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Introduction

In this article, Σ g denotes a closed oriented surface of genus g. A collection Γ := {γ 1 , ..., γ n } of closed curves on Σ g is filling if its complement in Σ g is a union of topological disks. If Σ g -Γ is a single topological disk, we say that Γ is a unicellular collection. A unicellular collection Γ on Σ g is equivalent to a regular 4-valent graph G on Σ g with one disk on its complement, and when the degree of the vertices of G is unspecified, we speak of a unicellular map. An oriented edge of Γ has a right and left side according to the orientation of Σ g . There is a unique simple arc λ x,y (up to isotopy with endpoints gliding in x and y), whose interior is disjoint from Γ, leaving x from its right side and entering y by its right side. The local modification on Γ along λ x,y , depicted in Figure 1, leads to a new collection Γ := σ x,y (Γ). When Γ is unicellular, we say that Γ is obtained from Γ by a surgery between x and y. We give a necessary and sufficient condition (Lemma 3.1) for Γ to be unicellular. As we will see, surgery is reminiscent to how a deck of cards is shuffled.

To the surgery operation, we associate the combinatorial surgery graph K g whose vertices are unicellular collections on Σ g (up to orientation-preserving homeomorphisms) and whose edges are pairs of unicellular collections which differ by a surgery. The graph K g is finite and defined a metric space by taking every edge to be length one. In general, their are counting formula for rooted (distinguished oriented edge) unicellular maps on Σ g (see [START_REF] Harer | The Euler characteristic of the moduli space of curves[END_REF], [START_REF] Tutte | A census of Hamiltonian polygons[END_REF], [START_REF] Tutte | A census of planar triangulations[END_REF], [START_REF] Tutte | A census of slicing Canad[END_REF], [START_REF] Tutte | A census planar graph[END_REF], [START_REF] Walsh | Counting rooted maps by genus[END_REF]). A. Goupil and G. Schaeffer ([4], Theorem 2.1) provided a counting formula for rooted unicellular maps on Σ g with the same degree partition: the ordered list of the degree of the vertices. Restricting to unicellular collection, that formula greatly simplified to (4g-2)! 2 2g-1 g! . For g = 1, there is only one unicellular collection up to orientationpreserving homeomorphisms. So, K 1 consists of one vertex. Using the Goupil-Schaeffer formula for g = 2, one checks that there are exactly six 1 unicellular collections on Σ 2 . By inductively trying all possible surgeries, one obtains those six unicellular collections.

One notices that K 2 is connected (see Figure 2). Our main result is:

Theorem 1. For every integer g ≥ 1 the graph K g is connected. Moreover, for g ≥ 2, 2g -1 ≤ D g ≤ 3g 2 + 9g -12 ; where D g is the diameter of K g .

Our proof is not straightforward as one may hope. We define a connected sum operation on unicellular collections that turns two unicellular collections on Σ g 1 and Σ g 2 into a new unicellular collection on Σ g 1 +g 2 . We then consider the surgery-sum graph K g as the union i≤g K i where we also add an edge between Γ 1 and Γ 2 if Γ 2 can be realized as a connected sum of Γ 1 with the unique unicellular collection on the torus. Theorem 2. For every g, the graph K g is connected.

Our proof of Theorem 2 uses an interesting lemma: the trisection lemma, stated by G. Chapuy in [START_REF] Chapuy | A new combinatorial identity for unicellular maps, via a direct bijective approach[END_REF]-Lemma 3 (the author was interested in combinatorial identities for unicellular maps). The proof of Theroem 1 is by induction on g and uses the fact that K g is connected.

←→ ←→ ←→ ----- Let K ∞ := i≥1 K i be the infinite surgery-sum graph obtained by taking the union of all surgery-sum graphs. We also have: Theorem 3. The infinite surgery-sum graph K ∞ is not Gromov hyperbolic.

As mentioned above, unicellular collections (unicellular maps in general) are well-known for their counting formulas and different methods have been used to get these formulas. In a more topological context, T. Aougab and S. Huang [START_REF] Aougab | Minimally intersecting filling pairs on surfaces[END_REF] studied minimally intersecting filling pairs: those unicellular collections made of exactly two simple closed curves. They show that their number also grows exponentially with the genus.

Our approach is in some sense transverse to the previous works and in [START_REF] Sane | Intersection norm and one-faced collections[END_REF], we studied unicellular collections to partially answer a question about the shape of dual unit balls of intersection norms 2 . Combinatorial surgery graphs widen the family of graphs associated to surfaces (curves complexe, arcs complexes, pant graphs...) and our results give a refreshing to the theory.

Outline of the paper: Section 2 recalls some facts on unicellular collections. In Section 3, we define the surgery operation and the connected sum.

2.

Initially, the motivation of this paper was to count unicellular collections, since I was unaware about the previous works on unicellular maps. This ignorance was in some sense benefic.

Section 4 prepares the proofs of Theorem 1, Theorem 2 and Theorem 3 stated in Section 5. Section 6 is about some open questions on the subject.

Descriptions of unicellular collections

Let Γ be a filling collection in general position on Σ g ; that is the complement of Γ in Σ g is a union of topological disks. One can consider Γ as a graph embedded in Σ g . Let V be the number of vertices of Γ, E the number of edges and F the number of faces. The Euler characteristic of Σ g is given by χ(Σ g ) = 2 -2g = V -E + F . As Γ defines a regular 4-valent graph we have E = 2V , which implies V = 2g -2 + F. If Γ is unicellular, we then have

V = 2g -1, E = 4g -2, F = 1.
From this one can see that there is only one unicellular collection on the torus up to orientation-preserving homeomorphism ; we denote it by Γ T (see Figure 3).

Gluing pattern of unicellular collections:

Let Γ be a unicellular collection on Σ g , then Σ g -Γ is a polygon with 8g -4 edges, that we denote by P Γ . The polygon P Γ comes with a pairwise identification of its edges. Choosing an edge on P Γ as an origin, one can label the edges of P Γ from the origin in a clockwise manner ; thus obtaining a word W Γ on 8g -4 letters. If two edges are identified, we label them with the same letter with a bar (¯) above the letter assigned to the second edge. The word W Γ is a gluing pattern of (Σ g , Γ) and two gluing patterns of (Σ g , Γ) differ by a cyclic permutation and a relabeling. A letter of a gluing pattern associated to a unicellular collection corresponds to a side of an edge of Γ ; thus we can see a letter x as an oriented edge and x as the same edge with opposite orientation. Proof. Let us assume that Γ 1 and Γ 2 have the same gluing patterns. Since Σ g -Γ 1 and Σ g -Γ 2 are disks, they are homeomorphic. The fact that Γ 1 and Γ 2 have the same gluing patterns implies that one can choose an homeomorphism φ :

P Γ 1 -→ P Γ 2
such that φ maps a couple of identified sides on P Γ 1 to a couple of identified sides on P Γ 2 . Therefore, φ factors to φ on the quotient (identification of sides) and φ(Γ 1 ) = Γ 2 .

Conversely, if φ(Γ 1 ) = Γ 2 then Γ 1 and Γ 2 have the same gluing pattern.

Unicellular collections as permutations: Maps on surfaces can be described by a triple of permutations which satisfy some conditions (see [START_REF] Lando | Graphs on surfaces and their applications[END_REF] Section 1.3.3, for the combinatorial definition of maps). We restrict that definition to the case of unicellular collection.

To a unicellular collection we associate H: the set of oriented edges, an involution α of H which maps an oriented edge to the same edge with opposite orientation and a permutation µ whose cycles are oriented edges emanating from vertices when we turn counter-clockwise around them.

Definition 2.1. The elements (H, α, µ, γ) are the permutations associated to the unicellular collection Γ and γ := αµ describes the face of Γ.

If W Γ is a gluing pattern of Γ, we can take H to be the set of letters of W Γ . The permutation γ is then the shift to the right and it corresponds to the unique face. The cycles of α and µ correspond to the edges and vertices of Γ, respectively. Moreover, if we fix an origin x ∈ H we get a natural order from γ:

x < γ(x) < ...... < γ 8g-3 (x).

Changing the origin, the order above changes cyclically.

The cycles of µ are in one to one correspondence with the vertices of Γ. If x and y are two oriented edges with x < y, they define two intervals in a gluing pattern for Γ: [x, y] := {a, x ≤ a ≤ y} and [y, x] := {a, a ≤ x} ∪ {a, y ≤ a}. 

Surgery and connected sum on unicellular collections

In this section, we define two topological operations on the set of unicellular collections: the surgery and the connected sum.

Surgery on a unicellular collection: Let Γ be a unicellular collection on Σ g , x and y be two oriented edges of Γ (x and y correspond to two sides of P Γ ). Since Γ is unicellular, there is a unique homotopy class of simple arcs whose interiors are disjoint from Γ and with endpoints in x and y ; let us denote it by λ x,y . We obtain a new collection denoted by σ x,y (Γ) by "cuttingopen" Γ along λ x,y (see Figure 1). The collection σ x,y (Γ) is not necessarily unicellular.

Definition 3.1. Let Γ be a unicellular collection, x and y be to oriented edges of Γ. We say that {x, y} and {x, ȳ} are intertwined if x and ȳ are not both in [x, y] and not both in [y, x] (see Figure 4). It means that Γ admits a gluing pattern of the form w 1 xw 2 xw 3 yw 4 ȳ.

Otherwise, we say that {x, y} and {x, ȳ} are not intertwined. By abuse, we will just say that x and y are intertwined or not intertwined. Now, the following lemma gives a necessary and sufficient condition for the above operation to preserve the unicellular character. Lemma 3.1 (Card shuffling). Let Γ be a unicellular collection, x and y be two oriented edges of Γ. Then σ x,y (Γ) is unicellular if and only if x and y are intertwined. In this case, we call the operation a surgery on Γ between x and y. Moreover, if w 1 xw 2 xw 3 yw 4 ȳ is a gluing pattern for Γ then,

w 3 Xw 2 Xw 1 Y w 4 Ȳ
is a gluing pattern for σ x,y (Γ).

Proof. Since the operation along λ x,y leads to a new collection Γ := σ x,y (Γ), all we have to do is to prove that Γ is unicellular. We use a cut and past argument similar to several proofs of the classification of surfaces (see Figure 4). Assume first that x and y are intertwined. When we "cut-open" along λ x,y , the edges {x, x} and {y, ȳ} get replaced by new edges {X, X} and {Y, Ȳ }. When we cut along the two new edges (in the polygonal description) and glue along the old ones (see Figure 4), we obtain a polygon ; that is Γ is unicellular with gluing pattern On the other hand, if x and y are not intertwined, one constructs an essential curve disjoint from Γ , so Γ is not unicellular (see Figure 5). Remark 3.2. If x and y are two intertwined oriented edges, then x and ȳ are also intertwined. Moreover, one has σ x,y (Γ) = σ x,ȳ (Γ). In fact, by Lemma 3.1, if

w 3 Xw 2 Xw 1 Y w 4 Ȳ .
W Γ = w 1 xw 2 xw 3 yw 4 ȳ is a gluing pattern for Γ, W σx,ȳ(Γ) = w 1 Xw 4 Xw 3 Y w 2 Ȳ
is a gluing pattern for σ x,ȳ (Γ), and it is equivalent to W σx,y(Γ) = w 3 Xw 2 Xw 1 Y w 4 Ȳ up to cyclic permutation and relabeling.

Remark 3.3. Given a unicellular collection, there are always intertwined pairs unless it is the unicellular collection of the torus. Indeed, if all pairs of Γ are not intertwined a gluing pattern for Γ is given by

W Γ = x 1 x 2 .....x 4g-2 x1 x2 ....x 4g-2 .
After identifying the sides of P Γ , all the vertices of P Γ get identified. Thus Γ has only one self-intersection point. It follows that g = 1 and that Γ is the only unicellular collection with one self-intersection point, namely Γ T .

Connected sum: Let Γ 1 and Γ 2 be two unicellular collections on two surfaces Σ 1 and Σ 2 , respectively. Let D 1 and

D 2 be two open disks on Σ 1 and Σ 2 , disjoint from Γ 1 and Γ 2 , respectively. Let Σ g 1 #Σ g 2 be the connected sum along D 1 and D 2 . Then (Σ g 1 #Σ g 2 , Γ 1 ∪ Γ 2 ) is a genus g 1 + g 2 surface endowed with a collection Γ 1 ∪ Γ 2 . Since Γ 1 and Γ 2 are unicellular, the complement of Γ 1 ∪ Γ 2 in Σ g 1 #Σ g 2 is an annulus.
Now, let x and y be two oriented edges of Γ 1 and Γ 2 respectively, and λ x,y a simple arc on Σ g 1 #Σ g 2 from x to y whose interior is disjoint from Γ 1 ∪ Γ 2 . The arc λ x,y joins the two boundary components of

Σ g 1 #Σ g 2 -Γ 1 ∪ Γ 2 . The- refore the graph Γ 1 ∪ Γ 2 ∪ λ x,y fills Σ g 1 #Σ g 2 with one disk in its complement.
Thus, the collection Γ := (Γ 1 ∪Γ 2 ∪λ x,y )/λ x,y -the quotient here means the contraction of λ x,y into a point-(see Figure 6) is a unicellular collection. We say that Γ is the connected sum of the marked collections (Γ 1 , x) and (Γ 2 , y). Definition 3.2. Let Γ be a unicellular collection, x and y be two oriented edges of Γ. We say that x and y are symmetric if the gluing pattern for Γ starting at x is the same as the one starting at y up to relabeling. Exemple 3.1. On Γ T , any two oriented edges are symmetric.

The following lemma states how we obtain a gluing pattern for (Γ 1 , x)#(Γ 2 , y) from gluing patterns for Γ 1 and Γ 2 .

Lemma 3.2. If W Γ 1 = xw 1 xw 2 (respectively W Γ 2 = yw 1 ȳw 2 ) is a gluing pattern for Γ 1 (respectively Γ 2 ), then x 1 w 1 x1 x 2 w 2 x2 y 1 w 1 ȳ1 y 2 w 2 ȳ2 x x y ȳ λ x,y x 1 x1 x 2 x2 y 1 ȳ1 y 2 ȳ2 → Figure 6 -Connected sum.
is a gluing pattern for (Γ 1 , x)#(Γ 2 , y).

Moreover, (Γ 1 , x)#(Γ 2 , y) and (Γ 1 , x)#(Γ 2 , y ) are topologically equivalent if y and y are symmetric.

Proof. The proof can be read on Figure 6. Lemma 3.2 implies that the connected sum of a unicellular collection Γ with Γ T depends only on the oriented edge we choose on Γ, since all oriented edges of Γ T are symmetric.

Some reductions on unicellular collections

Unicellular collections are easy to see when they have many simple curves. In this section, we show how one can reduce unicellular collections to those with many simple curves. These reductions will make possible to isolate toroidal parts and will provide an induction argument for the proof of our theorems.

Simplification of unicellular collections:

Let Γ be a unicellular collection, (H, α, µ, γ) the permutations associated to Γ (Definition 2.1) and x an oriented edge of Γ. Then the oriented edges x and C(x) := γαγ(x) belong to the same curve β ∈ Γ ; x and C(x) are consecutive along β (see Figure 7). Moreover, the sequence (C n (x)) n is periodic and it travels through all edges of β. The name is explained by:

Lemma 4.1. If Γ := σ x,C(x) (Γ) is a simplification, then S Γ = S Γ + 1.
In other words, a surgery on Γ between x and C(x) creates an additional 1-simple curve in Γ .

Proof. Suppose that x and C(x) are intertwined, a gluing pattern for Γ is given by:

W Γ = (tw 1 )x(yw 2 t)x(w 3 ȳ)C(x)w 4 C(x).
Therefore, by Lemma 3.1 a gluing pattern for Γ := σ x,C(x) (Γ) is given by:

W Γ = w 3 ȳXyw 2 t Xtw 1 Zw 4 Z. So, in Γ we have C(X) = γαγ(X) = γα(y) = γ(ȳ) = X.
It implies that X is the side of simple curve which intersects Γ only once. Now if θ 1 and θ 2 are two 1-simple curves of a unicellular collection, then θ 1 and θ 2 are disjoint ; otherwise θ 1 ∪ θ 2 would be disjoint from Γ, that is absurd since Γ is connected. So the number S Γ of 1-simple curves on a unicellular collection Γ is bounded by the genus g of the underlying surface. Therefore a sequence of simplifications on a unicellular collection stabilizes at a collection on which no simplification can be applied anymore. Definition 4.3. A collection Γ is non-simplifiable if one cannot do a simplification from it, i.e, x and C(x) are always non intertwined.

Order around vertices of a non-simplifiable collection: In this paragraph, we will show that vertices of non-simplifiable unicellular collections are of certain types.

Let Γ be a unicellular collection and (H, α, µ, γ) the permutations associated to Γ ; H being the set of letters of a gluing pattern for Γ. If we fix an origin x 0 ∈ H, we then get an order on H:

x 0 < γ(x 0 ) < ... < γ 8g-3 (x 0 ).
Therefore, if v is a vertex of Γ defined by a cycle (txyz) of µ, we get a local order around v by comparing t, x, y and z. Since each letter corresponds to an oriented edge which leaves an angular sector of v (see Figure 8), the local order around v corresponds also to a local order on the four angular sectors around v when running around Γ with γ. Definition 4.4. Let v be a vertex defined by the oriented edges (t, x := µ(t), y := µ 2 (t), z := µ3 (t)) with t = min{t, x, y, z} relatively to an order of edges on Γ. Then, v is a vertex of Type 1 if t < x < y < z ; v is a vertex of Type 2 if t < z < y < x. Otherwise, the vector v is a vertex of Type 3.

Up to rotation and change of origin, we have the three cases depicted on Figure 8. Proof. All we have to do is to write the possible gluing patterns of Γ by figuring out the order of the edges around a vertex and look when consecutive edges are intertwined or not.

Case 1: If v is a vertex of Type 1, then a gluing pattern for Γ is given by:

W Γ = w 1 ztw 2 txw 3 xyw 4 ȳz.
Therefore, one checks that x and C(x) = z are not intertwined ; so are t and C( t) = y. Hence, no simplification is possible around v. Case 2 : If v is a vertex of Type 2, the gluing pattern for Γ is

W Γ = w 1 ztw 2 ȳzw 3 xyw 4 tx.
Then, x and C(x) = z are not intertwined ; so are t and C( t) = y. Again, no simplification is possible around v in this case. Case 3: If v is a vertex of Type 3, then

W Γ = w 1 ztw 2 txw 3 ȳzw 4 xy.
Here, t and C( t) = y are intertwined and a simplification is possible. So Γ is non-simplifiable if and only all is vertices are of Type 1 or Type 2.

Number of vertices of Type 1 and 2 in a non-simplifiable unicellular collection: In [START_REF] Chapuy | A new combinatorial identity for unicellular maps, via a direct bijective approach[END_REF], G. Chapuy has defined a notion which catches the topology of a unicellular map: trisection. We recall one of his results about trisection.

Let G be a unicellular map and (H, α, µ, γ) the permutations associated to G. Let v be a degree d vertex of G defined by a cycle (x 1 x 2 ...x d ) of µ, with x 1 = min{x 1 , ..., x d } relatively to an order on H.

If x i > x i+1 we say that we have a down-step. Since x 1 = min{x 1 , ..., x d }, one has x d > x 1 ; the other down-steps around v are called non trivial.

Definition 4.5 (G. Chapuy).

A trisection is a down-step which is not a trivial one.

Lemma 4.3 (The trisection lemma ; G. Chapuy [START_REF] Chapuy | A new combinatorial identity for unicellular maps, via a direct bijective approach[END_REF]). Let G be a unicellular map on a genus g surface. Then G has exactly 2g trisections.

Applying the trisection lemma to unicellular collections, we get: Proof. A vertex of Type 2 (respectively a vertex of Type 1) has two trisections (respectively zero trisection) (see Figure 8). If N i is the number of vertices of Type i (i=1,2), by the trisection lemma we have 2N 2 = 2g ; so

N 2 = g. Since V Γ = N 1 + N 2 = 2g -1, it follows that N 1 = g -1.
Repartition of vertices on a non-simplifiable collection: Now, we show that using surgeries, we can re-order the vertices of a non-simplifiable collection.

Definition 4.6. Let G be a graph. Two vertices are adjacent if they share an edge.

If v 1 and v 2 are two vertices represented by the cycles (abcd) and (ef gh), respectively, they are adjacent if and only if there exists x ∈ {a, b, c, d} such that x ∈ {e, f, g, h}.

We now show that some configurations of vertices "hide" simplifications ; that is from those configurations we can create new 1-simple curves after a suitable surgery, without touching the old ones. Lemma 4.4. Let Γ be a non-simplifiable unicellular collection. If Γ contains two vertices of Type 2 which are adjacent, then there is a sequence of surgeries Γ = Γ 0 -→ Γ 1 -→ ... -→ Γ n from Γ to Γ n such that Γ n is non-simplifiable and S Γ < S Γn .

Proof. Let v 1 and v 2 be two adjacent vertices of Type 2 defined by the cycles (b f ḡā) and (c dē b), respectively (see Figure 9).

Let us fix an oriented edge as an origin, so that a = min{a, c, d, e, f, g};

that is the first time we enter in the local configuration is by the oriented edge a. Then we have the following order:

a < b < c < g < ā < f < ḡ < e < b < f < d < ē < c < d.
Otherwise, it would contradict the fact that the two vertices are of Type 2.

A gluing pattern for Γ is given by:

W Γ = w 1 abcw 2 gāw 3 f ḡw 4 e b f w 5 dēw 6 c d.
The oriented edges b and ḡ are intertwined, so we can define Γ := σ b,ḡ (Γ). By Lemma 3.1, a gluing pattern for Γ is: The cycles ( Ḡ f Bā) and ( Bc dē) define the two vertices of Γ in Figure 9 and the orders around these two vertices are:

W Γ = āw 3 f Bcw 2 G f w 5 dēw 6 c dw 1 a Ḡw 4 e B.
Ḡ < ā < B < f ; B < c < ē < d.
Therefore, the vertex ( Bc dē) is a vertex of Type 3 and it implies that Γ is simplifiable. Indeed the operation on Figure 9 does not touch any 1-simple curve of Γ and each simplification increases strictly the number of 1-simple. Let Γ n be a non-simplifiable collection obtained after finitely many simplifications on Γ ; so S Γ < S Γn .

Let v 1 and v 2 be two vertices of Type 1 and Type 2 defined by the cycles (cdef ) and (gābc), respectively, such that v 1 and v 2 are adjacent. The local configuration in this case is depicted on Figure 10 and we assume that a = min{a, b, d, ē, f , ḡ}. 

a < b < d < e < ē < f < ḡ < ā < f < c < g < b < c < d, or a < b < d < e < ḡ < ā < ē < f < f < c < g < b < c < d. Sub-case 1: If a < b < d < e < ē < f < ḡ < ā < f < c < g < b < c < d, then W Γ = w 1 abw 2 dew 3 ēf w 4 ḡāw 5 f cgw 6 bcd
is a gluing pattern for Γ.

The oriented edges a and ē are intertwined and a gluing pattern for Γ := σ a,ē (Γ) is given by

W Γ = w 3 Abw 2 dEw 5 f cgw 6 bcdw 1 Ēf w 4 ḡ Ā.
The cycles (bcg Ā) and (Ef cd) define the two vertices in Figure 11. Moreover, b < g < c < Ā and E < c < d < f that is they are vertices of Type 3. Therefore, Γ is simplifiable and there is sequence of simplification from Γ to Γ n such that Γ n is non-simplifiable and S Γn > S Γ = S Γ . The equality S Γ = S Γ holds since the surgery in this case does not touch a 1-simple curve.

Sub-case 2: If a < b < d < e < ḡ < ā < ē < f < f < c < g < b < c < d, then a gluing pattern for Γ is W Γ = w 1 abw 2 dew 3 ḡāw 4 ēf w 5 f cgw 6 bcd.
Here again, the oriented edges a and f are intertwined and a gluing pattern for Γ := σ a,f (Γ) is given by:

W Γ = w 4 ēAbw 2 dew 3 ḡ Ācgw 6 bcdw 1 F w 5 F .
The two vertices in Figure 12 are defined by the cycles (bcg Ā) and (Acde). Moreover, b < Ā < g < c and A < e < c < d. It follows that the vertex (Acde) is a vertex of Type 3 and therefore, Γ is simplifiable. Case 2: if min{ b, d, ē, f , ḡ} = ē, then the local order is given by:

a < b < ē < f < ḡ < ā < f < c < ḡ < b < c < d < d < e,
and a gluing pattern for Γ is given by: W 4 = w 1 abw 2 ēf w 3 ḡāw 4 f cgw 5 bcdw 6 de.

In this case, a and d are intertwined. A gluing pattern for Γ := σ a,d (Γ) is given by:

W Γ = w 4 f cgw 5 bcAbw 2 ēf w 3 ḡ Āew 1 Dw 6 D.
The cycles (cAef ) and (g Ābc) represent the two vertices in Figure 13 and c < A < f < e. So, the vertex (cAef ) is a vertex of Type 3 and Γ is simplifiable.

Definition 4.7. Let v 1 and v 2 be two adjacent vertices of Type 1 and 2, respectively. We say that we have a good order around v 1 and v 2 if ḡ = min{ b, d, ē, f , ḡ} (see Figure 10). The oriented edges a and x are intertwined and

W Γ = w 3 uAw 2 Āȳw 1 Xw 4 X
is a gluing pattern for Γ := σ a,x (Γ). The vertex v in Γ is defined by the cycle (Aȳ tū) and one checks that A < ȳ < ū < t ; that is v is a vertex of Type 3 and Γ is simplifiable. Hence, there is a sequence of simplification which strictly increases the number of 1-simple curves.

Definition 4.9. Let Γ be a unicellular collection. We say that Γ is a toral unicellular collection if Γ is an almost toral unicellular collection and if every vertex of Type 1 is adjacent to at most two vertices of Type 2.

Figure 2 shows two toral unicellular maps on Σ 2 : the one with four simple curves, and the one with two 1-simple curves and one non-simple curve.

Lemma 4.8. Let Γ be an almost toral unicellular collection. Then there is a sequence of surgeries

Γ 0 = Γ -→ Γ 1 -→ ... -→ Γ n such that Γ n is a toral unicellular collection.
Proof. Let v be a vertex of Γ of Type 1. If v is adjacent to 4 vertices of Type 2 or 3 vertices all of which are of Type 2, Lemma 4.7 implies that there is a sequence of surgeries Γ 0 = Γ -→ Γ 1 -→ ... -→ Γ n such that S Γ < S Γn . Since the number of 1-simple curves is bounded by the genus g, there is a sequence of surgeries Γ 0 = Γ -→ Γ 1 -→ ... -→ Γ n such that Γ n is almost toral and such that every vertex of Type 1 adjacent to three vertices of Type 2 is also adjacent to a fourth of Type 1. The local configuration around those vertices is depicted in Figure 16, with ē = min{ d, ē, f } . A gluing pattern for Γ n is given by:

W Γn = w 1 aw 2 āw 3 dw 4 d.
The oriented edges a and d are intertwined and the surgery σ a,d (Γ n ) decreases the number of adjacent vertices to v (see Figure 16). Following this process, we get a toral unicellular collection after finitely many surgeries. Proof. We have to show that there is a vertex of Type 2 which is adjacent to exactly one vertex of Type 1.

Assume that every vertex of Type 2 is adjacent to at least two vertices of Type 1. Let N 1 and N 2 be the number of vertices of Type 1 and Type 2 respectively, and let N 1,2 be the number of pairs of vertices of Type 1 and Type 2 which are adjacent.

Since Γ is a toral unicellular collection, any vertex of Type 1 has at most two vertices of Type 2. It implies that,

N 1,2 < 2N 1 .
On the other part, we have assumed that every vertex of Type 2 is adjacent to at least two vertices of Type 1. Therefore,

2N 2 ≤ N 1,2 .
Combining the two inequalities above, we get N 2 ≤ N 1 which contradicts the fact that we have g -1 vertices of Type 1 and g vertices of Type 2 in a non-simplifiable unicellular collection.

So, there is a vertex v 0 of Type 2 which is adjacent to exactly one vertex v 1 of Type 1. As vertices of Type 2 are not adjacent, v 0 lies on a 1-simple curve. ( * ) Next, we show that v 1 can be transformed into a self-intersection point (if it is not the case) by a surgery. Assume that v 1 is not a self-intersection point. Then a gluing pattern for Γ is given by:

W Γ = w 1 xyw 2 ȳzw 3 ztw 4 tx;
where v 1 is defined by the cycle (yztx) (Figure 17). The oriented edges y and z are intertwined and a gluing pattern for Γ := σ y,z (Γ) is given by:

W Γ = Y w 2 Ȳ tw 4 txw 1 xZw 3 Z
The vertex v 1 in Γ is defined by the cycle (Y txZ) and Y < t < x < Z ; that is v 1 is still a vertex of Type 1. Moreover, v 1 get transformed to a selfintersection point. So, the surgery on Γ between y and z has transformed v 1 to a self-intersection point of Type 1. ( * * ) Finally, ( * ) and ( * * ) implies that

Γ = (Γ , x)#(Γ T , x 0 );
with Γ a unicellular collection on Σ g-1 .

5 Proof of the main theorems

In this section, we prove Theorem 1, Theorem 2 and Theorem 3. We recall that the graph K g is the graph whose vertices are homeomorphism classes of unicellular collections on Σ g , and on which two vertices Γ 1 and Γ 2 are connected by an edge if there is a surgery which transforms Γ 1 into Γ 2 (if a surgery on Γ fix Γ, we do not put a loop). The graph K g := i≤g K i is the disjoint union of the graphs K i on which we add an edge between two unicellular collections Γ 1 and Γ 2 on Σ i and Σ i+1 respectively if Γ 2 is a connected sum of Γ 1 with the unicellular collection of the torus.

The following proposition is the main technical result: it directly implies Theorem 2. It also implies Theorem 1 with a bit of extra-work and its proof uses most lemmas of Section 4.

Proposition 5.1. Let Γ be a unicellular collection on Σ g+1 . Then there is a finite sequence of surgeries Γ := Γ 0 -→ ... -→ Γ n and a unicellular collection Γ on Σ g with a marked edge x such that Γ n = (Γ , x)#Γ T .

Proof. Let Γ be a unicellular collection on Σ g , there is a sequence of surgeries Γ -→ ... -→ Γ 1 such that Γ 1 is non-simplifiable. By Lemma 4.6, there is a sequence of surgeries Γ 1 -→ ... -→ Γ 2 such that Γ 2 is almost toral and by Lemma 4.7, there is a sequence of surgeries Γ 2 -→ ... -→ Γ 3 such that Γ 3 is toral. Lemma 4.9 implies that Γ 3 = (Γ , x)#Γ T with Γ a unicellular collection in Σ g-1 .

We can now prove Theorem 2, which states that for every g the graph K g is connected.

Proof of Theorem 2. Let Γ ∈ K g . By Proposition 5.1, there is path in K g from Γ to (Γ , x)#Γ T where Γ ∈ K g-1 . Thus, there is path in K g from Γ to Γ . By induction on g, we deduce a path from Γ to Γ T . So, K g is connected. Now, we turn to the proof of Theorem 1. Let us start with some preliminaries.

Lemma 5.1. Let Γ be a unicellular collection on Σ g and x an oriented edge of Γ. Then there is a surgery from (Γ, x)#Γ T to (Γ, x)#Γ T .

Lemma 5.1 states that up to surgery the connected sum of Γ with Γ T depends only on the edge we choose on Γ but not on its orientation.

Proof. Let W Γ := w 1 xw 2 x be a gluing pattern for Γ, Γ 1 := (Γ, x)#Γ T and Γ 2 := (Γ, x)#Γ T . We recall that W Γ T = abā b is a gluing pattern for Γ T . By Lemma 3.2,

W Γ 1 = x 1 w 1 x1 x 2 w 2 x2 a 1 bā 1 a 2 bā 2 and W Γ 2 = x 1 w 2 x1 x 2 w 1 x2 a 1 bā 1 a 2 bā 2
are gluing patterns of Γ 1 and Γ 2 , respectively. Thus, in W Γ 1 , x 1 and x 2 are intertwined, Γ := σ x 1 ,x 2 (Γ 1 ) is unicellular, with gluing pattern

W Γ = x 1 w 2 x1 x 2 w 1 x2 a 1 bā 1 a 2 bā 2 .
We check that W Γ = W Γ 1 . So, σ x 1 ,x 2 (Γ 1 ) = Γ 2 . Definition 5.1. We call g-necklace the homeomorphism class of the unicellular collection on Σ g , denoted by N g , with g 1-simple curves and one spiraling curve η with g -1 self intersection points (see Figure 18 for the 5-necklace).

Remark 5.1. Intersection points between 1-simple curves and γ in N g are of Type 2 ; the others are Type 1 vertices. There are g -1 vertices of Type 2 which are adjacent to exactly one vertex of Type 1 and one special vertex of Type 2 which is adjacent to two vertices of Type 1.

We can now prove Theorem 1, namely given Γ 1 and Γ 2 are two unicellular collections on a genus g surface Σ g there is a finite sequence of surgeries from Γ 1 to Γ 2 .

Proof of Theorem 1: connectedness. We give a proof by induction on g. Assume K g is connected. Let Γ be a unicellular collection on Σ g+1 . By Proposition 5.1, there exists a sequence of surgeries Γ = Γ 0 -→ ... -→ Γ n where Γ n is of the form (Γ , x)#Γ T .

Since we have assumed that K g is connected, then there is a sequence of surgeries Γ = Γ 0 -→ ... -→ Γ n = N g from Γ to N g (the g-necklace). This sequence lifts to a sequence Γ = (Γ , x)#Γ T -→ ... -→ (N g , x n )#Γ T of surgeries on Σ g+1 . Indeed if x is an oriented edge of Γ, then x brokes into two oriented edges x 1 and x 2 . The surgery σ x,y (Γ ) (respectively σ z,y (Γ )) lift to σ x 1 ,y (Γ) (respectively σ z,y (Γ)).

→ → → →

Figure 19 -Sequence of surgeries to the necklace. The sequence on the first arrow goes from the case where Γ T is glued on a 1-simple curve to the case where Γ T is glued between one vertex of Type 1 and one vertex of Type 2.

The second arrow leads to the 5-necklace. The red arcs are the arcs on which we apply surgeries.

By Lemma 5.1, up to surgery the way we glue Γ T on N g depends only on the edges of N g but not on there sides. It follows that there are three situations depending whether:

x n is the side of an edge connecting two vertices of Type 1, or one vertex of Type 1 and the special vertex of Type 2, x n is the side of an edge connecting one vertex of Type 1 and one vertex of Type 2 which is not the special one. x n lies on a 1-simple closed curve. The first situation leads to the (g + 1)-necklace N g+1 , and for the other two situations there is a path to the (g + 1)-necklace. We give the paths for the genus 5 case in Figure 19 ; the other cases inductively follow the same sequence of surgeries. Since K 1 (a single vertex) is connected, by induction K g is also connected. Now we turn to the question of the diameter of K g that we denote by D g . We prove

Proof of Theorem 1: Diameter. Let d g := max{d(Γ, N g )} be the maximal distance to the necklace. By Proposition 5.1, if Γ is a unicellular collection, there is sequence s n of surgeries from Γ to Γ n such that Γ n is toral. In this sequence, we have three kind of steps:

-making an apparent simplification on a vertex of Type 3 ; let m be their numbers, -making a hidden simplification, that is a simplification which follows a suitable surgery as in Lemma 4.4 (Figure 14 shows a collection on which making a hidden simplification is necessary) ; let n be their numbers, -making a surgery which are not followed by simplification as in Figure 16 ; let k be their numbers. It follows that the length l(s n ) is equal to m + 2n + k ; with m + n ≤ g and k ≤ g -1 (since the last step correspond to a surgery around vertices of Type 1).

The maximum is reached when every simplification follows a suitable surgery ; that is m = 0 and n = g. So we have l(s n ) ≤ 3g -1.

Since Γ n = (Γ , x)#Γ T , it follows that Γ is at most at distance 3g-1+d g-1 of (N g-1 , y)#Γ T . So,

d(Γ, N g ) ≤ 3g + 3 + d g-1 ;
since (N g-1 , y)#Γ T is at most at distance 4 of N g (see Figure 19). Hence

d g ≤ 3g + 3 + d g-1 ;
and by induction on g D g ≤ 2d g ≤ 3g 2 + 9g -12.

The lower bound comes from the following remark. Let Γ (respectively Γ ) be a unicellular collection with k curves (respectively k curves) such that Γ is obtained after a surgery on Γ. Then, |k -k| ≤ 1 ; depending on whether the surgery is between two oriented edges on different curves or not. It follows from this remark that if Γ (respectively Γ ) is a unicellular collections with k curve (respectively k ), d(Γ, Γ ) ≥ |k -k |. Since for g ≥ 2, there are unicellular collections with 2g simple curves (see Figure 2) and unicellular collections with one curve (see Figure 2), the inequality follows.

Non-hyperbolicity of K ∞ : Let (X, d) be a totally geodesic metric space, that is every pair of points in X are joint by a geodesic. Definition 5.2. A geodesic triangle is a triple (η 1 , η 2 , η 3 ) of geodesics η i : [0, 1] -→ X such that:

η 1 (1) = η 2 (0); η 2 (1) = η 3 (0); η 3 (1) = η 1 (0).
Let δ ∈ R + and T := (η 1 , η 2 , η 3 ) geodesic triangle of X. We say that T is δ-thin if the δ-neighborhood of the union of two geodesics of T contain the third.

A metric space (X, d) is Gromov hyperbolic if there exists δ ≥ 0 such that every geodesic triangle T is δ-thin.

For more details on Gromov hyperbolic spaces, see [START_REF] Ghys | Sur les groupes hyperboliques d'aprikhael Gromov[END_REF].

We show that K ∞ is not Gromov hyperbolic by giving triangles on K ∞ which are not δ-thin for a given δ. We denote by d the distance on K ∞ . We recall that for a unicellular collection Γ, S Γ denotes the number of 1-simple curves of Γ. Lemma 5.2. Let Γ 1 and Γ 2 two unicellular collections. Then,

d(Γ 1 , Γ 2 ) ≥ 1 2 |S Γ 1 -S Γ 2 |.
Proof. If Γ = (Γ, x)#Γ T , then |S Γ -S Γ | is equal to 0 or 1 depending on whether x is a side of a 1-simple curve or not.

On the other side, if Γ = σ x,y (Γ) then |S Γ -S Γ | ≤ 2, that is a surgery creates at most two 1-simple curves or eliminates at most two 1-simple curves. Since a path in K ∞ is a sequence of surgery and connected sum, then we need at least 1 2 |S Γ -S Γ | steps from Γ 1 to Γ 2 .

Let A := Γ T and X 2g be the unicellular collection obtained by gluing g-copies of Γ T on the necklace N g , each copy being glue on a 1-simple curve of C g (see Figure 20). The collection X 2g has g 1-simple curves.

Let Y 2g be the unicellular collection on Σ 2g obtained by gluing g -1 copies of Γ T to the necklace N g+1 as in figure 20. 

≥ 1, d(X 2g , Γ T ) = d(Y 2g , Γ T ) = 2g. Moreover, g 2 ≤ d(X 2g , Y 2g ) ≤ 2g.
Proof. The collections X 2g and Y 2g are in the 2g-th level of K ∞ , and are obtained by gluing 2g copies de

Γ T . Therefore, d(X 2g , Γ T ) = d(Y 2g , Γ T ) = 2g.
On X 2g , we cut the copies of Γ T gluing on 1-simple curves and and glue them again in an apropriate manner to obtain Y 2g . Doing so, we obtained a path on K ∞ , from X 2g to Y 2g of length 2g. Therefore, d(X 2g , Y 2g ) ≤ 2g.

On the other side, we have |S X 2g -S Y 2g | = 2g, so d(X 2g , Y 2g ) ≥ g 2 .

Let T 2g be a triangle with endpoints A, X 2g and Y 2g . The points X 2g and Y 2g are in the same level K 4,2g , but we do not know whether a geodesic from X 2g to Y 2g stays in K 4,2g or not. The level K 4,2g is maybe not geodesic. Nonetheless, Lemma 5.3 tells us that the geodesic (X 2g Y 2g ) does not go down the level K 4,g , that is d(Γ T , (X 2g Y 2g )) ≥ g.

In fact, since X 2g and Y 2g are in the same level, if the geodesic (X 2g Y 2g ) goes down in level k times, it must go up in level k times and it implies that

2k ≤ d(X 2g , Y 2g ) ≤ 2g =⇒ k ≤ g.
This fact on T 2g is crucial and it allows us to show that the sequence of triangles (T 2g ) g∈N is not δ-thin for any δ ≥ 0. The geodesic (X 4k 0 , Y 4k 0 ) is not contained in V δ (D k ) ∪ V δ (D k ). So, (X 4k 0 Y 4k 0 ) is not contained in V δ (Γ T X 4k 0 ) ∪ V δ (Γ T Y 4k 0 ). Hence, K ∞ is not Gromov hyperbolic.

Questions

In this section, we state some open questions that could be interesting for further investigations.

The characterization of a surgery on a unicellular collection (Lemma 3.1) still holds for the general case, namely for unicellular maps. A unicellular map comes with its degree partition which is the ordered list d := (d 1 , ..., d n ) of the degree of its vertices. The degree partition is left invariant by surgeries and for every degree partition d, we associate the combinatorial surgery graph K d,g on unicellular maps with degree partition d of Σ g . Question 1. For which degree partition d, the graph K d,g is connected ?

If one consider a closed surface Σ g,n with n punctures, a unicellular map is just a collection which separates Σ g,n into a topological disk with n punctures. If one considers unicellular maps up to orientation-preserving homeomorphisms that globally fix the punctures, the surgery still being well-defined and our results still holds. In the case where unicellular maps are considered up to orientation-preserving homeomorphisms that fix pointwise the punctures, the arc λ x,y between x and y is no longer unique and this case need to be fully consider.

Among unicellular collections, there is a big class of those made by only simple curves. We know that their number grows exponentially with the genus [START_REF] Aougab | Minimally intersecting filling pairs on surfaces[END_REF].

Question 2. Is the combinatorial surgery graph on unicellular collections made by simple curves connected ? Is the combinatorial surgery graph on minimally intersecting filling pairs connected ?

In the first case, surgeries are allowed only between intertwined oriented edges belonging to the same curve or to two disjoint curves. For minimally intersecting filling pairs, surgery are allowed only between intertwined oriented edges on the same curve with opposite orientation.

Given a graph G, the Cheeger constant of G denoted by h(G) measures how strong is the connectedness of the graph. A sequence (G n ) of graphs is called an expander if the sequence of Cheeger constants (h(G n )) is bounded from bellow. Question 3. Is the diameter D g linear on g ? Is the family (K g ) an expander ?
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 1 Figure 1 -Local modification of Γ along λ x,y ; X and Y are the new oriented edges obtained after the modifiaction.
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 2 Figure 2 -The graphs K 2 and K 1 . The dashed edge indicates the vertex obtained by the connected sum of two copies of the unique collection in K 1 .
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 21321 Figure 3 -The unicellular collection Γ T on the torus.
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 22 The unicellular collection on the torus is given by the following permutations: α = (aā)(b b); µ = (a bāb); γ = (abā b).
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 4 Figure 4 -Cut and paste on the polygon P Γ .
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 5 Figure 5 -The two arcs in blue define an essential closed curve on Σ g disjoint from Γ since it intersects Γ algebraically twice.

Definition 4 . 1 .Figure 7 -

 417 Figure 7 -A simplification ; x and C(x) are consecutive.
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 8 Figure 8 -Different types of vertices of a unicellular collection.
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 4 2.3 A unicellular collection Γ is non-simplifiable if and only if all of its vertices are of Type 1 or Type 2.

Corollary 4 . 1 .

 41 A non-simplifiable unicellular collection on Σ g has g vertices of Type 2 and g -1 vertices of Type 1.

Figure 9 -

 9 Figure 9 -Surgery which creates new simplifications. On the left figure, a < g < f < e < d < c is the order by which we pass through the eight sectors. On the figure on the right, we focus on the angular order around v 1 and v 2 . The order on the figure on the right comes from that of the figure on the left. At each time we leave the local configuration on the figure on the right, we come back on it in the same way like in the figure on the left.
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 45101 Figure 10 -Local configuration around v 1 := (cdef ) and v 2 := (gābc)
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 11 Figure 11 -Local order around v 1 and v 2 after the surgery σ a,ē (Γ)
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 12 Figure 12 -Local order around v 1 and v 2 after the surgery σ a,f (Γ).
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 13 Figure 13 -Local order around v 1 and v 2 after the surgery σ a,d (Γ).
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 48 A unicellular collection Γ is almost toral if: -Γ is non-simplifiable, -no two vertices of Type 2 are adjacent, -the local orders around two adjacent vertices of Type 1 and 2 are good.

Figure 14 -Lemma 4 . 6 .

 1446 Figure 14 -An almost toral unicellular collection on the left with two vertices of Type 1 and three vertices of Type 2 on the three 1-simple curves. A non-simplifiable unicellular collection without 1-simple curve on the right. Here, unicellular collections are represented just by showing their tubular neighborhood (in red) on the surface. One can recover the local orders around each vertex by following the boundary of the tubular neighborhood.
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 4715 Figure 15 -Surgery between x and a ; where x, adjacent to a vertex of Type 2, is the oriented edge by which we come back to the local configuration around v 1 and v 2 for the third time after a and ā.
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 16 Figure 16 -Local configuration around a vertex v of Type 1 adjacent to three vertices of Type 2 and one vertex of Type 1. The surgery σ a,d (Γ) decreases the number of adjacent vertices to v.
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 49 Let Γ be a toral unicellular collection in Σ g+1 . Then Γ = (Γ , x)#Γ T (up to a surgery) ; where Γ is a unicellular collection in Σ g .
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 17 Figure 17 -Transforming a Type 1 vertex to a self-intersection point.
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 18 Figure 18 -The 5-necklace N 5 .
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 20 Figure 20 -The unicellular collections X 8 (on the left) and Y 8 (on the right).

Proof of Theorem 3 .

 3 Let D 2k := (X 2k , →) (respectively D 2k := (Y 2k , → )) be the half-geodesic passing through all the points X 2m (respectively Y 2m ) for m ≥ k. Since d(X 2g , Y 2g ) ≥ g 2 , then d(D k , D k ) → +∞. So, the δ-neighborhoods V δ (D k ) and V δ (D k ) are disjoint for k sufficiently large and d(V δ (D k ), V δ (D k )) → +∞.It follows that for k 0 big enough,d(Γ T , (X 4k 0 Y 4k 0 )) > 2k 0 , d(V δ (D k ), V δ (D k )) ≥ 1.

It is exactly after the proof of this lemma that I met G. Chapuy's works and all the other papers on unicellular maps
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