
HAL Id: hal-02018217
https://hal.science/hal-02018217v1

Preprint submitted on 13 Feb 2019 (v1), last revised 1 Jun 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimisation of electrical network configuration:
complexity and algorithms for ring topologies

Dominique Barth, Thierry Mautor, Arnaud de Moissac, Dimitri Watel,
Marc-Antoine Weisser

To cite this version:
Dominique Barth, Thierry Mautor, Arnaud de Moissac, Dimitri Watel, Marc-Antoine Weisser. Op-
timisation of electrical network configuration: complexity and algorithms for ring topologies. 2019.
�hal-02018217v1�

https://hal.science/hal-02018217v1
https://hal.archives-ouvertes.fr

Optimisation of electrical network configuration: complexity and algorithms
for ring topologies

Dominique Bartha, Thierry Mautora, Arnaud de Moissacb, Dimitri Watelc,d,, Marc-Antoine Weissere

aDAVID, University of Versailles-St Quentin, Versailles, 45 avenue des États-Unis, 78035, Versailles, France
bDCBrain, 55 Boulevard Vincent Auriol, 75013, Paris, France

cENSIIE, 1 square de la Résistance, 91025, Evry, France
dSAMOVAR, Telecom SudParis, 9 Rue Charles Fourier, 91000, Évry, France

eLRI, CentraleSupelec, Paris-Saclay University, Rue Noetzlin, 91190, Gif-sur-Yvette, France

Abstract

We consider power distribution networks containing source nodes producing electricity and nodes represent-
ing electricity consumers. These sources and these consumers are interconnected by a switched network.
Configuring this network consists in deciding which switches are activated and the orientation of the links
between these switches, so as to obtain a directed acyclic graph (DAG) from the producer nodes to the
consumer nodes. This DAG is valid if the electric flow it induces satisfies the demand of each consumer
without exceeding the production capacity of each source and the flow capacity of each switch. We show
that the problem of deciding if such a valid DAG exists is NP-complete. In the case where such a valid DAG
exists, we study the problem of determining a valid DAG that balances the ratio between the amount of
electricity produced and the maximum production capacity for each source. We show that this minimization
problem is also NP-complete in the general case but that it becomes polynomial in the case of ring network
topologies.

Keywords: Complexity, Electrical network flow, Ring topology, Dynamic programming

1. Introduction

Reliability and resilience are two key features for modern a power grid. As the world becomes more and
more electrical and the grids themselves more and more distributed, reliability and resilience are critical
for consumers and grid managers. Reliability can be defined as the ability of the power system to deliver
electricity in the quantity and with the quality demanded by users. Resilience is the ability of a system to
recover and to reduce the magnitude and/or duration of disruptive events [16, 17, 21].

To be reliable and resilient, a grid needs to be in a configuration that can handle an outage and can
converge to a new reliable and resilient configuration. In this context, a configuration consists in deciding
which components (lines, sources, switches) have to be activated or not in the distribution network. In this
paper, we present a way to configure a grid to find the more balanced configuration in terms of power load
[9, 13, 22]. Indeed, when the grid is reconfigured after an outage, the electrical flow is switched to a new part
of grid. If this new section is already heavily loaded, it can cause a snowball effect. With a well-balanced
configuration, this risk is reduced. The fact that a well balanced grid suffers less electrical losses can be seen
as a bonus.

In terms of optimisation, three main problems are usually studied when defining configurations of electri-
cal distribution networks. Firstly, given a required load scenario, dimensioning the network infrastructure to
reach flow and reliability constraints [3, 6, 18], with objective to minimize the cost of investment of electric
lines and switches. Secondly, the reconfiguration of networks in case of failures, where two objectives are
usually to be optimised [8, 12, 15], namely to maximize the restore load and to minimize the size of the
sequence of operations to be done from the configuration before fails, mainly the switches activation, to
reach the decided re-configuration (these two objectives can be considered simultaneously [4, 7]). Finally,

Preprint submitted to Elsevier January 17, 2019

planning schedules [2, 9, 14] consisting in a schedule of consecutive configurations for different consecutive
scenarios of load requirements. Here again, optimisation criteria consists usually in minimizing the cost of
activated components and/or the minimization of the size of the sequence of modifications between two con-
secutive configurations. In such planning schedules, vulnerability of configurations can be taken into account
by considering various graph theory metrics [1]. Note that in this context, balanced planning schedules can
also be provided by configuring the network in balanced subnetworks [21, 9, 12] or by considering balanced
configurations in terms of power of loads [20].

Reconfiguration and planning problems are oftently considered through a graph theory point of view
[18, 1]. Some solutions considers graph partitioning [12] and others graph covering by spanning subtrees or
sub-DAGS [13]. In this paper, we focus on such approaches related to Steiner tree problems [10, 23] with a
specific metric focusing balanced distribution of the required load on all the sources. Indeed in our context,
the electric flow in a network is a direct consequence of the chosen configuration and the consumers [20].
Thus the objective is not to compute an electric flow in a graph (such as in [5]) but rather to determine
the best spanning sub-DAG of the whole network optimizing the balance of proportional use of sources
capacities.

The paper is organized as follows. First, we define our modelization of power grid and the related
computational problems. We proove that these problems are NP-complete. Finally, we provide a polynomial
time algorithm for the restricted case of ring networks.

2. Modelization

2.1. Distribution network topology

We consider a connected mixed graph G = (V = S ∪ W ∪ P,E,A) in which vertices in S represent
electrical sources, W switches and P consumers, with A a set of arcs and E a set of edges. Set of arcs
A connect each vertex of S, as an initial extremity, to some vertices in W being final extremities. Edges
in E interconnect vertices of W and each vertex in P is connected by an edge of E to at least one vertex in W .

Each vertex x ∈ S is characterized by a maximum production capacity denoted Prod(x) > 0. Each
vertex y ∈ P is characterized by a called power, denoted by Pow(y). Each w ∈W is characterized by a flow
capacity Cap(w).

2.2. Activation and orientation of the network

An activation of G is a function α : W → {0, 1}. We denote by W 1
α the subset of vertices x ∈W such

that α(x) = 1. We define Gα = (Vα, Eα, Aα) the subgraph of G induced by Vα = S ∪W 1
α ∪ P .

An orientation Oα of Gα is a function associating each edge [x, y] ∈ Eα with a couple (x, y) or (y, x)
corresponding to an orientation of this edge. We denote by GOα the digraph obtained by applying such an
orientation to Gα.

Let α be an activation of G and Oα be an orientation of Gα such that GOα is a Directed Acyclic Graph
(DAG) whose leaves are vertices in P . Such a DAG is said to be coherent iff each vertex v ∈ W 1

α ∪ P is
included in at least one path from a vertex of S to a vertex of P . Let us underline that to be coherent, the
directed graph GOα must be acyclic. It is not possible to have cycles of electricity.

2.3. Flow in a oriented and activated DAG

Giving an activation α and an orientation Oα of G such that GOα is coherent, we deterministically com-
pute a flow F in GOα as follows.

2

For each vertex y of GOα (except the sources), let Γ+(y) (with cardinal d+(y)) be its set of successors in
GOα (Γ−(y) and d−(y) for the predecessors). The flow on each arc (x, y) of GOα is

F (x, y) =

αy +
∑

z∈Γ+(y)

F (y, z)

d−(y)

where αy = Pow(y) if y ∈ P , else αy = 0. Given that GOα is coherent, d−(y) > 0 for all y ∈W 1
α ∪ P .

The flow coming out of y (plus the possible power called in y) is distributed equitably over all the arcs
entering y. Note that consequently, for a given activation and orientation, the flow is calculated by going up
from the vertices of P and is unique.

Considering such a flow F , for each source or switch x ∈ S ∪W 1
α, we note

Load(x) =
∑

z∈Γ+(x)

F (x, z).

By definition, since DAG GOα is coherent then for each w ∈W 1
α, we have Load(w) > 0.

Such a DAG GOα is valid iff it is coherent and

• for each w ∈W 1
α we have Load(w) ≤ Cap(w),

• for each s ∈ S, we have Load(s) ≤ Prod(s).

Problem VALID.
Given a mixed graph G = (V = S ∪W ∪ P,E,A), three functions Prod, Cap and Pow.
Question : Does there exist an activation α and an orientation Oα of Gα such that GOα is a DAG and is
valid?

2.4. Network optimization

To evaluate the quality of a valid pair of orientation and activation (α,Oα) of a graph G, we consider the
following metric of the DAG GOα . This metric measures the maximum gap of solicitation rate of the sources,
knowing that the more these rates are balanced, the more the network is resistant to a reconfiguration in
case of failures [9, 13].

The load reserve of GOα is defined by

Res(GOα) = max
{s,s′}⊂S

∣∣∣∣Load(s)

Prod(s)
− Load(s′)

Prod(s′)

∣∣∣∣ .
As we will see in Theorem 1, the Problem VALID is NP-complete. The corollary is that the problem of

finding an activation and an orientation minimizing the load reserve is not approximable. In this context,
to focus on this optimisation problem, we only consider in the following valid instances, i.e., instances for
which the answer to Problem VALID is positive.

The problem we focus on is then the following :

Problem RES CHG.
Given A valid mixed graph G = (V = S ∪W ∪P,E,A), three functions Prod, Cap and Pow and an integer
K.
Question : Does there exist an activation α and an orientation Oα of Gα such that GOα is a valid DAG
and Res(GOα) ≤ K?

Note that the optimisation related to this decision problem is a minimization problem.

3

3. Complexity of Problems VALID and RES CHG

3.1. Problem VALID is NP-complete

In this section we prove the Problem VALID is NP-Complete even in the restricted case where the
capacities of the switches are arbitrarily large or in the case where the production capacities of the sources
are arbitrarily large.

Lemma 1. Problem VALID belongs to NP.

Proof. Given an activation α and an orientation Oα, we can, in polynomial time, determine if GOα is a
DAG; check that, for every node v ∈ P ∪W 1

α, at least one source fills v; compute the flow from the leaves to
the sources and then check the capacity and production constraints. Thus, it is possible to check if a DAG
is valid in polynomial time.

We now give a polynomial reduction from (3-SAT) to (VALID) restricted to the case where each switch
has a capacity arbitrarily large, i.e. for any switch w, all the called power can go through w: Cap(w) ≥∑
p∈P

Pow(p).

Let I = (x1, x2, . . . , xn, ϕ = C1∧C2∧· · ·∧Cm) be an instance of (3-SAT) where xi are boolean variables
and Ci are disjunctive clauses with 3 literals. We build an instance J of (VALID) from I, i.e. a mixed
graph G = (S ∪W ∪ P,E,A) and three functions Prod, Cap and Pow.

We define two useful parameters to simplify the calculations: β = 10m+1 and γ = n ·(6β+6m)−4m−3.

For each variable xi (1 ≤ i ≤ n), we add a tree containing 13 nodes to G (this tree is drawn in Figure 1):
five switchs {w2

xi , w
1
xi , wxi , w

1
x̄i , w

2
x̄i} ⊂ W ; five sources {s2

xi , s
1
xi , sxi , s

1
x̄i , s

2
x̄i} ⊂ S with the following respec-

tive production capacities (4β, β + m, γ + β + m,β + m, 4β); and three consumers {p2
xi , pxi , p

2
x̄i} ⊂ P with

the following called powers {4β, γ, 4β}. We link those nodes with 5 arcs of A and 7 edges of E: five arcs
(s2
xi , w

2
xi), (s1

xi , w
1
xi), (sxi , wxi), (s1

x̄i , w
1
x̄i) and (s2

x̄i , w
2
x̄i), three edges [w2

xi , p
2
xi], [wxi , pxi] and [w2

x̄i , p
2
x̄i] and

four edges [w2
xi , w

1
xi], [w1

xi , wxi], [wxi , w
1
x̄i] and [w1

x̄i , w
2
x̄i].

For each clause Cj = (l1 ∨ l2 ∨ l3) (1 ≤ j ≤ m), we add two switches {wCj , w0
Cj
} ⊂ P ; a source s0

Cj

with production capacity Prod(s0
Cj

) = γ + 2; two consumers {pCj , p0
Cj
} ⊂ P with the following respective

called powers (4, γ); an arc (s0
Cj
, w0

Cj
), three edges [wCj , pCj], [w0

Cj
, p0
Cj

] and [w0
Cj
, wCj] and three other edges

[wli , wCj] for each i ∈ J1; 3K (one for each literal of the clause).

Let us show some useful properties of a feasible solution of instances build using the former reduction.
Let α and Oα be valid activation and orientation of G, if such a solution exists. Figure 1 illustrates such a
gadget with all the consequences of those properties.

Property 1. For all i ∈ J1;nK, α(w2
xi) = α(wxi) = α(w2

x̄i) = 1 and the orientation Oα directs the edges
[w2
xi , p

2
xi], [wxi , pxi] and [w2

x̄i , p
2
x̄i] from the switch to the consumer nodes. The same property occurs for all

j ∈ J1;mK for wCj , w
0
Cj

, pCj and p0
Cj

(α(wCj) = α(w0
Cj

) = 1, orientations (wCj , pCj) and (w0
Cj
, p0
Cj

)).

Proof. It is obvious, otherwise, no source fills one of the consumer nodes p2
xi , pxi , p

2
x̄i , pCj or p0

Cj
.

Property 2. For all j ∈ J1;mK, O([wCj , w
0
Cj

]) = (w0
Cj
, wCj).

Proof. Both w0
Cj

and wCj are active (Prop. 1). Let us suppose that the edge is orientated (wCj , w
0
Cj

). In

this case, s0
Cj

produces a flow of γ
2 for the consumer p0

Cj
. The total productions of all the other sources is

n·(γ+11β+3m)+(m−1)·(γ+2). The total called power not filled by s0
Cj

is at least n·(γ+8β)+m·(4+γ)− γ
2 .

By the conservation of the flow and as all the consumers must be filled, we must satisfy the following

4

s2xi

[4β]

s1xi

[β +m]

sxi

[γ + β +m]

s1x̄i

[β +m]

s2x̄i

[4β]

w2
xi

w1
xi

wxi
w1
x̄i

w2
x̄i

p2
xi

4β

pxi

γ

p2
x̄i

4β

s0C1

[γ + 2]

s0C3

[γ + 2]

wC1
wC3w0

C1
w0
C3

pC1

[4]

pC3

[4]

p0
C1

[γ]

p0
C3

[γ]

Figure 1: Gadget associated with a variable xi in a reduction from (3-SAT) to (VALID). The literal xi is contained in the
clause C1 and the negative literal x̄i is contained in the clause C3. The black nodes are the sources, the square nodes are the
consumers and the others are the switches. Next to each node is written inside square brackets its capacity (for the sources) or
its called power (for the consumers). Note that each of the nodes wC1

and wC3
is linked to two other nodes in the graph (the

2 other literals of the clause). On the gadget are also drawn the necessary activations and orientations of that instance in case
it is valid. An activated node is drawn thick. Other nodes may or may not be activated.

constraint:

n · (γ + 11β + 3m) + (m− 1) · (γ + 2) ≥ n · (γ + 8β) +m · (4 + γ)− γ

2

n · (3β + 3m) + (m− 1) · (γ + 2) ≥ m · (4 + γ)− γ

2

n · (3β + 3m) + (m− 1) · 2 ≥ γ + 4m− γ

2
n · (6β + 6m) + (m− 1) · 4− 8m ≥ γ

n · (6β + 6m)− 4m− 4 ≥ γ

However γ = n · (6β+ 6m)− 4m− 3 > n · (6β+ 6m)− 4m− 4. Consequently, the property is proved.

Property 3. For all i ∈ J1;nK, if α(w1
xi) = 1 and Load(w1

xi) > 0 then, O([w2
xi , w

1
xi]) = (w1

xi , w
2
xi) and, for

all j such that Cj contains the litteral xi, O([w1
xi , wCj]) = (w1

xi , wCj). The same property occurs for x̄i.

Proof. If O([w2
xi , w

1
xi]) = (w2

xi , w
1
xi) and Load(w1

xi) > 0 then Load(w2
xi) > 4β and all that flow must come

from s2
xi . This is not possible as Prod(s2

xi) = 4β. Consequently, if α(w1
xi) = 1 and Load(w1

xi) > 0, then the
edge [w1

xi , w
2
xi] is directed to w2

xi and Load(w1
xi) ≥ 2β.

If we now assume that, for some Cj containing the litteral xi, O([w1
xi , wCj]) = (wCj , w

1
xi), then Load(wCj) ≥

4 + 2β
d−(w1

xi
) ≥ 4 + 2β

m+2 . By Property 2, a part of that flow comes from s0
Cj

through w0
Cj

. Consequently,

Load(s0
Cj

) = Load(w0
Cj

) = γ +
Load(wCj)

d−(wCj) ≥ γ +
Load(wCj)

4 ≥ γ + β
2(m+2) . However, as β > 10m and

Prod(s0
Cj

) = γ + 2, the source s0
Cj

cannot satisfies its production capacity constraint.

Property 4. For all i ∈ J1;nK, if α(w1
xi) = 1 then O([wxi , w

1
xi]) = (wxi , w

1
xi). The same property occurs

for x̄i.

Proof. If we assume the contrary, then by Properties 2 and 3, all the flow going through the arc (w1
xi , wxi)

comes from the source s1
xi . Thus Load(s1

xi) ≥ 2β + γ
3 . However, as β > m and Prod(s1

xi) = β + m, the
source s1

xi cannot satisfies its production capacity constraint.

5

The only decision that should be made is to activate or not the nodes w1
xi and w1

x̄i .

Property 5. It is not possible to activate w1
xi and w1

x̄i at the same time.

Proof. If w1
xi and w1

x̄i were activated at the same time, Load(w1
xi) ≥ 2β and Load(w1

x̄i) ≥ 2β due to the
flows going to w2

xi and w2
x̄i . As the switch wxi is activated, half of these values is sent by wxi (the other

half is produced by the sources s1
xi and s1

x̄i). However wxi also sends γ units of flow to pxi . Consequently
Load(sxi) = Load(wxi) ≥ 2β+ γ > β+m+ γ: the capacity constraint is not satisfied for sxi . Thus it is not
possible to activate w1

xi and w1
x̄i at the same time.

Lemma 2. Given a boolean formula ϕ and an instance J of (VALID) built from ϕ using the former
reduction. If ϕ is satisfiable then J is valid.

Proof. If the formula ϕ can be satisfied then there exists a truth affectation of the variables. We activate
w1
xi if xi if true and w1

x̄i otherwise.
For each clause Cj = (l1 ∨ l2 ∨ l3), at least one of the three literals is true. Let li be that literal, then

s1
li

fills pCj . Each other consumer node pxi , p
2
xi and p2

x̄i is filled at least by the corresponding source in the
gadget of xi.

The capacity constraint is satisfied for all the nodes.

• Load(s0
Cj

) ≤ γ +
Load(wCj)

2 ≤ γ + 2 = Prod(s0
Cj

);

• Load(s2
xi) and Load(s2

x̄i) are either 2β or 4β and Prod(s2
xi) = Prod(s2

x̄i) = 4β.

• If α(w1
xi) = 1, then Load(s1

xi) ≤
2β+2m

2 = Prod(s1
xi). Similarly for w1

x̄i .

• Finally Load(sxi) ≤ γ + β +m = Prod(sxi) as w1
xi and w1

x̄i cannot be activated at the same time.

Lemma 3. If J is valid then ϕ is satisfiable.

Proof. If there exists a valid activation α and a valid orientation Oα of G, then we define the following truth
affectation: xi is true if and only if w1

xi is activated.
Each consumer node is filled by at least one source. The consumer pCj cannot be completely filled by

s0
Cj

, otherwise Load(s0
Cj

) would be γ + 4, greater than Prod(s0
Cj

) = γ + 2.

Thus, for each clause Cj = (l1 ∨ l2 ∨ l3), there exists a path in GOαα from some source to pCj and that
path necessarily goes through one of the nodes w1

li
. Consequently, that literal is true and the clause is also

true: the formula is satisfied by this assignment.

Theorem 1. The Problem VALID is NP-complete, even if the maximum capacity of the switches is arbi-
trarily large.

Proof. The proof is a direct consequence of lemmas 1, 2 and 3

Corollary 1. The Problem VALID is NP-complete, even if the maximum capacity of the switches is arbi-
trarily large.

Proof. By Theorem 1, the problem VALID is NP-Complete. We can easily transform an instance of VALID
to an instance where all the sources have an arbitrarily large production capacity by adding, for each source
s, a new switch ws with capacity Cap(ws) = Prod(s). We then delete the edges incident to s and link ws to
s and each previous neighbour of s. Finally, we can now arbitrarily increase the value of Prod(s) without
changing the feasible flows.

Relaxing the constraints on the capacity and production makes the Problem VALID easy to solve. We
can produce a solution to such instances by choosing an orientation of the edges from the sources to the
producers. With only one of these constraints, the problem VALID becomes NP-Complete.

6

3.2. Problem RES CHG is NP-complete

Theorem 2. Problem RES CHG is NP-complete.

Proof. Problem RES CHG is clearly in NP, since checking whether an activation and an orientation answer
positively to the question can be done in polynomial time.

Consider the Set-Cover problem of sets which instance is a set ε with cardinal M ≥ 2, a set of subsets R
of ε and an integer k. The question is to decide if there are (at most) k subsets of R whose union is ε. This
problem is known as NP-complete [11].

From such an instance (ε, R, k), we define an instance of RES CHG, i.e., a graph G = (S ∪W ∪P,E,A)
and three functions Prod, Cap and Pow as follows (this graph is illustrated on Figure 2). Let us consider
ε = {e1, . . . , eM} and R = {r1, . . . , rN}.

• S = {S1, S2} with maximum production capacities Prod1 = Prod2 = N × (M + 1).

• P is the union of ε and of a set of new vertices Π = {p1, . . . , pN}. We fix Pow(ei) = N for each vertex
ei ∈ ε and Pow(pj) = 2 for each vertex pj ∈ Π.

• W is the union of R and of a set of new vertices µ = {w1, . . . wN} with each vertex of R with capacity
greater than Prod1 + Prod2 and cap(wi) = 2 for each wi ∈ µ.

Moreover,

• There is an arc from S1 to each vertex in R and from S2 to each vertex in µ.

• There is an edge [pi, wi] and an edge [ri, wi] for each 1 ≤ i ≤ N . Note that since each vertex in pi ∈ Π
has to be satisfied, then in any valid DAG obtained from G each vertex wi ∈ µ has to be activated and
edges [pi, wi] are oriented from wi to pi. Thus, for each wi we have Load(wi) = Pow(pi) = 2.

• For each vertex ri ∈ R, there is an edge [ri, ej] for each ej ∈ ε such that ej ∈ ri.

We define K = N(M−2)+2k
N(M+1) .

S1

N(M + 1)

S2

N(M + 1)

r1 r2 rN w1 w2 wN

e1

N

e2

N

eM

N

p1

2

p2

2

pN

2

Figure 2: Nodes r3, .., rN−1, w3, .., wN−1, e3, .., eM−1, p3, ..pN−1 are missing on the figure. We suppose the switchs r2 and rN
activated (drawn thick) but r1 not activated. This is the reason why edges (r1, e1) and (r1, w1) are not oriented.

Let us now consider a subset C with cardinal k of R covering ε. We obtain in polynomial time an
activation and an orientation of G as follows.

• Only vertices of C are activated, then vertices in R− C are disactivated.

• Edges [ri, ej] are oriented from ri to ej for each ri ∈ C.

7

• Edges [ri, wi] are oriented from ri to wi for each ri ∈ C; in this case wi has two predecessors S2 and
ri.

In the so obtained DAG the load of the two sources are

Charg(S1) = MN + Card(C) = MN + k.

Charg(S2) =
∑
i:ri∈C

F (wi)

2
+

∑
i:ri∈R−C

F (wi) = k + 2(N − k) = 2N − k

Indeed, the M consumers ei with called powers equal to N are filled by S1 and consumers in C have a part
of their flow equal to 1 coming from their corresponding wi.

Finally, since each consumer is fully filled, the obtained DAG is valid and its load reserve is equal to

MN + k − 2N + k

N(M + 1)
=
N(M − 2) + 2k

N(M + 1)
= K

Consider now a valid DAG GOα obtained from an activation α and an orientation Oα of G such that
Res(GOα) ≤ K = MN−2(N−k)

N(M+1) . For each consumer ej , there exists at least one activated vertex ri ∈ R with

an edge [ri, ej] oriented from ri to ej since if not ej can not be filled. If edge [ri, wi] is oriented from wi
to ri the flow value Trans(wi) is then equal to F (ri)

2 + Pow(pi) which is greater than Cap(wi) = 2. The
DAG being valid, each edge [ri, wi] is thus oriented from ri to wi if ri is activated. Thus, consumers ej ∈ ε
are filled only by S1. Let C be the subset with cardinal q containing all the activated vertices in R. Set C
covers ε since all the consumers ei are filled by functional sources. Morevoer,

Load(S1) = MN + q

and

Load(S2) =
∑
i:ri∈C

F (wi)

2
+

∑
i:ri∈R−C

F (wi) = 2N − q

Since the load reserve is equal to MN−2(N−k)
N(M+1) then q = k.

4. Polynomial solutions for ring networks

We consider here a network topology where switches are connected in a ring logic. As it is illustrated in
[19] for example, some real networks have a topology based on a ring. Indeed, they have been historically
deployed on the outskirts of cities, with consumers located in the city and outside sources of energy.

Let us consider a ring instance GC = (V = S ∪W ∪ P,E,A) defined as follows

• the subgraph of GC induced by W is a cycle,

• each vertex of S (resp. P) is connected to one vertex in W , and no vertex of W is both connected to
a vertex in S and a vertex in P .

Our objective in this section is to prove that problems VALID and RES CHG can both be solved in
polynomial time. For this, we first prove that, to find a valid and optimal solution in GC, it is sufficient
to search an optimal solution in instances where the graph is a caterpillar. A caterpillar instance GP =
(V = S ∪W ∪ P,E,A, Prod, Cap, Pow) has the same definition as a ring instance except that the subgraph
PW induced by W is an undirected path instead of a cycle. Figure 3 gives examples of those equivalent
caterpillar instances.

8

w

w′

[pow] [pow] [pow2]
[pow2]

Figure 3: Example of equivalence between a ring instances (on the left) and caterpillar instances. The middle instance, GPA
w ,

is equivalent to the case where, in an optimal solution, a switch w is not activated. The right instance, GPB
w′ , is equivalent to

the case where, in an optimal solution, the two edges incident to w′ are directed toward that switch.

Lemma 4. There exists a family (of cardinality 2|W |) of caterpillar instances GP = (GPAw , GP
B
w , w ∈ W)

such that

• each instance of GP can be built in linear time

• if none of the instances of GP is valid, GC is not valid

• if GC is valid, there exists an instance GP of GP with the same optimal value than GC. In addition,
an optimal solution of GC can be deduced from an optimal solution of GP in linear time.

Proof. For a solution to be valid, and even more optimal, it must be coherent. If in a feasible solution
(α,Oα), all the nodes of W are activated, there exists one node w for which the two edges of CW incident
to it are directed to w. Otherwise, GOα would contain a directed cycle that is not possible for a coherent
solution (let us recall that Oα must be a Directed Acyclic Graph). Consequently, in any feasible solution,
there exists a deactivated node of W or a node of W not having any successor in W .

If, in a feasible solution (α∗,O∗), there exists a deactivated node w, we can remove w from the graph,
we then get a caterpillar instance GPAw . In that case, any feasible solution of GPAw is also a feasible solution
for GC (more exactly, we copy that solution and complete it with α(w) = 0) with same load reserve and
conversely.

In the second case, w (w′ on Figure 3) has no successor in W . Note that, necessarily, w is linked to a
consumer node p, otherwise there would not be any path going through w and reaching a consumer node,
and thus the solution would not be coherent. The called power of p comes from the two switch neighbors of
w, each sends half the power needed by p. Consequently, the instance is equivalent to a caterpillar instance
in which w and p are duplicated. Each copy of w is linked to one of the neighbors of w in W and to one
copy of p. Each copy of p has half the call power of p. We then get a caterpillar instance GPBw . As for the
first case, any feasible solutions of GPBw can be transformed in linear time into a feasible solution of GC
with same load reserve and conversely.

We now prove that it is possible to find an optimal solution in any caterpillar instance in polynomial
time. We are going to use a dynamic programming algorithm. The recursive function reduces the size of the
instances using the same technique than the one we used to get a caterpillar instance from a ring instance
in Lemma 4.

Given a feasible solution (α,Oα) of GP , m(GP,α,Oα) and M(GP,α,Oα) represent the minimum and

maximum value of Load(s)
Prod(s) over all sources of S. Using the function Solve in Algorithm 1, the following set

is computed:

SOL(GP) = {(m(GP,α,Oα),M(GP,α,Oα)), for all feasible solutions (α,Oα) of GP}

9

If no solution of GP is valid, no values m(GP,α,Oα) and M(GP,α,Oα) are computed and no solution is
added to SOL. Algorithm 1 is used to compute SOL(GP). Note that SOL(GP) is a set. It contains only
distinct values: a couple is added to SOL(GP) at Lines 10 and 13 of the function Solve and Line 11 of the
procedure SolveLeaf if and only if that couple is not already in the set.

Algorithm 1 computes SOL(GP) with the function Solve using the following property: in any feasible
solution, there exists 3 possible cases, illustrated respectively with Figure 4, 5 and 6:

• a node w of W is deactivated. We can then remove w from GP and the problem can be decomposed
into 2 independent subproblems (GP1 and GP2 in the algorithm)

w
GP1 GP2

Figure 4: Reduction done when we assume a node of W is deactivated.

• there exists a node w of W for which the two edges on PW are directed toward that node. As in
Lemma 4, this node w is linked to a consumer node p and w and p can be duplicated with a called

power of pow(p)
2 for p1 and p2. Once this is done, the problem can be decomposed into 2 independent

subproblems (GP3 and GP4 in the algorithm).

w

p

GP
w1

p1

w2

p2

GP3 GP4

Figure 5: Reduction done when we assume two edges are directed toward a node of W .

• A third case can occur with no deactivated node and all the edges directed from a source s (in such a
case, there is no node in W with the 2 edges on PW directed toward this node). In this case, all the
nodes are activated and all the edges are oriented: m(GP,α,Oα) and M(GP,α,Oα) can be computed.
In the following example, all the edges are directed from S2. Another case should be considered with
all edges directed from S1.

S2S1

Figure 6: Case when none of the hypothesis of the cases of Figures 4 and 5 occur.

By these different and successive reductions of the problem into subproblems, all the possible solutions
are covered.

Lemma 5. Function Solve in Algorithm 1 is correct.

Proof. Lines 8 and 11 of function Solve recursively explore those cases using functions Split1 and Split2
to split the instance and then merge the feasible solutions of the two generated subinstances at Lines 9 and

10

Algorithm 1 Algorithms used to compute SOL(GP). The first function SolveDP is used to compute the
recursive function Solve faster as every intermediate result is stored and not computed more than once.

1: SOLDP ← an empty associative array (global variable)
2: function SolveDP(GP)
3: if SOLDP [GP] does not exist then
4: SOLDP [GP]← Solve(GP)
5: return SOLDP [GP]

1: function Solve(GP)
2: Output: SOL(GP)
3: SOL ← an empty set.
4: if GP has at least one source node then
5: Remove the extremities of PW not linked to a source or a consumer.
6: SolveLeaf(GP , SOL))
7: for w ∈W do
8: GP1, GP2← SPLIT1(GP, w)
9: for (m1,M1) ∈ SolveDP(GP1), (m2,M2) ∈ SolveDP(GP2) do

10: Add (min(m1,m2),max(M1,M2)) to SOL.
11: GP3, GP4← SPLIT2(GP, w)
12: for (m3,M3) ∈ SolveDP(GP3), (m4,M4) ∈ SolveDP(GP4) do
13: Add (min(m3,m4),max(M3,M4)) to SOL.
14: return SOL

1: function Split1(GP , w)
2: Output: two caterpillar instances obtained when w is deactivated.
3: Require: w ∈W has two neighbors in W and no neighbor in P .
4: Remove w from GP
5: return the two connected components of GP .

1: function Split2(GP , w)
2: Output: two caterpillar instances obtained when w is activated and when the two edges linking
w to its two neighbors of W are directed to w.

3: Require: w ∈W has two neighbors in W , one in P and zero in S.
4: v1, v2 ← the two neighbors of w in W .
5: p← the neighbor of w in P .
6: Remove w from GP and add two nodes w1 and w2 to W
7: Remove p from GP and add two nodes p1 and p2 to P with pow(p1) = pow(p2) = pow(p)/2
8: Add the edges (w1, v1), (w2, v2), (w1, p1) and (w2, p2).
9: return the two connected components of GP .

11

1: procedure SolveLeaf(GP , SOL)
2: Description: Add to SOL the feasible solutions where no node of W is deactivated and where all

the edges are directed from a source
3: α(w)← 1 for all w ∈W
4: for all Source s ∈ S(GP) do
5: ws ← neighbor of s in GP .
6: Oα ← Direct every edge of GP from ws
7: Compute the load of each node.
8: if (α,Oα) is not valid then
9: Skip to the next iteration

10: else
11: Add (m(GP,α,Oα),M(GP,α,Oα)) to SOL

Lines 12. The line 6 handles the third case with the procedure SolveLeaf. By exploring the three cases,
we get the set SOL(GP) at the end of the function Solve.

As previously said, another possibility is that we can detect that there is no feasible solution with the
load of a source exceeding the production in which case no new set is added to SOL(GP) (line 9 of the
procedure SolveLeaf).

We use the dynamic programming function SolveDP to compute Solve faster. Every recursive call of
Solve is instead a call to SolveDP (at Lines 9 and 12). That function starts by checking if SOL(GP)
is already stored in the associative array SOLDP . In that case it returns the value otherwise it computes
it, stores it and returns it. That array is a global variable, shared by all the calls of SolveDP. This way,
the function Solve is called at most once per instance. We thus need to prove that SolveDP is called a
polynomial number of times and that the complexity of Solve (excluding the recursive calls) is polynomial.

Lemma 6. The number of possible instances called as an argument of SolveDP is O(|W |2).

Proof. Indeed, such an instance contains a subpath of the undirected path induced by W in the main instance
and all the sources and consumers connected to that path. Consequently, there is at most one instance per
subpath, thus at most O(|W |2) instances.

Note that a consequence of Lemma 6 is that there is, at most, a polynomial number of pairs stored in
the array SOLDP . The complexity of SolveDP, excluding the calls to Solve, is then polynomial.

Lemma 7. The size of SOL(GP) is O(|S|2|P |4).

Proof. We begin by proving that the load of a given source s can have a polynomial number of distinct
values among all the feasible solutions. That load depends on which consumers s is filling and which other
sources fill this same subset of consumers. Let ws be the neighbor of s in W . There are two possible cases:
either the two edges of PW incident to w are directed in the same direction (one from w and the other to
w) or the two edges are directed from w.

In the first case, s can only fill the consumers in that direction. Let p be the farthest consumer node
filled by s. Then, necessarily all the consumers between s and p are filled by s and all the sources between
s and p fill p. Thus, in all the feasible solutions where p is the farthest consumer filled by s, that source has
the same load. Consequently s has, in that case, at most O(|P |) loads.

If, on the other hand, the two edges incident to w are directed from w, then we can use the same argument
except that we have to consider two consumers instead of one, one for each direction. There are, in that
case, at most O(|P |2) distinct loads for s.

Consequently, there exists at mostO(|S||P |2) possible distinct values form(GP,α,Oα) andM(GP,α,Oα),
if we consider all the feasible solutions (α,Oα) for GP . As SOL(GP) is a set, it contains only distinct couples
of values, and thus, no more than O(|S|2|P |4).

12

As |SOL(GP)| = O(|S|2|P |4), the For loops at Lines 9 and 12) do at most O(|S|2|P |4) · O(|S|2|P |4)
iterations.

Theorem 3. Problems VALID and RESCHG can be solved in time O(n15) for caterpillar instances.

Proof. By Lemma 5, Algorithm 1 is correct. Let n be the size of W , note that |S|, |P | ≤ n. The time
complexity of the algorithm is the following: for an instance GP , the function Solve either does nothing
or calls SolveLeaf once, and, for each w ∈ W performs Split1, Split2 and two for loops. SolveLeaf
requires O(n2) operations. Split1 and Split2 are at most linear. The For loops does at most O(n12)
iterations (by Lemma 7) and four recursive calls to SolveDP. Calling Solve does then at most O(n13)
operations and O(n) calls to SolveDP. Such a call is either a recursive call to Solve or an access to
SOLDP in time O(log(k)) where k is the number of keys in SOLDP . In addition, Solve may be called at
most once per subinstance. By Lemma 6, there are at most O(n2) such instances: k = O(n2) and Solve
is called at most O(n2) times. The total number of operations of all the calls of the functions Solve and
SolveDP are then respectively at most O(n15) and at most O(n3 log(k)) = O(n3 log(n2)). Consequently,
the complexity of the algorithm is O(n15 + n3 log(n2)) = O(n15).

Theorem 4. VALID and RESCHG can be solved in time O(n16) for ring instances.

Proof. By Theorem 3 and Lemma 4.

Let us remark that our aim was to prove that the two problems are becoming polynomial in the case of
a ring topology and not to find the best complexity. This is the reason why the question of obtaining in this
case a complexity lower than O(n16) remains open. In addition, this theoretical worst case upper bound is
mainly based on the bound of Lemma 7 which is not reached on average.

Remark. Algorithm 1 works because of two properties: removing a switch or dupplicating a switch disconnect
the instance as in Figures 4 and 5, and the number of couples in SOL(GP) is polynomial. Consequently,
extending this result to other topologies like instances where the subgraph induced by W is a tree or two cycles
is not obvious as those two properties are not necessarily true.

5. Conclusion

In this paper, we have defined two graph algorithmic problems to obtain a good configuration of a
switched electrical network. The first problem consists in finding a valid configuration through the activation
of switches and the orientation of edges and the second problem consists in maximizing the balance of the
rates of use of the different sources in order to guarantee a fault tolerance in the network. We have proved
that these two problems are difficult in the general case. However, we have showed that these problems
become polynomial in the case where the switches constitute a ring topology. The objective is now to
study topologies extending the ring and to propose polynomial exact algorithms or practical heuristics with
guarantees of performances, if such algorithms exist.

References

[1] Atkins, K., Chen, J., Kumar, V. A., and Marathe, A. The structure of electrical networks: a
graph theory based analysis. International Journal of Critical Infrastructures 5, 3 (2009), 265.

[2] Babkin, D., and Milovanova, K. Short-Term planning and operating conditions optimization of
power systems under market conditions. In IEEE Russia Power Tech (jun 2005), IEEE, pp. 1–5.

[3] Cadini, F., Zio, E., and Petrescu, C. Optimal expansion of an existing electrical power transmission
network by multi-objective genetic algorithms. Reliability Engineering & System Safety 95, 3 (mar 2010),
173–181.

13

[4] Carvalho, P., Ferreira, L., and Barruncho, L. Optimization approach to dynamic restoration
of distribution systems. International Journal of Electrical Power & Energy Systems 29, 3 (mar 2007),
222–229.

[5] Christiano, P., Kelner, J. A., Madry, A., Spielman, D. A., and Teng, S.-H. Electrical flows,
laplacian systems, and faster approximation of maximum flow in undirected graphs. In Proceedings of
the 43rd annual ACM symposium on Theory of computing (New York, New York, USA, 2011), ACM
Press, p. 273.

[6] Dulau, L. I., Bica, D., and Ronay, K. Algorithm for optimal configuration of electric networks. In
International Conference on Energy and Environment (oct 2017), IEEE, pp. 41–44.

[7] Gu, X., and Zhong, H. Optimisation of network reconfiguration based on a two-layer unit-restarting
framework for power system restoration. IET Generation, Transmission & Distribution 6, 7 (2012),
693.

[8] Guha, S., Moss, A., Naor, J. S., and Schieber, B. Efficient recovery from power outage (extended
abstract). In Proceedings of the thirty-first annual ACM symposium on Theory of computing (New York,
New York, USA, 1999), ACM Press, pp. 574–582.

[9] Guo, J., Hug, G., and Tonguz, O. K. Intelligent Partitioning in Distributed Optimization of
Electric Power Systems. IEEE Transactions on Smart Grid 7, 3 (may 2016), 1249–1258.

[10] Han, X., Liu, J., Liu, D., Liao, Q., Hu, J., and Yang, Y. Distribution network planning study
with distributed generation based on Steiner tree model. In IEEE /PES Asia-Pacific Power and Energy
Engineering Conference (dec 2014), IEEE, pp. 1–5.

[11] Karp, R. Reducibility among combinatorial problems. In Complexity of Computer Computations.
Springer, 1972, pp. 85–103.

[12] Li, J. Reconfiguration of power networks based on graph-theoretic algorithms. PhD thesis, Iowa State
University, Digital Repository, Ames, 2010.

[13] Li, J., Ma, X.-Y., Liu, C.-C., and Schneider, K. P. Distribution System Restoration With
Microgrids Using Spanning Tree Search. IEEE Transactions on Power Systems 29, 6 (nov 2014), 3021–
3029.

[14] Li, Y.-Q., Wang, L., Xie, H.-L., and Xie, Q. Distribution Network Optimal Planning Based on
Clouding Adaptive Ant Colony Algorithm. In Asia-Pacific Power and Energy Engineering Conference
(mar 2009), IEEE, pp. 1–4.

[15] Miu, K. N., Chiang, H.-D., and McNulty, R. J. Multi-tier service restoration through network
reconfiguration and capacitor control for large-scale radial distribution networks. IEEE Transactions
on Power Systems 15, 3 (2000), 1001–1007.

[16] Moslehi, K., and Kumar, R. A Reliability Perspective of the Smart Grid. IEEE Transactions on
Smart Grid 1, 1 (jun 2010), 57–64.

[17] NERC. State of reliability. Tech. rep., NERC, Atlanta, 2015.

[18] Quiros-Tortos, J., and Terzija, V. A graph theory based new approach for power system restora-
tion. In 2013 IEEE Grenoble Conference (jun 2013), IEEE, pp. 1–6.

[19] RTE. Réso - Edition spéciale ”Grand Paris”, 2014.

[20] Shen, T., Li, Y., Xiang, J., Shen, T., Li, Y., and Xiang, J. A Graph-Based Power Flow Method
for Balanced Distribution Systems. Energies 11, 3 (feb 2018), 511.

14

[21] Tang, L., Yang, F., and Ma, J. A survey on distribution system feeder reconfiguration: Objectives
and solutions. In IEEE Innovative Smart Grid Technologies - Asia (may 2014), IEEE, pp. 62–67.

[22] Wang, W., and Yu, N. Phase Balancing in Power Distribution Network with Data Center. ACM
SIGMETRICS Performance Evaluation Review 45, 2 (oct 2017), 64–69.

[23] Watel, D., Weisser, M. A., Bentz, C., and Barth, D. Directed Steiner trees with diffusion costs.
Journal of Combinatorial Optimization 32, 4 (2016), 1089–1106.

15

	Introduction
	Modelization
	Distribution network topology
	Activation and orientation of the network
	Flow in a oriented and activated DAG
	Network optimization

	Complexity of Problems VALID and RES_CHG
	Problem VALID is NP-complete
	Problem RES_CHG is NP-complete

	Polynomial solutions for ring networks
	Conclusion

