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ABSTRACT
In this paper, we adapt Recurrent Neural Networks with

Stochastic Layers, which are the state-of-the-art for generat-
ing text, music and speech, to the problem of acoustic novelty
detection. By integrating uncertainty into the hidden states,
this type of network is able to learn the distribution of com-
plex sequences. Because the learned distribution can be cal-
culated explicitly in terms of probability, we can evaluate how
likely an observation is then detect low-probability events as
novel. The model is robust, highly unsupervised, end-to-
end and requires minimum preprocessing, feature engineer-
ing or hyperparameter tuning. An experiment on a benchmark
dataset shows that our model outperforms the state-of-the-art
acoustic novelty detectors.

Index Terms— acoustic modeling, novelty detection,
variational recurrent neural network, stochastic recurrent
neural network.

1. INTRODUCTION

Audio processing in general, and acoustic novelty detection
in particular has attracted significant attention recently. A
number of studies have used acoustic data to detect abnor-
mal events, mostly for surveillance purposes, such as human
fall detection [1], [2], abnormal jet engine vibration detection
[3], hazardous events detection [4].

The main challenge of novelty detection is we do not have
a large amount of novel events to learn their characteristics,
while the normal set is usually very big and contains a large
amount of uncertainty. The common approach is to use un-
supervised methods to learn the normality model, then con-
sider events that do not fit this model as abnormal (novel).
Most of these systems use Gaussian Mixture Model (GMM)
or Hidden Markov Model (HMM) [5], [4], [6]. Bayesian Net-
works have also been explored [7], [8]. Recently, advances
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in deep learning [9], especially in Recurrent Neural Networks
(RNNs) and their extensions (Long Short-Term Memory —
LSTM [10], Gated Recurrent Unit — GRU [11]) have opened
new venues for acoustic modeling. In [12], the authors em-
ployed LSTMs to create an AutoEncoder (AE) to model nor-
mal sounds and detect abnormal sounds using the reconstruc-
tion errors. This idea has been extended in [13] by applying
an adversarial training protocol.

However, acoustic signals are stochastic. RNN-based net-
works, whose hidden states are deterministic, can hardly cap-
ture all the variations in the data. Recent efforts to improve the
modeling capacity of RNNs by including stochastic factors in
their hidden states have shown impressive results, especially
for generating text, music and speech [14], [15], [16], [17].

In this paper, we adapt these models to create an un-
supervised acoustic novelty detector. Our approach performs
an end-to-end learning of a probabilistic representation of
acoustic signals. Given this representation, we can evaluate
how likely an observation and state the detection of novel
events as the detection of observations with a low probabil-
ity. We argue that this model is robust, highly unsupervised,
end-to-end and requires minimum preprocessing, feature en-
gineering or hyperparameter tuning. Our empirical evaluation
on a dataset for novel event detection in audio data shows that
the proposed model outperforms the state-of-the-art.

The paper is organized as follows: in Section 2, we
present the details of the proposed approach; we compare the
model with state-of-the-art methods to point out its advan-
tages in Section 3; the experiment and results are shown in
Section 4; finally in Section 5 we give conclusions and some
perspectives for future work.

2. THE PROPOSED APPROACH

2.1. Recurrent Neural Networks with Stochastic Layers
(RNNSLs)

For time series modeling, the two most common approaches
are State Space Models (SSMs) and Recurrent Neural Net-
works (RNNs). SSMs such as Kalman filters [18] and parti-
cle filters [19] have been explored for a long time and are the



state-of-the-art model-driven schemes thanks to their ability
to model stochasticity. However, these models are limited by
their mathematical assumptions (for example, Kalman filters
assume the data generating process is Gaussian). RNNs, on
the other hand, have attracted a lot of attentions recently by
their capacity to represent long-term dependencies in time se-
ries [9]. The main drawback of RNNs is that their hidden
states are deterministic, making them unable to capture all
the stochastic components of the data. A number of efforts
have been made to bring together the power of SSMs and
RNNs [14], [16], [17], [20]: Recurrent Neural Networks with
Stochastic Layers (RNNSLs).

RNNSLs aim to learn the distribution p, which can be fac-
tored through time, over a sequence of T observed random
variables {xt},t=1..T :

p(x1:T ) =

T∏
t=1

pt(xt|x<t), (1)

where x<t denotes x1:t−1.
Following a SSM formulation, we assume that the data

generation process of x1:T relies on a sequence of T latent
random variables {zt},t=1..T . At each time step t, the joint
distribution pt(xt, zt|x<tz<t) can be factored into:

pt(xt, zt|x<tz<t) = pt(xt|x<t, z≤t)pt(zt|x<t, z<t), (2)

where z≤t denotes z1:t. In other words, each time step of
the network is an autoencoder, conditionally to the historical
information.

Depending on the stochastic nature of the considered
data, the emission distribution pt(xt|x<t, z≤t) may be highly
nonlinear. However, this nonlinearity usually leads to the
intractability of the inference distribution pt(zt|x≤t, z<t).
The most common solution to overcome this obstacle is the
variational approach [15], [16], [17], which introduces an
approximation qt(zt|x≤t, z<t) of the posterior distribution
pt(zt|x≤t, z<t) then estimates pt(xt|x<t) by the Evidence
Lower BOund (ELBO) L(x, pt, qt):

log pt(xt|x<t) ≥ L(x, pt, qt) =
Ezt∼qt

[
log pt(xt|x<t, z≤t)

]
−KL

[
qt(zt|x≤t, z<t)||pt(zt|x<t, z<t)

]
(3)

where KL
[
qt||pt

]
is the Kullback-Leibler divergence be-

tween two distributions qt and pt.
There are several types of RNNSLs, differing in the

way that they model the structure of the latent space. The
most common types are Variational Recurrent Neural Net-
works (VRNNs) [16], Stochastic Recurrent Neural Networks
(SRNNs) [17] and Deep Kalman Filters (DKFs) [20]. We
experimented most of these types, however, in this paper, for
simplicity purposes, we only report the VRNNs, introduced
by Chung et al. [16].

Fig. 1. Architecture of the proposed RNNSL-based novelty
detector.

In VRNNs, the historical information (x<t, z<t) is en-
coded by the dynamics of the hidden states of their RNN
(LSTM) ht = h(xt−1, zt−1,ht−1). More precisely, it
involves the parameterization of the following distribu-
tions, namely the emission distribution pt(xt|x<t, z≤t) =
p(xt|zt,ht), the prior distribution pt(zt|x<t, z<t) = p(zt|ht)
and the variational posterior distribution qt(zt|x≤t, z<t) =
p(zt|xt,ht) as neural networks. Here, we consider fully
connected networks with Gaussian formulation of these three
distributions. For more details of VRNNs, please refer to
[16].

2.2. RNNSLs for Acoustic Novelty Detection

RNNSLs were initially designed for generating text, music,
speech. They are currently the state-of-the-art in these do-
mains [15], [16], [17], [21]. The interesting point of this type
of models in comparison to other state-of-the-art methods like
Wavenet [22] is that these models calculate the distribution
p(x1:T ) explicitly, so that after learning this distribution from
the training set, we can evaluate the probability for each new
sequence. The idea of using RNNSLs for novelty detection
was first introduced in [23] for the detection of abnormal be-
haviors of vessels, we adapt this model to novelty detection
in acoustic data.

Here, an acoustic signal is modeled as a time series
{xt},t=1..T where xt can be a chunk of n samples of the
waveform, or n frequency bins in a spectrogram at a given
time t. A RNNSL first learns the distribution over x1:T in the
training set, which may or may not contain some abnormal
sequences. Then, for any new acoustic signal, we can evalu-
ate its log-probability. If this log-probability is smaller than
a threshold, the sequence will be considered as abnormal (or
novel), as illustrated in Fig. 1.

To choose the threshold, we create a validation set, which
again may or may not contain some abnormal sequences and
compute the mean µvalid and the standard deviation σvalid of
the log-probability of the sequences in this set. The value of
the threshold is then chosen as: θ = µvalid − α ∗ σvalid. α is
usually chosen as 3.

The training set and the validation set may contain some
abnormal sequences. However, since RNNSLs are probabilis-
tic models, they will eventually ignore these “outliers” (this
conjecture is confirmed experimentally). This property helps
to reduce data cleaning efforts.



Fig. 2. Architecture and decision rule of the proposed model
(VRNN) in compared to previously proposed AE-based mod-
els. xt is the original signal at the given time step t, ht is
the hidden state of the RNN (LTSM), zt is the latent stochas-
tic state, x′t is the reconstructed output of the AE. The solid
arrows denote the calculation processes, while the dashed ar-
rows show how the cost function is calculated. We use the
same notation as [17], circles for stochastic factors, diamonds
for deterministic factors.

3. RELATED WORK

A number of researches have explored deep neural networks
to detect novelty in acoustic surveillance. We point out here
the advantages of our model over those used in [12] and [13],
which are currently the state-of-the-art methods.

Both [12] and [13] used RNNs (LSTMs in particular) as
an AutoEncoder (AE) which can reconstruct the original sig-
nal from a compressed representation (Compression AutoEn-
coders — CAEs) or from a corrupted version of it (Denoising
AutoEncoders — DAEs). However, as discussed in [16], [17]
and [20], the fact that the hidden states of RNNs are deter-
ministic reduces their capacity to capture all data variabilities,
especially for data that contain high levels of randomness.

Moreover, the detection criterion used in [12] is the Eu-
clidean distance between the original input and the recon-
structed output of the autoencoder. This criterion is very sen-
sitive to noise. [13] addressed this drawback by using an ad-
versarial strategy, however, the ultimate idea is also to com-
pare the original input and the reconstructed output from the
autoencoder. By contrast, our method detects novel events by
directly evaluating the probability of the received signal. Be-
sides the improved detection criterion, the architecture of our
model is also more robust to noise [23].

These differences are sketched in Fig. 2. The hidden
space of our model has stochastic factors, which help to in-
crease modeling capacity. The decision rule of our model is
a function of the distribution learned by the network, making
the model more robust to noise.

The selection of the thresholding value for novelty de-
tection is another important difference compared to previous
works. The approach in [12] is not fully unsupervised, be-
cause it needs some information about the proportion of ab-
normal events in the data. Our method, in contrast, only uses

the information from the training set and the validation set to
chose the threshold, without any prior knowledge of the anno-
tations, based on a statistically-sound criterion, i.e. the false
alarm rate.

4. EXPERIMENT AND RESULT

4.1. Dataset

We tested our model1 on the same dataset used in [12] and
[13], which is part of the PASCAL CHiME speech separation
and recognition challenge dataset [24]. The original dataset
contains 7 hours of in-home environment recordings with two
children and two adults performing common activities, such
as talking, eating, playing and watching television. The au-
thor of [12] took a part of those recordings and created a
dataset for acoustic novelty detection (100 minutes for the
training set and 70 minutes for the test set). In the new dataset,
the sounds of the PASCAL CHiME are considered as back-
ground, the test set was generated by digitally adding abnor-
mal sounds like alarms, falls, fractures (breakages of objects),
screams. The details of the dataset were presented in [12].

4.2. Experimental Setup

In order to use the models in [12] and [13] as baselines, we
set up our model to have the same evaluation metric that
was used in those papers. However, instead of transform-
ing the data to mel spectrograms like in [12] and [13], we
worked directly with the waveform (end-to-end model). The
dataset was recorded by a binaural microphone at a sample
rate of 16kHz. We converted each audio to 1 channel and
then split it into sequences of 160-dimensional frames, each
frame corresponds to 0.01s, as in [12] and [13]. [12] and [13]
evaluated the detection at each frame instead of at the whole
sequence, so we also applied the thresholding step to each
log p(xt|x<t), instead of log p(x1:T ).

We tested different topologies of VRNN, with the latent
size of 64, 80, 160 and 200. The models were trained using
Adam optimizer [25], with a learning rate of 3e− 5.

4.3. Results

Different configurations gave different log-likelihoods on the
dataset, however the final detection results were quite simi-
lar. We report here only one of the topologies, which gave the
best result: VRNN with 160 latent units (the models with 80
hidden units also gave similar results). We compare the per-
formance of our model with the result of GMM, HMM, those
in [12] (LSTM-based CAE, LSTM-based DAE) and in [13]
(Adversarial AE). The result is shown in Table 12. Besides
choosing the threshold automatically as discussed in Section

1The code is available at https://github.com/dnguyengithub/AudioNovelty
2The values in Table 1 are from [12] and [13], [13] did not show the

precision and recall of their model



Table 1. Detection result, in comparison with state-of-the-art
methods.

Method
Online

Processing
Precision Recall F1 score

GMM Yes 99.1 87.8 89.4

HMM Yes 94.1 88.9 91.1

LSTM-CAE Yes 91.7 86.6 89.1

BLSTM-CAE No 93.6 89.2 91.3

LSTM-DAE Yes 94.2 90.6 92.4

BLSTM-DAE No 94.7 92.0 93.4

Adversarial AE ? ? ? 93.3

VRNN Yes 95.4 91.8 93.6
VRNN* Yes 95.4 92.8 94.1

Table 2. Robustness test.
SNR Precision Recall F1 score
5dB 96.0 91.2 93.6

10dB 96.1 91.9 94.0

15dB 96.1 92.1 94.0

2, we also used the same technique as in [12] to chose the
optimal threshold value, denoted as VRNN* .

Our method not only outperformed the state-of-the-art
methods, but also has the ability to work online, which is
highly beneficial for real-time surveillance. Models that use
bidirectional LSTM (BLSTM-CAEs, BLSTM-DAEs) can
not reach online processing the because a look-ahead buffer
is required. The online processing ability of Adversarial AEs
depends on the structure that they use (LSTM or BLSTM).

When investigating the cases where the proposed model
misdetected the novelty, we found that actually the model
could detect all the novel events, however, the way the de-
tection was evaluated reduced the accuracy. As in [12] and
[13], the detection was evaluated at each time step of 0.01s.
Our model has a memory effect (the memory of its LSTM
cells), so it tends to merge the abnormal events that are very
close to each other, as shown in Fig. 3. In other cases, the
model missed a part of the sound, especially for the tail of
the fractures, as shown in Fig. 4. These sounds have a long
tail which is gradually submerged in the background. These
misdetections are not detrimental in real life applications, be-
cause we are more interested in whether or not there is a novel
event than on how long the event is.

We also conducted a robustness test where we added
Gaussian noise to the test set. The additive noise is unknown
by the model. This is a common scenario in audio surveil-
lance, when the background environment changes (e.g. be-
cause of winds) or when noise appears in the electronic
system. Table 23 shows the performance of the proposed

3[12] and [13] did not provide sufficient detail to replicate their codes for
this test.

Fig. 3. An example where the novelty events were merged.
This figure shows the waveform of two alarms, each alarm
consists of there “beeps”, our model considered this “beep
beep beep” as one event, while the annotation made by the
authors of [12] separates these “beeps”.

Fig. 4. An example where the model missed a part of the
novelty event. This figure shows the waveform of the sound
of a fracture of a dish. The tail of the sound is very mall and
gradually becomes submerged in the background.

approach (with optimal threshold) on the corrupted test sets
with different level of Signal to Noise Ratio (SNR). Thanks
to the nature of VRNNs and the improved detection criterion,
our model is robust to noise.

5. CONCLUSIONS AND PERSPECTIVES

We have presented a novel unsupervised end-to-end approach
for acoustic novelty detection. This approach exploits RNNs
with stochastic layers, which are the state-of-the-art frame-
works for time series modeling. Given the learned probabilis-
tic representations, novelty detection can be stated as a clas-
sic statistical test, which fully accounts for the stochasticity of
the considered acoustic datasets. Reported experiments on a
benchmarked dataset showed that the model outperforms the
state-of-the-art detectors [12], [13].

The dataset used in this paper is quite simple, the novel
events in it are quite easy to be detected. Future work could
involve applying this model to more complex signals, e.g. un-
derwater acoustic signals which depict even greater variabil-
ities. The impact of the threshold is also being studied to
obtain better threshold selection rule.
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