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This paper presents two kinds of observers: first order sliding mode and triangular form, applied to a dynamic model of a vehicle in order to estimate the dynamic state of the vehicle and contact forces. The vehicle model is based on Lagrange formalism, which takes into account the evolution of each subsystem under normal operation when there is a possible presence of defects. Within this work, the obtained results are represented with an illustration of the absolute errors between the two methods compared to the simulation results.

Introduction

Vehicle detecting failures in its environment along its trajectory and the vehicle/road interaction remains always a major problem. Indeed, when the vehicle is driven beyond the limits of adherence or stability, risks of accidents such as running off of road or a collision with the precede vehicle appear. Consequently, it is extremely important to detect and predict these risks situations. Effectively, it is necessary to estimate instantly the dynamic state of the vehicle; this requires the measurement of signals often not available or very disturbed. This problem can be solved in two different ways. The first consists in using sensors more efficient but thus more expensive. 1 The second solution consists to limit the sensors number and to design sensor software or observers, which is represented in the form of on line estimation algorithms of these non-measurable variables. These observers are built on a knowledge-based model formed of dynamic equations describing the process and a certain number of measurements resulting from physical sensors. One of the most known robust observers types is sliding mode. This type of observer is based on the system theory with variable structures [START_REF] Utkin | Sliding mode and their application in variable structure systems[END_REF][START_REF] Emelyanov | Variable structure control systems[END_REF]. The principal advantages of using sliding mode observers are their robustness against modeling and parameters errors and disturbances.

Several researches of the non-measurable variables estimate and states of the vehicle by the observers with sliding mode has already carried out with the aim of developing control assistance systems, which can warn the driver of the imminent dangers. The study of most of this research is based on the dynamic models of different vehicle subsystems calculated according to the fundamental principle of dynamics ([1-4], [START_REF] Pacejka | Magic Formula Tyre Model with Transient Properties[END_REF]). However, in our research we used a full model dynamic approach of the vehicle, which includes different subsystems from the vehicle, calculated according to the approach of Lagrange, based on the calculation of the kinetic and potential energy developed in [START_REF] Hamadi | Comportement Dynamique D'un Véhicule Articulé Par La Dynamique De Lagrange[END_REF]. To estimate in sliding mode observers the forces tire-road contact and the estimation of state of several variables such as the vertical displacement of the suspensions, linear and rotational velocities of the wheels and the longitudinal and side acceleration of the vehicle.

Firstly, we used the sliding mode observer in first order for the observation of the system global state and the estimation of the contact forces tire-road. These observers are powerful and robust but their disadvantage is the appearance of a chattering on the curves. Differently, in the case of the triangular form observers [START_REF] Boukhobza | Implicit triangular observer form dedicated to a sliding mode observer for systems with unknown inputs[END_REF] that one used in the second time one noticed the improvement of the convergence of the estimate states in short finite time.

This paper is organized as follows; the second part of this work is devoted to the description of the vehicle model. Then in the third part, the sliding mode observer used to estimate contact forces and states variables is developed, the Estimation results and some validation results are presented in the fourth part, and finally some conclusions and perspectives are given in the last section.

Vehicle Modelling

Several studies found in the literature deal with the problem of vehicle modeling and dynamics [START_REF] Gillespie | Fundamentals of vehicle dynamics[END_REF][START_REF] Imine | Observation d'état d'un véhicule pour l'estimation des traces de roulement[END_REF][START_REF] Rabhi | Second order sliding mode observer for estimation of road profile[END_REF][START_REF] Shraim | Sliding mode observers for the estimation of vehicle parameters[END_REF]. In these references, we find models with different degrees of freedom and different complexity levels (quarter of a vehicle, half a vehicle). Different developed strategies for control and observation are done based on these models. The dynamic vehicle model developed in this paper is a complete approach model of the vehicle that is nonlinear. Moreover, the kinematic elements can greatly influence the vehicle dynamic behavior. This is due to the existing interconnection between different parts of the vehicle. However, for the sake of simplicity, the complexity of the model may be reduced depending on the type of application and the purpose of modeling. Due to the complexity of a complete vehicle model, we limit our work to the interconnected subsystems illustrate in Fig. 1: the chassis is assumed rigid, the suspension is assumed a rigid body in only translation and the interaction between the wheel and the ground is reduced to one point for each while 

Vehicle frames

The vehicle model shown in Fig. 1 used in this study has 16 DOF as following:

-The chassis with 6 DOF accounts of three translation movements (x, y, z) and three rotational movements roll-pitchyaw according to three axes x, y, z . -The suspension with 4 DOF represents 4 deflections variables (

).

-The direction with 2 DOF respectively represents the left and right steering angles of the front steer wheels (

) . -The wheels with 4 DOF represent the rotation angles of the four wheels around the fused axis (

). The generalized coordinate's vector is defined as:

The dynamic parameters which are used to write the dynamic equations of the system as: the mass of the chassis M S , the mass of each front wheel M RF , the mass of each rear wheel M RR , (h 1 and h 2 ) are the spring initial lengths of the front suspension and (h3 and h4) are the spring initial lengths spring of the rear suspension.

Dynamic model

The dynamic model of the vehicle is derived using the approach of Lagrange based on the calculation of the kinetic and potential energy of the complete system. The motion equation of the mechanism is obtained as follows:

( ) ̈ ( ̇) ̇ ( ) (1) 
where is the vector of the internal and external forces between the vehicle bodies, represents the engine torque of the two driving wheels, direction torque of the two cap wheels is , is the rolling friction torque of the 4 wheels, is the torque of the 4 suspensions and is the vector of contact forces on each wheel.

Rrepresents the matrix of the kinetic energy, named the inertia matrix system. It is symmetrical, positive definite. Of these elements, are functions of the joint variables q i.. The total kinetic energy is calculated by the formula:

̇ ( ) ̇ (2) and M (q) is given by:

( ) ∑ ( ) ( ) ( ) ( ) ( ) (3) 
Where ( ) Transposed Jacobian matrix of the linear velocity, ( ) Transposed Jacobian matrix of the angular velocity, ( ) Rotate matrix, Inertia matrix for i body and Mass for i body. To calculate the Jacobian matrix ( ( )and ( ) and the rotation matrix ( ), we chose the homogeneous matrix based on the translation and rotation, who define the movement of a body in relation to another, the homogeneous matrix is given by: [ ] ( ̇) is coriolis and centrifugal matrix of (16x16) dimension. The calculation of the dynamic coefficients of the matrix ( ̇) is established by respecting the property of passivity of the system. A way of calculating the coefficients of the matrix is to use the symbols of Christophel.

[ ] (4) 
With (i=1…16,j=1..16,k=1…16)

∑ ̇ (5) 
With (k=1…16,j=1..16)

Where ( ) is the gravity forces vector; It is given by the gradient of the potential energy EP versus q, The potential energy of the i-th body can be computed by assuming that the mass of the entire object is concentrated at its mass center and is given by [START_REF] Gillespie | Fundamentals of vehicle dynamics[END_REF] Where g is the vector, which gives the gravity direction in the inertial frame, and the vector ci r gives the coordinates of the center of mass of i body. The total potential energy of the 5body of our system is therefore

( ( ) ( ) (7) 
So

( ) ( ) (8) 
The efforts in the contact patch of the wheel are described by a longitudinal force side force and normal force . For the case of the four wheels, the action of the contact forces is expressed by

∑ (9)
Where is the vector of the contact forces ( ), is the jacobian matrix depending on the contact points and ( ) is the square transformation matrix to convert the force vector from the local frame to the absolute fixed reference frame.

Using the Pacejka Magic Formula Fy( ) = D sin {C arctan [Bx -E (Bx -arctan Bx)]} used only 8 parameters (B, C, D, E, BCD, % and ) to describe the expression of the tangential forces (Longitudinal and lateral) which has been identified in [START_REF] Beurier | Transposition de performances longitudinales de pneumatique -méthode de recherche statistique de relations entre les paramètres de modèles en vue de l'identification de ces paramètres[END_REF] and [START_REF] Pacejka | Magic Formula Tyre Model with Transient Properties[END_REF] for a P406 vehicle. The longitudinal slip for each wheel is defined as the difference between the velocity of the centre of the wheel and relative speed of the wheel [START_REF] Sirdi | Robust Observers and Unknown Input Observers for estimation, diagnosis and control of vehicle dynamics[END_REF] ( )

The formula of the sideslip angle is defined for each wheel in accordance with the of longitudinal and lateral velocities by

( ) (11) 
The normal forces applied in our model as a function of the accelerations longitudinal of the vehicle. The expression of these forces is given by

( ) ( ̇) ( 12 
)
where ̇ is accelerations longitudinal of the vehicle. Finally, the 16 DoF nominal model proposed is then equivalent to:

[ ] [ ̈ ̈ ] [ ] [ ̇ ̇ ] [ ] (13) 
The resolution of the movements mechanism is equivalent to solve the following numerically equation:

̈ ( ) ( ̇) ̇ ( ) (14) 

GLOBAL STATE OBSERVER AND CONTACT FORCES ESTIMATION

Observer design

Before developing the sliding mode observer, one supposes the state is bounded and the inputs of the system are bounded We then rewrite the model in the state form as [START_REF] Sirdi | Robust Observers and Unknown Input Observers for estimation, diagnosis and control of vehicle dynamics[END_REF]:

{ ̇ ̇ ( ) ( ) ̇ (15) 
where ( ) ( ̇ ) is the state vector, is the measured outputs vector of the system, is an unknown input vector.

̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ]
( ) Inertia matrix of the system is a symmetric positive definite, ( ) Matrix of centrifugal and Coriolis terms, ( ) is the vector of gravity terms,

Estimation Results

In this section, we give some results in order to test and validate the robustness of our approach. The presented simulation is based on real input signals of rotational displacements of the vehicle and steering wheel angle shown in Fig. 2 and Fig. 3 of appendix.2.The vehicle rolls at a mean velocity of 50km/h. The parameters of the dynamic model and the engine torque applied to the wheels are known and the tire forces are generated by "Magic formula" tire model.

Firstly, we represent in Fig. 4 the simulated and estimated longitudinal contact of the four wheels while using observers of the first order sliding mode and triangular form. One note that the estimation using triangular form is quite close to the true ones, while with first order observer, the convergence is obtained after a 5s and with the appearance of chattering phenomenon at the beginning of each curve depending on the function sign. The Fig. 5 represents the absolute errors between the estimated longitudinal forces of the four wheels. That the absolute errors in the case of a first order observer at the time (t< 60s) are higher than absolute errors given by a triangular form observer (< 50 N). It is well noticed that the absolute errors at the time (t> 60s) in the case of a first order observer can exceed 50 N, while, in the case of a triangular form observer, the errors are less than 10 N. This result can explain why the convergence obtained by using the triangular form observer is closest in real states to our system. The advantage of the triangular form observer, compared to the first order observer, is its convergence in finite-time using a step-by-step observation algorithm of the error of observation ensured by the condition of BIBS with a lack of chattering phenomenon which can entrained the instability of the system and the deterioration of the actuators. The Fig. 6 shows the estimation of the lateral forces of four wheels. Compared to the simulation result, the estimation is of quality and the convergence is quick, less than 1s, using triangular form observer. However, in case of first order observer, one remarks that the estimated lateral forces coming from the model accurately follows the simulation one after 5s. We note the presence of oscillations at the beginning (t < 60s) of the contact forces (phenomenon of chattering) in the case of a first order observer. However, we notice the absence of these oscillations in the case of using triangular form observer and the good reconstitution of the lateral contact forces. This adequately confirms the robustness of the triangular observer compared to the first order observer.

In Fig. 7, the absolute errors of estimated lateral forces using the two type of observers are shown. As in the previous case, in the same way results of the errors obtained in the case of a triangular observer are more interesting than in the case of first order observer. It is noted that the absolute error of the estimator when using a first order sliding mode observer is a high level with start-up and decrease systematically, with the convergence of the estimated variables towards the simulated one (t > 60s). However, in the case of use a triangular observer, the absolute error with start-up is a high level with a absolute error is lower than result obtained previously. The absolute error of estimated lateral forces of two rear free wheels without engine torque gives a conclusion that the estimators by a triangular observer converges more quickly than the estimators by the first order sliding mode observer. In the Fig. 8, shows the estimation of left rear and right rear velocities wheels. One can notice the well reconstruction of these variables by the two observers. The Fig. 9. represents respectively the simulated and estimated suspension deflection in both types of observers. It is shown that these displacements are well observed and the convergence is ensured in finite time. 

Conclusion

We approached this work by the presentation of a vehicle dynamic model in order to use it for the simulation and the estimation of the contact forces of the vehicle and the observation of the state of their parameters. The dynamic model that we presented is composed of several interconnected subsystem (wheels, suspensions, chassis and steering), this model is calculated according to the Lagrange formalism based on the calculation of the kinetic and potential energy. We used real input signals of the road and commands inputs of driver to simulate the evolution of different parameters over time. The principal objective of our work proposed here, in addition to the dynamic model is to estimate the forces on contact patch of the wheels, which are difficult to measure by the sensors, and to ensure the observation of the instantaneous states of other parameters, which have influences on the behavior of the vehicle according to the forces estimate. To achieve this goal, in the first part, we employed sliding mode observer in first order the results obtained are reasonable. They converge after a finite time towards that simulated with the appearance of chattering phenomenon on the curves. When we used the sliding mode observer with the triangular form, the results obtained are improved. They converge towards the simulated results after a lower finite time than that obtained by the first method with less chattering phenomenon that makes the results rather satisfactory.

In the future works, be vow to use this modeling with the estimate of the contact forces to develop a system of longitudinal and side control of the vehicle by basing on the longitudinal and side slip wheels , as one can used our simulator to control of another parameters such as the steering angle. One can use our approach to estimate the longitudinal and sideslip.

APPENDIX.1

In this paper, we assume that different sensors installed on instrumented vehicle measure all elements of vector . The experimental measurements are made on an intelligent test bench as illustrated in the Fig. 11. The mechanical part of the bench consists of vehicle equipped by several sensors to measure the dynamics of the vehicle such as the angular speeds, accelerations, and the suspension deflections, as shown in the following figure. The Fig. 12 illustrates the sensors installed in the vehicle in order to measure its variables:

-(4) Four sensors, LVDT installed between the wheel and the chassis in order to measure the deflections of suspensions (z 1 , z 2 , z 3 and z 4 ), -(5) Four accelerometers installed on the chassis to measure the vertical accelerations of wheels, -( 6) Three axial gyroscopes installed on the chassis, to measure the angular speeds. By integration, we obtain the angles ( , , 𝑙), -( 7) Two lasers installed on the suspension in order to measure the vertical distance of the vehicle. Adding to that, some measures comes directly from BUS CAN of the vehicle:

 GPS: for measuring the positions x, y and z  Wheels sensor to measure the 4 wheels speeds. By integration, we obtain the angles ( 1 , 2 , 3 , 4 )  The left and right steering angles of the front steer wheels ( 1, 2) are found also in the BUS CAN. The acquisition part of the bench consists of use of laptop computer, and all the software: Matlab/ Simulink, Real Time Workshop and the acquisition system, dSPACE. This acquisition board delivers high performance and reliable data acquisition capabilities, having 16 single-ended analogical inputs. It delivers both analogical and digital triggering capability, as well as two 12-bit analogical outputs, two 24-bit, 20 MHz counter/timers and eight digital I/O lines. The algorithms were written in Matlab/Simulink, which coordinate all the data acquisition and the test measurement processes. 

APPENDIX.2

Fig. 1 .

 1 Fig. 1. Coordinate system to describe the vehicle motion.

Fig. 4 .

 4 Fig. 4. Estimation longitudinal forces

Fig. 5 .

 5 Fig.5. Error estimation of longitudinal forces for the rear wheels

Fig. 6 .

 6 Fig.6. Estimation lateral forces for the rear wheels.

Fig. 7 .

 7 Fig.7. Error estimation of Lateral forces for the rear wheels.

Fig. 8 .

 8 Fig.8. Estimated and simulated velocities wheels

Fig. 9 .

 9 Fig.9. Estimated the vertical displacements of the four suspensionsIn the Fig.10, one can notice that the longitudinal and lateral acceleration of the chassis are well estimated compared to the simulated one in both cases.

Fig. 10 .

 10 Fig.10. Estimated of the longitudinal and lateral acceleration of the chassis

Fig. 11 .

 11 Fig.11. Instrumented vehicle

Fig. 2 .

 2 Fig.2. Steering-wheel angle
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Matrix passage of the 4 contacts points relatively to the absolute reference, Jacobian matrix of the 4 contacts points, ( ) Rotation matrix of the points of contacts for the plan of the road relatively to absolute reference R0, Represents the forces vector of the 4 contact points; the longitudinal, lateral and vertical forces, is the vector of the internal and external forces between the vehicle bodies.

Sliding mode observer

In order to estimate the state vector x and to deduce both the lateral and the longitudinal forces, we propose the following sliding mode observer [START_REF] Oudghiri | Robust observer-based fault tolerant control for vehicle lateral dynamics[END_REF]. It assumes that all positions are measured (see appendix.1) and ̇ :

where ̂ is the estimate of the state ( ), ( ) are positive gain matrices. Let ̃ ̂ ̃ ̂ be the state estimation error ̃ ̂ the force estimation error. Using a priori approximate parameter, the observation error dynamic is then:

In order to study the observer stability and to find the gain matrices and , first, we proceed, to prove the convergence of ̃ to the sliding surface ̃ = 0, in finite time . Then, some conditions about ̃ to ensure its convergence towards 0 can be deduced. 

If = and , the function ̇ becomes:

Let ( ̂ ) a positive definite matrix with ( ( ̂ )) then ̇ , and consequently ̃ and ̃ are bounded and ̂ goes to . Equations ( 16) allow deducing that the estimation of forces and system state.

Triangular observer design

The triangular observer as described in [START_REF] Boukhobza | Implicit triangular observer form dedicated to a sliding mode observer for systems with unknown inputs[END_REF], converges in finite time independently from the input. It consists in a stepby-step convergence if the system is uniformly observable. The structure triangular observer of the system state (15) takes the following form:

Where ̂ represents the observed state vector, represent positive diagonal gain matrices The dynamics estimation errors as given by:

To find the gain matrices let consider a bounded input bounded state in finite time system [START_REF] Utkin | Sliding mode and their application in variable structure systems[END_REF] and observer (22), for any initial state ( ) ̂ ( ) and any bounded input, there exists a choice of such that the observer state ̂ converges in finite time to . Then, we deduce some conditions about ̃ to ensure its convergence towards 0.

We 

Now, let study the second step devoted to study of the convergence of ̂ . Setting ̃ ̃ , we obtain ̇ ̃ ( ( ) ( ) ̃ ( ̃ )). As ̃ is bounded and during this step and the first condition stays true( ̃̇ ), so we have while choosing the terms of the matrix very high, ̇ Therefore, the variable ̃̇ in finite time (

). System (24) becomes :

If ( ) ( ) and then

The estimation of the unknown vector is obtained according to (26).

We have discussed on the observers states in the vehicle dynamics and in estimate for the contact forces, using classical and triangular sliding mode observers. In the next section, we compare results obtained using these methods.