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Screening Rules for Lasso with Non-Convex Sparse Regularizers

Alain Rakotomamonjy 1 Gilles Gasso 2 Joseph Salmon 3

Abstract
Leveraging on the convexity of the Lasso prob-
lem, screening rules help in accelerating solvers
by discarding irrelevant variables, during the op-
timization process. However, because they pro-
vide better theoretical guarantees in identifying
relevant variables, several non-convex regulariz-
ers for the Lasso have been proposed in the lit-
erature. This work is the first that introduces a
screening rule strategy into a non-convex Lasso
solver. The approach we propose is based on a
iterative majorization-minimization (MM) strat-
egy that includes a screening rule in the inner
solver and a condition for propagating screened
variables between iterations of MM. In addition
to improve efficiency of solvers, we also pro-
vide guarantees that the inner solver is able to
identify the zeros components of its critical point
in finite time. Our experimental analysis illus-
trates the significant computational gain brought
by the new screening rule compared to classical
coordinate-descent or proximal gradient descent
methods.

1. Introduction
Sparsity-inducing penalties are classical tools in statisti-
cal machine learning, especially in settings where the data
available for learning is scarce and of high-dimension. In
addition, when the solution of the learning problem is
known to be sparse, using those penalties yield to models
that can leverage this prior knowledge. The Lasso (Tibshi-
rani, 1996) and the Basis pursuit (Chen et al., 2001; Chen
& Donoho, 1994) where the first approaches that have em-
ployed `1-norm penalty for inducing sparsity.

While the Lasso has had a great impact on machine learn-
ing and signal processing communities given some success
stories (Shevade & Keerthi, 2003; Donoho, 2006; Lustig
et al., 2008; Ye & Liu, 2012) it also comes with some
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theoretical drawbacks (e.g., biased estimates of large co-
efficient of the model). Hence, several authors have pro-
posed non-convex penalties that approximate better the `0-
(pseudo)norm, the later being the original measure of spar-
sity though it leads to NP-hard learning problem. The most
commonly used non-convex penalties are the Smoothly
Clipped Absolute Deviation (SCAD) (Fan & Li, 2001), the
Log Sum penalty (LSP) (Candès et al., 2008), the capped-
`1 penalty (Zhang, 2010), the Minimax Concave Penalty
(MCP) (Zhang et al., 2010). We refer the interested reader
to (Soubies et al., 2017) for a discussion on the pros and
cons of such non-convex formulations.

From an optimization point of view, the Lasso can ben-
efit from a large palette of algorithms ranging from block-
coordinate descent (Friedman et al., 2007; Fu, 1998) to (ac-
celerated) proximal gradient approaches (Beck & Teboulle,
2009). In addition, by leveraging convex optimization the-
ory, some of these algorithms can be further accelerated by
combining them with sequential or dynamic safe screening
rules (El Ghaoui et al., 2012; Bonnefoy et al., 2015; Fercoq
et al., 2015), which allow to safely set some useless vari-
ables to 0 before terminating (or even sometimes before
starting) the algorithm.

While learning sparse models with non-convex penal-
ties are seemingly more challenging to address, block-
coordinate descent algorithms (Breheny & Huang, 2011;
Mazumder et al., 2011) or iterative shrinkage threshold-
ing (Gong et al., 2013) algorithms can be extended to
those learning problems. Another popular way of handling
non-convexity is to consider the majorization-minimization
(MM) (Hunter & Lange, 2004) principle which consists
in iteratively minimizing a majorization of a (non-convex)
objective function. When applied to non-convex sparsity
enforcing penalty, the MM scheme leads to solving a se-
quence of weighted Lasso problems (Candès et al., 2008;
Gasso et al., 2009; Mairal, 2013).

In this paper, we propose a screening strategy that can be
applied when dealing with non-convex penalties. As far as
we know, this work is the first attempt in that direction. For
that, we consider a MM framework and in this context, our
contributions are

• the definition of a MM algorithm that produces a se-
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quence of iterates known to converge towards a criti-
cal point of our non-convex learning problem,

• the proposition of a duality gap based screening rule
for weighted Lasso, which is the core algorithm of our
MM framework,

• the introduction of conditions allowing to propagate
screened variables from one MM iteration to the next,

• we also empirically show that our screening strategy
indeed improves the running time of MM algorithms
with respect to block-coordinate descent or proximal
gradient descent methods.

2. Global non-convex framework
We introduce the problem we are interesting in, its first or-
der optimality conditions and propose an MM approach for
its resolution.

2.1. The optimization problem

We consider solving the problem of least-squares regres-
sion with a generic penalty of the form

min
w∈Rd

1

2
‖y −Xw‖22 +

d∑
j=1

rλ(|wj |) , (1)

where y ∈ Rn is a target vector, X = [x1, . . . ,xd] ∈
Rn×d is the design matrix with column-wise features xj ,
w is the coefficient vector of the model and the map rλ :
R+ 7→ R+ is concave and differentiable on [0,+∞) with
a regularization parameter λ > 0. In addition, we assume
that rλ(|w|) is lower semi-continuous function. Note that
most penalty functions such as SCAD, MCP or log sum
(see their definitions in Table 1) admit such a property.

We consider tools such as Fréchet subdifferentials and
limiting-subdifferentials (Kruger, 2003; Rockafellar &
Wets, 2009; Mordukhovich et al., 2006) well suited for
non-smooth and non-convex optimization, so that a vec-
tor w? belongs to the set of minimizers (not necessarily
global) of Problem (1) if the following Fermat condition
holds (Clarke, 1989; Kruger, 2003):

X>(y −Xw?) ∈
d∑
j=1

∂rλ(|w?j |) , (2)

with ∂rλ(·) being the Fréchet subdifferential of rλ, assum-
ing it exists at w?. In particular this is the case for the MCP,
log sum and SCAD penalties presented in Table 1. For an
illustration, we present the optimality conditions for MCP
and log sum.

Example 1. For the MCP penalty (see Table 1 for the
definition and subdifferential), it is easy to show that the
∂rλ(0) = [−λ, λ]. Hence, the Fermat condition becomes

−x>j (y −Xw?) = 0, if |w?j | > λθ

|x>j (y −Xw?)| ≤ λ, if w?j = 0

−x>j (y −Xw?) + λ sign(w?j )− w?j
θ = 0, otherwise .

(3)

Example 2. For the log sum penalty one can explicitly
compute ∂rλ(0) = [−λθ ,

λ
θ ] and leverage on smoothness

of rλ(|w|) when |w| > 0 for computing ∂rλ(|w|). Then the
above necessary condition can be translated as

−x>j (y −Xw?) + λ
sign(w?j )

θ + |w?j |
= 0, if w?j 6= 0 ,

|x>j (y −Xw?)| ≤ λ

θ
, if w?j = 0 . (4)

As we can see, first order optimality conditions lead to sim-
ple equations and inclusion.

Remark 1. There exists a critical parameter λmax such
that 0 is a critical point for the primal problem for all λ ≥
λmax. This parameter depends on the subdifferential of rλ
at 0. For the MCP penalty we have λmax , maxj |x>j y|,
and for the log sum penalty λmax , θmaxj |x>j y|. From
now on, we assume that λ ≤ λmax to avoid such irrelevant
local solutions.

2.2. Majorization-Minimization approach

There exists several majorization-minimization algorithms
for solving non-smooth and non-convex problems involv-
ing sparsity-inducing penalties (Gasso et al., 2009; Gong
et al., 2013; Mairal, 2013).

In this work, we focus on MM algorithms provably conver-
gent to a critical point of Problem 1 such as those described
by Kang et al. (2015). Their main mechanism is to itera-
tively build a majorizing surrogate objective function that
is easier to solve than the original learning problem. In the
case of non-convex penalties that are either fully concave
or that can be written as the sum of a convex and concave
functions, the idea is to linearize the concave part, and the
next iterate is obtained by optimizing the resulting surro-
gate function. Since rλ(| · |) is a concave and differentiable
function on [0,+∞), at any iterate k, we have :

rλ(|wj |) ≤ rλ(|wkj |) + r′λ(|wkj |)(|wj | − |wkj |) .

To take advantage of MM convergence properties (Kang
et al., 2015), we also majorize the objective function and
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Table 1. Common non-convex penalties with their sub-differentials. Here λ > 0, θ > 0 (θ > 1 for MCP, θ > 2 for SCAD).

Penalty rλ(|w|) ∂rλ(|w|)

Log sum λ log(1 + |w|/θ)

{ [−λ
θ
, λ
θ

]
if w = 0{

λ sign(w)
θ+|w|

}
if w > 0

MCP
{
λ|w| − w2

2θ
if |w| ≤ λθ

θλ2/2 if |w| > θλ

 [−λ, λ] if w = 0
{λ sign(w)− w

θ
} if 0 < |w| ≤ λθ

{0} if |w| > θλ

SCAD


λ|w| if |w| ≤ λ

1
2(θ−1)

(−w2 + 2θλ|w| − λ2) if λ < |w| ≤ λθ
λ2(1+θ)

2
if |w| > θλ


[−λ, λ] if w = 0
{λ sign(w)} if 0 < |w| ≤ λ{

1
θ−1

(−w + θλ sign(w))
}

if 0 < |w| ≤ λθ
{0} if |w| > θλ

our algorithm boils down to the following iterative process

wk+1 = arg min
w∈Rd

1
2‖y −Xw‖22 + 1

2α‖w −wk‖22 (5)

+

d∑
j=1

r′λ(|wkj |)|wj | ,

where α > 0 is some user-defined parameter controlling
the proximal regularization strength. Note that as α→∞,
the above problem recovers the reweighted `1 iterations
investigated by Candès et al. (2008); Gasso et al. (2009).
Moreover, when using wk = 0 (e.g., when evaluating the
first λ in a path-wise fashion, for k = 0) this recovers the
Elastic-net penalty (Zou & Hastie, 2005).

3. Proximal Weighted Lasso: coordinate
descent and screening

As we have stated, the screening rule we have developed
for regression with non-convex sparsity enforcing penalties
is based on iterative minimization of Proximal Weighted
Lasso problem. Hereafter, we briefly show that such sub-
problems can be solved by iteratively optimizing coordi-
nate wise. Then, we derive a duality gap based screening
rule to screen coordinate-wise. In what follows, we assume
that 0

0 = 01.

3.1. Primal and dual problems

Solving the following primal problem (as it encompass
Problem 5 as a special case) would prove useful in the ap-
plication of our MM framework:

min
w∈Rd

PΛ(w) , 1
2‖y−Xw‖22+ 1

2α‖w−w
′‖22+

d∑
j=1

λj |wj | .

(6)
with w′ is some pre-defined vector of Rd, and Λ =
(λ1 . . . λd)

> with λ1 ≥ 0, . . . , λd ≥ 0 some regulariza-

1This will be of interest cases where λj = 0 in Problem 6.

tion parameters. In the sequel we denote Problem 6 as the
Proximal Weighted Lasso (PWL) problem.

Problem (6) can be solved through proximal gradient de-
scent algorithm (Beck & Teboulle, 2009) but in order to
benefit from screening rules, coordinate descent algorithms
are to be privileged. Friedman et al. (2010) have proposed a
coordinate-wise update for the Elastic-net penalty and sim-
ilarly, it can be shown that for the above, the following up-
date holds for any coordinate wj and λj ≥ 0:

wj ←
1

‖xj‖22 + 1
α

sign(tj) max(0, |tj | − λj) , (7)

with tj = x>j (y −Xw + xjwj) + 1
αw
′
j .

Typically, coordinate descent algorithms visit all the vari-
ables in a cyclic way (another popular choice is sampling
uniformly at random among the coordinates) unless some
screening rules prevent them from unnecessary updates.

Recent efficient screening methods rely on producing
primal-dual approximate solutions and on defining tests
based on these approximate solutions (Fercoq et al., 2015;
Shibagaki et al., 2016; Ndiaye et al., 2017). While our
approach follows the same road, it does not result from
a straightforward extension of the works of Fercoq et al.
(2015) and Shibagaki et al. (2016) due to the proximal reg-
ularizer.

The primal objective of Proximal Weighted Lasso (given in
Equation (6)) is convex (and lower bounded) and admits at
least one global solution. To derive our screening tests, we
need to investigate the dual formulation associated to this
problem, that reads:

max
s∈Rn
v∈Rd

D(s,v) , −1

2
‖s‖22 −

α

2
‖v‖22 + s>y − v>w′ (8)

s.t. |X>s− v| 4 Λ , (9)

with the inequality operator 4 being applied in a
coordinate-wise manner. As a side result of the dual deriva-
tion (see Appendix for the details), key conditions for
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screening any primal variable wj are obtained as:

|x>j s? − v?j | − λj < 0 =⇒ w?j = 0 ,

with s? and v? being solutions of the dual formulation from
Equation (8).

3.2. Screening test

Screening test on the Proximal Weighted Lasso problem
can thus be derived if we are able to provide an upper bound
on |x>j s?−v?j | that is guaranteed to be strictly smaller than
λj . Suppose that we have an intermediate triplet of primal-
dual solution (ŵ, ŝ, v̂) with ŝ and v̂ being dual feasible2,
then we can derive the following bound

|x>j s? − v?j | = |x>j ŝ− v̂j + x>j (s? − ŝ)− (v?j − v̂j)|
≤ |x>j ŝ− v̂j |+ ‖xj‖‖s? − ŝ‖+ |v?j − v̂j | .

Now we need an upper bound on the distance between
the approximated and the optimal dual solution in order to
make screening condition exploitable. By exploiting the
property that the objective function D(s,v) of the dual
problem given in Equation (8) is quadratic and strongly
concave3, the following inequality holds

D(ŝ, v̂) ≤D(s?,v?)−∇sD(s?,v?)>(ŝ− s?)

−∇vD(s?,v?)>(v̂ − v?)

− 1

2
‖ŝ− s?‖22 −

α

2
‖v̂ − v?‖22 ,

with∇sD =
[
∂D
∂s1

, . . . , ∂D∂sn

]>
,∇vD =

[
∂D
∂v1

, . . . , ∂D∂vd

]>
.

As the dual problem is a constrained optimization prob-
lem, the first-order optimality condition for (s?,v?) reads
∇sD(s?,v?)>(s − s?) + ∇vD(s?,v?)>(v − v?) ≥ 0,
∀s ∈ Rn,v ∈ Rd; thus we have

2(D(s?,v?)−D(ŝ, v̂)) ≥ ‖ŝ− s?‖22 + α‖v̂ − v?‖22 .

By strong duality, we have PΛ(ŵ) ≥ D(s?,v?), hence

2(PΛ(ŵ)−D(ŝ, v̂)) ≥ ‖ŝ− s?‖22 + α‖v̂ − v?‖22 .

We can now use the duality gap for bounding ‖ŝ− s?‖ and
|v̂j − v?j |. Hence, given a primal-dual intermediate solu-
tion (ŵ, ŝ, v̂), with duality gap GΛ(ŵ, ŝ, v̂) , PΛ(ŵ) −
D(ŝ, v̂), the screening test for a variable j is

|x>j ŝ− v̂j |+
√

2GΛ(ŵ, ŝ, v̂)
(
‖xj‖+

1

α

)
︸ ︷︷ ︸

T
(λj)

j (ŵ,ŝ,v̂)

< λj , (10)

and we can safely state that the j-th coordinate of w? is
zero when this happens.

2meaning |X>ŝ− v̂| 4 Λ.
3see (Nesterov, 2004) for a precise definition of strong con-

vexity/concavity.

Finding approximate primal-dual solutions: In our
case of interest, the Proximal Weighted Lasso problem is
solved in its primal form using a coordinate descent algo-
rithm that optimizes one coordinate at a time. Hence, an
approximate primal solution ŵ is easy to obtain by consid-
ering the current solution at a given iteration of the algo-
rithm. From this primal solution, we show how to obtain
a dual feasible solution ŝ that can be considered for the
screening test.

One can check the following primal/dual link (for instance
by deriving the first order conditions of the maximization
in Equation 16 or equivalent formulation 21, see Appendix)

y −Xw? = s? and w? −w′? = αv?

with the constraints that |x>j s? − v?j | ≤ λj ,∀j ∈ [d].

Hence, a good approximation of the dual solution can be
obtained by scaling the residual vector y−Xŵ such that it
becomes dual feasible. Indeed, the condition |x>j s?−v?j | ≤
λj ,∀j ∈ [d] is guaranteed only at optimality. To avoid
issues with dividing by vanishing λj’s, let us consider the
set S = {j ∈ [d] : λj > 0} of associated indexes and
assume that this set is non-empty. Then, one can define

j† = arg max
j∈S

1
λj

∣∣x>j (y −Xŵ)− 1
α (ŵj − w′j)

∣∣︸ ︷︷ ︸
ρ(j)

. (11)

For all j ∈ S , if ρ(j†) ≤ 1 then , ŝ , y − Xŵ and
v = 1

α (ŵ − w′) are dual feasible, no scaling is needed.
If ρ(j†) > 1, we define the approximate dual solution as
ŝ = y−Xŵ

ρ(j†)
and v̂ = ŵ−w′

αρ(j†)
which are dual feasible. Hence,

in practice, we compute our screening test using the triplet
{ŵ, y−Xŵ

max(1,ρ(j†))
, ŵ−w′
αmax(1,ρ(j†))

}.
Remark 2. As the above dual approximation is valid only
for components of λj > 0, we have added a special treat-
ment for components j ∈ [d] \ S setting v̂j = x>j ŝ for
such indexes, guaranteeing dual feasibility. Note that the
special case λj = 0 is not an innocuous case. For some
non-convex penalties like MCP or SCAD, their gradient r′λ
is equal to 0 for large values and this is one of their key
statistical property. Hence, the situation in which λj = 0
is very likely to occur in practice for these penalties.

Comparing with other screening tests: Our screening
test exploits duality gap and strong concavity of the dual
function, and the resulting test is similar to the one derived
by Fercoq et al. (2015). Indeed, it can be shown that Equa-
tion 10 boils down to be a test based on a sphere centered on
ŝ with radius

√
2GΛ(ŵ, ŝ, v̂). The main difference relies

on the threshold of the test λj , which differs on a coordinate
basis instead of being uniform.

Similarly to the GAP test of Fercoq et al. (2015), our
screening rule come with theoretical properties. It can be
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Algorithm 1 Proximal Weighted Lasso (PWL)
Input: X, y, w0,Λ, α, LstScreen
Output: w, r = y −Xw

1: k ← 0
2: repeat
3: for variable j 6∈ LstScreen do
4: wk+1

j ← update coordinatewkj using Equation (7)
5: end for
6: compute duality gap, r = y−Xwk+1, approximate

dual variables
7: for variable j 6∈ LstScreen do
8: update screening condition using Equation (10)
9: end for

10: k ← k + 1
11: until convergence

shown that if we have a converging sequence {ŵk} of pri-
mal coefficients limk→∞ ŵk = w?, then ŝk and v̂k de-
fined as above converge to s? and v?. Moreover, we can
state a property showing the ability of our screening rule
to remove irrelevant variables after a finite number of iter-
ations.

Property 1. Define the Equicorrelation set4 of the Proxi-
mal Weighted Lasso as E? , {j ∈ [d] : |x>j s?−v?j | = λj}
and Ek , {j ∈ [d] : |x>j ŝk − v̂kj | ≥ λj} obtained at it-
eration k of an algorithm solving the Proximal Weighted
Lasso. Then, there exists an iteration k0 ∈ N s.t. ∀k ≥ k0,
Ek ⊂ E?.

Proof. Because ŵk, ŝk and v̂k are convergent, owing to
the strong duality, the duality gap also converges towards
zero. Now, for any given ε, define k0 such that ∀k ≥ k0,
we have

‖ŝk − s?‖2 ≤ ε, ‖v̂k − v?‖∞ ≤ ε and
√

2GΛ ≤ ε .

For j 6∈ E?, we have

|x>j (ŝk − s?)− (v̂kj − v?j )| ≤ |x>j (ŝk − s?)|+ |(v̂kj − v?j )|
≤ (max

j 6∈E?
‖xj‖+ 1)ε .

From triangle inequality we have:

|x>j ŝk − v̂kj | ≤ |x>j (ŝk − s?)− (v̂kj − v?j )|+ |x>j s? − v?j |
≤ (max

j 6∈E?
‖xj‖+ 1)ε+ |x>j s? − v?j |

If we add
√

2GΛ

(
‖xj‖+ 1

α

)
on both sides, we get

T
(λj)
j ≤

(
2 max
j 6∈E?

‖xj‖+ 1 +
1

α

)
ε+ |x>j s? − v?j | .

4following a terminology introduced byTibshirani (2013)

Now define the constant C , minj 6∈E? [λj − |x>j s? − v?j |]
and because j 6∈ E?, C > 0. Hence, if we choose

ε <
C

2 maxj 6∈E? ‖xj‖+ 1 + 1
α

,

we have T (λj)
j < λj which means that the variable j has

been screened, hence j 6∈ Ek. To conclude, we have j 6∈ E?
implies that j 6∈ Ek, which also translates in Ek ⊂ E?.

This property thus tells that all the zero variables of w? are
correctly detected and screened by our screening rule in a
finite number of iterations of the algorithm.

4. Screening rule for non-convex regularizers
Now that we have described the inner solver and its screen-
ing rule, we are going to analyze how this rule can be im-
proved into a majorization-minimization (MM) approach.

4.1. Majorization-minimization approaches and
screening

At first, let us discuss some properties of our MM algo-
rithm. According to the first order condition of the Proxi-
mal Weighted Lasso related to the MM problem at iteration
k, the following inequality holds for any j ∈ [d]

|x>j sk,? − v
k,?
j | ≤ λ

k
j ,

where the superscript denotes the optimal solution at iter-
ation k. Owing to the convergence properties of the MM
algorithm Kang et al. (2015), we know that the sequence
{wk} converges towards a vector satisfying Equation (2).
Owing to the continuity of rλ(|w|), we deduce that the se-
quence {λkj } also converges towards a λ?j . Thus, by taking
the limits of the above inequality, the following condition
holds for w?j = 0:

|x>j s? − v?j | ≤ λ?j ,

with λ?j = r′λ(|w?j |). This inequality basically tells us about
the relation between vanishing primal component and the
optimal dual variable at each iteration k. While this sug-
gests that screening within each inner problem by defining
λj in Equation (6) as λkj = r′λ(|wkj |) should improve ef-
ficiency of the global MM solver, it does not tell whether
screened variables at iteration k are going to be screened
at the next iteration as the λkj ’s are also expected to vary
between iterations.

Remark 3. In general, the behavior of a λj across MM it-
erations strongly depends on an initial w0 and the optimal
w?. For instance, if one variable w0

j is initialized at 0 and
w?j is large, λj will tend to be decreasing across iterations.
Conversely, λj will tend to increase.



Screening Rules for Lasso with Non-Convex Sparse Regularizers

4.2. Propagating screening conditions

In what follows, we derive conditions on allowing to prop-
agate screened coefficients from one iteration to another in
the MM framework.

Property 2. Consider a Proximal Weighted Lasso problem
with weights {λj} and its primal-dual approximate solu-
tions ŵ, ŝ and v̂ allowing to evaluate a screening test in
Equation 10. Suppose that we have a new set of weight
Λν = {λνj }j=1,...,d defining a new Proximal Weighted
Lasso problem. Given a primal-dual approximate solution
defined by the triplet (ŵν ,ŝν , v̂ν) for the latter problem, a
screening test for variable j reads

T
(λj)
j (ŵ, ŝ, v̂)+‖xj‖(a+

√
2b)+c+

1

α

√
2b < λνj , (12)

where T
(λj)
j (ŵ, ŝ, v̂) is the screening test for j at λj ,

a, b and c are constants such that ‖ŝν − ŝ‖2 ≤ a,
|GΛ(ŵ, ŝ, v̂)−GΛν (ŵν , ŝν , v̂ν)| ≤ b and |v̂νj − v̂j | ≤ c.

Proof. The screening test for the novel Proximal Weighted
Lasso problem for parameter Λνj can be written as

|x>j ŝν − v̂ν |+
√

2GΛν (ŵν , ŝν ,vν)
(
‖xj‖+ 1

α

)
< λνj .

Let us bound the terms in the left-hand side of this inequal-
ity. At first, we have:

|x>j ŝν − v̂ν | ≤ |x>j ŝ− v̂j |+ |x>j (ŝν − ŝ)|+ |v̂νj − v̂j |
≤ |x>j ŝ− v̂j |+ ‖xj‖‖ŝν − ŝ‖+ |v̂νj − v̂j | ,

and √
GΛν ≤

√
|GΛν −GΛ|+ |GΛ| (13)

≤
√
|GΛν −GΛ|+

√
|GΛ| .

where the last inequality holds by applying the norm prop-
erty ‖x‖2 ≤ ‖x‖1 to the 2-dimensional vector of compo-
nent [

√
|GΛν −GΛ|,

√
|GΛ|], where we have drop the de-

pendence on (ŵ, ŝ, v̂) and (ŵν , ŝν , v̂ν) for simplicity. By
gathering the pieces together, the left-hand side of Equation
4.2 can be bounded by

|x>j ŝ− v̂j |+ ‖xj‖‖ŝν − ŝ‖+
√

2GΛ

(
‖xj‖+ 1

α

)
(14)

+
√

2|GΛν −GΛ|
(
‖xj‖+ 1

α

)
+ |v̂νj − v̂j | .

which leads us to the novel screening test

T
(λj)
j (ŵ, ŝ, v̂)+‖xj‖(a+

√
2b)+c+ 1

α

√
2b ≤ λνj . (15)

with T (λj)
j (ŵ, ŝ, v̂) defined in Equation (10).

In order to make this screening test tractable, we need at
first an approximation ŝν of the dual solution, then an up-
per bound on the norm of ‖ŝ − ŝν‖ and a bound on the

Algorithm 2 MM algorithm for Lasso with penalty rλ(|w|)
Input: X, y, λ, w0, α

1: k ← 0
2: repeat
3: Λk = {λkj }j=1,...,d ← {r′λ(|wkj |)}j=1,...,d

4: compute approximate dual sk and duality gap GΛk

given wk and Λk

5: if needed then
6: compute screening scores T (λj)

j (wk, sk,vk) ac-
cording to Eq. (10)

7: store reference duality gap and approximate dual
8: else
9: estimate screening scores according to Eq. (12)

10: end if
11: LstScreen ← updated screened variables list based

on results of Line 6 or 9
12: wk+1, y −Xwk+1← PWL(X,y,wk,Λk,α,Lstcreen)
13: k ← k + 1
14: until convergence

difference in duality gap |GΛν −GΛ|. In practice, we will
define ŝν = y−Xŵ

ρν(j†)
and then compute exactly ‖ŝ− ŝν‖ and

|GΛν − GΛ|. Interestingly, since we consider the primal
solution ŵ as our approximate primal solution for the new
problem, computing ρν(j) is only costs an element-wise
division since y − Xŵ and |x>j (y − Xŵ)| have already
been pre-computed at the previous MM iteration. Another
interesting point to highlight is that given pre-computed
screening values {T (λj)

j (ŵ, ŝ, v̂)}, the screening test given
in Equation (12) does not involve any additional dot prod-
uct and thus is cheaper to compute.

4.3. Algorithm

When considering MM algorithms for handling non-
convex penalties, we advocate the use of weighted Lasso
with screening as a solver for Equation 5 and a screen-
ing variable propagation condition as given in Equation 12.
This last property allows us to cheaply evaluating whether
a variable can be screened before entering in the inner
solver. However, Equation (12) also needs the screening
score computed at some previous {λj} and a trade-off has
thus to be sought between relevance of the test when λνj is
not too far from λj and the computational time needed for
evaluating T (λj)

j . In practice, we compute the exact score

T
(λj)
j (ŵ, ŝ, v̂) every 10 iterations and apply Equation (12)

for the rest of the iterations. This results in Algorithm 2
where the inner solvers, denoted as PWL and solved ac-
cording to Algorithm 1, are warm-started with previous
outputs and provided with a list of already screened vari-
ables. In practice, α > 0 helps us guaranteeing theoret-
ical convergence of the sequence {wk} and we have set
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Figure 1. Comparing running time for coordinate descent (CD) and proximal gradient algorithms as well as screening-based CD and
MM algorithms under different tolerances on the stopping condition and under different samples, features settings. For all experiments,
we have 5 active variables. (left) n = 50, d = 100, σ = 2. (right) n = 500, d = 5000, σ = 2

α = 109 for all our experiments, leading to very small reg-
ularization allowing large deviations from wk.

5. Numerical experiments
The goal of screening rules is to improve the efficiency
of solvers by focusing only on variables that are non-
vanishing. In this section, we thus report the computational
gains we obtain owing to our screening strategy.

5.1. Experimental set-up

Our goal is to compare the computational running time of
different algorithms for computing a regularization path
on problem (1). For most relevant non-convex regulariz-
ers, coordinatewise update (Breheny & Huang, 2011) and
proximal operator (Gong et al., 2013) can be derived in a
closed-form. For our experiments, we have used the log-
sum penalty which has an hyperparameter θ. Hence, our
regularization path involves 2 parameters (λt,θt). The set
of {λt}Nt−1

t=0 has been defined as λt , λmax10−
3t

Nt−1 , Nt
being dependent of the problems and θ ∈ {0.01, 0.1, 1}.

Our baseline method should have been an MM algo-
rithm, in which each subproblem as given in Equation
5 is solved using a coordinate descent algorithm without
screening. However, due to its very poor running time,
we have omitted its performance. Two other competi-
tors that directly address the non-convex learning problems
have instead been investigated: the first one, denoted as
GIST, uses a majorization of the loss function and itera-
tive shrinkage-thresholding (Gong et al., 2013) while the
second one, named ncxCD is a coordinate descent algo-
rithm that directly handles non-convex penalties (Breheny
& Huang, 2011; Mazumder et al., 2011). We have named

MM-screen our method that screens within each Proxi-
mal Weighted Lasso and propagates screening scores while
the genuine version drops the screening propagation (but
screening inside inner solvers is kept), is denoted MM-
genuine. All algorithms have been stopped when opti-
mality conditions as described in Equation 4 are satisfied
up to the same tolerance τ . Note that all algorithms have
been implemented in Python/Numpy. Hence, this may give
GIST a slight computational advantage over coordinate de-
scent approaches that heavily benefit on loop efficiency of
low level languages. For our MM approaches, we stop the
inner solver of the Proximal Weighted Lasso when the du-
ality gap is smaller than 10−4 and screening is computed
every 5 iterations. In the outer iterations, we perform the
screening every 10 iterations.

5.2. Toy problem

Our toy regression problem has been built as follows. The
entries of the regression design matrix X ∈ Rn×d are
drawn uniformly from a Gaussian distribution of zero mean
and variance 4. For a given n and d and a number p of ac-
tive variables, the true coefficient vector w? is obtained as
follows. The p non-zero positions are chosen randomly,
and their values are drawn from a zero-mean unit variance
Gaussian distribution, to which we added ±0.1 according
to the sign of w?j . Finally, the target vector is obtained as
y = Xw? + e where e is a random noise vector drawn
from a Gaussian distribution with zero-mean and standard
deviation σ. For the toy problem, we have set Nt = 50.

Figure 1 presents the running time needed for the differ-
ent algorithms to reach convergence under different set-
tings. We note that indifferently to the settings our screen-
ing rules help in reducing the computational time by a fac-
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Figure 2. Computational gain of propagating screening within MM iterations (left) w.r.t. number of features at a KKT tolerance of 10−4.
(middle) w.r.t. to noise level at a KKT tolerance of 10−4. (right) w.r.t. number of features at different tolerance in a low-noise regime.
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Figure 3. Running time for computing the regularization path on (left) the dense Leukemia dataset n = 72, d = 7129. (right) sparse
dataset Newsgroup with n = 961 and d = 21319.

tor of about 5 compared to a plain non-convex coordinate
descent. The gain compared to GIST is mostly notable for
high-precision and noisy problems.

We have also analyzed the benefit brought by our screening
propagation strategy. Figure 2 presents the gain in compu-
tation time when comparing MM screening and MM gen-
uine. As we have kept the number of relevant features to
5, one can note that for a fixed amount of noise the gain is
around 1.8 for a wide range of dimensionality. Similarly,
the gain is almost constant for a large range of noise and the
best benefit occurs in a low-noise setting. More interest-
ingly, we have compared this gain for increasing precision
and for a low-noise situation σ = 0.01, which is classical
noise level in the screening literature (Ndiaye et al., 2016;
Tibshirani et al., 2012). We can note from the mostright
panel of Figure 2 that the more precision we require on
the resolution of the learning problem, the more we benefit
from screening propagation. For a tolerance of 10−8, the
gain peaks at about 6.5 whereas in most regimes of number
of features, the gain is about 4. Even for a lower tolerance,
the genuine screening approach is 4 times slower than the
full approach we propose.

5.3. Real-world datasets

We have also run the comparison on different real datasets.
Figure 3 presents the results obtained on the leukemia
dataset, which is a dense data with n = 72 examples in
dimension d = 7129. For the path computation, the set of
λt has been fixed to Nt = 20 elements. Remark that the
gain compared to ncvxCD varies from 3 to 5 depending
on the tolerance and is about 4 compared to GIST at high
tolerance. On the right panel of Figure 3, we compare the
gain in running time brought by screening propagation rule
in a real world sparse dataset newsgroups in which we have
kept only 2 categories (religion and graphics) resulting in
n = 961 and d = 21319. We can note that the gain is sim-
ilar to what we have observed on the toy problem ranging
in between 1.3 and 1.8.

6. Conclusion
We have presented the first screening rule strategy
that handles sparsity-inducing non-convex regularizers.
The approach we propose is based on a majorization-
minimization framework in which each inner iteration
solves a Proximal Weighted Lasso problem. We introduced
a screening rule for this learning problem and a rule for
propagating screened variables within MM iterations. In-
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terestingly, our screening rule for the weighted Lasso is
able to identify all the variables to be screened in a finite
amount of time. We have carried out several numerical ex-
periments showing the benefits of the proposed approach
compared to methods directly handling the non-convexity
of the regularizers and illustrating the situation in which our
propagating-screening rule helps in accelerating efficiency
of the solver.
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Supplementary Material of “Screening rules for Lasso with non-convex sparse regularizers”
Dual problem of the weighted Lasso minimization

Let recall the weighted lasso problem

min
w∈Rd

1
2‖y −Xw‖22 + 1

2α‖w −w′‖22 +

d∑
j=1

λj |wj | .

This is Elastic-Net type problem and can be expressed as

min
w∈Rd

1
2‖ỹ − X̃w‖22 +

d∑
i=1

λj |wj |,

where ỹ =

[
y
w′√
α

]
∈ Rn+d and X̃ =

[
X
I√
α

]
∈ R(n+d)×d .

Let ãi = X̃>i,: and φi(zi) = 1
2 (ỹi−zi)2 being the quadratic loss function. Let its convex conjugate (Boyd & Vandenberghe,

2004) being φ∗i (ηi) = maxzi ηizi − φi(zi) for a scalar ηi, which results in φ∗i (ηi) = 1
2η

2
i + ηiỹi. Note also that φi = φ∗∗i

as φi is convex.

Following (Johnson & Guestrin, 2015) we derive the dual of the weighted problem through these steps

min
w∈Rd

1
2‖ỹ − X̃w‖22 +

d∑
i=1

λj |wj |

= min
w∈Rd

1
2

n+d∑
i=1

(ỹi − ã>i w)2 +

d∑
i=1

λj |wj |

= min
w∈Rd

n+d∑
i=1

φi(ã
>
i w) +

d∑
i=1

λj |wj |

= min
w∈Rd

n+d∑
i=1

φ∗∗i (ã>i w) +

d∑
i=1

λj |wj |

= min
w∈Rd

n+d∑
i=1

max
ηi

[(ã>i w)ηi − φ∗i (ηi)] +

d∑
i=1

λj |wj | (16)

= min
w∈Rd

max
η∈Rn+d

−
n+d∑
i=1

φ∗i (ηi) + w>X̃>η +

d∑
i=1

λj |wj |

= max
η∈Rn+d

−
n+d∑
i=1

φ∗i (ηi) + min
w∈Rd

w>X̃>η +

d∑
i=1

λj |wj |

= max
η:|X̃>η|4Λ

− 1
2‖η‖

2
2 − η>ỹ . (17)

The dual objective function is obtained by substituting the expression φ∗i and using the optimality condition of the problem

min
w∈Rd

w>X̃>η +

d∑
i=1

λj |wj | . (18)

This problem is separable and optimality condition with respect to any wj is as follows, provided gj =
(
X̃>η

)
j{

gj + λjsign(wj) = 0 if wj 6= 0

|gj | ≤ λj if wj = 0.
(19)
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The latter condition implies the coordinate-wise inequality constraint |X̃>η| 4 Λ with Λ> =
(
λ1, . . . , λd

)
. Also we can

easily establish that gjwj + λj |wj | = 0. Hence the objective function in Equation (18) vanishes.

Finally let us decompose the dual vector as η =

[
−s√
αv

]
where s ∈ Rn and v ∈ Rd. Recalling the form of ỹ and X̃, it is

easy to see that the dual problem (17) becomes

max
s,v:|X>s−v|4Λ

− 1
2‖s‖

2
2 − α

2 ‖v‖
2
2 + s>y − v>w′ .

Also, from (19), it holds the screening conditions

|x>j s− vj | < λj =⇒ wj = 0 , ∀j ∈ [d] , (20)

remind that xj = X:,j is the jth covariate. In addition, the maximisation in Equation (16) takes the form

max
s,v
− 1

2‖s‖
2
2 − α

2 ‖v‖
2
2 + s>(y −Xw) + v>(w −w′) . (21)

Thus given an optimal solution w?, we may have s? = y−Xw? and αv? = w?−w′, by deriving the first order optimality
conditions of this maximization problem.
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