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Abstract

We consider power distribution networks containing source nodes producing
electricity and nodes representing electricity consumers. These sources and
these consumers are interconnected by a switched network. Configuring this
network consists in deciding which switches are activated and the orientation
of the links between these switches, so as to obtain a directed acyclic graph
(DAG) from the producer nodes to the consumer nodes. This DAG is valid
if the electric flow it induces satisfies the demand of each consumer without
exceeding the production capacity of each source and the flow capacity of each
switch. We show that the problem of deciding if such a valid DAG exists is
NP-complete. In the case where such a valid DAG exists, we study the problem
of determining a valid DAG that balances the ratio between the amount of
electricity produced and the maximum production capacity for each source. We
show that this minimization problem is also NP-complete in the general case
but that it becomes polynomial in the case of ring network topologies.

Keywords: Complexity, Electrical network flow, Ring topology, Dynamic
programming

1. Introduction

Reliability and resilience are two key features for modern a power grid. As
the world becomes more and more electrical and the grids themselves more and
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more distributed, reliability and resilience are critical for consumers and grid
managers. Reliability can be defined as the ability of the power system to deliver
electricity in the quantity and with the quality demanded by users. Resilience is
the ability of a system to recover and to reduce the magnitude and/or duration
of disruptive events [16, 17, 21].

To be reliable and resilient, a grid needs to be in a configuration that can
handle an outage and can converge to a new reliable and resilient configuration.
In this context, a configuration consists in deciding which components (lines,
sources, switches) have to be activated or not in the distribution network. In
this paper, we present a way to configure a grid to find the more balanced config-
uration in terms of power load [9, 13, 22]. Indeed, when the grid is reconfigured
after an outage, the electrical flow is switched to a new part of grid. If this
new section is already heavily loaded, it can cause a snowball effect. With a
well-balanced configuration, this risk is reduced. The fact that a well balanced
grid suffers less electrical losses can be seen as a bonus.

In terms of optimisation, three main problems are usually studied when
defining configurations of electrical distribution networks. Firstly, given a re-
quired load scenario, dimensioning the network infrastructure to reach flow and
reliability constraints [3, 6, 18], with objective to minimize the cost of invest-
ment of electric lines and switches. Secondly, the reconfiguration of networks
in case of failures, where two objectives are usually to be optimised [8, 12, 15],
namely to maximize the restore load and to minimize the size of the sequence
of operations to be done from the configuration before fails, mainly the switches
activation, to reach the decided re-configuration ( these two objectives can be
considered simultaneously [4, 7]). Finally, planning schedules [2, 9, 14] consist-
ing in a schedule of consecutive configurations for different consecutive scenarios
of load requirements. Here again, optimisation criteria consists usually in mini-
mizing the cost of activated components and/or the minimization of the size of
the sequence of modifications between two consecutive configurations. In such
planning schedules, vulnerability of configurations can be taken into account by
considering various graph theory metrics [1]. Note that in this context, balanced
planning schedules can also be provided by configuring the network in balanced
subnetworks [21, 9, 12] or by considering balanced configurations in terms of
power of loads [20].

Reconfiguration and planning problems are often considered through a graph
theory point of view [18, 1]. Some solutions consider graph partitioning [12] and
others graph covering by spanning subtrees or sub-DAGS [13]. In this paper, we
focus on such approaches related to Steiner tree problems [10, 23] with a specific
metric focusing balanced distribution of the required load on all the sources.
Indeed in our context, the electric flow in a network is a direct consequence of
the chosen configuration and the consumers [20]. Thus the objective is not to
compute an electric flow in a graph (such as in [5]) but rather to determine
the best spanning sub-DAG of the whole network optimizing the balance of
proportional use of sources capacities.

The paper is organized as follows. First, we define our modelization of power
grid and the related computational problems. We prove that these problems are

2



NP-complete. Finally, we provide a polynomial time algorithm for the restricted
case of ring networks.

2. Modelization

2.1. Distribution network topology

We consider a connected mixed graph G = (V = S ∪W ∪ P,E,A) in which
vertices in S represent electrical sources, W switches and P consumers, with A
a set of arcs and E a set of edges. Set of arcs A connect each vertex of S, as
an initial extremity, to some vertices in W being final extremities. Edges in E
interconnect vertices of W and each vertex in P is connected by an edge of E
to at least one vertex in W .

Each vertex x ∈ S is characterized by a maximum production capacity de-
noted Prod(x) > 0. Each vertex y ∈ P is characterized by a called power
denoted by Pow(y). Each w ∈ W is characterized by a flow capacity denoted
by Cap(w).

2.2. Activation and orientation of the network

An activation of G is a function α : W → {0, 1}. We denote by W 1
α the

subset of vertices x ∈W such that α(x) = 1. We define Gα = (Vα, Eα, Aα) the
subgraph of G induced by Vα = S ∪W 1

α ∪ P .

An orientation Oα of Gα is a function associating each edge [x, y] ∈ Eα
with a couple (x, y) or (y, x) corresponding to an orientation of this edge. We
denote by GOα the digraph obtained by applying such an orientation to Gα.

Let α be an activation of G and Oα be an orientation of Gα such that GOα

is a Directed Acyclic Graph (DAG) whose leaves are vertices in P . Such a DAG
is said to be coherent iff each vertex v ∈ W 1

α ∪ P is included in at least one
path from a vertex of S to a vertex of P . Let us underline that to be coherent,
the directed graph GOα must be acyclic. It is not possible to have cycles of
electricity.

2.3. Flow in a oriented and activated DAG

Giving an activation α and an orientation Oα of G such that GOα is coher-
ent, we deterministically compute a flow F in GOα as follows.

For each vertex y of GOα (except the sources), let Γ+(y) (with cardinal
d+(y)) be its set of successors in GOα (Γ−(y) and d−(y) for the predecessors).
The flow on each arc (x, y) of GOα is

F (x, y) =

αy +
∑

z∈Γ+(y)

F (y, z)

d−(y)
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where αy = Pow(y) if y ∈ P , else αy = 0. Given that GOα is coherent,
d−(y) > 0 for all y ∈W 1

α ∪ P .
The flow coming out of y (plus the possible power called in y) is distributed

equitably over all the arcs entering y. Note that consequently, for a given acti-
vation and orientation, the flow is calculated by going up from the vertices of P
and is unique.

Considering such a flow F , for each source or switch x ∈ S ∪W 1
α, we note

Load(x) =
∑

z∈Γ+(x)

F (x, z).

By definition, since DAG GOα is coherent then for each w ∈ W 1
α, we have

Load(w) > 0.

Such a DAG GOα is valid iff it is coherent and

• for each w ∈W 1
α we have Load(w) ≤ Cap(w),

• for each s ∈ S, we have Load(s) ≤ Prod(s).

We first define the following problem, asking whether a feasible solution
exists or not.

Problem 1. (VALID) Given a mixed graph G = (V = S ∪ W ∪
P,E,A), three functions Prod, Cap and Pow.
Question : Does there exist an activation α and an orientation Oα of
Gα such that GOα is a DAG and is valid?

With VALID, we verify if it is possible to satisfy the demand while respecting
the capacity constraints, i.e. we determine if a network is well dimensioned (i.e.
admits an activity and an orientation) for a scenario of power calls, depending
on the production capacity of the sources and the capacity constraints of the
switches.

2.4. Network optimization

To evaluate the quality of a valid pair of orientation and activation (α,Oα)
of a graph G, we consider the following metric of the DAG GOα . This metric
measures the maximum gap of solicitation rate of the sources, knowing that the
more these rates are balanced, the more the network is resistant to a reconfig-
uration in case of failures [9, 13].

The load reserve of GOα is defined by

Res(GOα) = max
{s,s′}⊂S

∣∣∣∣Load(s)

Prod(s)
− Load(s′)

Prod(s′)

∣∣∣∣ .
Minimizing the load reserve helps to balance the solicitation rate of the

sources. The problem we focus on is then the following :
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Problem 2. (RES CHG) Given valid mixed graph G = (V = S ∪
W ∪ P,E,A), three functions Prod, Cap and Pow and an integer K.
Question : Does there exist an activation α and an orientation Oα of
Gα such that GOα is a valid DAG and Res(GOα) ≤ K?

Note that the optimisation related to this decision problem is a minimization
problem.

As we will see in Theorem 1, the Problem VALID is NP-complete. The
corollary is that the problem of finding an activation and an orientation mini-
mizing the load reserve is not approximable. In this context, to focus on this
optimisation problem, we only consider in the following valid instances, i.e.,
instances for which the answer to Problem VALID is positive.

Example 1. Assuming the input network is the one given in Figure 1a. There
exists an activation α and an orientation Oα such that GOα is valid. This
solution consists in activating only w1 and w3 and in directing every leaving
edge from the sources to the consumers. The load reserve of GOα is 0.5. It is
illustrated in Figure 1b. A solution with a smaller load reserve, with value 0.2,
is illustrated in Figure 1c.

s1

100

s2

20

w1

50

w2

20

w3

35

p1

50
p2

20

(a)

50/100 20/20

(b)

55/100 15/20

(c)

Figure 1: Example of instance and feasible solutions for VALID and RES CHG problems.
The black nodes are the sources, the square nodes are the consumers and the others are the
switches. Next to each node is written its capacity (for the sources and switches) or its called
power (for the consumers).

3. Complexity of Problems VALID and RES CHG

3.1. Problem VALID is NP-complete

In this section we prove the Problem VALID is NP-Complete even in the
restricted case where the capacities of the switches are arbitrarily large or in
the case where the production capacities of the sources are arbitrarily large.

3.1.1. Transformation from (3-SAT) to (VALID)

We now give a polynomial reduction from (3-SAT) to (VALID) restricted to
the case where each switch has a capacity arbitrarily large, i.e. for any switch
w, all the called power can go through w: Cap(w) ≥

∑
p∈P

Pow(p).
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Let I = (x1, x2, . . . , xn, ϕ = C1 ∧ C2 ∧ · · · ∧ Cm) be an instance of (3-SAT)
where xi are boolean variables and Ci are disjunctive clauses with 3 literals. We
build an instance J of (VALID) from I, i.e. a mixed graphG = (S∪W∪P,E,A)
and three functions Prod, Cap and Pow.

We define two useful parameters to simplify the calculations: β = 10m + 1
and γ = n · (6β + 6m)− 4m− 3.

For each variable xi (1 ≤ i ≤ n), we add a tree containing 13 nodes to
G (this tree is drawn in Figure 2): five switchs {w2

xi , w
1
xi , wxi , w

1
x̄i , w

2
x̄i} ⊂ W ;

five sources {s2
xi , s

1
xi , sxi , s

1
x̄i , s

2
x̄i} ⊂ S with the following respective production

capacities (4β, β+m, γ+β+m,β+m, 4β); and three consumers {p2
xi , pxi , p

2
x̄i} ⊂

P with the following called powers {4β, γ, 4β}. We link those nodes with 5 arcs
of A and 7 edges of E: five arcs (s2

xi , w
2
xi), (s1

xi , w
1
xi), (sxi , wxi), (s1

x̄i , w
1
x̄i)

and (s2
x̄i , w

2
x̄i), three edges [w2

xi , p
2
xi ], [wxi , pxi ] and [w2

x̄i , p
2
x̄i ] and four edges

[w2
xi , w

1
xi ], [w1

xi , wxi ], [wxi , w
1
x̄i ] and [w1

x̄i , w
2
x̄i ].

For each clause Cj = (l1 ∨ l2 ∨ l3) (1 ≤ j ≤ m), we add two switches
{wCj , w0

Cj
} ⊂ P ; a source s0

Cj
with production capacity Prod(s0

Cj
) = γ+ 2; two

consumers {pCj , p0
Cj
} ⊂ P with the following respective called powers (4, γ); an

arc (s0
Cj
, w0

Cj
), three edges [wCj , pCj ], [w0

Cj
, p0
Cj

] and [w0
Cj
, wCj ] and three other

edges, one for each literal of the clause, [w1
x, wcj ] (resp. [w1

x̄, wcj ]) if the variable
x appears unnegated (resp. negated) in Cj .

Let us show some useful properties of a feasible solution of instances build
using the former reduction. Let α and Oα be valid activation and orientation
of G, if such a solution exists. Figure 2 illustrates such a gadget with all the
consequences of those properties.

Property 1. For all i ∈ J1;nK, α(w2
xi) = α(wxi) = α(w2

x̄i) = 1 and the orien-
tation Oα directs the edges [w2

xi , p
2
xi ], [wxi , pxi ] and [w2

x̄i , p
2
x̄i ] from the switch to

the consumer nodes. The same property occurs for all j ∈ J1;mK for wCj , w
0
Cj

,

pCj and p0
Cj

(α(wCj ) = α(w0
Cj

) = 1, orientations (wCj , pCj ) and (w0
Cj
, p0
Cj

)).

Proof. It is obvious, otherwise, no source fills one of the consumer nodes p2
xi ,

pxi , p
2
x̄i , pCj or p0

Cj
.

Property 2. For all j ∈ J1;mK, O([wCj , w
0
Cj

]) = (w0
Cj
, wCj ).

Proof. Both w0
Cj

and wCj are active (Prop. 1). Let us suppose that the edge is

orientated (wCj , w
0
Cj

). In this case, s0
Cj

produces a flow of γ/2 for the consumer

p0
Cj

. The total productions of all the other sources is n · (γ + 11β + 3m) + (m−
1) · (γ + 2). The total called power not filled by s0

Cj
is at least n · (γ + 8β) +m ·

(4 + γ) − γ/2. By the conservation of the flow and as all the consumers must
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s2
xi

[4β]

s1
xi

[β +m]

sxi

[γ + β +m]

s1
x̄i

[β +m]

s2
x̄i

[4β]

w2
xi w1

xi wxi w1
x̄i

w2
x̄i

p2
xi

4β
pxi

γ

p2
x̄i

4β

s0
C1

[γ + 2]

s0
C3

[γ + 2]

wC1 wC3w0
C1

w0
C3

pC1

[4]
pC3

[4]

p0
C1

[γ]

p0
C3

[γ]

Figure 2: Gadget associated with a variable xi in a reduction from (3-SAT) to (VALID). The
literal xi is contained in the clause C1 and the negative literal x̄i is contained in the clause
C3. The black nodes are the sources, the square nodes are the consumers and the others are
the switches. Next to each node is written inside square brackets its capacity (for the sources)
or its called power (for the consumers). Note that each of the nodes wC1 and wC3 is linked to
two other nodes in the graph (the 2 other literals of the clause). On the gadget are also drawn
the necessary activations and orientations of that instance in case it is valid. An activated
node is drawn thick. Other nodes may or may not be activated.

be filled, we must satisfy the following constraint:

n · (γ + 11β + 3m) + (m− 1) · (γ + 2) ≥ n · (γ + 8β) +m · (4 + γ)− γ/2
n · (3β + 3m) + (m− 1) · (γ + 2) ≥ m · (4 + γ)− γ/2

n · (3β + 3m) + (m− 1) · 2 ≥ γ + 4m− γ/2
n · (6β + 6m) + (m− 1) · 4− 8m ≥ γ

n · (6β + 6m)− 4m− 4 ≥ γ

However γ = n · (6β+ 6m)−4m−3 > n · (6β+ 6m)−4m−4. Consequently,
the property is proved.

Property 3. For all i ∈ J1;nK, if α(w1
xi) = 1 and Load(w1

xi) > 0 then,
O([w2

xi , w
1
xi ]) = (w1

xi , w
2
xi) and, for all j such that Cj contains the literal xi,

O([w1
xi , wCj ]) = (w1

xi , wCj ). The same property occurs for x̄i.

Proof. If O([w2
xi , w

1
xi ]) = (w2

xi , w
1
xi) and Load(w1

xi) > 0 then Load(w2
xi) > 4β

and all that flow must come from s2
xi . This is not possible as Prod(s2

xi) = 4β.
Consequently, if α(w1

xi) = 1 and Load(w1
xi) > 0, then the edge [w1

xi , w
2
xi ] is

directed to w2
xi and Load(w1

xi) ≥ 2β.
If we now assume that, for some Cj containing the literal xi, O([w1

xi , wCj ]) =
(wCj , w

1
xi), then Load(wCj ) ≥ 4+2β/d−(w1

xi) ≥ 4+2β/(m+2). By Property 2,
a part of that flow comes from s0

Cj
through w0

Cj
. Consequently, Load(s0

Cj
) =

7



Load(w0
Cj

) = γ +Load(wCj )/d
−(wCj ) ≥ γ +Load(wCj )/4 ≥ γ + β/(2(m+ 2)).

However, as β > 10m and Prod(s0
Cj

) = γ + 2, the source s0
Cj

cannot satisfies
its production capacity constraint.

Property 4. For all i ∈ J1;nK, if α(w1
xi) = 1 then O([wxi , w

1
xi ]) = (wxi , w

1
xi).

The same property occurs for x̄i.

Proof. If we assume the contrary, then by Properties 2 and 3, all the flow going
through the arc (w1

xi , wxi) comes from the source s1
xi . Thus Load(s1

xi) ≥ 2β +
γ/3. However, as β > m and Prod(s1

xi) = β+m, the source s1
xi cannot satisfies

its production capacity constraint.

The only decision that should be made is to activate or not the nodes w1
xi

and w1
x̄i .

Property 5. It is not possible to activate w1
xi and w1

x̄i at the same time.

Proof. If w1
xi and w1

x̄i were activated at the same time, Load(w1
xi) ≥ 2β and

Load(w1
x̄i) ≥ 2β due to the flows going to w2

xi and w2
x̄i . As the switch wxi is

activated, half of these values is sent by wxi (the other half is produced by the
sources s1

xi and s1
x̄i). However wxi also sends γ units of flow to pxi . Consequently

Load(sxi) = Load(wxi) ≥ 2β + γ > β + m + γ: the capacity constraint is not
satisfied for sxi . Thus it is not possible to activate w1

xi and w1
x̄i at the same

time.

3.1.2. NP-Completeness of (VALID)

Lemma 1. Given a boolean formula ϕ and an instance J of (VALID) built
from ϕ using the transformation of Subsubsection 3.1.1. If ϕ is satisfiable then
J is valid.

Proof. If the formula ϕ can be satisfied then there exists a truth affectation of
the variables. We activate w1

xi if xi if true and w1
x̄i otherwise.

For each clause Cj = (l1 ∨ l2 ∨ l3), at least one of the three literals is true.
Let li be that literal, then s1

li
fills pCj . Each other consumer node pxi , p

2
xi and

p2
x̄i is filled at least by the corresponding source in the gadget of xi.

The capacity constraint is satisfied for all the nodes.

• Load(s0
Cj

) ≤ γ + Load(wCj )/2 ≤ γ + 2 = Prod(s0
Cj

);

• Load(s2
xi) and Load(s2

x̄i) are either 2β or 4β and Prod(s2
xi) = Prod(s2

x̄i) =
4β.

• If α(w1
xi) = 1, then Load(s1

xi) ≤ (2β + 2m)/2 = Prod(s1
xi). Similarly for

w1
x̄i .

• Finally Load(sxi) ≤ γ + β + m = Prod(sxi) as w1
xi and w1

x̄i cannot be
activated at the same time.

8



Lemma 2. Given a boolean formula ϕ and an instance J of (VALID) built
from ϕ using the transformation of Subsubsection 3.1.1. If J is valid then ϕ is
satisfiable.

Proof. If there exists a valid activation α and a valid orientation Oα of G, then
we define the following truth affectation: xi is true if and only if w1

xi is activated.
Each consumer node is filled by at least one source. The consumer pCj

cannot be completely filled by s0
Cj

, otherwise Load(s0
Cj

) would be γ+ 4, greater

than Prod(s0
Cj

) = γ + 2.

Thus, for each clause Cj = (l1 ∨ l2 ∨ l3), there exists a path in GOαα from
some source to pCj and that path necessarily goes through one of the nodes
w1
li

. Consequently, that literal is true and the clause is also true: the formula is
satisfied by this assignment.

Lemma 3. Problem VALID belongs to NP.

Proof. Given an activation α and an orientation Oα, we can, in polynomial
time, determine if GOα is a DAG; check that, for every node v ∈ P ∪W 1

α, at
least one source fills v; compute the flow from the leaves to the sources and then
check the capacity and production constraints. Thus, it is possible to check if a
DAG is valid in polynomial time.

Theorem 1. The Problem VALID is NP-complete, even if the maximum ca-
pacity of the switches is arbitrarily large.

Proof. The proof is a direct consequence of lemmas 1, 2 and 3, given that
the transformation in Subsubsection 3.1.1 can obviously be done in polynomial
time.

Corollary 1. The Problem VALID is NP-complete, even if the maximum ca-
pacity of the sources is arbitrarily large.

Proof. By Theorem 1, the problem VALID is NP-Complete. We can easily
transform an instance of VALID to an instance where all the sources have an
arbitrarily large production capacity by adding, for each source s, a new switch
ws with capacity Cap(ws) = Prod(s). We then delete the edges incident to s and
link ws to s and each previous neighbour of s. Finally, we can now arbitrarily
increase the value of Prod(s) without changing the feasible flows.

Relaxing the constraints on the capacity and production makes the Problem
VALID easy to solve. We can produce a solution to such instances by choosing
an orientation of the edges from the sources to the producers. With only one of
these constraints, the problem VALID becomes NP-Complete.

3.2. Problem RES CHG is NP-complete

Theorem 2. Problem RES CHG is NP-complete.
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Proof. Problem RES CHG is clearly in NP, since checking whether an activation
and an orientation answer positively to the question can be done in polynomial
time.

Consider the Set-Cover problem of sets which instance is a set ε with cardinal
M ≥ 2, a set of subsets R of ε and an integer k. The question is to decide if
there are (at most) k subsets of R whose union is ε. This problem is known as
NP-complete [11].

From such an instance (ε, R, k), we define an instance of RES CHG, i.e., a
graph G = (S ∪W ∪P,E,A) and three functions Prod, Cap and Pow as follows
(this graph is illustrated in Figure 3). Let us consider ε = {e1, . . . , eM} and
R = {r1, . . . , rN}.

• S = {s1, s2} with maximum production capacities Prod1 = Prod2 =
N × (M + 1).

• For each ei ∈ ε, we add a consumer e′i to P . In addition, we add a set of
new vertices Π = {p1, . . . , pN}. We fix Pow(e′i) = N for each ei ∈ ε and
Pow(pj) = 2 for each vertex pj ∈ Π.

• For each set ri ∈ R, we add a new switch r′i in W . In addition, we add a
set of new vertices µ = {w1, . . . wN}. We fix Cap(r′i) = Prod1 +Prod2 +1
for each ri ∈ R and cap(wi) = 2 for each wi ∈ µ.

Moreover,

• There is an arc from s1 to each vertex r′i for each 1 ≤ i ≤ N and from s2

to each vertex in µ.

• There is an edge [pi, wi] and an edge [r′i, wi] for each 1 ≤ i ≤ N . Note
that since each vertex in pi ∈ Π has to be satisfied, then in any valid
DAG obtained from G each vertex wi ∈ µ has to be activated and edges
[pi, wi] are oriented from wi to pi. Thus, for each wi we have Load(wi) =
Pow(pi) = 2.

• For each vertex ri ∈ R, there is an edge [r′i, e
′
j ] for each ej ∈ ε such that

ej ∈ ri.

We define K = N(M−2)+2k
N(M+1) .

Let us now consider a subset C with cardinal k of R covering ε. We obtain
in polynomial time an activation and an orientation of G as follows.

• Only vertices of {r′i|ri ∈ C} are activated.

• Edges [r′i, e
′
j ] are oriented from r′i to e′j for each ri ∈ C and ej ∈ ri.

• Edges [r′i, wi] are oriented from r′i to wi for each ri ∈ C; in this case wi
has two predecessors: s2 and r′i.
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s1

N(M + 1)

s2

N(M + 1)

r′1 r′2 r′N w1 w2 wN

e′1

N
e′2

N
e′M

N
p1

2
p2

2
pN

2

Figure 3: Nodes r′3, .., r
′
N−1, w3, .., wN−1, e

′
3, .., e

′
M−1, p3, ..pN−1 are missing on the figure.

We suppose the switches r′2 and r′N activated (drawn thick) but r′1 not activated. This is the
reason why edges (r′1, e

′
1) and (r′1, w1) are not oriented.

In the so obtained DAG the load of the two sources are

Charg(s1) = MN + Card(C) = MN + k.

Charg(s2) =
∑
i:ri∈C

F (wi)

2
+

∑
i:ri 6∈C

F (wi) = k + 2(N − k) = 2N − k

Indeed, the M consumers e′i with called powers equal to N are filled by s1

and the switches in C have a part of their flow equal to 1 coming from their
corresponding wi.

Finally, since each consumer is fully filled, the obtained DAG is valid and
its load reserve is equal to

MN + k − 2N + k

N(M + 1)
=
N(M − 2) + 2k

N(M + 1)
= K

Consider now a valid DAG GOα obtained from an activation α and an ori-
entation Oα of G such that Res(GOα) ≤ K = MN−2(N−k)

N(M+1) . For each consumer

e′j , there exists at least one activated vertex r′i with an edge [r′i, e
′
j ] oriented

from r′i to e′j since, if not, e′j has no incoming arc and then can not be filled.
If edge [r′i, wi] is oriented from wi to r′i the flow value in wi is then equal to
F (r′i)

2 +Pow(pi) which is greater than Cap(wi) = 2. The DAG being valid, each
edge [r′i, wi] is thus oriented from r′i to wi if r′i is activated. Thus, consumers
e′j ∈ ε are filled only by s1. Let C be the subset of R with cardinal q containing
all the sets ri such that r′i is activated. C covers ε since all the consumers e′i are
filled by functional sources. Morevoer,

Load(s1) = MN + q

11



and

Load(s2) =
∑
i:ri∈C

F (wi)

2
+

∑
i:ri 6∈C

F (wi) = 2N − q

Since the load reserve is equal to MN−2(N−k)
N(M+1) then q = k.

4. Polynomial solutions for ring networks

We consider here a network topology where switches are connected in a ring
logic. As it is illustrated in [19] for example, some real networks have a topology
based on a ring. Indeed, they have been historically deployed on the outskirts
of cities, with consumers located in the city and outside sources of energy.

Definition 1. We define a ring instance (respectively a caterpillar instance) as
follows:

• the subgraph induced by the switches is an undirected cycle (respectively
an undirected path),

• each source or consumer is connected to one switch, and no switch is both
connected to a source and a consumer.

Our objective in this section is to prove that problems VALID and RES CHG
can both be solved in polynomial time when the input is a ring instance or a
caterpillar instance. For this, we first prove that, to find a valid and optimal
solution in a ring, it is sufficient to search an optimal solution in a caterpillar
instance. We then given an algorithm for the latter case.

Figure 4 gives examples of ring instance and of equivalent caterpillar in-
stances.

Lemma 4. We consider a ring instance GC with a mixed graph (S∪W∪P,E,A)
and three functions Prod, Cap and Pow. There exists a family (of cardinality
2|W |) of caterpillar instances GP = (GPAw , GP

B
w , w ∈W ) such that

• each instance of GP can be built in linear time

• if none of the instances of GP is valid, GC is not valid

• if GC is valid, there exists an instance GP of GP with the same optimal
value than GC. In addition, an optimal solution of GC can be deduced
from an optimal solution of GP in linear time.

Proof. For a solution to be valid, and even more optimal, it must be coherent. If
in a feasible solution (α,Oα), all the nodes of W are activated, there exists one
node w for which the two edges of CW incident to it are directed to w. Otherwise,
GOα would contain a directed cycle that is not possible for a coherent solution
(let us recall that Oα must be a Directed Acyclic Graph). Consequently, in

12



w

w′

[pow] [pow]

[pow2 ]
[pow2 ]

Figure 4: Example of equivalence between a ring instances (on the left) and caterpillar in-
stances. The middle instance, GPA

w , is equivalent to the case where, in an optimal solution,
a switch w is not activated. The right instance, GPB

w′ , is equivalent to the case where, in an
optimal solution, the two edges incident to w′ are directed toward that switch.

any feasible solution, there exists a deactivated node of W or a node of W not
having any successor in W .

If, in a feasible solution (α∗,O∗), there exists a deactivated node w, we can
remove w from the graph, we then get a caterpillar instance GPAw . In that case,
any feasible solution of GPAw is also a feasible solution for GC (more exactly,
we copy that solution and complete it with α(w) = 0) with same load reserve
and conversely.

In the second case, w (w′ in Figure 4) has no successor in W . Note that,
necessarily, w is linked to a consumer node p, otherwise there would not be
any path going through w and reaching a consumer node, and thus the solution
would not be coherent. The called power of p comes from the two switch neigh-
bors of w, each sends half the power needed by p. Consequently, the instance is
equivalent to a caterpillar instance in which w and p are duplicated. Each copy
of w is linked to one of the neighbors of w in W and to one copy of p. Each
copy of p has half the call power of p. We then get a caterpillar instance GPBw .
As for the first case, any feasible solutions of GPBw can be transformed in linear
time into a feasible solution of GC with same load reserve and conversely.
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We now prove that it is possible to find an optimal solution in any caterpillar
instance in polynomial time. We are going to use a dynamic programming
algorithm. The recursive function reduces the size of the instances using the
same technique than the one we used to get a caterpillar instance from a ring
instance in Lemma 4.

Given a feasible solution (α,Oα) of GP , m(GP,α,Oα) and M(GP,α,Oα)
represent the minimum and maximum values of Load(s)/Prod(s) over all sources
of S respectively. Using the function Solve in Algorithm 1, the following set is
computed:

SOL(GP ) = {(m(GP,α,Oα),M(GP,α,Oα)), for every solution (α,Oα) of GP}

If no solution of GP is valid, no values m(GP,α,Oα) and M(GP,α,Oα) are
computed and no solution is added to SOL. Note that this set contains only
distinct values: a couple is added to SOL(GP ) at Lines 10 and 13 of the func-
tion Solve and Line 11 of the procedure SolveLeaf if and only if that couple
is not already in the set.

Algorithm 1 computes SOL(GP ) with the function Solve using the follow-
ing property: in any feasible solution, there exists 3 possible cases, illustrated
respectively in Figure 5, 6 and 7:

• a node w of W is deactivated. We can then remove w from GP and the
problem can be decomposed into 2 independent subproblems (GP1 and
GP2 in the algorithm)

w
GP1 GP2

Figure 5: Reduction done when we assume a node of W is deactivated.

• there exists a node w of W for which the two edges on PW are directed
toward that node. As in Lemma 4, this node w is linked to a consumer
node p and w and p can be duplicated with a called power of pow(p)/2
for p1 and p2. Once this is done, the problem can be decomposed into 2
independent subproblems (GP3 and GP4 in the algorithm).
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w

p

GP

w1

p1

w2

p2

GP3 GP4

Figure 6: Reduction done when we assume two edges are directed toward a node of W .

• A third case can occur with no deactivated node and all the edges directed
from a source s (in such a case, there is no node in W with the 2 edges on
PW directed toward this node). In this case, all the nodes are activated
and all the edges are oriented: m(GP,α,Oα) and M(GP,α,Oα) can be
computed. In the following example, all the edges are directed from s2.
Another case should be considered with all edges directed from s1.

s2s1

Figure 7: Case when none of the hypothesis of the cases of Figures 5 and 6 occur.

By these different and successive reductions of the problem into subproblems,
all the possible solutions are covered.

Lemma 5. Function Solve in Algorithm 1 is correct.

Proof. Lines 8 and 11 of function Solve recursively explore those cases using
functions Split1 and Split2 to split the instance and then merge the feasible
solutions of the two generated subinstances at Lines 9 and Lines 12. The line 6
handles the third case with the procedure SolveLeaf. By exploring the three
cases, we get the set SOL(GP ) at the end of the function Solve.

As previously said, another possibility is that we can detect that there is no
feasible solution with the load of a source exceeding the production in which
case no new set is added to SOL(GP ) (line 9 of the procedure SolveLeaf).

We use the dynamic programming function SolveDP to compute Solve
faster. Every recursive call of Solve is instead a call to SolveDP (at Lines 9
and 12). That function starts by checking if SOL(GP ) is already stored in
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Algorithm 1 Algorithms used to compute SOL(GP ). The first function
SolveDP is used to compute the recursive function Solve faster as every in-
termediate result is stored and not computed more than once.

1: SOLDP ← an empty associative array (global variable)
2: function SolveDP(GP )
3: if SOLDP [GP ] does not exist then
4: SOLDP [GP ]← Solve(GP )
5: return SOLDP [GP ]

1: function Solve(GP )
2: Output: SOL(GP )
3: SOL ← an empty set.
4: if GP has at least one source node then
5: Remove the extremities of PW not linked to a source or a consumer.
6: SolveLeaf(GP , SOL))
7: for w ∈W do
8: GP1, GP2← SPLIT1(GP, w)
9: for (m1,M1) ∈ SolveDP(GP1), (m2,M2) ∈ SolveDP(GP2)

do
10: Add (min(m1,m2),max(M1,M2)) to SOL.
11: GP3, GP4← SPLIT2(GP, w)
12: for (m3,M3) ∈ SolveDP(GP3), (m4,M4) ∈ SolveDP(GP4)

do
13: Add (min(m3,m4),max(M3,M4)) to SOL.
14: return SOL

1: function Split1(GP , w)
2: Output: two caterpillar instances obtained when w is deactivated.
3: Require: w ∈W has two neighbors in W and no neighbor in P .
4: Remove w from GP
5: return the two connected components of GP .

1: function Split2(GP , w)
2: Output: two caterpillar instances obtained when w is activated and

when the two edges linking w to its two neighbors of W are directed to w.
3: Require: w ∈W has two neighbors in W , one in P and zero in S.
4: v1, v2 ← the two neighbors of w in W .
5: p← the neighbor of w in P .
6: Remove w from GP and add two nodes w1 and w2 to W
7: Remove p from GP and add two nodes p1 and p2 to P with pow(p1) =
pow(p2) = pow(p)/2

8: Add the edges (w1, v1), (w2, v2), (w1, p1) and (w2, p2).
9: return the two connected components of GP .
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1: procedure SolveLeaf(GP , SOL)
2: Description: Add to SOL the feasible solutions where no node of W

is deactivated and where all the edges are directed from a source
3: α(w)← 1 for all w ∈W
4: for all Source s ∈ S(GP ) do
5: ws ← neighbor of s in GP .
6: Oα ← Direct every edge of GP from ws
7: Compute the load of each node.
8: if (α,Oα) is not valid then
9: Skip to the next iteration

10: else
11: Add (m(GP,α,Oα),M(GP,α,Oα)) to SOL

the associative array SOLDP . In that case it returns the value otherwise it
computes it, stores it and returns it. That array is a global variable, shared
by all the calls of SolveDP. This way, the function Solve is called at most
once per instance. We thus need to prove that SolveDP is called a polynomial
number of times and that the complexity of Solve (excluding the recursive
calls) is polynomial.

Lemma 6. The number of possible instances called as an argument of SolveDP
is O(|W |2).

Proof. Indeed, such an instance contains a subpath of the undirected path in-
duced by W in the main instance and all the sources and consumers connected
to that path. Consequently, there is at most one instance per subpath, thus at
most O(|W |2) instances.

Note that a consequence of Lemma 6 is that there is, at most, a polynomial
number of pairs stored in the array SOLDP . The complexity of SolveDP,
excluding the calls to Solve, is then polynomial.

Lemma 7. The size of SOL(GP ) is O(|S|2|P |4).

Proof. We begin by proving that the load of a given source s can have a poly-
nomial number of distinct values among all the feasible solutions. That load
depends on which consumers s is filling and which other sources fill this same
subset of consumers. Let ws be the neighbor of s in W . There are two possi-
ble cases: either the two edges of PW incident to w are directed in the same
direction (one from w and the other to w) or the two edges are directed from
w.

In the first case, s can only fill the consumers in that direction. Let p be the
farthest consumer node filled by s. Then, necessarily all the consumers between
s and p are filled by s and all the sources between s and p fill p. Thus, in all
the feasible solutions where p is the farthest consumer filled by s, that source
has the same load. Consequently s has, in that case, at most O(|P |) loads.
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If, on the other hand, the two edges incident to w are directed from w, then
we can use the same argument except that we have to consider two consumers
instead of one, one for each direction. There are, in that case, at most O(|P |2)
distinct loads for s.

Consequently, there exists at most O(|S||P |2) possible distinct values for
m(GP,α,Oα) and M(GP,α,Oα), if we consider all the feasible solutions (α,Oα)
for GP . As SOL(GP ) is a set, it contains only distinct couples of values, and
thus, no more than O(|S|2|P |4) couples.

As |SOL(GP )| = O(|S|2|P |4), the For loops at Lines 9 and 12 do at most
O(|S|2|P |4) ·O(|S|2|P |4) iterations.

Theorem 3. Problems VALID and RESCHG can be solved in time O(n15) for
caterpillar instances.

Proof. By Lemma 5, Algorithm 1 is correct. Let n be the size of W , note that
|S|, |P | ≤ n. The time complexity of the algorithm is the following: for an
instance GP , the function Solve either does nothing or calls SolveLeaf once,
and, for each w ∈ W performs Split1, Split2 and two for loops. SolveLeaf
requires O(n2) operations. Split1 and Split2 are at most linear. The For
loops does at most O(n12) iterations (by Lemma 7) and four recursive calls to
SolveDP. Calling Solve does then at most O(n13) operations and O(n) calls to
SolveDP. Such a call is either a recursive call to Solve or an access to SOLDP
in time O(log(k)) where k is the number of keys in SOLDP . In addition, Solve
may be called at most once per subinstance. By Lemma 6, there are at most
O(n2) such instances: k = O(n2) and Solve is called at most O(n2) times. The
total number of operations of all the calls of the functions Solve and SolveDP
are then respectively at most O(n15) and at most O(n3 log(k)) = O(n3 log(n2)).
Consequently, the complexity of the algorithm is O(n15 +n3 log(n2)) = O(n15).

Theorem 4. VALID and RESCHG can be solved in time O(n16) for ring in-
stances.

Proof. By Theorem 3 and Lemma 4.

Let us remark that our aim was to prove that the two problems are polyno-
mial in the case of a ring topology and not to find the best complexity. This is
the reason why the question of obtaining in this case a complexity lower than
O(n16) remains open. In addition, this theoretical worst case upper bound is
mainly based on the bound of Lemma 7 which is not reached on average.

Remark. Algorithm 1 works because of two properties: removing a switch or
dupplicating a switch disconnect the instance as in Figures 5 and 6, and the
number of couples in SOL(GP ) is polynomial. Consequently, extending this
result to other topologies like instances where the subgraph induced by W is a
tree or two cycles is not obvious as those two properties are not necessarily true.
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5. Conclusion

In this paper, we have defined two graph algorithmic problems to obtain a
good configuration of a switched electrical network. The first problem consists
in finding a valid configuration through the activation of switches and the ori-
entation of edges and the second problem consists in maximizing the balance of
the rates of use of the different sources in order to guarantee a fault tolerance in
the network. We have proved that these two problems are difficult in the gen-
eral case. However, we have showed that these problems become polynomial in
the case where the switches constitute a ring topology. The objective is now to
study topologies extending the ring and to propose polynomial exact algorithms
or practical heuristics with guarantees of performances, if such algorithms exist.
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[19] RTE. Réso - Edition spéciale ”Grand Paris”, 2014.

[20] Shen, T., Li, Y., Xiang, J., Shen, T., Li, Y., and Xiang, J. A Graph-
Based Power Flow Method for Balanced Distribution Systems. Energies 11,
3 (feb 2018), 511.

[21] Tang, L., Yang, F., and Ma, J. A survey on distribution system feeder
reconfiguration: Objectives and solutions. In IEEE Innovative Smart Grid
Technologies - Asia (may 2014), IEEE, pp. 62–67.

[22] Wang, W., and Yu, N. Phase Balancing in Power Distribution Network
with Data Center. ACM SIGMETRICS Performance Evaluation Review
45, 2 (oct 2017), 64–69.

20



[23] Watel, D., Weisser, M. A., Bentz, C., and Barth, D. Directed
Steiner trees with diffusion costs. Journal of Combinatorial Optimization
32, 4 (2016), 1089–1106.

21


