
HAL Id: hal-02018168
https://hal.science/hal-02018168v1

Submitted on 13 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An abstract stack based approach to verified
compositional compilation to machine code

Yuting Wang, Pierre Wilke, Zhong Shao

To cite this version:
Yuting Wang, Pierre Wilke, Zhong Shao. An abstract stack based approach to verified compositional
compilation to machine code. Proceedings of the ACM on Programming Languages, 2019, 3 (62),
pp.30. �10.1145/3290375�. �hal-02018168�

https://hal.science/hal-02018168v1
https://hal.archives-ouvertes.fr


62

An Abstract Stack Based Approach to Verified

Compositional Compilation to Machine Code

YUTING WANG, Yale University, USA

PIERRE WILKE, Yale University, USA and CentraleSupélec, France

ZHONG SHAO, Yale University, USA

A key ingredient contributing to the success of CompCert, the state-of-the-art verified compiler for C, is its

block-based memory model, which is used uniformly for all of its languages and their verified compilation.

However, CompCert’s memory model lacks an explicit notion of stack. Its target assembly language represents

the runtime stack as an unbounded list of memory blocks, making further compilation of CompCert assembly

into more realistic machine code difficult since it is not possible to merge these blocks into a finite and

continuous stack. Furthermore, various notions of verified compositional compilation rely on some kind of

mechanism for protecting private stack data and enabling modification to the public stack-allocated data,

which is lacking in the original CompCert. These problems have been investigated but not fully addressed

before, in the sense that some advanced optimization passes that significantly change the ways stack blocks

are (de-)allocated, such as tailcall recognition and inlining, are often omitted.

We propose a lightweight and complete solution to the above problems. It is based on the enrichment of

CompCert’s memory model with an abstract stack that keeps track of the history of stack frames to bound the

stack consumption and that enforces a uniform stack access policy by assigning fine-grained permissions to

stack memory. Using this enriched memory model for all the languages of CompCert, we are able to reprove

the correctness of the full compilation chain of CompCert, including all the optimization passes. In the end,

we get Stack-Aware CompCert, a complete extension of CompCert that enforces the finiteness of the stack

and fine-grained stack permissions.

Based on Stack-Aware CompCert, we develop CompCertMC, the first extension of CompCert that com-

piles into a low-level language with flat memory spaces. Based on CompCertMC, we develop Stack-Aware

CompCertX, a complete extension of CompCert that supports a notion of compositional compilation that we

call contextual compilation by exploiting the uniform stack access policy provided by the abstract stack.

CCS Concepts: • Theory of computation → Program verification; Abstraction; • Software and its

engineering→ Software verification; Semantics; Functionality;

Additional Key Words and Phrases: memory model, abstract stack, certified compilers, compositional compila-

tion, machine code generation

ACM Reference Format:

YutingWang, PierreWilke, and Zhong Shao. 2019. AnAbstract Stack Based Approach to Verified Compositional

Compilation to Machine Code. Proc. ACM Program. Lang. 3, POPL, Article 62 (January 2019), 30 pages.

https://doi.org/10.1145/3290375

Authors’ addresses: Yuting Wang, Yale University, USA, yuting.wang@yale.edu; Pierre Wilke, Yale University, USA ,

CentraleSupélec, France, pierre.wilke@centralesupelec.fr; Zhong Shao, Yale University, USA, zhong.shao@yale.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).

2475-1421/2019/1-ART62

https://doi.org/10.1145/3290375

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 62. Publication date: January 2019.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3290375
https://doi.org/10.1145/3290375


62:2 Yuting Wang, Pierre Wilke, and Zhong Shao

1 INTRODUCTION

In the field of software verification using formal methods, verification is usually carried out in the
high-level source languages. Verified compilers are then used to transport the correctness properties
at the source level to executable code to obtain an end-to-end guarantee which is important for
critical software systems such as OS kernels [Gu et al. 2015, 2016].

The state-of-the-art verified compiler for C is CompCert [Leroy 2009a] which has been success-
fully applied to many software verification projects. However, the vanilla CompCert is restricted in
several aspects, making it less flexible for real-world verification projects. First, CompCert does
not guarantee the correct compilation to executable machine code. Its verified compilation chain
outputs a form of assembly code which is still quite far away from the actual assembly code; in
particular, it does not operate over a finite stack. Second, CompCert only supports a limited form
of modular verification known as verified separate compilation (proposed by Kang et al. [2016]),
meaning if the modules are written in the same source language and compiled down to the same
target language through the same compilation passes, then the behaviors of the syntactically linked
modules are preserved by compilation. Verified separate compilation is not applicable to compilation
and linking of heterogeneous modules, i.e., modules written in different languages that are compiled
through different compilation passes, which are common in software systems. For instance, the
code for context switch in an OS implementation is usually written in the assembly language and
needs to be linked with other C modules compiled to assembly code [Gu et al. 2015, 2016].

We observe that the above restrictions can largely be attributed to the lack of an explicit notion of
stack with appropriate permissions for controlling stack access in the memory model of CompCert.
CompCert uses a block-based memory model uniformly for all of its languages [Leroy et al. 2012;
Leroy and Blazy 2008], where the memory is divided into blocks isolated from one another. In
particular, the łstackž in the target assembly language is represented as an unbounded list of blocks.
Further compilation to machine code is difficult because it is not possible to merge this list into
a stack with finite space. For verified compilation of heterogeneous modules, a major problem is
to protect the private data on the stack belonging to one module from being modified by another
module. To solve this problem, it is required to have some mechanism to enforce the said protection
of stack data, which is lacking in the vanilla CompCert.
Our goal of this work is to significantly relax the aforementioned restrictions in CompCert by

extending it with the following features:

• Stack-awareness. We would like to extend the compilation chain of CompCert to be aware of
the existence of a finite stack with permissions for protecting private data on the stack. This
will provide the basis for the following extensions.
• Compilation to flat memory spaces. We would like to further compile CompCert assembly
code into a form that closely mirrors the actual machine code. In particular, it should use flat
memory spaces for representing the stack, code and data.
• Completeness. The extensions should be complete. That is, they should support all the features
of CompCert, including stack-allocated dataÐan important concept for the compilation of C
programs that characterizes stack data modifiable outside of the current function callÐand
the full compilation chain containing the non-trivial optimization passes that transform the
structure of the stack, such as inlining and tailcall recognition.
• Verified separate compilation. The extensions should at least support verified separate compi-
lation, the default approach to modular verification in CompCert.
• Contextual compilation. We also would like to support contextual compilation, a notion
of modular verification for compilers that is stronger than verified separate compilation,

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 62. Publication date: January 2019.



An Abstract Stack Based Approach to Verified Compositional Compilation . . . 62:3

denoting that any source module starting from an arbitrary context (i.e., arbitrary memory
state and an arbitrary entry point) can be correctly compiled into the target language.

Our key idea is to instrument the memory model of CompCert with a built-in abstraction of
the stack 1) to keep track of the concrete stack consumption at all levels of compilation, so as to
prove the preservation of stacks bounds by compilation, which enables verified compilation to
lower-level code with a finite stack, and 2) to enrich the memory blocks with stack permissions and
impose a uniform access policy to prevent inadvertent modification of private stack data across
modules. In the following paragraphs, we explain our key novelties in the application of this idea
to support the above features in CompCert.

Stack-awareness. Our starting point is the definition of an abstract data type in the memory
model of CompCert to represent the stack, that we call the abstract stack. It consists of a collection
of abstract frames that record information about the stack frames allocated by function calls.

By recording the size of the concrete stack frames in the abstract frames and providing methods
in the memory model to push and pop abstract frames onto the abstract stack, we are able to
instrument the semantics of all the languages of CompCert to keep track of and bound the concrete
stack consumption. Then, we prove that all CompCert’s passes preserve the stack consumption,
i.e. the stack consumption of the target program is no larger than that of the source program, by
generalizing memory injectionsÐthe invariant between memory states for proving compilation
correctÐto relate abstract stacks in the source and target languages.
By recording permissions in the abstract frames for distinguishing public and private regions

of stack frames, we are able to tell stack-allocated data which are modifiable outside the current
function (e.g., local variables whose addresses are passed as arguments to other functions) apart
from the private data which are only modifiable by the current function (e.g., callee-save and spilled
register values). Furthermore, by restricting in the memory model which accesses are permitted
with respect to the abstract stack, we enforce a uniform access policy on the stack. We prove that all
CompCert’s passes preserve the stack access policy by augmenting memory injections to capture
preservation of stack permissions.

Compilation to flat memory spaces. By exploiting the property that the CompCert’s passes now
preserve stack consumption, we merge the stack blocks in CompCert’s assembly language into a
single finite stack, and prove that any source program that does not overflow the concrete stack
can be correctly compiled to a single-stack assembly program, from which we further compile to a
language with data and code collapsed into flat memory spaces.

We still allow for dynamic allocation of an unbounded number of heap blocks besides the static
blocks for code, data and stack. Note that most of the existing verification works based on CompCert
(e.g. Verified Software Toolchain [Appel 2011] and CertiKOS [Gu et al. 2016, 2018]) actually do not
rely on the axiomatised heap blocks as provided in CompCert, but rather allocate a global array
that serves as a heap and provide their own heap management functions that operate on that global
array. This way, all the memory is statically known and we can merge all parts of the memory
into a flat memory space. Of course, we may take a similar approach to modeling a finite heap by
introducing an abstract data type for the heap and operations on this data type into CompCert’s
memory model. We still need to evaluate the benefits and explore the feasibility of this extension,
which are left for future work.

Completeness. The above extensions support stack-allocated data through stack permissions, as
described above. They also support the full compilation chain of CompCert. For this, the main
difficulty lies in proving the preservation of stack consumption. This is relatively straightforward
for most compiler passes, where the call-return structure is preserved between the source and the
target programs. However, more work is needed for optimizations such as inlining and tailcall

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 62. Publication date: January 2019.



62:4 Yuting Wang, Pierre Wilke, and Zhong Shao

recognition. Because these passes may merge function calls or reorder allocations of frames, we
need to generalize the abstract stack to record the history of abstract frames and generalize memory
injections to capture the merging and reordering of corresponding stack frames. The details are
described in Sec. 3 and Sec. 4.

Verified separate compilation. The above extensions also support verified separate compilation by
following the same idea described in Kang et al. [2016]. The work amounts to defining the notions
of syntactic linking for our new languages with flat memory spaces and proving that the new
compilation passes commute with syntactic linking.

Contextual compilation. Based on the previous extensions, we further support contextual compi-
lation. For this, the key is to make sure the memory regions for the stack in different modules are
used in a consistent way throughout the compilation. We enforce this consistency by describing
the semantics of every module using our stack-aware memory model and exploiting the uniform
stack access policy imposed by our abstract stack. The details are described in Sec. 6.

1.1 Comparison with Related Work

There already exists a number of extensions to CompCert that aim to support some of the afore-
mentioned features. We briefly discuss the key differences between the most relevant related work
and our work. We will give a detailed comparison later in Sec. 7.
The distinguishing feature of our work is that it is based on the unique idea of enriching

CompCert’s memory model with an abstraction of the stack for tracking stack consumption and
stack permissions. We apply this idea to verify the compilation of C to a language with flat memory
spaces, which seems to be a first.

Carbonneaux et al. [2014] have developed Quantitative CompCert which supports compilation to
a finite stack. Their key idea is to augment the event traces generated by execution with call and
return events attached with the sizes of concrete stack frames, which will be used to calculate the
stack consumption of a given trace. They then prove that if the stack consumption for all traces are
preserved, then the source program can be correctly compiled into an assembly program with a
finite stack. However, they have not tackled the problem of compilation to flat memory spaces or
any form of compositional compilation. Moreover, they have not yet shown the event-trace based
approach is flexible enough to support inlining or tailcall recognition.

Stewart et al. have developed Compositional CompCert [Stewart 2015; Stewart et al. 2015] which
supports a very general notion of modular verification for compilers known as verified compositional

compilation (VCC). They can prove the correct compilation of whole programs by composing the
correctness proofs of the compilation of individual modules. However, they have not solved the
problem of stack merging or compilation to flat memory spaces. Similar to Quantitative CompCert,
they have not yet shown their approach supports inlining or tailcall recognition.

We briefly compare the different notions of compositional compilation for CompCert. VCC ismore
powerful than contextual compilation in that it allows for recursive calls between heterogeneous
modules while contextual compilation does not. Contextual compilation is much more powerful
than verified separate compilation because it allows for interoperation between heterogeneous
contexts and programs. It has been proven adequate for verification of non-trivial system software
such as OS kernels as manifested in the CertiKOS project [Gu et al. 2015, 2016], where the linking
between arbitrary assembly contexts and C modules and the isolation of stack resources between
modules are essential to make modular verification possible.

1.2 Contributions and Overview

We summarize our contributions as follows, all of which have been fully formalized in Coq:

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 62. Publication date: January 2019.



An Abstract Stack Based Approach to Verified Compositional Compilation . . . 62:5

(1) We develop an enhancement to CompCert’s memory model with an abstract stack which
keeps track of the history of stack frames and uses the history to calculate the stack con-
sumption. We further enrich the abstract stack with permissions to enforce a uniform stack
access policy through the interfaces of CompCert’s memory model.

(2) Using our new memory model, we implement Stack-Aware CompCert, an extension of Comp-
Cert that bounds the size of the stack and distinguishes between the public data from private
data on the stack at all levels of compilation. We reprove all the passes of CompCert, in-
cluding the challenging optimizations such as inlining and tailcall recognition, by extending
CompCert’s memory injections to take into account the preservation of stack consumption
and stack permissions.

(3) Based on Stack-Aware CompCert, we develop CompCertMC, the first extension to the full
compilation chain of CompCert (v.3.0.1) that supports compilation to a lower-level language
called MC. In MC the code, data and stack are laid out in finite flat memory spaces like
the actual machine code. Programs written in this language can therefore be transparently
converted into actual machine code using formal models of machine architectures (We use
the RockSalt [Morrisett et al. 2012; Tan and Morrisett 2018] x86 machine language encoder
to demonstrate this process, whose verification is left for future work).

(4) Based on CompCertMC, we implement Stack-Aware CompCertX, an extension to CompCert
that supports contextual compilation. The proof makes critical use of the uniform stack access
policy provided by the new memory model and the injection between abstract stacks that
takes stack permissions into account. Stack-Aware CompCert, CompCertMC and Stack-Aware
CompCertX support all the features of the original CompCert, with the exception that Stack-
Aware CompCertX supports contextual compilation which is more powerful than verified
separate compilation.

The rest of the paper is organized as follows. First, Sec. 2 introduces the concepts of CompCert
necessary for our discussion. Then, the next four sections (Sec. 3 to Sec. 6) elaborate on the above
contributions in sequence. Finally, we discuss related work in Sec. 7 and conclude in Sec. 8.

2 AN INTRODUCTION TO COMPCERT

This section presents the CompCert compiler.We first describe thememorymodel that the semantics
of the languages are based upon. It includes relations between memory states known as memory
injections that are central to the correctness proof of the individual compiler passes. We then
describe the correctness of compilation including the support of separate compilation. We finally
discuss the optimizations that can significantly change the structure of the stack, in particular,
inlining and tailcall recognition. For a more thorough coverage of CompCert, interested readers
can consult Blazy et al. [2006]; Leroy [2009a,b]; Leroy et al. [2012].

2.1 Basics of the Memory Model of CompCert

The memory in CompCert is modeled as a collection of blocks, where each block is an array of
abstract bytes. A pointer is a pair (b,o) consisting of a block identifier b and an integer offset o
within that block. This model captures the important aspects of semantics of pointers in C programs.
For instance, in CompCert C every local variable of a function is associated with a distinct block,
therefore preventing pointer arithmetic across different variables.
The contents of these memory blocks are values represented by the following discriminated

union of undefined values, 32-bit or 64-bit integers, single- or double-precision floating point
numbers or pointers:

V ≜ Vundef | i32 | i64 | f32 | f64 | (b,o)

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 62. Publication date: January 2019.



62:6 Yuting Wang, Pierre Wilke, and Zhong Shao

b1

b2

b3

b ′1

b ′2

j1

sb

j2

δm

δ

sf

MachCminorClightC

j3

Fig. 1. Evolution of the blocks in a stack frame

Undefined values are used to indicate uninitialized memory and also to represent the result of
meaningless operations such as subtraction between two pointers in different blocks. CompCert
also associates permissions with each offset of each block, stating whether those locations have
no permission (hence no operation is allowed on them), are readable (they can be read from), are
writable (they can be read from and written to), or are freeable (they can be read from, written to,
and freed).

The main operations on memory states are listed below, whereM is the type of memory states:

alloc : M→ Z→ Z→ M × block

free : M→ block→ Z→ Z→ ⌊M⌋

load : M→ chunk→ block→ Z→ ⌊V⌋

store : M→ chunk→ block→ Z→ V → ⌊M⌋

Most of these operations return an option type, meaning they can fail, in particular if the permission
requirements are not met. We write ⌊•⌋ for both the type itself and the Some constructor, and
we write ∅ for the None constructor. Only alloc always succeeds, therefore modeling an infinite
memory. This operation allocates a new block. We say that a block is valid if it has been allocated.
Operations load and store are parameterized by a chunk κ which designates the size, type and
signedness of the value stored at the given memory location. The chunk κ dictates encoding and
decoding of values, according to their size (denoted by |κ |) and signedness. It is easy to understand
the function of each operation from its signature. For example, the operation store m κ b o v

stores a value v according to the chunk κ into the locations (b,o), . . . , (b,o + |κ | − 1). It succeeds
only if those locations have the writable permission.

2.2 Memory Injections

CompCert compiles C programs into assembly programs, going through 10 intermediate languages
and 20 compiler passes (as of CompCert v3.0.1). During this compilation, the structure of the
memory is transformed, in particular the memory that corresponds to stack blocks, as shown in
Fig. 1. In CompCert C, for a given function, every local variable and function parameter is allocated
in a separate fresh block (b1, b2 and b3). An early compilation pass, SimplLocals ś at the Clight level
ś lifts scalar local variables whose address is never taken to temporary variables. One motivation
for doing so is that the optimizations later in the compilation chain will be able to operate more
aggressively on temporaries or pseudo-registers rather than on the contents of the memory. The
memory blocks for such lifted variables are discarded, as is the case for b3. Later, in the Cminor
language, the blocks for the remaining variables are merged into a single stack block sb that hold
the so-called stack-allocated data. Finally, in the Mach language, the structure of the stack frame is
completely laid out and the stack block becomes a part of the larger stack frame sf , which also
contains data such as the return address of the function or the callee-save registers (pictured in
gray), introduced by the pass called Stacking.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 62. Publication date: January 2019.



An Abstract Stack Based Approach to Verified Compositional Compilation . . . 62:7

To verify the correctness of the compilation passes, CompCert introduces so-called memory

injections (j1, j2, j3 in Fig. 1) to track the relationship between the blocks in the source and target
programs. A memory injection is a partial function from blocks to locations, i.e. block→ ⌊block×
Z⌋. This is a partial function to account for the fact that some blocks may be pulled out of memory
and have no counterpart in the target memory. This is the case for example of block b3 in Fig. 1, i.e.
j1(b3) = ∅. In the other cases, the resulting block and offset specifies where the source locations
are mapped. For example, we have j1(b1) = ⌊b

′
1, 0⌋, meaning that block b1 has been renamed into

b ′1 but the offset is unchanged. We also have j3(sb) = ⌊sf ,δ⌋. This means that the source location
(sb,o) is mapped to the target location (sf ,o + δ ), for any o.

Value injection. The source and target values are related by the value injection relation, noted
֒→j , and defined as follows:

v , (b,o)

v ֒→j v Vundef ֒→j v

j(b) = ⌊b ′,δ⌋

(b,o) ֒→j (b
′
,o + δ )

The injection is reflexive for regular (non-pointer) values. A pointer value in the source language is
relocated according to the memory injection. Undefined values inject into any value in the target
language. The purpose of specializing undefined values is to capture for instance the semantics
of pointer operations, which gets more defined after injection. Consider for instance the pointer
subtraction (b ′2, 0) − (b

′
1, 0) at the Clight level, which evaluates to Vundef. At the Cminor level, the

pointer subtraction becomes (sb,δm) − (sb, 0), which evaluates to δm .

Memory injection. The value injection relation is lifted tomemory states: given twomemory states
m1 andm2, there is amemory injection betweenm1 andm2 by j (notedm1 ֒→j m2), if (essentially) the

permissions of corresponding locations are preserved and the contents of corresponding locations
are in value injection. There are also well-formedness properties of these injection functions: only
valid blocks are mapped by j, no two distinct source locations with non-empty permissions are
injected into the same target location, etc.

CompCert’s memory model comes with a set of properties that describe how the various memory
operations affect the memory contents and permissions, and how the memory injections and the
memory operations interact across a program’s execution. The proof of correctness of the entire
compiler relies on those properties.

2.3 The Correctness of Compilation

The CompCert compiler takes C programs as input and translates them through a sequence of
compilation passes into the CompCert assembly language, as depicted in Fig. 2 (the first pass is an
identity transformation that translates C programs with a non-deterministic semantics into those
with a deterministic one).

C C Clight . . . Asm
identity SimplExpr (many passes) AsmCodegen

BS0

FS1 FSn

BS1

BS = BS1 ◦ BS0

Fig. 2. The simulation relations for the compiler passes of CompCert

The goal is to prove that every observable behavior of the compiled assembly program can be
exhibited at the C source level. This is derivable from a backward simulation relation between the

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 62. Publication date: January 2019.



62:8 Yuting Wang, Pierre Wilke, and Zhong Shao

C and assembly programs, i.e., there is an invariant between the source and target program states
such that, starting from states related by the invariant, every step of an execution of the target
program can be simulated by zero or more steps of an execution of the source program with the
invariant being preserved by these steps. For the compiler C consisting of the sequence of passes
C1, . . . ,Cn , it suffices to prove that for each Ci there is a backward simulation relation between
its source and target programs. Then, by transitivity of simulations, we collapse the sequence of
backward simulations into that for C. However, backward simulations are usually more difficult to
prove than forward simulation, i.e., their dual notations, because one step of execution may become
several steps after compilation and it may be difficult to relate the intermediate states between these
steps to the source ones. Fortunately, in many situations, it suffices to prove forward simulation for
a compilation pass because it can be flipped into a backward simulation.1 This idea has been used
to prove CompCert correct, as depicted in Fig. 2. First, a backward simulation (BS0) is established
for the first pass. Then, a sequence of forward simulations (FSi (1 ≤ i ≤ n)) is established for the
remaining passes, which is composed into a single forward simulation by transitivity and flipped
into a backward simulation (BS1). Finally, the backward simulations are composed to form the
backward simulation (BS) for the whole compiler.

We shall write [[P]] to represent the small-step operational semantics of program P and [[T ]] ⊑ [[S]]
to represent the backward simulation between the target programT and the source program S . The
correctness theorem of CompCert is then stated as follows:

Theorem 2.1. Given the CompCert compiler C and a complete C program P , [[C(P)]] ⊑ [[P]].

Its proof follows the above discussion. The details can be found in Leroy [2014]. The critical steps
for proving a simulation relation are to find an invariant between the states of the source and target
programs and to show it holds throughout their execution. Note that this invariant usually contains
a memory injection between the memory states of the source and target programs.

Theorem 2.1 is only for the compilation of complete C programs, i.e., programs without undefined
external references. CompCert also supports verified separate compilation for incomplete C programs
via the commutative property between compilation passes and syntactic linking. In every language
of CompCert, a program consists of a set of definitions each of which is a mapping from an identifier
to a global variable, an internal function, an external function or an undefined object. Programs are
linked by taking the union of their definitions such that:

• If there is a single non-external definition for an identifier, then all the external and undefined
definitions are resolved to it;
• If there are multiple non-external definitions for an identifier, the linking fails.

We write P1 ⊕ . . . ⊕ Pk for the result of syntactic linking of programs P1, . . . , Pk . Verified separate
compilation relies on the following property for each compiler pass Ci :

Ci (P1 ⊕ . . . ⊕ Pk ) = Ci (P1) ⊕ . . . ⊕ Ci (Pk )

The correctness theorem of separate compilation states that if C modules are compiled to assembly
using the CompCert compiler, then the syntactically linked target modules refine the syntactically
linked source ones, as follows.

Theorem 2.2. Given the CompCert compiler C and modules P1, . . . , Pk written in the C language,

[[C(P1) ⊕ . . . ⊕ C(Pk )]] ⊑ [[P1 ⊕ . . . ⊕ Pk ]].

Proof. By commutativity between compilation and syntactic linking, C(P1) ⊕ . . . ⊕ C(Pk ) =
C(P1 ⊕ . . . ⊕ Pk ). We conclude by using Theorem 2.1. □

1The requirement is that the target language of this pass is determinate and the source language is receptive. Interested

readers can find the details in Sevcík et al. [2011].

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 62. Publication date: January 2019.



An Abstract Stack Based Approach to Verified Compositional Compilation . . . 62:9

2.4 Modification of the Stack by Tailcall Recognition and Inlining

Most of CompCert’s passes preserve the call-return structure of programs and therefore preserve
the shape of the stack. However, the function inlining and tailcall recognition optimizations of
CompCert modify this structure and multiple source frames may inject into the same target frame
(at those stages a stack frame is represented by a block containing stack-allocated data). This
situation is illustrated by Fig. 3. Consider a regular function call from function foo to bar, and
3 possible compilations or optimizations of that function call. First, the call is kept as a regular
call and the structure of the stack is unchanged. This is the most common case in CompCert
passes. The resulting memory injection is depicted in Fig. 3b. Second, the call to bar is inlined.
As a consequence, the target stack frame is now the concatenation of the two source frames. At
the entry point of bar in the target, both the source frames for foo and bar inject into this single
frame, as shown in Fig. 3c. Third, the call to bar is transformed into a tail call. In CompCert, this
can happen only if the caller’s frame is of size 0. In our case, the size of stack-allocated data for foo
must be 0. At the tailcall of bar, the frame for foo is deallocated. Then, at the entry point of bar,
the frame for bar is allocated and both source frames for foo and bar inject into the target frame
for bar, as shown in Fig. 3d (where the frame with a gray background is deallocated). The frame of
foo can inject into that of bar because it is a block of size 0, hence has no permission.

int bar(){ BAR; }

int foo(){

FOO;

return bar();

}

(a) Example functions

foo

bar

foo

bar

(b) Structure unchanged

foo

bar

foo

(c) Inlining of bar

foo

bar

bar foo

(d) Tail call of bar

Fig. 3. Stack injection for inlining and tailcall

A major challenge to the implementation of our extensions is to characterize the transformations
of the stack incurred by inlining and tailcall recognition optimizations, as we shall see in the
following sections.

3 AN ABSTRACT STACK IN COMPCERT

This section introduces the heart of our approach: the formalization of an abstract stack within the
memory model of CompCert. This abstract stack will serve two purposes: ensuring that the stack
fits in a finite memory region of predetermined size; and enforcing a stack access policy to protect
private regions while still allowing modifications to public regions.

First, we describe our formalization of the abstract stack. Then we define the size of such abstract
stacks, and we express a stack access policy based on the abstract stack.

3.1 The Abstract Stack

P ≜ Public | Private

I ≜ {bsize : Z; bperm : Z→ P}

B ≜ block × I

F ≜ {fblocks :
−→
B ; fsize : Z}

T ≜
−→
F

S ≜
−→
T

Notations

P(bi,o) ≜ bi.bperm o

|bi | ≜ bi.bsize

(b, bi) ∈ s ≜ ∃ f t , (b,bi) ∈ fblocks(f ) ∧ f ∈ t ∧ t ∈ s

b ∈ s ≜ ∃ bi, (b, bi) ∈ s

Fig. 4. Definition of abstract frames

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 62. Publication date: January 2019.



62:10 Yuting Wang, Pierre Wilke, and Zhong Shao

fbf

b′1 b′2g

(a) Clight

fbf

sbg

(b) Cminor

fbf

sfg

(c) Mach

Fig. 5. The abstract stack across compilation

We model the stack as a collection of abstract frames which are defined in Fig. 4. An abstract
frame f : F is the abstract counterpart of an activation record for a given function. It is formally
encoded as a record with one field fblocks recording a list of abstract blocks which abstract over
the memory blocks constituting the activation record, and one field fsize recording the size that
this frame will occupy in the concrete stack. Note that we use a list of abstract blocks instead of a
single abstract block because for some languages of CompCert such as C and Clight the activation
record is a list of memory blocks (as shown in Fig. 1). Note also that, for computation of actual stack
consumption, fsize records the size of the concrete stack frame allocated at the level of machine
code. It has no relation to and should not be confused with the sizes of memory blocks (bsize). An
abstract block b : B consists of a block identifier together with some block information. A block
information bi : I is a record with a field bsize recording the size of the corresponding stack block
and a field bperm which associates a stack permission p : P with each offset of this stack block
which is either Public or Private.

Based on this definition of abstract frames, a first natural attempt to define abstract stacks S

is as a list of abstract frames, i.e. S ≜
−→
F . However, this definition fails to properly account for

the stack consumption of tailcalls. As described in Sec. 2.4, a tailcall first deletes the frame of its
caller then allocates the frame of its callee. As a consequence, the maximum stack space consumed
by a sequence of tailcalls is the maximum size of the frames of the called functions, instead of
the sum of the sizes of these frames in the case of regular calls. To account for this effect in later
developments, we organize an abstract stack s : S into a list of stages, where a stage t : T is a
list of abstract frames allocated by a sequence of tailcalls, whose head is the active frame for the
most recent tailcall in the sequence and whose tail contains the frames historically allocated by the
remaining tailcalls and now deallocated. This is formally defined in Fig. 4.
Fig. 5 shows the evolution of an abstract stack at different points during the compilation. Note

that in this figure and in the following discussions we will depict the stack as growing łdownwardsž
to be consistent with the convention at the machine code level that the stack grows from a higher
address to lower ones. In this example, we consider an assembly function f calling a function g,
compiled from Clight through Cminor to Mach. The assembly function f is not compiled, therefore
its stack frame stays the same in all cases: its stack block fb has distinguished private (gray) and
public (white) regions. On the other hand, the stack of function g evolves as described in Fig. 1.
In Clight and Cminor (Figures 5a and 5b), the abstract frame for g only contains all-public block
information. However, starting from Mach (Fig. 5c), the abstract frame for g gets a non-trivial block
information, which marks some regions as private (gray). The bperm field of this block information
may be defined as the following function where [δ ,δ + |sb|) is the range of sf that sb injects into:

bperm o ≜ if δ ≤ o < δ + |sb| then Public else Private.

3.2 Stack Consumption and Its Upper Bound

We define the size of abstract frames, stages and stacks. The size of an abstract frame f : F is

defined as size_frame(f ) ≜ f .fsize.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 62. Publication date: January 2019.



An Abstract Stack Based Approach to Verified Compositional Compilation . . . 62:11

The size of a stage t : T should denote the amount of stack space at the level of machine code
that is needed for the execution of the entire sequence of tailcalls that allocate frames in t . It is
therefore defined as the maximum size of all the frames f ∈ t :

size_stage(t) ≜ max
f ∈t
(size_frame(f ))

Finally, the size of a stack s ∈ S is defined as the sum of the sizes of its stages, i.e.

size_stack(s) ≜
∑

t ∈s

size_stage(t)

We write | f |, |t | and |s | for the size of a frame f , of a stage t and of a stack s , respectively. To
ensure the stack fits into a finite memory, we parameterize our abstract stack with the maximum
size of the concrete stack MAX_STACK. Later in this paper (Sec. 4.1), we shall enforce that every
memory operation maintains the invariant that the size of the stack is below this threshold.

3.3 Stack Access Policy

We consider the following stack access policy: a memory store at a location l is allowed by our
policy either if location l is declared as a public location in the stack, or if l is owned by the function
currently executing, i.e. l belongs to the abstract frame that is at the top of the abstract stack. We
formally define in the following the notions of public locations and being at the top of the stack.
Then we define our stack access policy as the visible predicate.

Definition 3.1 (Public locations). A location (b,o) is public in stack s , written public(s,b,o), if for
any bi such that (b, bi) ∈ s , P(bi,o) = Public.

Note that this definition defines as public the locations (b,o) where b is not part of the stack
(b < s), i.e., it is not recorded in any abstract frame of the stack. This includes for instance global
variables and heap-allocated memory blocks.

Definition 3.2 (Top of the stack). A block b is at the top of the stack s , written is_stack_top(s,b),
if s can be written as (t :: s ′) and (b, _) ∈ fblocks(f ) for some f ∈ t .

Definition 3.3 (Visible locations). A location (b,o) is visible in the stack s , written visible(s,b,o),
if b is at the top of the stack s or if (b,o) is a public location. Formally,

visible(s,b,o) ≜ is_stack_top(s,b) ∨ public(s,b,o).

4 STACK-AWARE COMPCERT

We introduce Stack-Aware CompCert in this section. We first enrich CompCert’s memory model
with an abstract stack and adapt the semantics of the languages of CompCert to introduce stack
operations. With these extensions, we reprove all the compiler passes of CompCert by extending
the invariants for simulation proofs to include stack injections and invariants of stack consumption,
and showing how we maintain these invariants in the compilation passes.

4.1 Stack-Aware Memory Model

We define stack-aware memory statesMS as the extension of an ordinary CompCert memory state
m with an abstract stack s . The abstract stack of a memory statem is accessed as (stackm). We
modify the memory operations that update the memory contents (namely store and storebytes)
so that only visible locations may be written to. The new definition of the store operation is now as
follows, where the range_visible s b lo hi predicate asserts that all locations in the range [lo,hi)
are visible in stack s .

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 62. Publication date: January 2019.



62:12 Yuting Wang, Pierre Wilke, and Zhong Shao

Definition store' κ m b o v : option mem :=

if range_visible (stackm) b o (o + |κ |) then store κ m b o v else None.

We also enforce the stack access policy on external calls, asserting that the locations marked as
private are not modified by external calls.
We provide the following stack manipulation primitives:

push_stage:MS → MS; record :MS → F → ⌊MS⌋; pop_stage :MS → ⌊MS⌋

f f f

g

f

h g

f
push_stage recordm д recordm h pop_stage

Fig. 6. Effects of the stack manipulation primitives

Fig. 6 illustrates the effect of those primitive stack operations. The push_stage method adds a new
empty stage on top of the current stack. The record method prepends a frame onto the topmost
stage of the stack. It fails if there is no topmost stage, i.e. if the stack is empty, or if the size of the
stack after recording that frame would be greater than the predetermined bound on the stack size
MAX_STACK. As record is the only operation that can make the stack size increase, it is therefore an
invariant of the stack that its size is below MAX_STACK. The pop_stage method pops the top stage
(if any) from the stack.

4.2 Stack-Aware Semantics

The semantics of all CompCert languages are expressed as state transition systems, where states
follow a similar shape for all languages (except assembly): they are the sum of call states which
model the state of the program immediately before calling a function; return states which model a
state where a function has returned, just before restoring the execution of its caller; and regular

states which model any state not related to function calls.

Callstate State Returnstate

Call : push_stage

TailCall

Internal : record IReturn

External

Return : pop_stage

Fig. 7. State transitions with stack primitives

We focus on transitions that have an effect on the stack. Fig. 7 summarizes these transitions,
which have the same shape in every language. Transitions are represented with arrows, labeled
with the name of the transition and the stack primitive used in this rule, if any.

There are two possible steps from a regular state into a call state: either by performing a regular
call, in which case a new stage is pushed on top of the stack; or by performing a tail call, in which
case the stack is not modified. There is only one possible step from a regular state to a return state,
i.e. when a return instruction is found or the end of the function has been reached, and the stack is
not modified.

From a call state, two steps are possible. If the function being called is an external function, we
immediately step to a return state. If the function being called is an internal function, then we

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 62. Publication date: January 2019.



An Abstract Stack Based Approach to Verified Compositional Compilation . . . 62:13

allocate its stack blocks (using the memory alloc operation), and we record an abstract frame
(using the record operation) on the top of the stack, and we step into a regular state. The abstract
frame we record is computed from the stack blocks we just allocated. The fsize field of the abstract
frame represents the concrete size that this frame will use once the function is compiled to Mach
and assembly. This size cannot be computed solely based on the body of the considered function;
indeed depending on which optimizations it undergoes, this size may vary arbitrarily. Rather, by
following the idea in Carbonneaux et al. [2014], we parameterize the semantics of all languages
from C to Mach (excluded) with an oracle stackspace that gives, for every function identifier, the
amount of concrete stack space that will be needed. This is the size we use for the abstract frame
argument of record operation. In Mach and assembly, we do not need this oracle anymore because
the layout of the stack frame is completely fixed and the size to consider is exactly the size of the
stack block that is allocated at function entry. This oracle is instantiated as a byproduct of the
compiler: for a given C program, the compiler produces both an output assembly program and a
mapping stackspace from function identifiers to their stack consumption.
From a return state, the only possible step is to a regular state, after the execution of the

pop_stage primitive to remove the stack frame of the function being returned from. This step does
not depend on whether the function being returned from is internal or external.

4.3 The General Structure of the Proofs

Given the intermediate languages with stack-aware semantics, we reprove all the compiler passes
of CompCert following the conventional approach. To prove a forward or backward simulation, we
maintain an invariant between the states in the source and target programs, and show that the
matching execution steps in the source and target program preserve this invariant. This invariant
is usually parameterized by a memory injection. Because we augment the memory with an abstract
stack, we need to extend the memory injection to take into account injections between the abstract
stacks. Besides memory and stack injections, we also need to maintain another invariant to prove
preservation of stack consumption. The following sections discuss the design of stack injections
and stack consumption invariants and show how they are used to reprove the compiler passes of
CompCert, especially the optimization passes such as inlining and tailcall recognition.

4.4 Frame and Stack Injections

In order to prove the semantic preservation of each compiler pass,CompCert’s memorymodel comes
with a set of properties about the interactions of memory operations with memory transformations
such as memory injections. For example, the following property asserts that the store operation is
preserved by injection:

Lemma store_inject:

∀ j κ m1 b1 ofs v1 n1 m2 b2 δ v2,m1 ֒→j m2→ v1 ֒→j v2→ j b1 = ⌊b2,δ⌋ →

store κ m1 b1 ofs v1 = ⌊n1⌋ → ∃ n2, store κ m2 b2 (ofs + δ ) v2 = ⌊n2⌋ ∧ n1 ֒→j n2.

To prove the same property in our enhanced memory model with abstract stack, we need to
ensure that whenever the store in the source memorym1 succeeds, it also succeeds in the target
memorym2 at the corresponding location. In particular, we need to ensure that the stack access
policy is preserved under injection. To that end, we define an injection relation over abstract frames,
then we lift it to stages and stacks.

4.4.1 Stack Permission Refinement. A stack permission p1 is refined by a stack permission p2,
written p1 ⊑ p2, when p2 gives at least as much stack access as p1. The refinement relation is

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 62. Publication date: January 2019.



62:14 Yuting Wang, Pierre Wilke, and Zhong Shao

determined by the two following inference rules:

Private ⊑ Public p ⊑ p

4.4.2 Frame Injection. We define f1 ֒→j f2, the injection from the abstract frame f1 to f2 by the
injection function j. The injection holds if for every abstract block (b1, bi1) in f1 such that b1 is
injected by j into b2 at offset δ (j b1 = ⌊b2,δ⌋), there exists some block information bi2 such that:

• (b2, bi2) is in f2 and;
• for every offset o lower than |bi1 | the stack permission of o in bi1 is refined by the stack
permission of o + δ in bi2: ∀ o, 0 ≤ o < |bi1 | → P(bi1,o) ⊑ P(bi2,o + δ ).

Going back to Fig. 1, we can check that the different frames satisfy this frame injection relation. For
the first two transformations, the block permissions are always public, making the frame injection
trivial. For the injection from Cminor to Mach, we need to check that the stack permissions are
refined. In this example, this amounts to showing that:

∀ o, 0 ≤ o < |sb| → Public ⊑ ( if δ ≤ o + δ < δ + |sb| then Public else Private)

which in turns reduces to Public ⊑ Public, which holds trivially.

4.4.3 Stage Injection. Now we define the injection of stages t1 and t2, parameterized by a memory
injection j and a memory statem1, written t1 ֒→j t2. For readability, the memory is omitted from
the notation. If a stage t1 has no permission inm1 (nopermm1 t1), i.e. all blocks in all frames of that
stage have empty permissions inm1, then it injects into any stage t2. If f1 is the head of the source
stage, then there must exist a frame f2 which is the head of the target stage such that f1 ֒→j f2.
Note that we do not require anything about source frames in t1 in the second rule, because those
frames correspond to blocks de-allocated by historical tailcalls and have no permissions.

nopermm1 t1

t1 ֒→j t2

f1 ֒→j f2

f1::t1 ֒→j f2::t2

The intuition behind this definition of stage injection, in particular the first rule that enables to
inject a stage with no permissions into any stage, comes mostly from the function inlining and tail
call recognition optimizations, where such cases occur, as we will see in Sec. 4.6.

4.4.4 Stack Injection. For most of CompCert’s passes, the stack injection that we will consider is a
simple pairwise relation, as shown in the following rules.

[] ֒→j []

t1 ֒→j t2 s1 ֒→j s2

t1::s1 ֒→j t2::s2

That is mostly satisfactory because most passes preserve the call-return structure of programs.
However, for inlining and tailcall recognition, we need to generalize this notion to capture these
cases described in Fig. 3c and Fig. 3d. We parameterize the relation by a stack injection descriptor g,
which records the number of source stages that inject into each target stage, as a list of natural
numbers. For example, the stack injection descriptor for the situation depicted in Fig. 3b is [1; 1],
whereas the stack injection descriptor for Fig. 3c and Fig. 3d is [2].

The stack injection between stacks s1 and s2 parameterized by the memory injection j and the
stack injection descriptor д, written s1 ֒→

д
j s2, is defined inductively as follows (where ||l || gives the

length of the list l ):

[] ֒→
[]
j []

||
−→
t1 || = n 0 < n ∀ t1 ∈

−→
t1 , t1 ֒→j t2 s1 ֒→

д
j s2

−→
t1 ++ s1 ֒→

n::д
j t2 :: s2

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 62. Publication date: January 2019.



An Abstract Stack Based Approach to Verified Compositional Compilation . . . 62:15

The inductive rule asserts that for every target stage t2, there is a non-empty list of source stages
−→
t1 , all of which inject into t2.

4.4.5 Preservation of Memory Operations. We can now reprove the preservation of store opera-
tions under injections, i.e. the store_inject theorem. This follows immediately from the preserva-
tion of the stack access policy under injection, shown in the following lemma.

Lemma 4.1 (Preservation of the stack access policy). Given two stacks s1 and s2 in injection

by the memory injection j and the stack injection descriptor д, for any blocks b1 and b2 and offset δ

such that j(b1) = ⌊b2,δ⌋, for every location (b1,o) visible in s1, location (b2,o + δ ) is visible in s2.

Proof. The proof of this lemma follows immediately from the preservation of the łstack-topž
property and the preservation of public locations, which are omitted here. □

As a result, we recover the preservation of store operations by memory injections, as shown in
the lemma store_inject presented at the beginning of this section.

4.5 Subtle Compilation Scenarios for Optimization Passes

For most passes of CompCert, the stack operations in the source exactly match the same stack
operations in the target and the stack injection and the invariant of stack consumption are therefore
trivially maintained. However, in the tailcall recognition and function inlining optimizations,
maintaining these invariants is a non-trivial task. In order to better understand this point, we
show in Fig. 8 four subtle scenarios that happen in the tailcall recognition and function inlining
optimizations. For each of these scenarios, we show a simple snippet of code before and after the
transformation, together with the sequence of stack operations that each program executes.
The first scenario (Fig. 8a) corresponds to the case of an inlined function call: a function call to

g is replaced by the code of g. There is no more function call in the target to match the function
call and the associated stack operations in the source. The second scenario (Fig. 8b) corresponds to
the case of a tail call inside the body of an inlined function which is transformed into a regular
call: once g is inlined into f, the call to g is no longer in tailcall position, and needs to be turned
into a regular call, hence introducing a push_stage operation in the target. The third scenario
(Fig. 8c) corresponds to the inlining of a tail call: in that case a record operation in the source has
no matching equivalent in the target. Finally, the fourth scenario (Fig. 8d) corresponds to the tail
call recognition pass where a regular function call is transformed into a tail call: the push_stage
and pop_stage operations corresponding to function g in the source are not matched in the target.
However the pop_stage for f does match in both programs. Each of these scenarios consists of
a sequence of stack injections, together with the name of the stack operations performed in the
source and target programs. Frames with a gray background have no permissions, as required by
tailcall recognition optimization as discussed in Sec. 2.4.

4.6 Preservation of Stack Injection under Stack Operations

We now show how the stack injection is preserved throughout the executions of related programs.
The lemmas that show the preservation of stack injections across stack operations are shown in
Fig. 9. Most compiler passes maintain the same stack structure at every point in the execution of
the source and target programs. For these passes, the stack injection descriptor is a list of 1s, and
every stack operation (push_stage, record, pop_stage) in the source program has a counterpart
in the target program. We use PushStageInject at the call site, RecordInject at function entry and
PopStageInject at function exit to maintain the stack injection.
We also need versions of these lemmas where the stack operations happen only in the source

program. Rule PushStageInjectLeft allows a push_stage operation to bematchedwith no operation

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 62. Publication date: January 2019.



62:16 Yuting Wang, Pierre Wilke, and Zhong Shao

f f

push_stage / -

f f

record / -

f

g

f

pop_stage / -

f f

void g(){

G;

}

void f(){

F;

g();

}

Before inlining

void g(){

G;

}

void f(){

F;

G;

}

After inlining

(a) Function inlining

f

g

f

- / push_stage

f

g

f

record / record

f

h g

f

h

pop_stage / pop_stage

f f

void g(){

tail h();

}

void f(){

g();

F;

}

Before untailcall

void g(){

tail h();

}

void f(){

h();

F;

}

After untailcall

(b) Untailcall

f f

record / -

g f f

pop_stage / pop_stage

void g(){

G;

}

void f(){

F;

tail g();

}

Before inlining

void g(){

G;

}

void f(){

F;

G;

}

After inlining

(c) Tailcall inlining

f f

push_stage / -

f f

record / record

f

g

g f

pop_stage / -

f g f

pop_stage / pop_stage

void f(){

return g();

}

Before inlining

void f(){

tail g();

}

After inlining

(d) Tailcall recognition

Fig. 8. Evolution of the stack injection in different scenarios

in the target, and increases the number of source stages that inject into the top target stage. It is
used in the scenarios in Fig. 8a and Fig. 8d. Rule RecordInjectLeft allows to record a frame only in
the source stack, provided that the frame to be recorded injects into the topmost target stage. It is
used in the scenarios in Fig. 8a and Fig. 8c. Rule PopStageInjectLeft allows to pop a stage only from
the source, provided that at least one stage remains in the source after the pop_stage operation. It
is used in the scenarios Fig. 8a and Fig. 8d.
Finally, the łUntailcallž scenario in Fig. 8b requires to match no operation in the source with a

push_stage operation in the target, because a tail call in the source (not generating any push_stage
operation) is transformed into a regular call in the target. Rule PushStageInjectRight achieves

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 62. Publication date: January 2019.



An Abstract Stack Based Approach to Verified Compositional Compilation . . . 62:17

PushStageInject

m1 ֒→
д
j m2

push_stagem1 ֒→
1::д
j push_stagem2

PushStageInjectRight

nopermm1 (hd(stackm1)) m1 ֒→
(n+2)::д
j m2

m1 ֒→
1::(n+1)::д
j push_stagem2

RecordInject

m1 ֒→
д
j m2 f1 ֒→j f2

recordm1 f1 ֒→
д
j recordm2 f2

RecordInjectLeft

m1 ֒→
д
j m2 [f1] ֒→j hd(stackm2)

recordm1 f1 ֒→
д
j m2

PopStageInject

m1 ֒→
1::д
j m2

pop_stagem1 ֒→
д
j pop_stagem2

PopStageInjectLeft

m1 ֒→
(n+2)::д
j m2

pop_stagem1 ֒→
(n+1)::д
j m2

PushStageInjectLeft

m1 ֒→
n::д
j m2

push_stagem1 ֒→
(n+1)::д
j m2

Fig. 9. Preservation of stack operations

this by requiring: 1) that at least two source stages inject into the topmost target stage; 2) that the
topmost source stage has no permissions (in the memory model). We can split the topmost group
of stages into two groups: one with only the topmost stage, that will inject into the newly pushed
target stage thanks to the absence of permissions in that stage; the rest of the stages inject into the
second-to-top target stage, just like before.

4.7 Stack Consumption Invariant

Most passes of CompCert preserve the stack structure. For those passes, the stack consumption
invariant is represented as the proposition s1 ≥д s2 inductively defined by the following rules,
where s1 and s2 are respectively the source and target abstract stacks and д is a stack injection
descriptor.

|t1 | = |t2 | s1 ≥д s2

(t1 :: s1) ≥(1::д) (t2 :: s2) [] ≥[] []

The tailcall recognition and inlining optimization passes change the structure of the stack. For
tailcall, we define the following rules to capture the invariant of stack consumption.

||
−→
t1 || = n n > 0 ∃t1 ∈

−→
t1 , |t1 | = |t2 | s1 ≥

tc
д s2

(
−→
t1 ++ s1) ≥

tc
(n::д) (t2 :: s2)

[] ≥tc[] []

The inductive case of ≥tc captures the fact that tailcall optimization may collapse a list of stages
−→
t1

allocated by a sequence of regular calls into a single stage t2 allocated by a sequence of tailcalls. It

requires that the size of some stage t1 in
−→
t1 (more specifically, t1 is the stage with the maximum

size in
−→
t1 ) is equal to the size of the stage t2. To see how this invariant is used to prove preservation

of stack consumption for tailcall optimizations, consider the situation after the record operation in

Fig. 8d as an example. At that point,
−→
t1 = [[д], [f ]] and the two stages [f ] and [д] inject into the

single stage t2 = [д, f ]. Assume the frame size of f (| f |) is greater than that of д (|д |), then we pick
t1 = [f ] and get |t1 | = |t2 | = | f |.

For inlining, we define the following rules:

||
−→
t1 || = n n > 0

−→
t1 = t ′1 ++ [t] |t | = |t2 | s1 ≥

il
д s2

(
−→
t1 ++ s1) ≥

il
(n::д) (t2 :: s2) [] ≥il[] []

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 62. Publication date: January 2019.



62:18 Yuting Wang, Pierre Wilke, and Zhong Shao

Again, the inductive case of ≥il captures the fact that inlining may inject a list of stages
−→
t1 into a

single stage t2. It requires that the last stage in
−→
t1 which is allocated at the starting point of inlining

must have a size equal to the size of t2. To see how this invariant is used to prove preservation of
stack consumption for inlining, consider the situation after the record operation in Fig. 8a as an

example. At this point,
−→
t1 = [[д], [f ]]. Both [д] and [f ] inject into t2 = [f ]. Note that the starting

point of inlining in the source is f . Thus we have t = [f ] = t2 and |t | = |t2 |.
It is important to emphasize that the size of the frame for each function is the size of the

concrete stack frame at machine code level (given by an oracle whose purpose and instantiation
have been described in Sec. 4.2). They are therefore the same throughout the compilation passes.
For the example of function inlining, it might seem counter-intuitive at first sight that the stack
consumption can be preserved, when one knows that there might be more local variables in the
function body after inlining. However, this is irrelevant because the frame sizes we consider in
every language are fixed to the sizes of the concrete frames, including the languages before the
inlining phase.

The three propositions above imply that the size of the target stack is smaller than or equal to the
size of the source stack. In the regular case, where each target stage has exactly one corresponding
source stage, this is trivial as the stacks have the same size. In the two other cases (tailcall and
inlining), for each target stage, there is one source stage that is larger or equal, hence each group of
source stages is larger than or equal to the corresponding target stage, hence the size of the source
stack is larger than or equal to the size of the target stack.

4.8 Preservation of Stack Consumption under Stack Operations

For 2 out of the 4 scenarios in Fig. 8 (Fig. 8a and Fig. 8b), the size invariant could be preserved even
if we did not store the tailcalled inactive frames in our abstract stack. In these cases indeed, all
the frames present in the target stack are also in the source stack, which may contain even more.
Therefore, the size of the source stack is necessarily larger than or equal to the size of the target
stack.

For tailcall inlining (Fig. 8c), we actually need to maintain the inactive frame for f in the source
so that we can establish that the size of the source stack after the record operation (max(g, f)) is
not smaller than the size of the target stack (f). For tailcall recognition (Fig. 8d), we cannot preserve
the size invariant (this would imply f ≥ max(g, f)) after the pop_stage operation on the source.
However, we know that at this point in the source program, the next instruction is going to be a
return instruction, resulting in a pop_stage which will be matched in the target program with
another pop_stage, after which the size invariant will be recovered. Note that we can have these
intermediate steps where the size invariant temporarily does not hold because we only use this
invariant to prove that record operations in the target succeed.

4.9 The Final Theorem of Stack-Aware CompCert

Using the devices presented above, we reprove the correctness of the CompCert compiler. We
obtain the same theorem as CompCert, i.e. a backward simulation between the C program and its
compiled assembly version. The main difference with CompCert’s theorem is that the compiler
produces an oracle stackspace that is fed into the semantics of C.

Theorem 4.2 (Stack-Aware CompCert’s semantic preservation). For every C program p

without undefined behavior, if CompCert generates an assembly program tp and an oracle stackspace,

then every behavior of tp in the assembly semantics is an improvement over some behavior of p in the

C semantics parameterized with oracle stackspace.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 62. Publication date: January 2019.



An Abstract Stack Based Approach to Verified Compositional Compilation . . . 62:19

All in all, the changes we made to CompCert to obtain Stack-Aware CompCert amount to
about 21 thousand lines of Coq code. This includes our formalism of stack abstraction in the
memory model (implementation and proofs related to the stack operations), modifications to the
semantics of each intermediate language to include stack operations at function call and return, plus
modifications to each compiler pass’ correctness theorem, where proofs about stack permissions
and stack consumption had to be added.

5 COMPCERTMC: GENERATION OF MACHINE CODE IN COMPCERT

In this section, we describe CompCertMC, an extension of Stack-Aware CompCert that compiles
towards machine code. By exploiting our abstract stack, we are able to merge the list of stack
frames into a single finite stack, and to eventually generate low-level code close to machine code.
We also describe the implementation of verified separate compilation by generalizing the syntactic
linking to the new languages introduced by CompCertMC.

5.1 Overview of CompCertMC

The structure of CompCertMC is depicted in Fig. 10. CompCertMC is Stack-Aware CompCert with
an extended compilation chain to machine code. Starting from CompCert assembly, programs are
compiled into lower-level intermediate code, going through the Single-Stack assembly language
(SSAsm), the real assembly language (RealAsm), the flat assembly language (FlatAsm) and machine-
code like language (MC). In SSAsm, the stack is represented as a single memory block, i.e. the list
of stack blocks is merged into a single stack block of finite size. In RealAsm, the responsibility for
dealing with the return address is shifted from the callee (in CompCert) to the caller (as in conven-
tional x86 assembly). Moreover, pseudo-instructions Pallocframe and Pfreeframe are compiled
into actual assembly instructions. The compiler pass responsible for this is called PseudoInstr.
In FlatAsm, the functions and global variables are merged into disjoint flat memory spaces that
we call segments (similar to sections in ELF files). The next phase (Id Resolution) resolves the
references to code labels to concrete addresses, resulting in programs written in the language MC.
The MC programs closely mirror the actual machine code (like the ELF object files). We then use
an instruction encoder provided by formal machine models (e.g., the RockSalt x86 [Morrisett et al.
2012; Tan and Morrisett 2018]) to generate the actual machine code (e.g., ELF files). The last step is
not verified (as indicated by the dashed line in Fig. 10) as it would require a formal model of ELF
formats; we left it for future work.

This sequence of additional languages depends on the target architecture and would need to be
adapted for other architectures. For this paper, we only target x86 as a proof of concept. We believe
our approach is generally applicable to other architectures like ARM, PowerPC or RISC-V and do
not foresee any immediate problem in porting these addition compiler passes to them.
Like the original CompCert, CompCertMC supports verified separate compilation. We have

generalized the notion of syntactic linking to the new intermediate languages and proved the

C Asm SSAsm RealAsm

FlatAsm MC Machine Code

Stack-Aware

CompCert

Stack

Merging

PseudoInstr

Elimination

FlatMemory Layout

Id Resolution Instr Encoding

Fig. 10. CompCertMC

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 62. Publication date: January 2019.



62:20 Yuting Wang, Pierre Wilke, and Zhong Shao

Pallocframe fi ora olink :=

sp ← alloc 0 (fsize fi);

[sp + olink] ← RSP;

[sp + ora] ← RA;

RAX ← RSP;

RSP ← sp.

Pfreeframe sz ora olink :=

ra ← [RSP + ora];

Vptr b o ← RSP;

RSP ← [RSP + olink];

RA ← ra;

free b 0 sz.

(a) CompCert Asm

Pallocframe fi ora :=

sp ← alloc 0 (fsize fi);

[sp + ora] ← RA;

record (sp,fi);

RAX ← RSP;

RSP ← sp.

Pfreeframe sz ora :=

ra ← [RSP + ora];

Vptr b o ← RSP;

RSP ← parent_sp;

RA ← ra;

free b 0 sz;

pop_stage.

(b) Stack-Aware CompCert Asm

Pallocframe fi o :=

sp ← RSP - fsize fi;

[sp + ora] ← RA;

RAX ← RSP;

RSP ← sp.

Pfreeframe sz ora :=

ra ← [RSP + ora];

RSP ← RSP + sz;

RA ← ra.

(c) Single-Stack Asm

Fig. 11. Semantics of Pallocframe and Pfreeframe

commutative property between the new transformations and syntactic linking. Verified separate
compilation easily follows from these generalizations.

In the rest of this section, we discuss the implementation and verification of the first three passes
of the extension to Stack-Aware CompCert which contain most of the technical novelties presented
above. We elide a discussion of the final correctness theorem of CompCertMC, which is similar to
that of Stack-Aware CompCert.

5.2 Compilation to the Single-Stack Assembly Language

The Stack Merging phase is not a program transformation but a semantic reinterpretation: the
source and target programs are the same; the semantics of SSAsm differs from the semantics of
CompCert assembly for the instructions that manipulate the stack, so that they operate over a
single stack block rather than separate blocks for each function. Our goal is to show that the SSAsm
semantics refine the Stack-Aware CompCert assembly semantics for any program. In the rest of
this section, we explain the differences between the semantics of the original CompCert assembly,
Stack-Aware CompCert assembly and SSAsm and discuss the key ideas of the refinement proof.

CompCert’s assembly semantics. CompCert assembly programs are lists of instructions that oper-
ate over a set of registers and a memory state. Instructions include common assembly instructions
together with pseudo-instructions Pallocframe and Pfreeframe that are called at function entry
and exit, respectively. The semantics of the Pallocframe instruction, shown in Fig. 11a, is to
allocate a new block for the stack frame of the current function, save the stack pointer and the
return address in this new block, and update RSP. The semantics of Pfreeframe is symmetric: it
recovers the return address and parent’s stack pointer, and frees the stack block. The memory
state of assembly programs is still a collection of blocks, rather than a flat memory space. Because
of this abstract view of the memory, it is needed to store a pointer to the frame of the caller
(at offset olink in the function’s frame), in order to access the function arguments for example,
whereas in traditional assembly this is achieved through pointer arithmetic. Note also that it is the
responsibility of the called function to write the return address (stored by the call instruction in
the pseudo-register RA) at offset ora in the stack frame.

Stack-Aware CompCert’s assembly semantics.With our stack-aware memory model, we do not
need to store a link to the caller’s frame anymore: this pointer can be retrieved in the abstract stack,

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 62. Publication date: January 2019.



An Abstract Stack Based Approach to Verified Compositional Compilation . . . 62:21

through the parent_sp operation, which returns the block associated to the second-to-top stage in
the abstract stack. We replace CompCert’s assembly semantics with a new assembly semantics that
now includes stack operations (record and pop_stage). The semantics of the pseudo-instructions
Pallocframe and Pfreeframe in this semantics is given in Fig. 11b.

Single-Stack assembly semantics. We give in Fig. 11c an alternative semantics of CompCert
assembly, called Single-Stack assembly (SSAsm), where the Pallocframe pseudo-instruction no
longer allocates a block but simply subtracts an offset from the stack pointer register RSP. Similarly,
the parent_sp operation in the semantics of Pfreeframe is transformed into a simple addition to
RSP. At this point, we can also get rid of the abstract-stack related operations, which do not have a
counterpart in actual assembly code.

Correctness of the single-stack semantics. The correctness of this semantics reinterpretation
of assembly programs in the single-stack semantics is stated as a forward simulation. That is,
every behavior of an assembly program p in Stack-Aware CompCert assembly is also a behavior
of p in SSAsm. This proof is based on a memory injection, which maps all the stack blocks of
Stack-Aware CompCert assembly functions into a single pre-allocated stack block for SSAsm. To
show that if any allocation of stack frame in the source program succeeds then so does it in
the target program, it makes use of the fact that the source program with defined semantics
never overflows the stack, which is ensured by our stack-aware semantics. A key difference with
other passes in CompCert that are based on memory injections is that several source locations
may inject to the same target locations at different times during the execution of the program.

b1

b2

b3

0

RSP

b1

b2

b3

b4
RSP

Fig. 12. Single-Stack invariants

We maintain the invariant that the RSP register always
points to the top of the abstract stack, such that no source
block injects in the target stack block below RSP. This
property is fundamental so that we can establish a new
injection when a frame is pushed. Fig. 12 illustrates the
situation. The hatched regions are those where no source
block with permissions injects. Initially, we have three
stack blocks b1, b2 and b3 in the stack, and nothing injects
below the RSP pointer. Because of that, we know we can
record a new block b4 onto the stack, and moves the RSP
pointer so that nothing injects after it.

5.3 Elimination of Pseudo Instructions

After we merge the stack blocks into a unique stack block, there are still some discrepancies in
our assembly language. First, the writing of the return address on the stack is performed by the
callee, as part of the Pallocframe instruction, whereas in conventional x86 assembly this is a
side-effect of the call instruction. Second, we still have these pseudo-instructions (Pallocframe
and Pfreeframe), whereas we should only have actual assembly instructions that operate on the
stack pointer RSP.
We design a new assembly language, RealAsm, where the semantics of Pallocframe (resp.

Pfreeframe) only perform pointer arithmetic on RSP, and the space reserved (resp. freed) excludes
space for the return address; and the semantics of call (resp. ret) pushes (resp. pops) the return
address on the stack.

We first prove a refinement between any program p in SSAsm and the same program in RealAsm.
This is stated as a backward simulation, specifically we show that provided that the source program
is safe, then for every target step, there is a corresponding source step. We need to identify the
possible sequences of states transitions that involve call, ret, Pallocframe and Pfreeframe. Such

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 62. Publication date: January 2019.



62:22 Yuting Wang, Pierre Wilke, and Zhong Shao

sequences are 1) call followed by a Pallocframe instruction (internal function call); 2) call fol-
lowed by an external function (external function call); 3) Pfreeframe followed by a ret instruction
(regular function return); 4) Pfreeframe followed by a jmp instruction (tailcall). In the last case,
the jmp is either to an internal function (in which case the next instruction will be a Pallocframe)
or an external function, but not to an arbitrary instruction. Fig. 13 illustrates the simplest case of
internal function calls.

•

s1

•

s ′1

•

s2

•

s ′2

•

s3

•

s ′3

SSAsm

RealAsm

call

RA← addr

Pallocframe

RSP← RSP- sz; store RA

call

RSP← RSP- 8; store RA

Pallocframe

RSP← RSP- (sz - 8)

Fig. 13. Backward simulation between internal function calls in SSAsm and RealAsm

The simulation relation used for this proof has different cases depending on the nature of the
next instruction. If the next instruction is not an intermediate instruction (one that appears only
in the middle of the sequences of transitions we identified earlier, i.e. neither Pallocframe nor
ret nor jmp), then the relation is the extensional equality of the states. If the next instruction
is Pallocframe however, the relation (between s2 and s ′2) records that the states differ only for
the shift of RSP and the memory store for the return address in RealAsm. After the execution
of Pallocframe, we recover the extensional equality between states s3 and s

′
3. Similar cases are

defined for the other transition sequences described earlier.
Then, we design a simple transformation, PseudoInstr, that transforms pseudo-instructions

Pallocframe and Pfreeframe into pointer arithmetic (sub and add) on RSP that reflects exactly
their RealAsm semantics. The correctness proof of this transformation is stated as a forward sim-
ulation, and is quite straightforward. This forward simulation is transformed into a backward
simulation using standard tools in CompCert and concatenated with the previous backward simula-
tion to obtain a backward simulation between the SSAsm semantics of p and the RealAsm semantics
of p with pseudo-instructions eliminated.

5.4 Compilation to Flat Memory Spaces

With a source language close to real assembly, the goal of the FlatMemory Layout pass is to layout
the data and code into continuous segments. We first introduce its target language FlatAsm, then
the compilation pass and finally the correctness proof of this pass.

An assembly language with flat memory spaces. The defining feature of FlatAsm is that data and
functions are stored in continuous data or code segments, instead of separate memory blocks like
in the previous assembly languages. The syntax of FlatAsm is exactly the same as RealAsm. A
FlatAsm program contains the following components:

• A list of segments whose elements are represented by a record data type containing the id
and size of the segment. For now, a program only has two segments. One holds code and the
other holds data. We use segment labels to identify locations in segments, which are pairs of
segment identifiers and offsets into the segments.
• A list of global definitions with information of their locations in corresponding segments.
• A mapping from global identifiers to segment labels, denoted by gmap. It is used to locate the
positions of global definitions in the code or data segment.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 62. Publication date: January 2019.



An Abstract Stack Based Approach to Verified Compositional Compilation . . . 62:23

• A mapping from pairs of function identifiers and labels to segment labels, denoted by lmap.
It is used to locate the positions of labels in functions in the code segment.

When a FlatAsm program is initialized, for each segment we allocate a memory block of its size.
The memory block for the data segment is initialized with the initial values of global data objects.
The memory block for the code segment is assigned appropriate permissions. Segment labels are
then interpreted as memory addresses or pointers at runtime. The program counter increases using
the size information of instructions (provided by an oracle later instantiated by a binary encoder of
instructions) in sequential execution and is assigned appropriate addresses in case of function call
or branching by consulting gmap or lmap. The references to data are interpreted into pointers by
consulting gmap at runtime.

The compilation of RealAsm to FlatAsm. The compilation pass translates a RealAsm program
into a FlatAsm program by calculating gmap that maps the internal source functions into the code
segment and the global variables into the data segment, lmap that maps labels in internal source
functions into the code segment, and the sizes of the code and data segments. The calculation is
done by scanning the list of global definitions in the source program in sequence and concatenating
internal data and function definitions.

Correctness of the translation. The proof follows a conventional pattern for establishing forward
simulations in CompCert. The key steps include defining an invariant that asserts lmap and gmap

agree with the memory injection from the source to target program and showing this invariant is
maintained by lock-step execution.
Because data and functions are collapsed into continuous segments, we need a new notion of

syntactic linking for FlatAsm programs for proving separate compilation. To syntactically link
modules M1, . . . ,Mn in FlatAsm, besides merging the global definitions as described in Sec. 2.3,
we also need to perform the following relocation process:

• Data segments inM1, . . . ,Mn are merged into a single data segment. A łrepositioningž table
is created which records the starting offsets of global variables in Mi in the resulting data
segment. The same process is applied for merging the code segments.
• The information of locations for global definitions are updated using the repositioning tables
for data and code segments.
• The gmaps (lmaps) inM1, . . . ,Mn are merged into a single gmap (lmap) and their values are
updated using the repositioning tables.

Then, it is straightforward to show that syntactic linking commutes with the translation from
RealAsm to FlatAsm. From this we derive the correctness of separate compilation.

6 STACK-AWARE COMPCERTX: CONTEXTUAL COMPILATION IN COMPCERT

This section introduces Stack-Aware CompCertX, an improved version of CompCertX [Gu et al.
2015] which is an extension of CompCert used in the context of the CertiKOS project, a formally
verified operating system kernel. The main difference between CompCertX and CompCert is that
it allows for some degree of compositional compilation that we call contextual compilation, because
it relates the executions of a source C module and its compiled assembly version in a generalized
context, instead of an empty context in the original CompCert compiler.
To generalize CompCert’s theorem to the setting of CompCertX, some assumptions must hold

on the memory regions of the context that the module under compilation may update. CompCertX
enforces these assumptions by disallowing modification to any stack data belonging to the context.
This results in an incomplete extension to CompCert which does not support compilation of
programs with stack-allocated data.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 62. Publication date: January 2019.



62:24 Yuting Wang, Pierre Wilke, and Zhong Shao

In this section, we remove the restriction on stack-allocated data by basing Stack-Aware Comp-
CertX on top of CompCertMC. We show that the assumptions on the stack can be stated in a
straightforward manner by exploiting the stack permissions provided by our abstract stack. In the
end, we get Stack-Aware CompCertX that supports contextual compilation and all the features of
the original CompCert.

6.1 Overview of CompCertX

CompCertX is a contextual compiler, that establishes the correctness of the compilation of a module
which may be executed by invoking an arbitrary function f in it from an arbitrary context, i.e. any
starting memory state, and returning a value of the type dictated by f’s signature. In particular, the
context can be obtained by the execution of a hand-written assembly program (not necessarily the
result of compiling a C function with CompCert), calling the function f.
The initial context must however satisfy some properties to account for the change in calling

conventions between the C version of f and its compiled assembly version. Indeed, the former
receives its arguments as a list of values, whereas the latter fetches them from registers and stack
memory, at locations dictated by f’s signature. Hence, for the correctness of the compilation of
f with arguments args, a necessary condition on the initial memory is that it contains the values
args at the appropriate stack locations.
The final theorem of CompCertX is stated as a simulation argument.

Theorem 6.1. Let p be a C program, tp be the result of compiling p into CompCert assembly, and

f be a function identifier with signature sд called with arguments args. Let init_rs be a register

state and init_m a memory state such that the arguments args are encoded in init_rs and init_m

appropriately. Then the execution of f in p starting from initial memory init_m is refined by the

execution of f in tp starting from initial memory init_m and initial register state init_rs.

init_m mC

(init_m, init_rs) (mAsm , rs)

p(f )(args)

tp(f )
j

In particular, the resulting memory states of both executions,mc andmAsm are related by a memory

injection j, introduced by the compilation passes.

Based on this generalized compiler, Gu et al. [2015] build a library for certified abstraction layers
which is used as a foundation for composing large systems out of small independent components.
The compositionality achieved is more flexible thanwhat is attainable by separate compilation [Kang
et al. 2016] since it is possible to mix programs written in different languages.

6.2 Subtleties in the Proofs of CompCertX

A major issue that has to be dealt with in the correctness proof of CompCertX is that the arguments
of the considered function call are duplicated: at the C level, they appear both as a list of values args
and encoded in the memory init_m. As a result, the consistency between those two representations
of the arguments has to be maintained.

In CompCert, there are three ways arguments are passed to function calls. In the front-end and
the few first languages of the back-end (from C to RTL which is an intermediate language with
infinitely many pseudo-registers), arguments as passed as a list of values. Then, in LTL (which
represents programs as control flow graphs operating on finitely many physical registers) and
Linear (which is like LTL, but with control flow graphs replaced by a linear list of instructions and

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 62. Publication date: January 2019.



An Abstract Stack Based Approach to Verified Compositional Compilation . . . 62:25

explicit branchings), arguments are fetched from a location set, which associates locations (abstract
stack slots and registers) to values. Finally, in Mach and assembly, arguments are fetched directly
from the stack (in memory) and registers.

Let us focus in particular on the Stacking compiler pass in CompCertX, from the Linear language
to the Mach language. Because of the duplication of arguments, the arguments are both in the
memory and in the location set in Linear, while the arguments are only in memory in Mach. For this
compiler pass to be proved correct, the consistency of the two copies of the arguments in Linear
must be maintained. To that end, modification to the memory region holding duplicated arguments
must be forbidden, as it would induce an inconsistency between the memory and the location
set, hence break the preservation of semantics by compilation. Fig. 14 illustrates the duplication
of the arguments and shows that both the location set and the memory in Linear inject into the
memory in Mach, hence the need for the consistency between the Linear memory and location set.

R(AX)

R(BX)

S (Outgoing, ofs)

S (Local, ofs)

init_ls

init_m

RAX

RBX

rs

init_m

Fig. 14. Injection for the Stacking pass

In the past, there have been several strategies
used to overcome this situation (see Gu et al. [2014]
for details). For instance, one solution was to tag
the blocks to distinguish global blocks from stack
blocks, and forbid writing to stack blocks. This ef-
fectively enforces the desired consistency invariant
on programs. However, this totally prevents writing
to stack blocks, including stack-allocated data that
we might pass pointers to. In another more involved
solution, this consistency was maintained by adding
a hypothesis to the final theorem, stating that the

semantics of the source program was defined, even when the permissions of the arguments region
were removed. This led to complex reasoning to relate two executions of the source program (one
with the permissions for the arguments, and the other without) with one execution of the target.

6.3 Enforcing Assumptions for CompCertX Using the Abstract Stack

Using our stack-aware memory model, we prevent programs from modifying the stack of their
caller, except in their public locations (e.g. stack-allocated data), in a more elegant way. This is true
under the assumption that the initial memory init_m has its abstract stack set up in such a way that
the block that contains the initial caller’s stack frame has private permissions for its private regions,
in particular the arguments, as per the following definition of initial_caller_protected, where
init_sg is the signature of the function called by the initial caller, from which we compute the
offsets that contain the arguments (arg_locs).

initial_caller_protected(m, init_sg) ≜
∃ init_sp bi, hd(stackm) = ([init_sp], bi) :: _ ∧

∀ o ∈ arg_locs(init_sg), P(bi,o) = Private

This solution is more elegant than the previous solutions, and ensures the preservation of more
than just the arguments section: the callee-save registers, the spilled locations, the return address
can also be preserved across the execution of the C function, if we strengthen the definition of
initial_caller_protected. This is much stronger than the previous statement and is a milestone
towards compositional compilation. Indeed, when composing different modules together, we need
to ensure that the execution of the called module does not invalidate the private regions of its
caller e.g. by overwriting its return address. As a sanity check, the initial_caller_protected
predicate holds for contexts generated as the result of compiling programs with CompCert.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 62. Publication date: January 2019.



62:26 Yuting Wang, Pierre Wilke, and Zhong Shao

7 RELATED WORK

Verified compilation is not a new research topic. In the area of verified compilation of functional
programs, compilation does not involve complicated manipulations of runtime stack like that of
imperative programs (e.g. CakeML [Kumar et al. 2014]). As a result, the difficulties discussed in
this paper do not show up. We compare our work with related work on verified compilation of
imperative programs. Most notable related work is about extending CompCert to support merging
of stack blocks, machine code generation or compositional compilation. We perform the comparison
both quantitatively based on the development time (person-months) and the lines of codes for
each extension, and qualitatively based on the features we support as discussed in the introduction
(excluding stack-awareness which is a unique feature of our work), i.e., what language is targeted,
the completeness of the implementation, and the degree of compositionality achieved, if any.

Table 1. Comparison with the related projects

Target Completeness Compositionality Time LOC

CompCert(3.0.1) CompCert Asm complete separate - 135k

SACC CompCert Asm complete separate 7.5 +21k

CCMC MC complete separate 2 +19k

SACCX MC complete contextual 1 +8k

QCC SingleStack Asm w.o. some opts. N/A - 100k

CCC CompCert Asm w.o. some opts. general 10 200k

SCC CompCert Asm complete separate 2 +3k

CCX CompCert Asm no s.a. data contextual - +8k

CC-TSO x86-TSO w.o. some opts. concurrency 45 85k

CompCertS CompCert Asm w.o. some opts. N/A 25 220k

Table 1 summarizes the result of the comparisons. The first column lists the names of the
extensions of CompCert that we consider. The first one is the original CompCert. The following
three are Stack-Aware CompCert (SACC), CompCertMC (CCMC) and Stack-Aware CompCertX
(SACCX) described in this paper. The rest are existing projects that we describe below. In column 3,
łcompletež means the compiler implements the full compilation chain of CompCert and supports
all the features in the vanilla CompCert such as stack-allocated data; łw.o. some optsž means some
optimization passes of CompCert are not implemented; and łno s.a. dataž means the compiler does
not support programs with stack-allocated data. The last two columns contains the comparison
of development time (in person-months) and lines of Coq code. The number of lines is the result
of running coqwc on the associated developments and adding the columns łspecž and łproofž. A
number following the + sign indicates the change in LOC between that extension and the version
of CompCert it is based upon. Specifically, SACC is based upon CompCert(v3.0.1); CCMC is based
upon SACC; and SACCX further extends CCMC. SCC and CCX are based on CompCert(v2.4) and
CompCert(v2.3), respectively.

Quantitative CompCert (QCC). Carbonneaux et al. [2014] design an analysis of stack bounds and
use their results to merge stack blocks into a single stack. Their key ideas are the following: 1) they
augment the event traces with call and return events, which will be used to calculate the stack
consumption of a given trace; 2) they compute an oracle as a byproduct of the compiler, which
associates every function identifier with its stack usage. They prove that if the stack consumption
for all traces at the source level does not exceed the size of the actual stack, the source program
can be correctly compiled into an assembly program with a finite stack.
We have borrowed from their work the idea of using an oracle generated as a byproduct of

compilation to determine the sizes of concrete frames. The main differences between our work and

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 62. Publication date: January 2019.



An Abstract Stack Based Approach to Verified Compositional Compilation . . . 62:27

theirs are listed as follows. First, instead of using a linear event trace to calculate stack consumption,
we divide the linear trace into łstagesž each of which is a list of frames allocated by a sequence of
tailcalls. With this more structured representation of historical events, we are able to maintain the
invariant and prove the preservation of stack consumption for optimization passes that change
the call and return events, such as tailcall and inlining optimizations. By contrast, they only prove
preservation of stack consumption for compilation passes that do not change the augmented event
traces. The extended version of their paper suggests new refinement relations for event traces that
would allow them to deal with tailcall recognition and function inlining. However, these relations
deviate from the conventional one used in CompCert, and it is not clear how feasible their suggested
approach is. As such, these optimizations are still not verified in Quantitative CompCert.
Second, our compiler correctness theorem is applicable in compositional compilation, whereas

their analysis of stack consumption requires knowledge of full event traces. Therefore, their stack
merging is possible only for compilation of full programs.

Third, because they only deal with compiler passes that do not change the call and return events,
they are able to get an accurate bound of stack consumption at the source level. However, because
the tailcall optimization changes the call-return structure, the stack consumption we compute at
the source level may be an over-approximation. Consider the following example:

int sum(int n, int acc) {

if(n <= 0) return acc;

else return sum(n - 1, n + acc)

}

The tailcall optimization may change the recursive call to sum into a tailcall. Then, the stack
consumption at the source level is linear in n, while it is constant in the target program. One way to
solve this problem would be to parameterize the semantics of languages before tailcall optimization
with an oracle which predicts which function calls will be compiled into tailcalls, and compute a
tighter bound for source programs. The implementation of this idea is currently underway.

Last, our correctness theorem states that every behavior of the compiled program is an improve-
ment over a behavior of the source program provided the source program does not have undefined
behavior. In order to discharge this łdefined semanticsž hypothesis, we need to analyze the stack
usage of source programs. This is orthogonal to the work in this paper and left for future work.

Compositional CompCert (CCC). The state-of-the-art verified compositional compiler for C pro-
grams is Compositional CompCert [Stewart 2015; Stewart et al. 2015]. In CCC, source modules may
be written in any intermediate language whose semantics can be described in the framework of
interaction semantics. The compilation of heterogeneous modules is proved individually and the
results are combined to prove contextual equivalence between the full source and target programs
linked through interaction semantics. In order to formalize the non-interference properties of
memory operations across (heterogeneous) modules, Stewart et al. designed structured memory

injections, which generalize memory injections to keep track of the ownership of blocks by modules.
Although CCC has a very general notion of compositionality, several optimizations including

tailcall recognition and function inlining have not been ported and the target language is CompCert
assembly. It is unclear whether their work can be extended to support all optimizations; or to
support lower-level assembly languages. Last, although structured memory injections are a general
mechanism for describing invariants over memory states, they also incur a lot of complexity in
verification, as manifested by their Coq development.

In contrast, both CompCertMC and Stack-Aware CompCertX compile into a language that closely
mirrors the actual machine code. They both implement the full compilation chain of CompCert but
support a less general notion of compositionality.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 62. Publication date: January 2019.



62:28 Yuting Wang, Pierre Wilke, and Zhong Shao

Separate CompCert (SCC). Kang et al. [2016] have developed a lightweight approach to separate
compilation in CompCert. In their approach, all the source modules are written in C and are
simultaneously compiled down to CompCert assembly (with the exception that the compilation
paths for different modules can vary in the optimizations being applied). Their work has been
officially integrated into CompCert as verified separate compilation since version 2.7. As such,
support of verified separate compilation becomes a de facto requirement for any extension that
claims support of the full CompCert. All three compilers introduced in this paper support it. The
compositionality provided by Separate CompCert is weaker than Compositional CompCert: it
works only for homogeneous programs. On the other hand, the effort for developing SCC is also
significantly smaller.

CompCertX (CCX). CompCertX [Gu et al. 2015] extends CompCert to support the compilation of
abstraction layers for deep specifications. Like Stack-Aware CompCertX, it supports contextual
compilation. The biggest issue with CompCertX is that it does not support compilation of pro-
grams with stack-allocated data. Moreover, the non-interference property of memory operations is
formalized in an ad hoc way as discussed in Sec. 6.2. In contrast, all three compilers introduced
in this paper support stack-allocated data and enforce the non-interference property through the
uniform access policy provided by the abstract stack.

CompCertTSO (CC-TSO). CompCert-TSO [Sevcík et al. 2011, 2013] is an extension of CompCert
that compiles programs with concurrency based on the relaxed shared-memory model TSO. It is
designed to allow most of the proofs of the compiler passes to be done by threadwise simulation
arguments (although some passes still need to be proved on full programs). CompCertTSO targets
x86 machine code supporting TSO concurrency and with a finite memory. Optimizations that
are unsound under the TSO semantics are not implemented in CompCertTSO, such as common
subexpression elimination. The implementation also involves deep changes to CompCert.

CompCertS. CompCertS [Besson et al. 2017] is an extension of CompCert that aims to support
low-level manipulations such as bitwise operations on pointer values. This work also features a
finite memory space and also borrows from Quantitative CompCert the idea of parameterizing the
semantics with an oracle for the stack usage of functions. The main difference lies in the way that
stack memory is tracked. Our work relies on the abstract stack structure while CompCertS is more
ad hoc. Because we have an abstract stack, we are able to prove the function inlining and tailcall
recognition optimization, while CompCertS excludes these optimizations. Moreover, unlike the
present work, they only support whole programs and do not merge the stack blocks into a finite
stack block.

The Cerco C Compiler. Finally, we briefly discuss the Cerco (Certified Complexity) compiler [Ama-
dio et al. 2014] that is loosely based on CompCert and formally verified in the Matita proof
assistant [Asperti et al. 2011]. The Cerco compiler targets at 8-bit machine code for Intel 8051/8052
microprocessors. It takes a C source program as input and outputs an annotated version of it in
addition to generating object code. The annotations reflect the costs in time and space for compiled
instructions at the machine code level back to the source level, including the stack consumption at
function calls and returns. They are used to analyze and verify the time and space complexity of
generated machine code at the source level. In this sense, the approach taken by Cerco is similar
to QCC where the usage of annotations can be thought as a generalization of the oracle for stack
space. The front-end of Cerco is based on CompCert, while its backend is adapted from a course
project which does not perform any advanced optimization such as inlining or tailcall recognition.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 62. Publication date: January 2019.



An Abstract Stack Based Approach to Verified Compositional Compilation . . . 62:29

8 CONCLUSION

We proposed a lightweight approach to verified compositional compilation to machine code in
CompCert. By enriching CompCert’s memory model with an abstract stack that keeps track of stack
consumption and stack permissions, we developed Stack-Aware CompCert, a complete extension
of CompCert with a notion of finite stack supporting a uniform stack access policy. Based on Stack-
Aware CompCert, we developed CompCertMC, the first complete extension of CompCert that
compiles C programs into low-level code with flat memory spaces, and Stack-Aware CompCertX
which supports contextual compilation by exploiting the enrichment of the abstract stack with
stack permissions.

ACKNOWLEDGMENTS

We would like to thank anonymous referees for helpful feedbacks that improved this paper sig-
nificantly. This research is based on work supported in part by NSF grants 1521523, 1715154, and
1763399 and DARPA grant FA8750-15-C-0082. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or implied, of
DARPA or the U.S. Government.

REFERENCES

Roberto M. Amadio, Nicolas Ayache, Francois Bobot, Jaap P. Boender, Brian Campbell, Ilias Garnier, Antoine Madet, James

McKinna, Dominic P. Mulligan, Mauro Piccolo, Randy Pollack, Yann Régis-Gianas, Claudio Sacerdoti Coen, Ian Stark,

and Paolo Tranquilli. 2014. Certified Complexity (CerCo). In Foundational and Practical Aspects of Resource Analysis, Ugo

Dal Lago and Ricardo Peña (Eds.). Springer International Publishing, Cham, 1ś18.

Andrew Appel. 2011. Verified Software Toolchain. In Proc. 20th European Symposium on Programming (ESOP’11), Gilles

Barthe (Ed.). LNCS, Vol. 6602. Springer, Saarbrucken, Germany, 1ś17.

Andrea Asperti, Wilmer Ricciotti, Claudio Sacerdoti Coen, and Enrico Tassi. 2011. The Matita Interactive Theorem Prover.

In Proc. 23rd International Conference on Automated Deduction (CADE’11). Springer-Verlag, Berlin, Heidelberg, 64ś69.

Frédéric Besson, Sandrine Blazy, and Pierre Wilke. 2017. CompCertS: A Memory-Aware Verified C Compiler Using Pointer

as Integer Semantics. In Interactive Theorem Proving, Mauricio Ayala-Rincón and César A. Muñoz (Eds.). Springer

International Publishing, Cham, 81ś97.

Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy. 2006. Formal Verification of a C Compiler Front-end. In Proceedings of

the 14th International Conference on Formal Methods (FM’06). Springer-Verlag, Berlin, Heidelberg, 460ś475.

Quentin Carbonneaux, Jan Hoffmann, Tahina Ramananandro, and Zhong Shao. 2014. End-to-End Verification of Stack-Space

Bounds for C Programs. In Proc. 2014 ACM Conference on Programming Language Design and Implementation (PLDI’14).

ACM, New York, 270ś281.

Ronghui Gu, Jeremie Koenig, Tahina Ramananandro, Zhong Shao, Xiongnan(Newman) Wu, Shu-Chun Weng, Haozhong

Zhang, and Yu Guo. 2014. Deep Specifications and Certified Abstraction Layers. Yale Univ. Technical Report

YALEU/DCS/TR-1500; http://flint.cs.yale.edu/publications/dscal.html.

Ronghui Gu, Jeremie Koenig, Tahina Ramananandro, Zhong Shao, Xiongnan(Newman) Wu, Shu-Chun Weng, Haozhong

Zhang, and Yu Guo. 2015. Deep Specifications and Certified Abstraction Layers. In Proc. 42nd ACM Symposium on

Principles of Programming Languages (POPL’15). ACM, New York, 595ś608.

Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jieung Kim, Vilhelm Sjöberg, and David Costanzo. 2016.

CertiKOS: An Extensible Architecture for Building Certified Concurrent OS Kernels. In Proc. 12th USENIX Symposium on

Operating Systems Design and Implementation (OSDI’16). USENIX Association, GA, 653ś669.

Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan (Newman) Wu, Jeremie Koenig, Vilhelm Sjober, Hao Chen, David Costanzo,

and Tahnia Ramananandro. 2018. Certified Concurrent Abstraction Layers. In Proc. 2018 ACM Conference on Programming

Language Design and Implementation (PLDI’18). ACM, New York, 646ś661.

Jeehoon Kang, Yoonseung Kim, Chung-Kil Hur, Derek Dreyer, and Viktor Vafeiadis. 2016. Lightweight verification of

separate compilation. In Proc. 43rd ACM Symposium on Principles of Programming Languages (POPL’16). ACM, New York,

178ś190.

Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. 2014. CakeML: A Verified Implementation of ML.

In Proc. 41st ACM Symposium on Principles of Programming Languages (POPL’14). ACM, New York, NY, USA, 179ś191.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 62. Publication date: January 2019.

http://flint.cs.yale.edu/publications/dscal.html


62:30 Yuting Wang, Pierre Wilke, and Zhong Shao

Xavier Leroy. 2005ś2014. The CompCert verified compiler. http://compcert.inria.fr/.

Xavier Leroy. 2009a. Formal verification of a realistic compiler. Commun. ACM 52, 7 (2009), 107ś115.

Xavier Leroy. 2009b. A formally verified compiler back-end. Journal of Automated Reasoning 43, 4 (2009), 363ś446.

Xavier Leroy, Andrew W. Appel, Sandrine Blazy, and Gordon Stewart. 2012. The CompCert Memory Model, Version 2.

Research Report RR-7987. INRIA. 26 pages. https://hal.inria.fr/hal-00703441

Xavier Leroy and Sandrine Blazy. 2008. Formal verification of a C-like memory model and its uses for verifying program

transformation. Journal of Automated Reasoning 41, 1 (2008), 1ś31.

Greg Morrisett, Gang Tan, Joseph Tassarotti, Jean-Baptiste Tristan, and Edward Gan. 2012. RockSalt: Better, Faster, Stronger

SFI for the x86. In Proc. 2012 ACM Conference on Programming Language Design and Implementation (PLDI’12). ACM,

New York, NY, USA, 395ś404.

Jaroslav Sevcík, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagannathan, and Peter Sewell. 2011. Relaxed-memory

concurrency and verified compilation. In Proc. 38th ACM Symposium on Principles of Programming Languages (POPL’11).

ACM, New York, 43ś54.

Jaroslav Sevcík, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagannathan, and Peter Sewell. 2013. CompCertTSO: A

Verified Compiler for Relaxed-Memory Concurrency. J. ACM 60, 3 (2013), 22:1ś22:50.

Gordon Stewart. 2015. Verified Separate Compilation for C. Ph.D. Dissertation. Princeton University.

Gordon Stewart, Lennart Beringer, Santiago Cuellar, and Andrew W. Appel. 2015. Compositional CompCert. In Proc. 42nd

ACM Symposium on Principles of Programming Languages (POPL’15). ACM, New York, 275ś287.

Gang Tan and Greg Morrisett. 2018. Bidirectional Grammars for Machine-Code Decoding and Encoding. Journal of

Automated Reasoning 60, 3 (2018), 257ś277.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 62. Publication date: January 2019.

http://compcert.inria.fr/
https://hal.inria.fr/hal-00703441

	Abstract
	1 Introduction
	1.1 Comparison with Related Work
	1.2 Contributions and Overview

	2 An Introduction to CompCert
	2.1 Basics of the Memory Model of CompCert
	2.2 Memory Injections
	2.3 The Correctness of Compilation
	2.4 Modification of the Stack by Tailcall Recognition and Inlining

	3 An Abstract Stack in CompCert
	3.1 The Abstract Stack
	3.2 Stack Consumption and Its Upper Bound
	3.3 Stack Access Policy

	4 Stack-Aware CompCert
	4.1 Stack-Aware Memory Model
	4.2 Stack-Aware Semantics
	4.3 The General Structure of the Proofs
	4.4 Frame and Stack Injections
	4.5 Subtle Compilation Scenarios for Optimization Passes
	4.6 Preservation of Stack Injection under Stack Operations
	4.7 Stack Consumption Invariant
	4.8 Preservation of Stack Consumption under Stack Operations
	4.9 The Final Theorem of Stack-Aware CompCert

	5 CompCertMC: Generation of Machine Code in CompCert
	5.1 Overview of CompCertMC
	5.2 Compilation to the Single-Stack Assembly Language
	5.3 Elimination of Pseudo Instructions
	5.4 Compilation to Flat Memory Spaces

	6 Stack-Aware CompCertX: Contextual Compilation in CompCert
	6.1 Overview of CompCertX
	6.2 Subtleties in the Proofs of CompCertX
	6.3 Enforcing Assumptions for CompCertX Using the Abstract Stack

	7 Related Work
	8 Conclusion
	References

