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REMAINDER PADÉ APPROXIMANTS FOR HYPERGEOMETRIC
SERIES

MARC PRÉVOST AND TANGUY RIVOAL

Abstract. Remainder Padé Approximation (RPA) consists in adding to the n-th partial
sum of a series a suitable Padé approximant of the asymptotic expansion in the variable
1/n of the remainder term. In a previous paper, we proved the non-trivial property that
the RPA of the exponential function is identical to the Padé approximant to the function
ez. In this paper, we extend this property to the hypergeometric series 1F1(1; a; z) and

2F0(b, 1; z).

1. Introduction

1.1. Remainder Padé Approximants. In [5], the first author introduced a new kind of
rational approximation, the Remainder Padé Approximants (RPA). They are defined as
follows. Let f(z) =

∑∞
k=0 akz

k ∈ C[[z]]; for simplicity of the exposition, in the discussion
below f is assumed to be convergent in a diskD of positive radius (1). For any integer n ≥ 0,
we assume the existence of certain functions bn(z) ∈ C(z) such that the normalized remain-
der series Φ(z, n) := 1

bn(z)

∑∞
k=n akz

k admits, for any fixed z ∈ D \ {zeros of all the bn}, an

asymptotic expansion as n→ +∞ of the form

Φ(z, n) ∼ Φ̂z

( 1

n

)
:=

∞∑
k=0

φk(z)

nk
∈ C(z)

[[ 1

n

]]
.

Let [p/q]Φ̂z(t) denote the ordinary Padé approximant of degrees p and q of the formal power

series Φ̂z(t) at t = 0; it belongs to C(z, t). We thus have

f(z) =
n−1∑
k=0

akz
k + bn(z)Φn(z) ≈

n∑
k=0

akz
k + bn(z)

(
[p/q]Φ̂z(t)

)
t=1/u(n)

. (1.1)

At this stage, the ≈ sign does not have any particular meaning, and the sequence of
complex numbers u(n) is n+ o(n) but not necessarily equal to n. We say that the rational
fraction

A(z)

B(z)
:=

n−1∑
k=0

akz
k + bn(z)

(
[p/q]Φ̂z(t)

)
t=1/u(n)
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1It is possible to extend the notion of RPA when f diverges everywhere but is summable in some sense;

we present an exemple of this situation in Theorem 2.
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is a Remainder Padé Approximant of f(z), where A(z), B(z) ∈ C[z] are of lowest degrees.
In certain cases, there exists a sequence u(n) such that the corresponding RPA of f(z)
coincides with an ordinary Padé approximant of f(z) at z = 0, say [N/D]f(z). It is not
yet understood for which class of functions f this remarkable fact happens. When it does
happen, the ≈ sign in (1.1) can then be understood as follows: the order at z = 0 of
the remainder B(z)f(z) − A(z) is larger than or equal to N + D + 1, the order of Padé
approximation.

More generally, it also happens that, instead of Padé approximants, we recover some
previsously known functional approximations of f(z), or even numerical approximations
of certain of its values. For instance, the first author constructed certain sequences of
RPA for ζ(2) =

∑∞
k=1 1/k2 and ζ(3) =

∑∞
k=1 1/k3 (both can be viewed as values of the

polylogarithms
∑∞

k=1 z
k/ks at z = 1) and proved that they are exactly the sequences of

rationals numbers used by Apéry [2] to prove the irrationality of ζ(2) and ζ(3). In [7], the
second author used a modification of these RPA to produce a sequence of fast converging
rational approximations for Catalan’s constant G =

∑∞
k=0(−1)k/(2k + 1)2. In [6], using

certain discrete multiple orthogonal polynomials introduced in [3], which generalize the
classical Charlier orthogonal polynomials, we proved that certain RPA of ez provide the
Padé approximants of the function ez.

All these examples provide various meanings to the ≈ sign in (1.1) and we use the
vocable RPA phenomenon to cover such non-trivial properties.

We recall the notion of type II (diagonal) Padé approximants. For a given family
(Fj(X))j=1,...,r of formal series in C[[X]] and any integers p and q such that p ≥ (r−1)q ≥ 0,
there exist (by linear algebra) some polynomials P1(x), . . . , Pr(x) and Q(X) in C[X], not
all 0, such that deg(Pj) ≤ p, deg(Q) ≤ r · q and

Q(X)Fj(X)− Pj(X) = O(Xp+q+1), 1 ≤ j ≤ r.

The fractions Pj/Q are unique and are by definition the type II Padé approximants of
(Fj(X))j=1,...,r of parameters (p, q). When r = 1, we recover the ordinary Padé approxi-
mants [p/q] of F1(X).

1.2. The results. The goal of this paper is to show that the RPA phenomenon occurs (in
various generality) for the hypergeometric series

Ea(z) := 1F1(1; a; z) =
∞∑
k=0

zk

(a)k
and 2F0(b, 1; z) =

∞∑
k=0

(b)kz
k.

We assume that a ∈ C \ Z≤0. The former series generalizes the exponential function

1F1(1; 1; z) = exp(z), while the latter generalizes Euler’s series 2F0(1, 1; z) =
∑∞

k=0 k!zk.
The variable z is a formal one in Theorems 1 and 2 below. However, it is important to have
in mind that, though the series Ea(z) is an entire function of z, the 2F0(b, 1; z) diverges for
every z. To overcome this divergence, we shall first work the function

Eb(z) :=
1

Γ(b)

∫ ∞
0

ub−1

1− uz
e−udu
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defined for <(b) > 0 and analytic for z ∈ C \ [0,+∞). It admits an asymptotic expansion

Êb(z) as z → 0 in any angular sector centered at 0 that does not contain [0,+∞). It turns

out that Êb(z) = 2F0(b, 1; z) in such sectors.

To state our results, we need to introduce a certain number of notations. The pa-
rameters αj, j = 1, . . . , r, are pairwise distinct non-zero complex numbers, and we set
α := (αj)j=1,...,r. For any z ∈ C and any t ∈ C such that 1/t /∈ N, we define

Φz(t) :=
∞∑
k=0

zk

(1− 1/t)k
.

For any j = 1, . . . , r and any n ≥ 0, we have the trivial identity

∞∑
k=0

(αjz)k

(a)k
=

n−1∑
k=0

(αjz)k

(a)k
+

(αjz)n

(a)n
Φαjz

(
−1

a− 1 + n

)
. (1.2)

In [6], it has been proved that, for any fixed z ∈ C, Φz(t) admits an asymptotic expan-

sion Φ̂z(t) :=
∑∞

k=0 ϕk(−z)tk as t → 0, t < 0, where the coefficients ϕk(z) are Touchard
exponential polynomials of degree k. The latter are defined by the exponential generating

function ez(e
X−1) =

∑∞
k=0 ϕk(z) Xk

k!
(see [10]).

We provided in [6] explicit expressions for the type II Padé approximants at t = 0 of

parameters (rp − 1, p) for the formal power series Φ̂αjz(t) in C[z][[t]] for j = 1, . . . , r: we
denote them by Pj,α,p(t, z)/Qα,p(t, z), and the expressions of these polynomials in t are
given in §2. It turns out that they are also polynomials in z.

We now “replace” Φαjz

( −1
a−1+n

)
in (1.2) by the corresponding simultaneous Padé approx-

imant of parameters (rp−1, p) of Φ̂αjz(t) evaluated at t = −1/(a−1+n) (this substitution
is possible because Qα,p(−1/(a− 1 + n), z) does not vanish identically as a function of z).
This alteration of (1.2) provides the formal Laurent series

Rj,n,α,p(z) :=
∞∑
k=0

(αjz)k

(a)k
−

n−1∑
k=0

(αjz)k

(a)k
− (αjz)n

(a)n

Pj,α,p(
−1

a−1+n
, z)

Qα,p(
−1

a−1+n
, z)

, j = 1, . . . , r,

and we want to know in which sense they are ≈ 0. By construction, for every j, the rational
fraction

n−1∑
k=0

(αjz)k

(a)k
+

(αjz)n

(a)n

Pj,α,p
( −1
a−1+n

, z
)

Qα,p

( −1
a−1+n

, z
) (1.3)

is a RPA of Ea(αjz). The degrees of its numerator and denominator are a priori bounded
by n+ rp− 1 and rp respectively. A better bound holds for the numerator ((i) below) and
it is crucial to prove (ii). (Throughout the paper, O(zc) denotes a Laurent series in z with
order equal to c at z = 0.)

Theorem 1. Let us fix the integers r ≥ 1, n ≥ 1, p ≥ 0, such that n ≥ p, a ∈ C \ Z≤0,
α1, . . . , αr ∈ C pairwise distinct.
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(i) The degrees of the numerator and denominator of the RPA in (1.3) are bounded by
n+ (r − 1)p− 1 and rp respectively, and moreover Rj,n,α,p(z) = O(zn+rp).

(ii) The collection of the RPA in (1.3), j = 1, . . . , r, is the type II Padé approximant
of (Ea(αjz))j=1,...,r of parameters (n+ (r − 1)p− 1, p).

(iii) For r = 1 and α1 = 1, (ii) gives the following equality of rational fractions:

n−1∑
k=0

zk

(a)k
+

zn

(a)n

(
[p− 1/p]Φ̂z(t)

)
t=−1/(a−1+n)

= [n− 1/p]Ea(z),

For a generic value of a, our proof needs the assumption that n ≥ p. However, if a = 1,
it can be removed in the statement of Theorem 1, and we simply recover the results from
[6]. The explanation of this fact is Identity (2.5) in §2.

Let us now describe our results for the function Eb(z). For any n ≥ 0, b such that
<(b) > 0 and z ∈ C \ [0,+∞), we have the identity (proved in §3)

Eb(z) =
n−1∑
k=0

(b)kz
k + (b)nz

nΨz

(
1

b− 1 + n

)
(1.4)

where

Ψz(t) =
1

Γ(1 + 1/t)

∫ ∞
0

u1/t

1− uz
e−udu

is defined for any z ∈ C \ (0,+∞) and any t such that <(1/t) > −1 (in particular, for any
t > 0). We shall prove in §3 that when z < 0, Ψz(t) admits an asymptotic expansion as
t→ 0, t > 0, given by (2)

Ψ̂z(t) := −1

z

∞∑
k=0

ϕk(1/z)tk+1 = − t
z

Φ̂−1/z(t). (1.5)

It then immediately follows that the Padé approximant [p/p] at t = 0 of the formal power

series Ψ̂z(t) ∈ C[1/z][[t]] is − t
z

Pj,1,p(t,−1/z)

Q1,p(t,−1/z)
where the polynomials are those used to construct

the Padé approximants [p− 1/p] of Φ̂z(t) when r = 1.

In (1.4), we now “replace” Eb(z) by Êb(z), and Ψz

(
1

b−1+n

)
by the Padé approximant [p/p]

of Ψ̂z(t) evaluated at t = 1/(b− 1 +n) (this subtitution is possible because Q1,p(1/(b− 1 +
n), 1/z) does not vanish identically as a function of z). This alteration of (1.4) provides
the formal Laurent series

Sn,p(z) := Êb(z)−
n−1∑
k=0

(b)kz
k +

(b)nz
n−1

(b− 1 + n)

Pj,1,p(
1

b−1+n
,−1

z
)

Q1,p(
1

b−1+n
,−1

z
)
,

2This identity is reminiscent of André’s duality between solutions of E-operators at z = 0 and z =∞;

see [1]. The former involve function like Ea(z), while the latter involve functions like Êb(1/z), with a, b ∈ Q.
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and we want to know in which sense it is ≈ 0. Because of (1.4), the rational fraction

n−1∑
k=0

(b)kz
k − (b)nz

n−1

(b− 1 + n)

Pj,1,p(
1

b−1+n
,−1

z
)

Q1,p(
1

b−1+n
,−1

z
)

(1.6)

can be viewed as a RPA of Eb(z) in an extended sense. The degrees of its numerator and
denominator are a priori bounded by n+ p− 1 and p respectively. Again, a better bound
holds for the numerator ((i) below) and again it is crucial to prove (ii).

Theorem 2. Let us fix b ∈ C \ Z≤0, and the integers n ≥ 1, p ≥ 0 such that n ≥ p.

(i) The degrees of the numerator and denominator of the RPA in (1.6) are bounded by
n− 1 and p respectively, and moreover Sn,p(z) = O(zn+p) exists and is finite.

(ii) The RPA in (1.6) coincides with the Padé approximant [n− 1/p] of Êb(z). In other
words,

n−1∑
k=0

(b)kz
k + (b)nz

n
(
[p/p]Ψ̂z(t)

)
t=1/(b−1+n)

= [n− 1/p]Êb(z).

It seems that a RPA phenomenom similar to (ii) in Theorem 1 does not hold for any

family (Êb(βj))j=1,...,r with r ≥ 2.
The proofs of Theorems 1 and 2 are given in §2 and §3 respectively.

2. Proof of Theorem 1

Proof of (i). We recall the expressions of the type II approximants of the functions Φ̂αjz(t)
(obtained in [6]):

Pj,α,p(t, z) =

(−t)rp−1

p∑
k1,...,kr=0

( r∏
i=1

(
p

ki

)
(−αiz)p−ki

)
(−1/t)k1+···+kr

k1+···+kr∑
i=1

(αjz)i−1

(−1/t)i
, (2.1)

and

Qα,p(t, z) = (−t)rp
p∑

k1,...,kr=0

( r∏
i=1

(
p

ki

)
(−αiz)p−ki

)
(−1/t)k1+···+kr . (2.2)

The P ’s have degree rp− 1 in both t and z, while the Q’s have degree rp in both t and z.
Moreover, Qα,p(0, 1) = 1.

For the sake of simplicity, we set Kr = k1 + k2 + · · · + kr. Substituting −1/(a− 1 + n)
for t (which is possible because a /∈ Z≤0 and n ≥ 1), we get

Qα,p

( −1

a− 1 + n
, z
)

= (a+ n− 1)−rp
p∑

k1,...,kr=0

( r∏
i=1

(
p

ki

)
(−αiz)p−ki

)
(a− 1 + n)Kr
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and

Pj,α,p

( −1

a− 1 + n
, z
)

=
(a− 1 + n)1−rp(a)n−1

(αjz)n

×
p∑

k1,...,kr=0

( r∏
i=1

(
p

ki

)
(−αiz)p−ki

)
(a− 1 + n)Kr

(
Sn+Kr−1(αjz)− Sn−1(αjz)

)
where Sn(z) =

∑n
k=0 z

k/(a)k. (Note that Qα,p

( −1
a−1+n

, z
)

is clearly not identically zero, as
stated in the Introduction.)

Hence, after some simplifications, the RPAs of the functions Eαj
(z), j = 1, . . . , r, are

given by

n−1∑
k=0

(αjz)k

(a)k
+

(αjz)n

(a)n

Pj,α,p(
−1

a−1+n
, z)

Qα,p(
−1

a−1+n
, z)

=

p∑
k1,...,kr=0

( r∏
i=1

(
p

ki

)
(−αiz)p−ki

)
(a− 1 + n)KrSn+Kr−1(αjz)

p∑
k1,...,kr=0

( r∏
i=1

(
p

ki

)
(−αiz)p−ki

)
(a− 1 + n)Kr

. (2.3)

At first sight, the numerator and denominator of this rational fraction have degrees bounded
by n+ rp− 1 and rp in z respectively, but a better estimate holds for the numerator. In-
deed, we shall now prove that its degree is bounded by n + (r − 1)p − 1. Indeed, with
K ′j,r = k1 + · · ·+kj−1 +kj+1 + · · ·+kr and k′j,r = (k1, . . . , kj−1, kj+1, . . . , kr), the numerator
of (2.3) can be expressed as

p∑
k1,...,kj−1,kj+1,...,kr=0

( r∏
i=1,i 6=j

(
p

ki

)
(−αiz)p−ki

)
(a− 1 + n)K′j,rAj,k′j,r(z) (2.4)

with

Aj,k′j,r(z) =

p∑
kj=0

(
p

kj

)
(−αjz)p−kj(a− 1 + n+K ′j,r)kjSn+Kr−1(αjz).

We claim that the degree in z of the polynomial Aj,k′j,r(z) is at most max(p, n+K ′j,r)− 1.

To prove this observation, which is non-trivial, we first observe that, for any integers m, q
such that m ≥ q ≥ 0, (

ta−1Sm(xt)
)(q)

|t=1
= xqSm−q(x) + Uq(x) (2.5)

where

Uq(x) :=

q−1∑
j=0

(−1)q−j(1− a)q−jx
j.
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(Above and below in this section, all the differentiations are with respect to t.) Observe
that Uq(x) ≡ 0 if a = 1, but in general Uq(x) has degree q − 1 in x. Since (a− 1 +m)k =

(−1)k(t−a+1−m)
(k)
|t=1, it follows that

Aj,k′j,r(z) = (−1)p
p∑

k=0

(
p

k

)(
t−a+1−n−K′j,r

)(k)

|t=1

(
ta−1Sn+K′j,r+p−1(αjzt)

)(p−k)

|t=1

+

p∑
k=0

(−1)p−k
(
p

k

)
(a− 1 + n+K ′j,r)kUp−k(αjz)

= (−1)p
(
t−n−K

′
j,rSn+K′j,r+p−1(αjzt)

)(p)

|t=1
(2.6)

+

p∑
k=0

(−1)p−k
(
p

k

)
(a− 1 + n+K ′j,r)kUp−k(αjz). (2.7)

The polynomial in (2.7) obviously has degree at most p− 1 in z. On the other hand

(
t−n−K

′
j,rSn+K′j,r+p−1(αjzt)

)(p)

|t=1
=

n+K′j,r+p−1∑
j=0

(αjz)j

(a)j

(
tj−n−K

′
j,r
)(p)

|t=1

= (−1)p
n+K′j,r+p−1∑

j=0

(αjz)j

(a)j
(n+K ′j,r − j)p.

Since (n + K ′j,r − j)p = 0 for any j ∈ {n + K ′j,r, . . . , n + K ′j,r + p − 1}, it follows that the
polynomial in (2.6) has degree at most n + K ′j,r − 1, so that the degree of Aj,k′j,r(z) is at

most max(p, n + K ′j,r) − 1 as claimed. Since n ≥ p by assumption, we deduce that the
degree of the numerator of the RPAs given by (2.4) is at most n+(r−1)p−1, as expected.

To prove that Rj,n,α,p(z) = O(zn+rp), we have to multiply the denominator of (2.3) by

the series
∑∞

k=0
(αjz)

k

(a)k
and prove that the product is the sum of a polynomial of degree

n + (r − 1)p − 1 and a function which is O(zn+rp). This amounts to proving that the
coefficient cm of zm in the Taylor expansion of(

p∑
k1,...,kr=0

( r∏
i=1

(
p

ki

)
(−αiz)p−ki

)
(a− 1 + n)Kr

)
·
∞∑
k=0

(αjz)k

(a)k

is zero for m ∈ {n+ (r− 1)p, . . . , n+ rp− 1}. Let us assume that m ≥ n+ (r− 1)p. Then

cm =

p∑
k1,...,kr=0

( r∏
i=1

(
p

ki

)
(−αi)p−ki

)
(a− 1 + n)Kr

αkj
(a)k

(2.8)

where in (2.8) the integer k := m+Kr − rp is ≥ 0 (because m ≥ n+ (r − 1)p ≥ rp).
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We now also assume that m ≤ n+ rp− 1. In that case, we use the identity

(a− 1 + n)Kr

(a)k
=

1

(a)n−1

(
ta+n+Kr−2

)(n+rp−m−1)

|t=1

in (2.8) and get

cm =
1

(a)n−1

p∑
k1,...,kr=0

( r∏
i=1

(
p

ki

)
(−αi)p−ki

)
αm−rp+Kr

j

(
ta+n+Kr−2

)(n+rp−m−1)

|t=1

=
1

(a)n−1

(
ta−1+n−rp

r∏
i=1

(αj − αit)p
)(n+rp−m−1)

|t=1
.

Since t = 1 is a zero of order p of the product
∏r

i=1(αj −αit)p, it follows that cm = 0 when
n+ rp−m− 1 ≤ p− 1, i.e when m ≥ n+ (r − 1)p. This complete the proof of (i).

Proof of (ii). By unicity of type II Padé approximants, the bounds for the degrees
of the simultaneous RPAs and the order of Rj,n,α,p at 0 ensure that (2.3) provides the
expression of the type II Padé approximants of the family (Ea(αjz))j=1,...,r of parameters
(n+ (r − 1)p− 1, p) when n ≥ p.

3. Proof of Theorem 2

Let b such that <(b) > 0. We first prove (1.4) of the Introduction, i.e. that for any
n ≥ 0 and any z ∈ C \ [0,+∞),

Eb(z) =
n−1∑
k=0

(b)kz
k + (b)nz

nΨz

(
1

b− 1 + n

)
.

This follows from

(b)nz
nΨz

( 1

b− 1 + n

)
=

(b)nz
n

Γ(b+ n)

∫ ∞
0

ub+n−1

1− uz
e−udu

=
(b)n

Γ(b+ n)

∫ ∞
0

ub−1

1− uz
e−udu+

(b)n
Γ(b+ n)

∫ ∞
0

ub−1 (uz)n − 1

1− uz
e−udu

= Eb(z)− (b)n
Γ(b+ n)

n−1∑
k=0

zk
∫ ∞

0

uk+b−1e−udu

= Eb(z)−
n−1∑
k=0

(b)nΓ(b+ k)

Γ(b+ n)
zk = Eb(z)−

n−1∑
k=0

(b)kz
k.

We now prove the following lemma.

Lemma 1. Let us fix z ∈ (−∞, 0). The function Ψz(t) admits an asymptotic expansion
as t→ 0, t > 0, given by

Ψ̂z(t) := −1

z

∞∑
k=0

ϕk(1/z)tk+1 = − t
z

Φ̂−1/z(t),



9

where the coefficients ϕk(X) are Touchard exponential polynomials of degree k in X.

Proof. We first use Proposition 2 in [8] to get the following alternative expression for Ψz(t):
for any z ∈ (−∞, 0) and t > 0,

Ψz(t) =

∫ ∞
0

e−u

(1− zu)1+1/t
du.

We now set v = ln(1− uz), so that

Ψz(t) = −1

z

∫ ∞
0

e(ev−1)/ze−v/tdv (3.1)

for z ∈ (−∞, 0) and t > 0. Since v 7→ e(ev−1)/z is C∞ at v = 0, non-zero at v = 0, and∫ ∞
0

∣∣e(ev−1)/ze−v/t
∣∣ dv <∞,

we can apply Watson’s lemma ([4, Chapter 2, §2]) to (3.1): the function Ψz(t) has the
asymptotic expansion

Ψz(t) ∼ −
1

z

∞∑
k=0

( dk
dvk

e(ev−1)/z
)
|v=0

tk+1 = − t
z

∞∑
k=0

ϕk(1/z)tk, t→ 0, t > 0.

This complete the proof of the lemma. �

From now on, we view Ψ̂z(t) as a formal series in C[1/z][[t]]. As observed in the Introduc-

tion, the identity Ψ̂z(t) = − t
z
Φ̂−1/z(t) enables us to immediately get the Padé approximant

[p/p] of Ψ̂z(t) at t = 0. More generally, let β := (βj)j=1,...,r denote a family of pairwise
distinct complex numbers. Then, without further efforts, we even obtain the type II Padé

approximants at t = 0 of parameters (rp, p) of the formal power series (Ψ̂βjz(t))j=1,...,r for
j = 1, . . . , r. They are given by

− t

βjz

Pj,1/β,p(t,−1/z)

Q1/β,p(t,−1/z)
, j = 1, . . . , r

where

Pj,1/β,p(t,−1/z)

= (−t)rp−1

p∑
k1,...,kr=0

( r∏
i=1

(
p

ki

)
(βiz)ki−p

)
(−1/t)k1+···+kr

k1+···+kr∑
i=1

(−βjz)1−i

(−1/t)i
,

Q1/β,p(t,−1/z) = (−t)rp
p∑

k1,...,kr=0

( r∏
i=1

(
p

ki

)
(βiz)ki−p

)
(−1/t)k1+···+kr .

We now substitute 1/(b − 1 + n) for t in these expressions, which is possible because
<(b) > 0 and n ≥ 1. Since Q1/β,p(1/(b − 1 + n),−1/z) is clearly not identically zero, we
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get simultaneous RPAs of the family (Eb(βjz))j=1,...,r given by the formulas:

n−1∑
k=0

(b)k(βjz)k − (b)n
(βjz)n−1

(b− 1 + n)

Pj,1/β,p(
1

b−1+n
,−1

z
)

Q1/β,p(
1

b−1+n
,−1

z
)

=

zrp
p∑

k1,...,kr=0

( r∏
i=1

(
p

ki

)
(βiz)ki−p

)
(−1)KrTn−Kr−1(βjz)/(b)n−Kr

zrp
p∑

k1,...,kr=0

( r∏
i=1

(
p

ki

)
(βiz)ki−p

)
(−1)Kr/(b)n−Kr

. (3.2)

where Tn(z) :=
∑n

k=0(b)kz
k.

We are now in position to complete the proof of Theorem 2. We take r = 1 and β1 = 1
in (3.2).

Proof of (i). It is immediate that the degrees of the numerator and denominator of the
rational function in (3.2) are bounded by n− 1 and p respectively. We now want to prove
that, formally,

Êb(z)−
n−1∑
k=0

(b)kz
k +

(b)nz
n−1

(b− 1 + n)

Pj,1,p(
1

b−1+n
,−1

z
)

Q1,p(
1

b−1+n
,−1

z
)

= O(zn+p). (3.3)

The denominator of the right-hand side of (3.2) is

Q(z) :=

p∑
k=0

(−1)k
(
p
k

)
(b)n−k

zk (3.4)

so that to prove (3.3) it is enough to prove that the formal series expansion of(
p∑

k=0

(−1)k
(
p
k

)
(b)n−k

zk

)
Êb(z)

is the sum of a polynomial P (z) of degree ≤ n − 1 and a formal power series of order
≥ n+p at z = 0. This in fact means that we want to prove that P (z)/Q(z) is the [n−1/p]

Padé approximant of Êb(z). This is indeed the case because we recognize Q(z) in (3.4) as
being of the form given in [9] and unicity of Padé approximant enables us to conclude.

Proof of (ii). This is simply a summary of what was proved in (i). We have

Êb(z) =
n−1∑
k=0

(b)kz
k + (b)nz

n([p/p]Ψz(t))|t=1/(b−1+n) +O(zn+p) (3.5)

and the bounds for the degrees show that

n−1∑
k=0

(b)kz
k + (b)nz

n([p/p]Ψz(t))|t=1/(b−1+n) = [n− 1/p]Êb(z).
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The above results are a priori proved under the assumption that <(b) > 0. They hold
under the weaker assumption that b ∈ C\Z≤0 because all these identities between rational
fractions extend to this case.
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