.454 and λ max ≤ 3.595 + 0.259 = 3.854 which ends the proof.

  then by Proposition 4.3 ĥ(Q) = 3 2 ĥ(R) ≥ 9 log m + 15.6177. On the other hand, since |k i | ≤ 1, we have by Proposition 4.8 ĥ(Q) ≤ 3(2 log m + 3.854) = 6 log m + 11.562 which contradicts the above estimate. For 1 ≤ m < 20 the assertion is verified by the Sage function ().is_divisible_by(3).

8 log 3 m 3 ≤ 4 8 log 3 m

 3343 + 29.35 log 2 m + 34 log m + 12.79 (log m + 1.735) + 29.35 log 2 m + 34 log m + 12.79 8 log 3 m + 41.64 log 2 m + 72.24 log m + 41.78 < 4.

Theorem 7 . 1 .

 71 Let (u, v) be a point on the rank-2 elliptic curve e : v 2 = u(u -299)(u + 2701).Let E u be the elliptic curve defined by the equationE u : Y 2 = X 3 -36ABX with A = u 4 + 9604 u 3 -807599u + 24684006u 2 + 807599 2 ,and B = u 4 + 4 u 3 -807599u + 1624806u 2 + 807599 2 . E u is associated with simplest quartic fields and P 1 (u) = -7200 2 u 2 , 43200u u 4 + 4804 u 3 -807599u + 1634406u 2 + 807599 2 , P 2 (u) = -2B, 8 u 2 + 5402u -807599 B , P 3 (u) = (-6B, 1440vB), P 4 (u) = 294B, 5040 u 2 + 807599 B , are independent points of the Mordell-Weil group over Q(u).

M 2 =

 2 900m 4 -1201m 2 + 625 where M = y4 1008b . Its Weierstrass form is v 2 = u(u -299)(u + 2701) via

  For k i ∈ {0, 1} none of the points k 0 T + k 1 P 1 (m) + k 2 P 2 (m) + k 3 P 3 (m) lies in 2E m (Q) except the neutral element O.This implies the points P 1 (m), P 2 (m), P 3 (m) are independent.

				3	,
	P 2 (m) + P 3 (m) = 12 6m 2 -6m + 5	2 ,
		36 36m 4 -96m 3 + 96m 2 -80m + 25 6m 2 -6m + 5 .
	Proposition 3.2. Proof. Due to Lemma 3.1, it suffices to show that the x-coordinates of the relevant
	points are non-squares.	
	Let us first assume k 0 = 0. It is clear that x(P 1 ) = -144, x(P 2 + P 3 ) =
	12 6m 2 -6m + 5	2 , x(P 1 + P 2 + P 3 ) = -3 6m 2 + 6m -5	2 are non-squares. The
	other cases are almost clear too because, as b is odd, the 2-primary components of
	the x-coordinates are non-squares.	

Table 1

 1 

	. ĥ2 (P ) in terms of the 2-valuation of n, α and β
	n	α	β	ĥ2 (P )
	even	odd	odd	0
	odd	even	even	0
	odd	odd	even	

This work was supported in part by French projects ANR-16-CE39-0012 "SafeTLS" and ANR-11-LABX-0020-01 "Centre Henri Lebesgue".