A microstructural cluster-based description of diffuse and localized failures
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ABSTRACT: This paper presents the analysis of microstructural mechanisms observed during both localized
and diffuse failures in granular media, highlighting similarities and differences in their characteristics. Two-
dimensional DEM (Discrete Element Method) granular assemblies with medium dense and dense packings
were subjected to different biaxial loading paths to induce either a localized or diffuse failure mode. A cluster
based analysis is proposed to investigate interactions of particles at the mesoscale through the calculation of the
second-order work from microscopic variables. It is shown that such analysis of clusters together with second
order work facilitates precise shear band pattern recognition during localized failure. The evolution of such
clusters in terms of their spatial distribution, size and number of particles involved, as well as the role played by
strong and weak phases, describes the nature of the failure at every stage during loading. Such microstructural
descriptors can predict the propensity of the specimen to fail either according to a diffuse or a localized mode.

1 INTRODUCTION

The identification of the underlying micromechanics
of failure processes in granular media remains elusive
despite numerous studies on the various factors lead-
ing to failure. Failure has always been related to either
an instability criterion such as the vanishing of the
second order work (Hill 1958) or associated with con-
tact networks (Radjai et al. 1999, Iwashita and Oda
2000) namely strong and weak phases, connectivity,
cycles and force chain networks (Tordesillas et al.
2010), force chain buckling (Tordesillas 2007) and
inter-particles relative motions (Kuhn & Bagi 2004).
Recently, it was shown (Nicot et al. 2012) that the
genesis of failure in an assembly of particles is closely
related to the sign of the second order work at con-
tacts and its spatial evolution during loading history
(Hadda et al. 2013). For instance, based on directional
analyses (Gudehus 1979) performed on a dense and
loose DEM specimens, it was found that the macro-
scopic second order work is in good agreement with
the second order work computed from microscopic

variables. Furthermore, the same study revealed that
local instabilities within a granular assembly described
by negative or zero values of the second order work
at the contact level are in line with the vanishing
of the macroscopic second order work. This finding
was obtained from some statistical analyses focusing
on the population and the spatial distribution of con-
tacts exhibiting negative values of second order work,
herein denoted ¢~, along all strain probe directions,
including those which were proven to be unstable.
For instance, the spatial distribution of ¢~ contacts
is closely related to the emergence of the failure mode,
i.e. diffuse and localized. As such, it seems that the
understanding of failure process and the triggering
of modes is closely associated with how disperse or
concentrated the spatial distribution of ¢~ contacts is.
The concentration of ¢~ contacts conveys the notion of
proximity between unstable particles and in the limit
refers to finding the most loaded particles with the
most ¢~ contacts. Hence the notion of local instability
is most suitably pursued by calculating the sum of sec-
ond order work at all ¢~ contacts for a given particle.



Table 1. Physical and mechanical parameters of both spec-
imens S (dense) and S, (medium dense).

Si S» Unit
Particles diameter range 6-18 mm
Density (p) 3,000 kg/m3
kn/D(¥) 356 (MPa)
ke [k 0.42 -
% 0.7 -
k= %(**) (p=300kPa) 1,200 -
Height / Width 1.85 1.35 -
Void ratio (e) 0.174 0.217 -
Coordination number (z) 4.20 3.36 -

*D denotes the mean diameter between two particles in
contact.

**, and p denote respectively the normalized contact stiffness
and the mean pressure.

In this paper, and in continuity with our previ-
ous studies, the agreement between microscopic and
macroscopic second order works is briefly reviewed
along a drained biaxial compression. Then, attention
is focused on the extent to which ¢~ contacts relate to
the observed failure mode, namely localized and dif-
fuse. Finally, a cluster based approach is introduced in
order to highlight the key role of ¢~ contacts in describ-
ing failure at the mesoscale through an aggregation
phenomenon.

2 FAILURE MODE ALONG DIFFERENT
LOADING PATHS

2.1  Numerical model

It is well recognized that the failure mode depends
essentially on the density of the granular packing and
may be influenced by the loading direction. Thus, in
order to achieve distinct failure modes through numer-
ical simulations, two specimens S; (dense) and S,
(medium dense) were considered and each was sub-
jected to a different loading in order to undergo a
localized and a diffuse failure respectively.

Both specimens S; and S, originate from the same
two-dimensional discrete element model (Cundall &
Strack 1979) consisting of 21,000 particles and they
differ only in their initial density (packing). The inter-
particle interaction is governed by a cohesionless
contact law and involves three mechanical parameters:
the normal contact stiffness k,, the tangential contact
stiffness &, and the friction coefficient @ incorpo-
rated at the contact level through the Coulomb friction
law. The characteristics and mechanical parameters are
given in Table 1.

The open source discrete element code Yade
(Smilauer et al. 2010) was used to perform all the
simulations presented in this paper.

The granular assemblies were both compacted from
an initially sparse cloud of particles to an isotropic
state by moving the four rigid frictionless walls toward
the center of the specimen until the isotropic pressure
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Figure 1. Evolution of the deviatoric stress g and the volu-
metric strain €, in terms of the axial strain &, along the drained
biaxial loading performed on S and 5.

o1 =0, =300 kPa is reached. Both specimens S| and
S, were then subjected to a drained biaxial compres-
sion. This compression is carried out by imposing a
constant strain rate (¢; = 0.01 s~1) as the walls move in
the axial direction, and maintaining constant the lateral
pressure using a servo-control. In a second simulation,
the medium dense specimen S, was loaded along a pro-
portional strain path. This type of loading constraints
the lateral strain to evolve proportionally to the axial
strain at each time step such that ¢, = —¢; /R (where
R is a constant) as walls move in the axial direction
at a constant strain rate (¢; =0.01 s~!). Note that for
R < 1, the loading path is dilatant, for R > 1, the load-
ing path is contractant and the case of R =1 coincides
with the isochoric loading path. In this study, S, was
loaded along a dilatant proportional strain path with
R=0.8.

The evolutions of the deviatoric stress ¢ =0 — 02
and the volumetric strain &, in terms of the axial strain
g for S; and S, resulting from the classic drained
compression are plotted in Figure 1. As described,
the specimen S; shows a typical behavior of a dila-
tant dense granular medium with a distinctive g peak,
while the specimen S, exhibits a behavior akin to
a medium dense granular medium with a volumet-
ric contractancy up to 5% of axial strain followed by
dilatancy.

2.2 Localized failure

According to the incremental deviatoric strain Agg,,
fields displayed in Figure 2-a, the dense specimen has
clearly underwent a localized failure with a clear shear
band after the limit stress state is reached. Incremental
volumetric strains, Agg,, were computed between
each successive pair of stress states identified in Figure
1. At the beginning (see snapshot 1), the strain field is
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Figure 2. Incremental deviatoric strain fields computed at
the stress states 1 to 5 along the drained biaxial compression
performed on S (a) and S, (b).
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Figure 3. Evolution of the deviatoric stress ¢ and 07 — 02 /R

in terms of the mean pressure p and the axial strain €| respec-
tively along the proportional strain path loading performed
on .

homogenous. The snapshot 2 shows not only the fact
that strain localizations are well developed at the peak,
but also these have already started to define the shear
band pattern observed after peak through several thin
incipient shear bands. After the peak (see snapshots
3-5), a unique shear band is observed while all others
have disappeared. Contrary to what has been observed
for S, it appears that there is no persistent shear band
appearing after failure for the medium dense specimen
S, as shown in Figure 2-b. However, the incremental
deviatoric strain fields computed before peak appear
to be similar for both S, and S, samples.

2.3 Diffuse failure

Based on these results reported in the previous sec-
tion, the medium dense specimen, compared to the
dense one, is more susceptible to undergo a diffuse
failure along a proportional strain path with a reason-
able value of R. Figure 3 shows the evolution of the
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Figure 4. Incremental deviatoric strain fields computed at
the stress states 1 to 4 along the proportional strain path
loading performed on ;.

deviatoric stress ¢ in terms of the mean pressure p.
The deviatoric stress g reaches a peak and then both ¢
and p start to decrease until they both vanish. The peak
of g for such loading path is not of relevancy when it
comes to failure; rather one should consider the peak
of 1 — 02/R which represent the mixed limit stress
state at which the second order work criterion is veri-
fied (Nicot et al. 2013). Figure 3 shows that 6| — 0, /R
also passes through a peak, which is slightly exceeded
afterward before both o7 and o, vanish.

The incremental deviatoric strain fields correspond-
ing to the stress states chosen along the proportional
strain path displayed in Figure 4 seem to be quite
well homogenous until the vanishing of stresses. Very
weak strain localizations can show up intermittently,
but they soon fade away. In this case, and on the con-
trary of what has been observed along the drained
compression, the failure is diffuse and develops within
the whole granular packing instead of being localized
within a shear band.

3 SECOND ORDER WORK FROM
MICROSCOPIC VARIABLES

For granular media, it has been shown (Nicot et al.
2012) that the second order work W, can be expressed
in terms of microscopic variables as:

Wy =S AFAF + S AfPAZ (1)
(& P

The first term of Eq. (1) is a summation over con-
tacts and involves the incremental variations of the
contact force Af¢ and branch vector A/¢. The second
term, a summation over particles, accounts for the iner-
tial effects that may occur during loading. It involves
the incremental variation of the resultant force Af”
applied on the particle and the variation in position
AX experienced by the particle during loading.

In the absence of inertial effects (quasi-static
regime), which s the case in this study, the contribution
of the second term is negligible and W, is reduced to:

Wy = S AFAF 2)

First of all, it is interesting to compare the second
order work computed from microscopic variable W,"
with the second order work computed from tensorial
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Figure 5. Comparison between the second order works
computed from both macroscopic and microscopic variables
along the drained compression and the proportional strain
loading path performed on S; and S, respectively.
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Figure 6. Spatial distributions of ¢~ contacts computed at
the stress states 1 to 5 along the drained compression per-
formed on S; (a) and states 1 to 4 along the proportional
strain loading path performed on S, (b).

variable W, = AG : A% (Nicot et al. 2007), where o
and # are the Cauchy stress tensor and strain tensor
respectively, and to see to what extent they are equal
along a drained biaxial compression. For this purpose,
both second order works were computed between each
two successive stress-states chosen at a regular interval
along the loading path.

Figure 5 shows that the two second order work
expressions, computed differently, agree with each
other especially before failure along the classic biax-
ial compression performed on §;. The vanishing of
the second order work corresponds to the peak of ¢
(i.e. the limit stress state). After failure, a deviation
between the two curves may be observed, especially
when the specimen undergoes a sharp softening (local
avalanche). This phenomenon is usually accompanied
by the release of inertial effects, whose contribution
may become effective, and thus should be accounted
for while computing the second order work from
microscopic variables.

This good agreement is confirmed through the
spatial distributions of ¢~ contacts identified at the
stress-states 1-5 (Figure 6-a) and 1-4 (Figure 6-b)
along the biaxial compression performed on S; and the
proportional strain path performed on S, respectively.
Let’s recall here that ¢~ contacts account for those
which exhibit a zero or negative value of wy = Af¢Al°.

Each ¢~ contact is presented by a black dot in the
snapshots displayed in Figure 6. At the beginning,
the spatial distribution of ¢~ contacts along the biax-
ial compression is quite homogenous (snapshots 1
and 2). Further ¢~ contacts become more and more
concentrated within the shear band (characterized by
the incremental deviatoric strain field) as the axial
strain increases. However, the width of the shear band
defined by ¢~ contacts is relatively larger than the one
derived from the incremental deviatoric strain field.
For the proportional strain loading path, ¢~ contacts
seems to be homogeneously distributed before and
after failure with no particular distinguishable struc-
ture. Note that in the last snapshot, the sparse number
of ¢~ contacts is due to the loss of contacts within the
sample resulting from the static liquefaction, and not
to a switch of contacts from negative to positive values
Ofvv;

The second order work computed from microscopic
variables was proven to be in line with the vanishing
of the macroscopic second order work. Moreover, the
mode of failure can be directly predicted by means
of the spatial distribution of ¢~ contacts. Hence, it
definitely constitutes a powerful and suitable tool for
the identification of the underlying micro structural
mechanisms governing the failure process.

4 CLUSTERS DEFINITION BASED ON
c— CONTACTS

Based on the results shown above regarding ¢~ con-
tacts evolution and distribution during diffuse and
localized failures, and according to other findings
(Hadda et al. 2013) reporting the strong relation
between the increase of ¢~ contacts number and insta-
bility, the distance between ¢~ contacts seems to play a
key role in triggering failure within a granular assem-
bly, especially when the latter come close together. It is
definitely clear, that ¢~ contacts concentrated within
the shear band (Figure 6-a) are much closer to each
other compared to those outside the band. Moreover,
during diffuse failure, the proportional strain load-
ing path seems to prevent ¢~ contacts from getting
much closer, dispersing their concentrations before
they get larger. Thus, it is quite interesting to focus the
investigations on ¢~ contacts gatherings for a better
understanding of failure triggering and process.
When ¢~ contacts come so close to each other, this
results into another or more contacts belonging to a
given particle turning into ¢~ contacts. Thus, a gath-
ering of ¢~ contacts can be identified from the most
loaded particles and such particles, are most likely to

imply

S AfAIF<0 (3)

CcEp

as they sustain more and more ¢~ contacts.
Regardless of the number of ¢~ contacts compared
to the total number of contacts belonging to a given
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Figure 7. Evolution of the number, mean size of p~ clusters
and the number of particles involved within clusters along
the drained compression performed on S.

particle, if the condition (3) is fulfilled, then the parti-
cle is likely to be part of a cluster made of at least two
particles in contact of that kind. Hence, such particle
is denoted by p~.

In this section, interest will be focused on the
evolution and distribution of p~ clusters along both
considered loading paths which led to different failure
modes.

Figure 7 shows respectively the evolution of the
total number, the mean size of p~ clusters and the per-
centage of particles involved within the clusters for
S| while undergoing a localized failure. The largest
number of clusters formed is reached at the peak of
q, involving naturally the largest number of particles.
Then, a sharp decrease is observed just after the peak
followed by a fluctuation around a constant value.

The ongoing increase of the mean size of p~ clus-
ters during the sharp decrease of the number of clusters
right after the peak emphasizes a crucial phase of the
localized failure process. This phase corresponds to
the appearance of the persistent shear band, through-
out which, already existing clusters enlargement and
extinction processes take over cluster growth. This
result is consistent with what has been observed
through the evolution of the incremental deviatoric
strain during localized failure (Figure 2-a).

Identically, Figure 8 shows p~ clusters evolution
for S, while undergoing a diffuse failure. Surprisingly,
the evolution of the number of p~ clusters does not
show any particular tendency of failure occurrence. In
contrast with localized failure, diffuse failure is char-
acterized by an almost constant number of p~ clusters
all along the proportional loading path after a rapid
modest increase at the beginning of the loading and a
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Figure 8. Evolution of the number, mean size of p~ clusters
and the number of particles involved within clusters along
the proportional loading path performed on S,.

spontaneous extinction when static liquefaction fully
took place.

Figure 8 shows also a very narrow spread of the
mean size of p~ clusters compared to the one observed
during the localized failure, which means that p~ clus-
ters formed during such loading preserve almost the
same size with a very restricted extension. However, at
each peak of 01 — 07 /R, aslightincrease of p~ clusters
mean size is observed with almost the same number
of particles involved within clusters before the peak.
Thus, some clusters grow larger during these failure
stages but obviously their enlargement is very limited
in size and very short in time.

Noticeably, the total number of p~ clusters formed
during diffuse failure overwhelm those formed during
localized failure and involve more p~ particles. More
or less 30% of particles are involved within p~ clusters
during diffuse failure while this value is reached only at
peak during localized failure and is further reduced to
15%. This phenomenon, which persists during diffuse
failure, occurs only at peak during localized failure.

According to Figure 9, where spatial distributions of
p~ clusters are displayed at stress states chosen along
both loading paths, p~ cluster distribution proves to
be more suitable than ¢~ contacts to directly describe
the observed failure mode. For instance, for localized
failure, large clusters are found to be distributed within
shear bands. Also, the width of the shear band char-
acterized by p~ clusters is not as wide as the one
obtained with ¢~ contact distribution (Figure 6-a), but
it rather recalls the one observed in the incremental
strain fields (Figure 2-a). Moreover, the p~ cluster
spatial distribution was able to point out the slight
strain localizations occurring during diffuse failure,
which are hardly distinguishable through ¢~ contact
distribution.
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Figure 9. Spatial distribution of p~ clusters at the stress
states 1 to 5 along the drained compression performed on S;
(a) and states 1 to 4 along the proportional strain path loading
performed on S5 (b).

5 CONCLUSIONS

The present study provides a method by which the
origins of localized and diffuse failure modes can be
deciphered through the analysis of particle clusters in
combination with second order work computations.
As pointed out in the paper, the DEM studies on
both medium dense and dense granular assemblies
subjected to biaxial loadings paths lend considerable
support to the idea that localization patterns and their
evolution are driven inherently by the clustering of par-
ticles with contacts violating the second order work.
More precisely, the consideration of so-called p~ clus-
ter particles for which the net second order work of all
contacting particles is zero or negative leads to aricher
interpretation of failure modes, i.e. either localized or
diffuse.
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