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Curves on surfaces and surgeries

Abdoul Karim SANE

Abstract

In this paper, we introduce a new surgery operation on the set of
collections of curves, on a closed oriented surface, whose complement
is a topological disk. We prove that any two such collections can be
connected by a sequence of surgeries.

1 Introduction

In this article, Σg denotes a closed oriented surface of genus g. A collection
Γ := {γ1, ..., γn} of closed curves on Σg is filling if its complement in Σg is a
union of topological disks. If Σg−Γ is a single topological disk, we say that Γ
is a unicellular collection. A unicellular collection Γ on Σg is equivalent to a
regular 4-valent graph G on Σg with one disk on its complement, and when
the degree of the vertices of G is unspecified, we speak of a unicellular map.
An oriented edge of Γ has a right and left side according to the orientation
of Σg.

→
x y

λx,y

Y

X

Figure 1 – Local modification of Γ along λx,y ;X and Y are the new oriented
edges obtained after the modifiaction.

Now, let x and y be two oriented edges of a unicellular collection Γ.
There is a unique simple arc λx,y (up to isotopy with endpoints gliding in x
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and y), whose interior is disjoint from Γ, leaving x from its right side and
entering y by its right side. The local modification on Γ along λx,y, depicted
in Figure 1, leads to a new collection Γ′ := σx,y(Γ). When Γ′ is unicellular,
we say that Γ′ is obtained from Γ by a surgery between x and y. We give a
necessary and sufficient condition (Lemma 3.1) for Γ′ to be unicellular. As
we will see, surgery is reminiscent to how a deck of cards is shuffled.

To the surgery operation, we associate the combinatorial surgery graph Kg

whose vertices are unicellular collections on Σg (up to orientation-preserving
homeomorphisms) and whose edges are pairs of unicellular collections which
differ by a surgery. The graph Kg is finite and defined a metric space by
taking every edge to be length one. In general, their are counting formula
for rooted (distinguished oriented edge) unicellular maps on Σg (see [5], [8],
[9], [10], [11], [12]). A. Goupil and G. Schaeffer ([4], Theorem 2.1) provided a
counting formula for rooted unicellular maps on Σg with the same degree par-
tition: the ordered list of the degree of the vertices. Restricting to unicellular
collection, that formula greatly simplified to (4g−2)!

22g−1g!
.

For g = 1, there is only one unicellular collection up to orientation-
preserving homeomorphisms. So,K1 consists of one vertex. Using the Goupil-
Schaeffer formula for g = 2, one checks that there are exactly six 1 unicellular
collections on Σ2. By inductively trying all possible surgeries, one obtains
those six unicellular collections.

One notices that K2 is connected (see Figure 2). Our main result is:

Theorem 1. For every integer g ≥ 1 the graph Kg is connected. Moreover,
for g ≥ 2, 2g − 1 ≤ Dg ≤ 3g2 + 9g − 12 ; where Dg is the diameter of Kg.

Our proof is not straightforward as one may hope. We define a connected
sum operation on unicellular collections that turns two unicellular collections
on Σg1 and Σg2 into a new unicellular collection on Σg1+g2 . We then consider
the surgery-sum graph K̂g as the union ti≤gKi where we also add an edge
between Γ1 and Γ2 if Γ2 can be realized as a connected sum of Γ1 with the
unique unicellular collection on the torus.

Theorem 2. For every g, the graph K̂g is connected.

Our proof of Theorem 2 uses an interesting lemma: the trisection lemma,
stated by G. Chapuy in [2]-Lemma 3 (the author was interested in combina-
torial identities for unicellular maps). The proof of Theroem 1 is by induction
on g and uses the fact that K̂g is connected.

1. The Goupil-Schaeffer formula gives 45 marked collections, but every unicellular collection corresponds to
3, 6, or 12 marked collections depending on the number of symmetries of the collection.
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Figure 2 – The graphs K2 and K1. The dashed edge indicates the vertex
obtained by the connected sum of two copies of the unique collection in K1.

Let K̂∞ := ti≥1K̂i be the infinite surgery-sum graph obtained by taking
the union of all surgery-sum graphs. We also have:

Theorem 3. The infinite surgery-sum graph K̂∞ is not Gromov hyperbolic.

As mentioned above, unicellular collections (unicellular maps in general)
are well-known for their counting formulas and different methods have been
used to get these formulas. In a more topological context, T. Aougab and
S. Huang [1] studied minimally intersecting filling pairs: those unicellular
collections made of exactly two simple closed curves. They show that their
number also grows exponentially with the genus.

Our approach is in some sense transverse to the previous works and
in [7], we studied unicellular collections to partially answer a question about
the shape of dual unit balls of intersection norms 2. Combinatorial surgery
graphs widen the family of graphs associated to surfaces (curves complexe,
arcs complexes, pant graphs...) and our results give a refreshing to the theory.

Outline of the paper: Section 2 recalls some facts on unicellular collec-
tions. In Section 3, we define the surgery operation and the connected sum.

2. Initially, the motivation of this paper was to count unicellular collections, since I was unaware about the
previous works on unicellular maps. This ignorance was in some sense benefic.
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Section 4 prepares the proofs of Theorem 1, Theorem 2 and Theorem 3 stated
in Section 5. Section 6 is about some open questions on the subject.

2 Descriptions of unicellular collections

Let Γ be a filling collection in general position on Σg ; that is the com-
plement of Γ in Σg is a union of topological disks. One can consider Γ as a
graph embedded in Σg. Let V be the number of vertices of Γ, E the number
of edges and F the number of faces. The Euler characteristic of Σg is given
by χ(Σg) = 2 − 2g = V − E + F . As Γ defines a regular 4-valent graph we
have E = 2V , which implies V = 2g−2+F. If Γ is unicellular, we then have

V = 2g − 1, E = 4g − 2, F = 1.

From this one can see that there is only one unicellular collection on the
torus up to orientation-preserving homeomorphism ; we denote it by ΓT (see
Figure 3).

Gluing pattern of unicellular collections: Let Γ be a unicellular col-
lection on Σg, then Σg − Γ is a polygon with 8g − 4 edges, that we denote
by PΓ. The polygon PΓ comes with a pairwise identification of its edges.
Choosing an edge on PΓ as an origin, one can label the edges of PΓ from the
origin in a clockwise manner ; thus obtaining a word WΓ on 8g− 4 letters. If
two edges are identified, we label them with the same letter with a bar (¯)
above the letter assigned to the second edge. The wordWΓ is a gluing pattern
of (Σg,Γ) and two gluing patterns of (Σg,Γ) differ by a cyclic permutation
and a relabeling. A letter of a gluing pattern associated to a unicellular col-
lection corresponds to a side of an edge of Γ ; thus we can see a letter x as
an oriented edge and x̄ as the same edge with opposite orientation.

Exemple 2.1. The word W = abāb̄ is a gluing pattern for the unicellular
collection ΓT on the torus.

a

ā

b b̄

Figure 3 – The unicellular collection ΓT on the torus.
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Proposition 2.1. Two unicellular collections Γ1 and Γ2 on Σg are the same
up to orientation-preserving homeomorphisms if and only if they have the
same gluing patterns up to cyclic permutation and relabeling.

Proof. Let us assume that Γ1 and Γ2 have the same gluing patterns. Since
Σg−Γ1 and Σg−Γ2 are disks, they are homeomorphic. The fact that Γ1 and
Γ2 have the same gluing patterns implies that one can choose an homeomor-
phism

φ̃ : PΓ1 −→ PΓ2

such that φ̃ maps a couple of identified sides on PΓ1 to a couple of identified
sides on PΓ2 . Therefore, φ̃ factors to φ on the quotient (identification of sides)
and φ(Γ1) = Γ2.

Conversely, if φ(Γ1) = Γ2 then Γ1 and Γ2 have the same gluing pattern.

Unicellular collections as permutations: Maps on surfaces can be des-
cribed by a triple of permutations which satisfy some conditions (see [6]
Section 1.3.3, for the combinatorial definition of maps). We restrict that
definition to the case of unicellular collection.

To a unicellular collection we associate H: the set of oriented edges,
an involution α of H which maps an oriented edge to the same edge with
opposite orientation and a permutation µ whose cycles are oriented edges
emanating from vertices when we turn counter-clockwise around them.

Definition 2.1. The elements (H,α, µ, γ) are the permutations associated
to the unicellular collection Γ and γ := αµ describes the face of Γ.

If WΓ is a gluing pattern of Γ, we can take H to be the set of letters of
WΓ. The permutation γ is then the shift to the right and it corresponds to
the unique face. The cycles of α and µ correspond to the edges and vertices
of Γ, respectively. Moreover, if we fix an origin x ∈ H we get a natural order
from γ:

x < γ(x) < ...... < γ8g−3(x).

Changing the origin, the order above changes cyclically.
The cycles of µ are in one to one correspondence with the vertices of Γ.

If x and y are two oriented edges with x < y, they define two intervals
in a gluing pattern for Γ: [x, y] := {a, x ≤ a ≤ y} and [y, x] := {a, a ≤
x} ∪ {a, y ≤ a}.
Exemple 2.2. The unicellular collection on the torus is given by the follo-
wing permutations:

α = (aā)(bb̄); µ = (ab̄āb); γ = (abāb̄).
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3 Surgery and connected sum on unicellular collec-
tions

In this section, we define two topological operations on the set of unicel-
lular collections: the surgery and the connected sum.

Surgery on a unicellular collection: Let Γ be a unicellular collection
on Σg, x and y be two oriented edges of Γ (x and y correspond to two sides
of PΓ). Since Γ is unicellular, there is a unique homotopy class of simple arcs
whose interiors are disjoint from Γ and with endpoints in x and y ; let us
denote it by λx,y. We obtain a new collection denoted by σx,y(Γ) by "cutting-
open" Γ along λx,y (see Figure 1). The collection σx,y(Γ) is not necessarily
unicellular.

Definition 3.1. Let Γ be a unicellular collection, x and y be to oriented
edges of Γ. We say that {x, y} and {x̄, ȳ} are intertwined if x̄ and ȳ are not
both in [x, y] and not both in [y, x] (see Figure 4). It means that Γ admits a
gluing pattern of the form w1xw2x̄w3yw4ȳ.

Otherwise, we say that {x, y} and {x̄, ȳ} are not intertwined. By abuse,
we will just say that x and y are intertwined or not intertwined.

Now, the following lemma gives a necessary and sufficient condition for
the above operation to preserve the unicellular character.

Lemma 3.1 (Card shuffling). Let Γ be a unicellular collection, x and y be
two oriented edges of Γ. Then σx,y(Γ) is unicellular if and only if x and y
are intertwined. In this case, we call the operation a surgery on Γ between x
and y.
Moreover, if w1xw2x̄w3yw4ȳ is a gluing pattern for Γ then,

w3Xw2X̄w1Y w4Ȳ

is a gluing pattern for σx,y(Γ).

Proof. Since the operation along λx,y leads to a new collection Γ′ := σx,y(Γ),
all we have to do is to prove that Γ′ is unicellular. We use a cut and past
argument similar to several proofs of the classification of surfaces (see Fi-
gure 4).

Assume first that x and y are intertwined. When we "cut-open" along λx,y,
the edges {x, x̄} and {y, ȳ} get replaced by new edges {X, X̄} and {Y, Ȳ }.
When we cut along the two new edges (in the polygonal description) and
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glue along the old ones (see Figure 4), we obtain a polygon ; that is Γ′ is
unicellular with gluing pattern

w3Xw2X̄w1Y w4Ȳ .

w1
x

w2

x̄

w3y
w4

ȳ λx,y

w1
x

w2

x̄

w3y
w4

ȳ

w1
x

w2

x̄

w3y
w4

ȳ

w3

X

w2

X̄

w1

Y

w4

Ȳ

−→

−→

−→

↙

Figure 4 – Cut and paste on the polygon PΓ.

On the other hand, if x and y are not intertwined, one constructs an
essential curve disjoint from Γ′, so Γ′ is not unicellular (see Figure 5).

x

y −→

Figure 5 – The two arcs in blue define an essential closed curve on Σg

disjoint from Γ′ since it intersects Γ algebraically twice.

Remark 3.1. The wordWσx,y(Γ) in Lemma 3.1 is obtained by permuting w1

and w3. It is also equivalent to permute w2 and w4.
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Remark 3.2. If x and y are two intertwined oriented edges, then x̄ and
ȳ are also intertwined. Moreover, one has σx,y(Γ) = σx̄,ȳ(Γ). In fact, by
Lemma 3.1, if WΓ = w1xw2x̄w3yw4ȳ is a gluing pattern for Γ, Wσx̄,ȳ(Γ) =
w1Xw4X̄w3Y w2Ȳ is a gluing pattern for σx̄,ȳ(Γ), and it is equivalent to
Wσx,y(Γ) = w3Xw2X̄w1Y w4Ȳ up to cyclic permutation and relabeling.

Remark 3.3. Given a unicellular collection, there are always intertwined
pairs unless it is the unicellular collection of the torus. Indeed, if all pairs
of Γ are not intertwined a gluing pattern for Γ is given by

WΓ = x1x2.....x4g−2x̄1x̄2....x̄4g−2.

After identifying the sides of PΓ, all the vertices of PΓ get identified. Thus Γ
has only one self-intersection point. It follows that g = 1 and that Γ is the
only unicellular collection with one self-intersection point, namely ΓT.

Connected sum: Let Γ1 and Γ2 be two unicellular collections on two
surfaces Σ1 and Σ2, respectively. Let D1 and D2 be two open disks on Σ1

and Σ2, disjoint from Γ1 and Γ2, respectively. Let Σg1#Σg2 be the connected
sum along D1 and D2. Then (Σg1#Σg2 ,Γ1 ∪ Γ2) is a genus g1 + g2 surface
endowed with a collection Γ1 ∪ Γ2. Since Γ1 and Γ2 are unicellular, the
complement of Γ1 ∪ Γ2 in Σg1#Σg2 is an annulus.

Now, let x and y be two oriented edges of Γ1 and Γ2 respectively, and λx,y
a simple arc on Σg1#Σg2 from x to y whose interior is disjoint from Γ1 ∪Γ2.
The arc λx,y joins the two boundary components of Σg1#Σg2−Γ1 ∪ Γ2. The-
refore the graph Γ1∪Γ2∪λx,y fills Σg1#Σg2 with one disk in its complement.

Thus, the collection Γ′ := (Γ1∪Γ2∪λx,y)/λx,y —the quotient here means
the contraction of λx,y into a point— (see Figure 6) is a unicellular collec-
tion. We say that Γ′ is the connected sum of the marked collections (Γ1, x)
and (Γ2, y).

Definition 3.2. Let Γ be a unicellular collection, x and y be two oriented
edges of Γ. We say that x and y are symmetric if the gluing pattern for Γ
starting at x is the same as the one starting at y up to relabeling.

Exemple 3.1. On ΓT, any two oriented edges are symmetric.

The following lemma states how we obtain a gluing pattern for (Γ1, x)#(Γ2, y)
from gluing patterns for Γ1 and Γ2.

Lemma 3.2. If WΓ1 = xw1x̄w2 (respectively WΓ2 = yw′1ȳw
′
2) is a gluing

pattern for Γ1 (respectively Γ2), then

x1w1x̄1x2w2x̄2y1w
′
1ȳ1y2w

′
2ȳ2

8



xx̄ y ȳ

λx,y

x1
x̄1

x2
x̄2 y1

ȳ1

y2
ȳ2

→

Figure 6 – Connected sum.

is a gluing pattern for (Γ1, x)#(Γ2, y).
Moreover, (Γ1, x)#(Γ2, y) and (Γ1, x)#(Γ2, y

′) are topologically equiva-
lent if y and y′ are symmetric.

Proof. The proof can be read on Figure 6.

Lemma 3.2 implies that the connected sum of a unicellular collection Γ
with ΓT depends only on the oriented edge we choose on Γ, since all oriented
edges of ΓT are symmetric.

4 Some reductions on unicellular collections

Unicellular collections are easy to see when they have many simple curves.
In this section, we show how one can reduce unicellular collections to those
with many simple curves. These reductions will make possible to isolate
toroidal parts and will provide an induction argument for the proof of our
theorems.

Simplification of unicellular collections: Let Γ be a unicellular collec-
tion, (H,α, µ, γ) the permutations associated to Γ (Definition 2.1) and x an
oriented edge of Γ. Then the oriented edges x and C(x) := γαγ(x) belong
to the same curve β ∈ Γ ; x and C(x) are consecutive along β (see Figure 7).
Moreover, the sequence (Cn(x))n is periodic and it travels through all edges
of β.

Definition 4.1. Let Γ be a unicellular collection and θ ∈ Γ a simple curve.
The curve θ is 1-simple if θ intersects exactly one time Γ− θ.
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x

y = γ(x) ȳ = αγ(x)

C(x) := γαγ(x)

Figure 7 – A simplification ; x and C(x) are consecutive.

Note that we have C(x) = x if and only if x is a side of a 1-simple
curve θ ∈ Γ. We denote by SΓ the number of 1-simple closed curves in Γ.

Definition 4.2. Assume that x is an edge not lying on a 1-simple component
of Γ, and that x and C(x) are intertwined. The operation transforming Γ
into σx,C(x)(Γ) is called a simplification.

The name is explained by:

Lemma 4.1. If Γ′ := σx,C(x)(Γ) is a simplification, then SΓ′ = SΓ + 1.
In other words, a surgery on Γ between x and C(x) creates an additional
1-simple curve in Γ′.

Proof. Suppose that x and C(x) are intertwined, a gluing pattern for Γ is
given by:

WΓ = (tw′1)x(yw′2t̄)x̄(w′3ȳ)C(x)w4C(x).

Therefore, by Lemma 3.1 a gluing pattern for Γ′ := σx,C(x)(Γ) is given by:

WΓ′ = w′3ȳXyw′2t̄X̄tw′1Zw4Z̄.

So, in Γ′ we have C(X) = γαγ(X) = γα(y) = γ(ȳ) = X. It implies
that X is the side of simple curve which intersects Γ′ only once.

Now if θ1 and θ2 are two 1-simple curves of a unicellular collection, then
θ1 and θ2 are disjoint ; otherwise θ1 ∪ θ2 would be disjoint from Γ, that
is absurd since Γ is connected. So the number SΓ of 1-simple curves on a
unicellular collection Γ is bounded by the genus g of the underlying surface.
Therefore a sequence of simplifications on a unicellular collection stabilizes
at a collection on which no simplification can be applied anymore.

Definition 4.3. A collection Γ is non-simplifiable if one cannot do a sim-
plification from it, i.e, x and C(x) are always non intertwined.
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Order around vertices of a non-simplifiable collection: In this pa-
ragraph, we will show that vertices of non-simplifiable unicellular collections
are of certain types.

Let Γ be a unicellular collection and (H,α, µ, γ) the permutations asso-
ciated to Γ ; H being the set of letters of a gluing pattern for Γ.
If we fix an origin x0 ∈ H, we then get an order on H:

x0 < γ(x0) < ... < γ8g−3(x0).

Therefore, if v is a vertex of Γ defined by a cycle (txyz) of µ, we get a local
order around v by comparing t, x, y and z. Since each letter corresponds to
an oriented edge which leaves an angular sector of v (see Figure 8), the local
order around v corresponds also to a local order on the four angular sectors
around v when running around Γ with γ.

Definition 4.4. Let v be a vertex defined by the oriented edges (t, x :=
µ(t), y := µ2(t), z := µ3(t)) with t = min{t, x, y, z} relatively to an order of
edges on Γ. Then,

— v is a vertex of Type 1 if t < x < y < z ;
— v is a vertex of Type 2 if t < z < y < x.

Otherwise, the vector v is a vertex of Type 3.

Up to rotation and change of origin, we have the three cases depicted on
Figure 8.

typesommet2.png

Type 1 Type 2 Type 3

1 2

34

1

2 3

4 1 2

3 4z

z̄

t t̄

x

x̄

yȳ

z̄

z

t t̄

x

x̄

yȳ

z̄

z

t t̄

x

x̄

yȳ

Figure 8 – Different types of vertices of a unicellular collection.

Lemma 4.2. 3 A unicellular collection Γ is non-simplifiable if and only if
all of its vertices are of Type 1 or Type 2.

3. It is exactly after the proof of this lemma that I met G. Chapuy’s works and all the
other papers on unicellular maps
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Proof. All we have to do is to write the possible gluing patterns of Γ by
figuring out the order of the edges around a vertex and look when consecutive
edges are intertwined or not.

Case 1: If v is a vertex of Type 1, then a gluing pattern for Γ is given
by:

WΓ = w1z̄tw2t̄xw3x̄yw4ȳz.

Therefore, one checks that x̄ and C(x̄) = z are not intertwined ; so are t̄ and
C(t̄) = y. Hence, no simplification is possible around v.

Case 2 : If v is a vertex of Type 2, the gluing pattern for Γ is

WΓ = w1z̄tw2ȳzw3x̄yw4t̄x.

Then, x̄ and C(x̄) = z are not intertwined ; so are t̄ and C(t̄) = y. Again, no
simplification is possible around v in this case.

Case 3: If v is a vertex of Type 3, then

WΓ = w1z̄tw2t̄xw3ȳzw4x̄y.

Here, t̄ and C(t̄) = y are intertwined and a simplification is possible.
So Γ is non-simplifiable if and only all is vertices are of Type 1 or Type 2.

Number of vertices of Type 1 and 2 in a non-simplifiable unicellu-
lar collection: In [2], G. Chapuy has defined a notion which catches the
topology of a unicellular map: trisection. We recall one of his results about
trisection.

Let G be a unicellular map and (H,α, µ, γ) the permutations associated
to G. Let v be a degree d vertex of G defined by a cycle (x1x2...xd) of µ,
with x1 = min{x1, ..., xd} relatively to an order on H.

If xi > xi+1 we say that we have a down-step. Since x1 = min{x1, ..., xd},
one has xd > x1 ; the other down-steps around v are called non trivial.

Definition 4.5 (G. Chapuy). A trisection is a down-step which is not a
trivial one.

Lemma 4.3 (The trisection lemma ; G. Chapuy [2]). Let G be a unicellular
map on a genus g surface. Then G has exactly 2g trisections.

Applying the trisection lemma to unicellular collections, we get:

Corollary 4.1. A non-simplifiable unicellular collection on Σg has g vertices
of Type 2 and g − 1 vertices of Type 1.
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Proof. A vertex of Type 2 (respectively a vertex of Type 1) has two tri-
sections (respectively zero trisection) (see Figure 8). If Ni is the number of
vertices of Type i (i=1,2), by the trisection lemma we have 2N2 = 2g ; so
N2 = g.
Since VΓ = N1 +N2 = 2g − 1, it follows that N1 = g − 1.

Repartition of vertices on a non-simplifiable collection: Now, we
show that using surgeries, we can re-order the vertices of a non-simplifiable
collection.

Definition 4.6. Let G be a graph. Two vertices are adjacent if they share
an edge.

If v1 and v2 are two vertices represented by the cycles (abcd) and (efgh),
respectively, they are adjacent if and only if there exists x ∈ {a, b, c, d} such
that x̄ ∈ {e, f, g, h}.

We now show that some configurations of vertices "hide" simplifications ;
that is from those configurations we can create new 1-simple curves after a
suitable surgery, without touching the old ones.

Lemma 4.4. Let Γ be a non-simplifiable unicellular collection. If Γ contains
two vertices of Type 2 which are adjacent, then there is a sequence of surgeries
Γ = Γ0 −→ Γ1 −→ ... −→ Γn from Γ to Γn such that Γn is non-simplifiable
and SΓ < SΓn.

Proof. Let v1 and v2 be two adjacent vertices of Type 2 defined by the cycles
(bf̄ ḡā) and (cd̄ēb̄), respectively (see Figure 9).

Let us fix an oriented edge as an origin, so that

a = min{a, c̄, d, e, f, g};

that is the first time we enter in the local configuration is by the oriented
edge a. Then we have the following order:

a < b < c < g < ā < f < ḡ < e < b̄ < f̄ < d < ē < c̄ < d̄.

Otherwise, it would contradict the fact that the two vertices are of Type 2.
A gluing pattern for Γ is given by:

WΓ = w1abcw2gāw3f ḡw4eb̄f̄w5dēw6c̄d̄.

The oriented edges b and ḡ are intertwined, so we can define Γ′ := σb,ḡ(Γ).
By Lemma 3.1, a gluing pattern for Γ′ is:

WΓ′ = āw3fBcw2Gf̄w5dēw6c̄d̄w1aḠw4eB̄.

13



aā

b

b̄

c c̄

d

d̄

e ēf f̄

g

ḡ

1
4

2
3

2
1

4
3−→

Figure 9 – Surgery which creates new simplifications. On the left figure,
a < g < f < e < d < c̄ is the order by which we pass through the eight
sectors. On the figure on the right, we focus on the angular order around v1

and v2. The order on the figure on the right comes from that of the figure on
the left. At each time we leave the local configuration on the figure on the
right, we come back on it in the same way like in the figure on the left.

The cycles (Ḡf̄Bā) and (B̄cd̄ē) define the two vertices of Γ′ in Figure 9
and the orders around these two vertices are:

Ḡ < ā < B < f̄ ; B̄ < c < ē < d̄.

Therefore, the vertex (B̄cd̄ē) is a vertex of Type 3 and it implies that Γ′

is simplifiable. Indeed the operation on Figure 9 does not touch any 1-simple
curve of Γ and each simplification increases strictly the number of 1-simple.
Let Γn be a non-simplifiable collection obtained after finitely many simplifi-
cations on Γ′ ; so SΓ < SΓn .

Let v1 and v2 be two vertices of Type 1 and Type 2 defined by the cycles
(c̄def) and (gābc), respectively, such that v1 and v2 are adjacent. The local
configuration in this case is depicted on Figure 10 and we assume that

a = min{a, b̄, d̄, ē, f̄ , ḡ}.

Lemma 4.5. If min{b̄, d̄, ē, f̄ , ḡ} 6= ḡ, then there is a sequence Γ = Γ0 −→
Γ1 −→ ... −→ Γn from Γ to Γn such that Γn is non-simplifiable and SΓ < SΓn.

Proof. Since v2 is a vertex of Type 2, min{b̄, d̄, ē, f̄ , ḡ} is different from b̄
and f̄ .
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a

ā

bb̄

c

c̄

dd̄

e

ē

f f̄ g ḡ

Figure 10 – Local configuration around v1 := (c̄def) and v2 := (gābc)

Case 1: If min{b̄, d̄, ē, f̄ , ḡ} = d̄, the fact that the vertices are of Type 1
and 2 implies that the local order is either

a < b < d̄ < e < ē < f < ḡ < ā < f̄ < c̄ < g < b̄ < c < d,

or
a < b < d̄ < e < ḡ < ā < ē < f < f̄ < c̄ < g < b̄ < c < d.

Sub-case 1: If a < b < d̄ < e < ē < f < ḡ < ā < f̄ < c̄ < g < b̄ < c < d,
then

WΓ = w1abw2d̄ew3ēfw4ḡāw5f̄ c̄gw6b̄cd

is a gluing pattern for Γ.
The oriented edges a and ē are intertwined and a gluing pattern for

Γ′ := σa,ē(Γ) is given by

WΓ′ = w3Abw2d̄Ew5f̄ c̄gw6b̄cdw1Ēfw4ḡĀ.

The cycles (bcgĀ) and (Efc̄d) define the two vertices in Figure 11. Moreover,
b < g < c < Ā and E < c̄ < d < f that is they are vertices of Type 3.
Therefore, Γ′ is simplifiable and there is sequence of simplification from Γ′

1
2
3

4
1

2

3
4

Figure 11 – Local order around v1 and v2 after the surgery σa,ē(Γ)
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to Γn such that Γn is non-simplifiable and SΓn > SΓ′ = SΓ. The equality
SΓ′ = SΓ holds since the surgery in this case does not touch a 1-simple curve.

Sub-case 2: If a < b < d̄ < e < ḡ < ā < ē < f < f̄ < c̄ < g < b̄ < c < d,
then a gluing pattern for Γ is

WΓ = w1abw2d̄ew3ḡāw4ēfw5f̄ c̄gw6b̄cd.

Here again, the oriented edges a and f are intertwined and a gluing pattern
for Γ′ := σa,f (Γ) is given by:

WΓ′ = w4ēAbw2d̄ew3ḡĀc̄gw6b̄cdw1Fw5F̄ .

The two vertices in Figure 12 are defined by the cycles (bcgĀ) and (Ac̄de).
Moreover, b < Ā < g < c and A < e < c̄ < d. It follows that the vertex
(Ac̄de) is a vertex of Type 3 and therefore, Γ′ is simplifiable.

1

23

41
2
3

4

Figure 12 – Local order around v1 and v2 after the surgery σa,f (Γ).

Case 2: if min{b̄, d̄, ē, f̄ , ḡ} = ē, then the local order is given by:

a < b < ē < f < ḡ < ā < f̄ < c̄ < ḡ < b̄ < c < d < d̄ < e,

and a gluing pattern for Γ is given by:

W4 = w1abw2ēfw3ḡāw4f̄ c̄gw5b̄cdw6d̄e.

In this case, a and d are intertwined. A gluing pattern for Γ′ := σa,d(Γ)
is given by:

WΓ′ = w4f̄ c̄gw5b̄cAbw2ēfw3ḡĀew1Dw6D̄.

The cycles (c̄Aef) and (gĀbc) represent the two vertices in Figure 13 and
c̄ < A < f < e. So, the vertex (c̄Aef) is a vertex of Type 3 and Γ′ is
simplifiable.

Definition 4.7. Let v1 and v2 be two adjacent vertices of Type 1 and 2,
respectively. We say that we have a good order around v1 and v2 if ḡ =
min{b̄, d̄, ē, f̄ , ḡ} (see Figure 10).
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1
23

4

1

2

3

4

Figure 13 – Local order around v1 and v2 after the surgery σa,d(Γ).

Definition 4.8. A unicellular collection Γ is almost toral if:
— Γ is non-simplifiable,
— no two vertices of Type 2 are adjacent,
— the local orders around two adjacent vertices of Type 1 and 2 are

good.

Figure 14 – An almost toral unicellular collection on the left with two
vertices of Type 1 and three vertices of Type 2 on the three 1-simple curves.
A non-simplifiable unicellular collection without 1-simple curve on the right.
Here, unicellular collections are represented just by showing their tubular
neighborhood (in red) on the surface. One can recover the local orders around
each vertex by following the boundary of the tubular neighborhood.

Lemma 4.6. Let Γ be a non-simplifiable unicellular collection. Then there
is a sequence of surgeries Γ0 = Γ −→ Γ1... −→ Γn such that Γn is an almost
toral unicellular collection.

Proof. If Γ is not almost toral, by Lemma 4.4 and Lemma 4.5 there is a
sequence of surgeries Γ0 = Γ −→ Γ1 −→ ... −→ Γn such that Γn is non-
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simplifiable and SΓ < SΓn , i.e, we create new 1-simple curves after some
suitable surgeries. Since the number of 1-simple curves is bounded by the
genus, those operations stabilize to an almost toral unicellular collection.

Now, we are going to improve the configuration of the vertices of an
almost toral unicellular collection.

Lemma 4.7. Let Γ be an almost toral unicellular collection, v1 and v2 be two
adjacent vertices of Type 1 and Type 2, respectively ; with a = min{a, b̄, d̄, ē, f̄ , ḡ}
(see Figure 10).

If x := min{b̄, d̄, ē, f̄} is adjacent to a vertex of Type 2, then there is a
sequence of surgeries Γ0 = Γ −→ Γ1 −→ ... −→ Γn such that Γn is almost
toral and SΓ < SΓn.

Proof. If x := min{b̄, d̄, ē, f̄} is adjacent to a vertex v := (xȳt̄ū), a gluing
pattern of Γ is given by (see Figure 15):

WΓ = w1aw2āw3uxw4x̄ȳ.

a

ā

xx̄

u
ū

tt̄

y
ȳ

Figure 15 – Surgery between x and a ; where x, adjacent to a vertex of
Type 2, is the oriented edge by which we come back to the local configuration
around v1 and v2 for the third time after a and ā.

Since v is a vertex of Type 2, x < ū < t̄ < ȳ. It implies that t̄ ∈ w4

and ū ∈ w4.
The oriented edges a and x are intertwined and

WΓ′ = w3uAw2Āȳw1Xw4X̄

is a gluing pattern for Γ′ := σa,x(Γ). The vertex v in Γ′ is defined by the
cycle (Aȳt̄ū) and one checks that A < ȳ < ū < t̄ ; that is v is a vertex of
Type 3 and Γ′ is simplifiable. Hence, there is a sequence of simplification
which strictly increases the number of 1-simple curves.
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Definition 4.9. Let Γ be a unicellular collection. We say that Γ is a toral
unicellular collection if Γ is an almost toral unicellular collection and if every
vertex of Type 1 is adjacent to at most two vertices of Type 2.

Figure 2 shows two toral unicellular maps on Σ2: the one with four simple
curves, and the one with two 1-simple curves and one non-simple curve.

Lemma 4.8. Let Γ be an almost toral unicellular collection. Then there is
a sequence of surgeries Γ0 = Γ −→ Γ1 −→ ... −→ Γn such that Γn is a toral
unicellular collection.

Proof. Let v be a vertex of Γ of Type 1. If v is adjacent to 4 vertices of
Type 2 or 3 vertices all of which are of Type 2, Lemma 4.7 implies that
there is a sequence of surgeries Γ0 = Γ −→ Γ1 −→ ... −→ Γn such that
SΓ < SΓn . Since the number of 1-simple curves is bounded by the genus g,
there is a sequence of surgeries Γ0 = Γ −→ Γ1 −→ ... −→ Γn such that Γn is
almost toral and such that every vertex of Type 1 adjacent to three vertices
of Type 2 is also adjacent to a fourth of Type 1. The local configuration
around those vertices is depicted in Figure 16, with ē = min{d̄, ē, f̄} . A
gluing pattern for Γn is given by:

WΓn = w1aw2āw3dw4d̄.

The oriented edges a and d are intertwined and the surgery σa,d(Γn)
decreases the number of adjacent vertices to v (see Figure 16). Following this
process, we get a toral unicellular collection after finitely many surgeries.

a

ā

bb̄

c

c̄

dd̄

e

ē

f f̄ gḡ

1

2 3

4 1

23

4

Figure 16 – Local configuration around a vertex v of Type 1 adjacent
to three vertices of Type 2 and one vertex of Type 1. The surgery σa,d(Γ)
decreases the number of adjacent vertices to v.

Lemma 4.9. Let Γ be a toral unicellular collection in Σg+1. Then Γ =
(Γ′, x)#ΓT (up to a surgery) ; where Γ′ is a unicellular collection in Σg.
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Proof. We have to show that there is a vertex of Type 2 which is adjacent
to exactly one vertex of Type 1.

Assume that every vertex of Type 2 is adjacent to at least two vertices
of Type 1. Let N1 and N2 be the number of vertices of Type 1 and Type 2
respectively, and let N1,2 be the number of pairs of vertices of Type 1 and
Type 2 which are adjacent.

Since Γ is a toral unicellular collection, any vertex of Type 1 has at most
two vertices of Type 2. It implies that,

N1,2 < 2N1.

On the other part, we have assumed that every vertex of Type 2 is adja-
cent to at least two vertices of Type 1. Therefore,

2N2 ≤ N1,2.

Combining the two inequalities above, we get N2 ≤ N1 which contradicts
the fact that we have g − 1 vertices of Type 1 and g vertices of Type 2 in a
non-simplifiable unicellular collection.

So, there is a vertex v0 of Type 2 which is adjacent to exactly one vertex
v1 of Type 1. As vertices of Type 2 are not adjacent, v0 lies on a 1-simple
curve. (∗)

Next, we show that v1 can be transformed into a self-intersection point
(if it is not the case) by a surgery. Assume that v1 is not a self-intersection
point. Then a gluing pattern for Γ is given by:

WΓ = w1xyw2ȳzw3z̄tw4t̄x̄;

where v1 is defined by the cycle (yztx̄) (Figure 17).

x̄

x

y ȳ

z

z̄

tt̄

−→

Figure 17 – Transforming a Type 1 vertex to a self-intersection point.

The oriented edges y and z are intertwined and a gluing pattern for
Γ′ := σy,z(Γ) is given by:

WΓ′ = Y w2Ȳ tw4t̄x̄w1xZw3Z̄
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The vertex v1 in Γ′ is defined by the cycle (Y tx̄Z) and Y < t < x̄ < Z ;
that is v1 is still a vertex of Type 1. Moreover, v1 get transformed to a self-
intersection point. So, the surgery on Γ between y and z has transformed v1

to a self-intersection point of Type 1. (∗∗)
Finally, (∗) and (∗∗) implies that

Γ = (Γ′, x)#(ΓT, x0);

with Γ′ a unicellular collection on Σg−1.

5 Proof of the main theorems

In this section, we prove Theorem 1, Theorem 2 and Theorem 3. We
recall that the graph Kg is the graph whose vertices are homeomorphism
classes of unicellular collections on Σg, and on which two vertices Γ1 and Γ2

are connected by an edge if there is a surgery which transforms Γ1 into Γ2

(if a surgery on Γ fix Γ, we do not put a loop). The graph K̂g := ti≤gKi

is the disjoint union of the graphs Ki on which we add an edge between
two unicellular collections Γ1 and Γ2 on Σi and Σi+1 respectively if Γ2 is a
connected sum of Γ1 with the unicellular collection of the torus.

The following proposition is the main technical result: it directly implies
Theorem 2. It also implies Theorem 1 with a bit of extra-work and its proof
uses most lemmas of Section 4.

Proposition 5.1. Let Γ be a unicellular collection on Σg+1. Then there
is a finite sequence of surgeries Γ := Γ0 −→ ... −→ Γn and a unicellular
collection Γ′ on Σg with a marked edge x such that Γn = (Γ′, x)#ΓT.

Proof. Let Γ be a unicellular collection on Σg, there is a sequence of surgeries
Γ −→ ... −→ Γ1 such that Γ1 is non-simplifiable. By Lemma 4.6, there is a
sequence of surgeries Γ1 −→ ... −→ Γ2 such that Γ2 is almost toral and by
Lemma 4.7, there is a sequence of surgeries Γ2 −→ ... −→ Γ3 such that Γ3 is
toral. Lemma 4.9 implies that Γ3 = (Γ′, x)#ΓT with Γ′ a unicellular collection
in Σg−1.

We can now prove Theorem 2, which states that for every g the graph K̂g

is connected.

Proof of Theorem 2. Let Γ ∈ Kg. By Proposition 5.1, there is path in Kg

from Γ to (Γ′, x)#ΓT where Γ′ ∈ Kg−1. Thus, there is path in K̂g from Γ to Γ′.
By induction on g, we deduce a path from Γ to ΓT. So, K̂g is connected.
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Now, we turn to the proof of Theorem 1. Let us start with some prelimi-
naries.

Lemma 5.1. Let Γ be a unicellular collection on Σg and x an oriented edge
of Γ. Then there is a surgery from (Γ, x)#ΓT to (Γ, x̄)#ΓT.

Lemma 5.1 states that up to surgery the connected sum of Γ with ΓT
depends only on the edge we choose on Γ but not on its orientation.

Proof. Let WΓ := w1xw2x̄ be a gluing pattern for Γ, Γ1 := (Γ, x)#ΓT and
Γ2 := (Γ, x̄)#ΓT. We recall that WΓT = abāb̄ is a gluing pattern for ΓT. By
Lemma 3.2,

WΓ1 = x1w1x̄1x2w2x̄2a1bā1a2b̄ā2

and
WΓ2 = x1w2x̄1x2w1x̄2a1bā1a2b̄ā2

are gluing patterns of Γ1 and Γ2, respectively.
Thus, in WΓ1 , x1 and x2 are intertwined, Γ′ := σx1,x2(Γ1) is unicellular,

with gluing pattern

WΓ′ = x1w2x̄1x2w1x̄2a1bā1a2b̄ā2.

We check that WΓ′ = WΓ1 . So, σx1,x2(Γ1) = Γ2.

Figure 18 – The 5-necklace N5.

Definition 5.1. We call g-necklace the homeomorphism class of the uni-
cellular collection on Σg, denoted by Ng, with g 1-simple curves and one
spiraling curve η with g − 1 self intersection points (see Figure 18 for the
5-necklace).
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Remark 5.1. Intersection points between 1-simple curves and γ in Ng are
of Type 2 ; the others are Type 1 vertices. There are g− 1 vertices of Type 2
which are adjacent to exactly one vertex of Type 1 and one special vertex of
Type 2 which is adjacent to two vertices of Type 1.

We can now prove Theorem 1, namely given Γ1 and Γ2 are two unicellular
collections on a genus g surface Σg there is a finite sequence of surgeries
from Γ1 to Γ2.

Proof of Theorem 1: connectedness. We give a proof by induction on g.
Assume Kg is connected. Let Γ be a unicellular collection on Σg+1. By Pro-
position 5.1, there exists a sequence of surgeries Γ = Γ0 −→ ... −→ Γn
where Γn is of the form (Γ′, x)#ΓT.

Since we have assumed that Kg is connected, then there is a sequence
of surgeries Γ′ = Γ′0 −→ ... −→ Γ′n = Ng from Γ′ to Ng (the g-necklace).
This sequence lifts to a sequence Γ = (Γ′, x)#ΓT −→ ... −→ (Ng, xn)#ΓT of
surgeries on Σg+1. Indeed if x is an oriented edge of Γ, then x brokes into
two oriented edges x1 and x2. The surgery σx,y(Γ

′) (respectively σz,y(Γ
′))

lift to σx1,y(Γ) (respectively σz,y(Γ)).

→ →

→ →

Figure 19 – Sequence of surgeries to the necklace. The sequence on the first
arrow goes from the case where ΓT is glued on a 1-simple curve to the case
where ΓT is glued between one vertex of Type 1 and one vertex of Type 2.
The second arrow leads to the 5-necklace. The red arcs are the arcs on which
we apply surgeries.
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By Lemma 5.1, up to surgery the way we glue ΓT on Ng depends only
on the edges of Ng but not on there sides. It follows that there are three
situations depending whether:

— xn is the side of an edge connecting two vertices of Type 1, or one
vertex of Type 1 and the special vertex of Type 2,

— xn is the side of an edge connecting one vertex of Type 1 and one
vertex of Type 2 which is not the special one.

— xn lies on a 1-simple closed curve.
The first situation leads to the (g + 1)-necklace Ng+1, and for the other
two situations there is a path to the (g + 1)-necklace. We give the paths for
the genus 5 case in Figure 19 ; the other cases inductively follow the same
sequence of surgeries.
Since K1 (a single vertex) is connected, by induction Kg is also connected.

Now we turn to the question of the diameter of Kg that we denote by Dg.
We prove

Proof of Theorem 1: Diameter. Let dg := max{d(Γ, Ng)} be the maxi-
mal distance to the necklace. By Proposition 5.1, if Γ is a unicellular collec-
tion, there is sequence sn of surgeries from Γ to Γn such that Γn is toral. In
this sequence, we have three kind of steps:

— making an apparent simplification on a vertex of Type 3 ; let m be
their numbers,

— making a hidden simplification, that is a simplification which follows
a suitable surgery as in Lemma 4.4 (Figure 14 shows a collection on
which making a hidden simplification is necessary) ; let n be their
numbers,

— making a surgery which are not followed by simplification as in Fi-
gure 16 ; let k be their numbers.

It follows that the length l(sn) is equal to m + 2n + k ; with m + n ≤ g
and k ≤ g− 1 (since the last step correspond to a surgery around vertices of
Type 1).

The maximum is reached when every simplification follows a suitable
surgery ; that is m = 0 and n = g. So we have l(sn) ≤ 3g − 1.

Since Γn = (Γ′, x)#ΓT, it follows that Γ is at most at distance 3g−1+dg−1

of (Ng−1, y)#ΓT. So,

d(Γ, Ng) ≤ 3g + 3 + dg−1;
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since (Ng−1, y)#ΓT is at most at distance 4 of Ng (see Figure 19). Hence

dg ≤ 3g + 3 + dg−1;

and by induction on g

Dg ≤ 2dg ≤ 3g2 + 9g − 12.

The lower bound comes from the following remark. Let Γ (respectively Γ′)
be a unicellular collection with k curves (respectively k′ curves) such that Γ′

is obtained after a surgery on Γ. Then, |k′ − k| ≤ 1 ; depending on whether
the surgery is between two oriented edges on different curves or not.
It follows from this remark that if Γ (respectively Γ′) is a unicellular collec-
tions with k curve (respectively k′), d(Γ,Γ′) ≥ |k−k′|. Since for g ≥ 2, there
are unicellular collections with 2g simple curves (see Figure 2) and unicellular
collections with one curve (see Figure 2), the inequality follows.

Non-hyperbolicity of K̂∞: Let (X, d) be a totally geodesic metric space,
that is every pair of points in X are joint by a geodesic.

Definition 5.2. A geodesic triangle is a triple (η1, η2, η3) of geodesics
ηi : [0, 1] −→ X such that:

η1(1) = η2(0); η2(1) = η3(0); η3(1) = η1(0).

Let δ ∈ R+ and T := (η1, η2, η3) geodesic triangle of X. We say that T is
δ-thin if the δ-neighborhood of the union of two geodesics of T contain the
third.

A metric space (X, d) is Gromov hyperbolic if there exists δ ≥ 0 such that
every geodesic triangle T is δ-thin.

For more details on Gromov hyperbolic spaces, see [3].
We show that K̂∞ is not Gromov hyperbolic by giving triangles on K̂∞

which are not δ-thin for a given δ. We denote by d the distance on K̂∞. We
recall that for a unicellular collection Γ, SΓ denotes the number of 1-simple
curves of Γ.

Lemma 5.2. Let Γ1 and Γ2 two unicellular collections. Then,

d(Γ1,Γ2) ≥ 1

2
|SΓ1 − SΓ2 |.
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Proof. If Γ′ = (Γ, x)#ΓT, then |SΓ − SΓ′ | is equal to 0 or 1 depending on
whether x is a side of a 1-simple curve or not.
On the other side, if Γ′ = σx,y(Γ) then |SΓ−SΓ′ | ≤ 2, that is a surgery creates
at most two 1-simple curves or eliminates at most two 1-simple curves.

Since a path in K̂∞ is a sequence of surgery and connected sum, then we
need at least 1

2 |SΓ − SΓ′ | steps from Γ1 to Γ2.

Let A := ΓT and X2g be the unicellular collection obtained by gluing
g-copies of ΓT on the necklace Ng, each copy being glue on a 1-simple curve
of Cg (see Figure 20). The collection X2g has g 1-simple curves.

Let Y2g be the unicellular collection on Σ2g obtained by gluing g − 1
copies of ΓT to the necklace Ng+1 as in figure 20.

Figure 20 – The unicellular collections X8 (on the left) and Y8 (on the
right).

Lemma 5.3. For every g ≥ 1, d(X2g,ΓT) = d(Y2g,ΓT) = 2g. Moreover,

g

2
≤ d(X2g, Y2g) ≤ 2g.

Proof. The collections X2g and Y2g are in the 2g-th level of K̂∞, and are
obtained by gluing 2g copies de ΓT. Therefore, d(X2g,ΓT) = d(Y2g,ΓT) = 2g.

On X2g, we cut the copies of ΓT gluing on 1-simple curves and and glue
them again in an apropriate manner to obtain Y2g. Doing so, we obtained a
path on K̂∞, from X2g to Y2g of length 2g. Therefore,

d(X2g, Y2g) ≤ 2g.

On the other side, we have |SX2g − SY2g | = 2g, so d(X2g, Y2g) ≥ g
2 .
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Let T2g be a triangle with endpoints A, X2g and Y2g. The points X2g

and Y2g are in the same level K4,2g, but we do not know whether a geodesic
from X2g to Y2g stays in K4,2g or not. The level K4,2g is maybe not geodesic.
Nonetheless, Lemma 5.3 tells us that the geodesic (X2gY2g) does not go down
the level K4,g, that is

d(ΓT, (X2gY2g)) ≥ g.

In fact, since X2g and Y2g are in the same level, if the geodesic (X2gY2g)
goes down in level k times, it must go up in level k times and it implies that

2k ≤ d(X2g, Y2g) ≤ 2g =⇒ k ≤ g.

This fact on T2g is crucial and it allows us to show that the sequence of
triangles (T2g)g∈N is not δ-thin for any δ ≥ 0.

Proof of Theorem 3. LetD2k := (X2k,→) (respectivelyD′2k := (Y2k,→ ))
be the half-geodesic passing through all the points X2m (respectively Y2m)
for m ≥ k.

Since d(X2g, Y2g) ≥
g

2
, then d(Dk,D′k)→ +∞. So, the δ-neighborhoods

Vδ(Dk) and Vδ(D′k) are disjoint for k sufficiently large and

d(Vδ(Dk), Vδ(D′k))→ +∞.

It follows that for k0 big enough,

d(ΓT, (X4k0Y4k0)) > 2k0, d(Vδ(Dk), Vδ(D′k)) ≥ 1.

The geodesic (X4k0 , Y4k0) is not contained in Vδ(Dk) ∪ Vδ(D′k).
So, (X4k0Y4k0) is not contained in Vδ(ΓTX4k0) ∪ Vδ(ΓTY4k0). Hence, K̂∞ is
not Gromov hyperbolic.

6 Questions

In this section, we state some open questions that could be interesting
for further investigations.

The characterization of a surgery on a unicellular collection (Lemma 3.1)
still holds for the general case, namely for unicellular maps. A unicellular map
comes with its degree partition which is the ordered list d := (d1, ..., dn) of
the degree of its vertices. The degree partition is left invariant by surgeries
and for every degree partition d, we associate the combinatorial surgery
graph Kd,g on unicellular maps with degree partition d of Σg.
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Question 1. For which degree partition d, the graph Kd,g is connected ?

If one consider a closed surface Σg,n with n punctures, a unicellular map
is just a collection which separates Σg,n into a topological disk with n punc-
tures. If one considers unicellular maps up to orientation-preserving homeo-
morphisms that globally fix the punctures, the surgery still being well-defined
and our results still holds. In the case where unicellular maps are considered
up to orientation-preserving homeomorphisms that fix pointwise the punc-
tures, the arc λx,y between x and y is no longer unique and this case need
to be fully consider.

Among unicellular collections, there is a big class of those made by only
simple curves. We know that their number grows exponentially with the
genus [1].

Question 2. Is the combinatorial surgery graph on unicellular collections
made by simple curves connected ? Is the combinatorial surgery graph on
minimally intersecting filling pairs connected ?

In the first case, surgeries are allowed only between intertwined oriented
edges belonging to the same curve or to two disjoint curves. For minimally in-
tersecting filling pairs, surgery are allowed only between intertwined oriented
edges on the same curve with opposite orientation.

Given a graph G, the Cheeger constant of G denoted by h(G) measures
how strong is the connectedness of the graph. A sequence (Gn) of graphs is
called an expander if the sequence of Cheeger constants (h(Gn)) is bounded
from bellow.

Question 3. Is the diameter Dg linear on g ? Is the family (Kg) an expan-
der ?
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