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1. Introduction 1.1. Remainder Padé Approximants. In [START_REF] Prévost | A new proof of the irrationality of ζ(2) and ζ(3) using Padé approximants[END_REF], the first author introduced a new kind of rational approximation, the Remainder Padé Approximants (RPA). They are defined as follows. Let

f (z) = ∞ k=0 a k z k ∈ C[[z]]
; for simplicity of the exposition, in the discussion below f is assumed to be convergent in a disk D of positive radius (1 ). For any integer n ≥ 0, we assume the existence of certain functions b n (z) ∈ C(z) such that the normalized remainder series Φ(z, n) := 1 bn(z) ∞ k=n a k z k admits, for any fixed z ∈ D \ {zeros of all the b n }, an asymptotic expansion as n → +∞ of the form

Φ(z, n) ∼ Φ z 1 n := ∞ k=0 φ k (z) n k ∈ C(z) 1 n .
Let [p/q] Φz(t) denote the ordinary Padé approximant of degrees p and q of the formal power series Φ z (t) at t = 0; it belongs to C(z, t). We thus have

f (z) = n-1 k=0 a k z k + b n (z)Φ n (z) ≈ n k=0 a k z k + b n (z) [p/q] Φz(t) t=1/u(n) . (1.1) 
At this stage, the ≈ sign does not have any particular meaning, and the sequence of complex numbers u(n) is n + o(n) but not necessarily equal to n. We say that the rational fraction A(z) B(z)

:= n-1 k=0 a k z k + b n (z) [p/q] Φz(t) t=1/u(n)
is a Remainder Padé Approximant of f (z), where A(z), B(z) ∈ C[z] are of lowest degrees. In certain cases, there exists a sequence u(n) such that the corresponding RPA of f (z) coincides with an ordinary Padé approximant of f (z) at z = 0, say [N/D] f (z) . It is not yet understood for which class of functions f this remarkable fact happens. When it does happen, the ≈ sign in (1.1) can then be understood as follows: the order at z = 0 of the remainder B(z)f (z) -A(z) is larger than or equal to N + D + 1, the order of Padé approximation.

More generally, it also happens that, instead of Padé approximants, we recover some previsously known functional approximations of f (z), or even numerical approximations of certain of its values. For instance, the first author constructed certain sequences of

RPA for ζ(2) = ∞ k=1 1/k 2 and ζ(3) = ∞ k=1 1/k 3 (both can be viewed as values of the polylogarithms ∞ k=1 z k /k s at z = 1
) and proved that they are exactly the sequences of rationals numbers used by Apéry [START_REF] Apéry | Irrationality of ζ(2) and ζ(3)[END_REF] to prove the irrationality of ζ(2) and ζ(3). In [START_REF]Nombres d'Euler, approximants de Padé et constante de Catalan[END_REF], the second author used a modification of these RPA to produce a sequence of fast converging rational approximations for Catalan's constant G = ∞ k=0 (-1) k /(2k + 1) 2 . In [START_REF] Prévost | Remainder Padé approximants for the exponential function[END_REF], using certain discrete multiple orthogonal polynomials introduced in [START_REF] Arvesú | Some discrete multiple orthogonal polynomials[END_REF], which generalize the classical Charlier orthogonal polynomials, we proved that certain RPA of e z provide the Padé approximants of the function e z .

All these examples provide various meanings to the ≈ sign in (1.1) and we use the vocable RPA phenomenon to cover such non-trivial properties.

We recall the notion of type II (diagonal) Padé approximants. For a given family (F j (X)) j=1,...,r of formal series in C[[X]] and any integers p and q such that p ≥ (r-1)q ≥ 0, there exist (by linear algebra) some polynomials P 1 (x), . . . , P r (x) and Q(X) in C[X], not all 0, such that deg(P

j ) ≤ p, deg(Q) ≤ r • q and Q(X)F j (X) -P j (X) = O(X p+q+1 ), 1 ≤ j ≤ r.
The fractions P j /Q are unique and are by definition the type II Padé approximants of (F j (X)) j=1,...,r of parameters (p, q). When r = 1, we recover the ordinary Padé approximants [p/q] of F 1 (X).

1.2. The results. The goal of this paper is to show that the RPA phenomenon occurs (in various generality) for the hypergeometric series

E a (z) := 1 F 1 (1; a; z) = ∞ k=0 z k (a) k and 2 F 0 (b, 1; z) = ∞ k=0 (b) k z k .
We assume that a ∈ C \ Z ≤0 . The former series generalizes the exponential function

1 F 1 (1; 1; z) = exp(z), while the latter generalizes Euler's series 2 F 0 (1, 1; z) = ∞ k=0 k!z k .
The variable z is a formal one in Theorems 1 and 2 below. However, it is important to have in mind that, though the series E a (z) is an entire function of z, the 2 F 0 (b, 1; z) diverges for every z. To overcome this divergence, we shall first work the function

E b (z) := 1 Γ(b) ∞ 0 u b-1 1 -uz e -u du
defined for (b) > 0 and analytic for z ∈ C \ [0, +∞). It admits an asymptotic expansion E b (z) as z → 0 in any angular sector centered at 0 that does not contain [0, +∞). It turns out that E b (z) = 2 F 0 (b, 1; z) in such sectors.

To state our results, we need to introduce a certain number of notations. The parameters α j , j = 1, . . . , r, are pairwise distinct non-zero complex numbers, and we set α := (α j ) j=1,...,r . For any z ∈ C and any t ∈ C such that 1/t / ∈ N, we define

Φ z (t) := ∞ k=0 z k (1 -1/t) k .
For any j = 1, . . . , r and any n ≥ 0, we have the trivial identity

∞ k=0 (α j z) k (a) k = n-1 k=0 (α j z) k (a) k + (α j z) n (a) n Φ α j z -1 a -1 + n . (1.2)
In [START_REF] Prévost | Remainder Padé approximants for the exponential function[END_REF], it has been proved that, for any fixed z ∈ C, Φ z (t) admits an asymptotic expansion Φ z (t) := ∞ k=0 ϕ k (-z)t k as t → 0, t < 0, where the coefficients ϕ k (z) are Touchard exponential polynomials of degree k. The latter are defined by the exponential generating function e z(e X -1) = ∞ k=0 ϕ k (z) X k k! (see [START_REF] Touchard | Nombres exponentiels et nombres de Bernoulli[END_REF]). We provided in [START_REF] Prévost | Remainder Padé approximants for the exponential function[END_REF] explicit expressions for the type II Padé approximants at t = 0 of parameters (rp -1, p) for the formal power series Φ α j z (t) in C[z][[t]] for j = 1, . . . , r: we denote them by P j,α,p (t, z)/Q α,p (t, z), and the expressions of these polynomials in t are given in §2. It turns out that they are also polynomials in z.

We now "replace" Φ α j z -1 a-1+n in (1.2) by the corresponding simultaneous Padé approximant of parameters (rp -1, p) of Φ α j z (t) evaluated at t = -1/(a -1 + n) (this substitution is possible because Q α,p (-1/(a -1 + n), z) does not vanish identically as a function of z). This alteration of (1.2) provides the formal Laurent series

R j,n,α,p (z) := ∞ k=0 (α j z) k (a) k - n-1 k=0 (α j z) k (a) k - (α j z) n (a) n P j,α,p ( -1 a-1+n , z) Q α,p ( -1 a-1+n , z) , j = 1, . . . , r,
and we want to know in which sense they are ≈ 0. By construction, for every j, the rational fraction

n-1 k=0 (α j z) k (a) k + (α j z) n (a) n P j,α,p -1 a-1+n , z Q α,p -1 a-1+n , z (1.3) is a RPA of E a (α j z).
The degrees of its numerator and denominator are a priori bounded by n + rp -1 and rp respectively. A better bound holds for the numerator ((i) below) and it is crucial to prove (ii). (Throughout the paper, O(z c ) denotes a Laurent series in z with order equal to c at z = 0.)

Theorem 1. Let us fix the integers r ≥ 1, n ≥ 1, p ≥ 0, such that n ≥ p, a ∈ C \ Z ≤0 , α 1 , . . . , α r ∈ C pairwise distinct.
(i) The degrees of the numerator and denominator of the RPA in (1.3) are bounded by n + (r -1)p -1 and rp respectively, and moreover R j,n,α,p (z) = O(z n+rp ).

(ii) The collection of the RPA in (1.3), j = 1, . . . , r, is the type II Padé approximant of (E a (α j z)) j=1,...,r of parameters (n + (r -1)p -1, p).

(iii) For r = 1 and α 1 = 1, (ii) gives the following equality of rational fractions:

n-1 k=0 z k (a) k + z n (a) n [p -1/p] Φz(t) t=-1/(a-1+n) = [n -1/p] Ea(z) ,
For a generic value of a, our proof needs the assumption that n ≥ p. However, if a = 1, it can be removed in the statement of Theorem 1, and we simply recover the results from [START_REF] Prévost | Remainder Padé approximants for the exponential function[END_REF]. The explanation of this fact is Identity (2.5) in §2.

Let us now describe our results for the function E b (z). For any n ≥ 0, b such that (b) > 0 and z ∈ C \ [0, +∞), we have the identity (proved in §3)

E b (z) = n-1 k=0 (b) k z k + (b) n z n Ψ z 1 b -1 + n (1.4)
where

Ψ z (t) = 1 Γ(1 + 1/t) ∞ 0 u 1/t 1 -uz e -u du
is defined for any z ∈ C \ (0, +∞) and any t such that (1/t) > -1 (in particular, for any t > 0). We shall prove in §3 that when z < 0, Ψ z (t) admits an asymptotic expansion as t → 0, t > 0, given by ( 2)

Ψ z (t) := - 1 z ∞ k=0 ϕ k (1/z)t k+1 = - t z Φ -1/z (t). (1.5)
It then immediately follows that the Padé approximant [p/p] at t = 0 of the formal power series Ψ z (t

) ∈ C[1/z][[t]] is -t z P j,1,p (t,-1/z) Q 1,p (t,-1/z)
where the polynomials are those used to construct the Padé approximants [p -1/p] of Φ z (t) when r = 1.

In (1.4), we now "replace" E b (z) by E b (z), and Ψ z

1 b-1+n by the Padé approximant [p/p] of Ψ z (t) evaluated at t = 1/(b -1 + n) (this subtitution is possible because Q 1,p (1/(b -1 + n), 1/z)
does not vanish identically as a function of z). This alteration of (1.4) provides the formal Laurent series

S n,p (z) := E b (z) - n-1 k=0 (b) k z k + (b) n z n-1 (b -1 + n) P j,1,p ( 1 b-1+n , -1 z ) Q 1,p ( 1 b-1+n , - 1 z ) 
, 2 This identity is reminiscent of André's duality between solutions of E-operators at z = 0 and z = ∞;

see [START_REF] André | Séries Gevrey de type arithmétique, I. Théorèmes de pureté et de dualité[END_REF]. The former involve function like E a (z), while the latter involve functions like E b (1/z), with a, b ∈ Q.

and we want to know in which sense it is ≈ 0. Because of (1.4), the rational fraction

n-1 k=0 (b) k z k - (b) n z n-1 (b -1 + n) P j,1,p ( 1 b-1+n , -1 z ) Q 1,p ( 1 b-1+n , -1 z ) (1.6)
can be viewed as a RPA of E b (z) in an extended sense. The degrees of its numerator and denominator are a priori bounded by n + p -1 and p respectively. Again, a better bound holds for the numerator ((i) below) and again it is crucial to prove (ii). 

) k z k + (b) n z n [p/p] Ψz(t) t=1/(b-1+n) = [n -1/p] E b (z) .
It seems that a RPA phenomenom similar to (ii) in Theorem 1 does not hold for any family ( E b (β j )) j=1,...,r with r ≥ 2.

The proofs of Theorems 1 and 2 are given in §2 and §3 respectively.

Proof of Theorem 1

Proof of (i). We recall the expressions of the type II approximants of the functions Φ α j z (t) (obtained in [START_REF] Prévost | Remainder Padé approximants for the exponential function[END_REF]):

P j,α,p (t, z) = (-t) rp-1 p k 1 ,...,kr=0 r i=1 p k i (-α i z) p-k i (-1/t) k 1 +•••+kr k 1 +•••+kr i=1 (α j z) i-1 (-1/t) i , (2.1) 
and

Q α,p (t, z) = (-t) rp p k 1 ,...,kr=0 r i=1 p k i (-α i z) p-k i (-1/t) k 1 +•••+kr . (2.
2)

The P 's have degree rp -1 in both t and z, while the Q's have degree rp in both t and z. Moreover, Q α,p (0, 1) = 1.

For the sake of simplicity, we set

K r = k 1 + k 2 + • • • + k r . Substituting -1/(a -1 + n) for t (which is possible because a /
∈ Z ≤0 and n ≥ 1), we get

Q α,p -1 a -1 + n , z = (a + n -1) -rp p k 1 ,...,kr=0 r i=1 p k i (-α i z) p-k i (a -1 + n) Kr and P j,α,p -1 a -1 + n , z = (a -1 + n) 1-rp (a) n-1 (α j z) n × p k 1 ,...,kr=0 r i=1 p k i (-α i z) p-k i (a -1 + n) Kr S n+Kr-1 (α j z) -S n-1 (α j z)
where

S n (z) = n k=0 z k /(a) k . (Note that Q α,p -1
a-1+n , z is clearly not identically zero, as stated in the Introduction.)

Hence, after some simplifications, the RPAs of the functions E α j (z), j = 1, . . . , r, are given by

n-1 k=0 (α j z) k (a) k + (α j z) n (a) n P j,α,p ( -1 a-1+n , z) Q α,p ( -1 a-1+n , z) = p k 1 ,...,kr=0 r i=1 p k i (-α i z) p-k i (a -1 + n) Kr S n+Kr-1 (α j z) p k 1 ,...,kr=0 r i=1 p k i (-α i z) p-k i (a -1 + n) Kr . (2.3)
At first sight, the numerator and denominator of this rational fraction have degrees bounded by n + rp -1 and rp in z respectively, but a better estimate holds for the numerator. Indeed, we shall now prove that its degree is bounded by n + (r -1)p -1. Indeed, with

K j,r = k 1 + • • • + k j-1 + k j+1 + • • • + k r and k j,r = (k 1 , .
. . , k j-1 , k j+1 , . . . , k r ), the numerator of (2.3) can be expressed as

p k 1 ,...,k j-1 ,k j+1 ,...,kr=0 r i=1,i =j p k i (-α i z) p-k i (a -1 + n) K j,r A j,k j,r (z) (2.4) with A j,k j,r (z) = p k j =0 p k j (-α j z) p-k j (a -1 + n + K j,r ) k j S n+Kr-1 (α j z).
We claim that the degree in z of the polynomial A j,k j,r (z) is at most max(p, n + K j,r ) -1.

To prove this observation, which is non-trivial, we first observe that, for any integers m, q such that m ≥ q ≥ 0,

t a-1 S m (xt) (q) |t=1 = x q S m-q (x) + U q (x) (2.5)
where

U q (x) := q-1 j=0
(-1) q-j (1 -a) q-j x j .

(Above and below in this section, all the differentiations are with respect to t.) Observe that U q (x) ≡ 0 if a = 1, but in general U q (x) has degree q -1 in x. Since (a

-1 + m) k = (-1) k (t -a+1-m ) (k)
|t=1 , it follows that

A j,k j,r (z) = (-1) p p k=0 p k t -a+1-n-K j,r (k) |t=1 t a-1 S n+K j,r +p-1 (α j zt) (p-k) |t=1 + p k=0 (-1) p-k p k (a -1 + n + K j,r ) k U p-k (α j z) = (-1) p t -n-K j,r S n+K j,r +p-1 (α j zt) (p) |t=1
(2.6)

+ p k=0 (-1) p-k p k (a -1 + n + K j,r ) k U p-k (α j z). (2.7)
The polynomial in (2.7) obviously has degree at most p -1 in z. On the other hand

t -n-K j,r S n+K j,r +p-1 (α j zt) (p) |t=1 = n+K j,r +p-1 j=0 (α j z) j (a) j t j-n-K j,r (p) |t=1 = (-1) p n+K j,r +p-1 j=0 (α j z) j (a) j (n + K j,r -j) p .
Since (n + K j,r -j) p = 0 for any j ∈ {n + K j,r , . . . , n + K j,r + p -1}, it follows that the polynomial in (2.6) has degree at most n + K j,r -1, so that the degree of A j,k j,r (z) is at most max(p, n + K j,r ) -1 as claimed. Since n ≥ p by assumption, we deduce that the degree of the numerator of the RPAs given by (2.4) is at most n + (r -1)p -1, as expected.

To prove that R j,n,α,p (z) = O(z n+rp ), we have to multiply the denominator of (2.3) by the series ∞ k=0 (α j z) k (a) k and prove that the product is the sum of a polynomial of degree n + (r -1)p -1 and a function which is O(z n+rp ). This amounts to proving that the coefficient c m of z m in the Taylor expansion of

p k 1 ,...,kr=0 r i=1 p k i (-α i z) p-k i (a -1 + n) Kr • ∞ k=0 (α j z) k (a) k is zero for m ∈ {n + (r -1)p, . . . , n + rp -1}. Let us assume that m ≥ n + (r -1)p. Then c m = p k 1 ,...,kr=0 r i=1 p k i (-α i ) p-k i (a -1 + n) Kr α k j (a) k (2.8)
where in (2.8) the integer k :

= m + K r -rp is ≥ 0 (because m ≥ n + (r -1)p ≥ rp).
We now also assume that m ≤ n + rp -1. In that case, we use the identity (a

-1 + n) Kr (a) k = 1 (a) n-1 t a+n+Kr-2 (n+rp-m-1)
|t=1 in (2.8) and get

c m = 1 (a) n-1 p k 1 ,...,kr=0 r i=1 p k i (-α i ) p-k i α m-rp+Kr j t a+n+Kr-2 (n+rp-m-1) |t=1 = 1 (a) n-1 t a-1+n-rp r i=1 (α j -α i t) p (n+rp-m-1)

|t=1

.

Since t = 1 is a zero of order p of the product r i=1 (α j -α i t) p , it follows that c m = 0 when n + rp -m -1 ≤ p -1, i.e when m ≥ n + (r -1)p. This complete the proof of (i).

Proof of (ii). By unicity of type II Padé approximants, the bounds for the degrees of the simultaneous RPAs and the order of R j,n,α,p at 0 ensure that (2.3) provides the expression of the type II Padé approximants of the family (E a (α j z)) j=1,...,r of parameters (n + (r -1)p -1, p) when n ≥ p.

Proof of Theorem 2

Let b such that (b) > 0. We first prove (1.4) of the Introduction, i.e. that for any n ≥ 0 and any z ∈ C \ [0, +∞),

E b (z) = n-1 k=0 (b) k z k + (b) n z n Ψ z 1 b -1 + n .
This follows from

(b) n z n Ψ z 1 b -1 + n = (b) n z n Γ(b + n) ∞ 0 u b+n-1 1 -uz e -u du = (b) n Γ(b + n) ∞ 0 u b-1 1 -uz e -u du + (b) n Γ(b + n) ∞ 0 u b-1 (uz) n -1 1 -uz e -u du = E b (z) - (b) n Γ(b + n) n-1 k=0 z k ∞ 0 u k+b-1 e -u du = E b (z) - n-1 k=0 (b) n Γ(b + k) Γ(b + n) z k = E b (z) - n-1 k=0 (b) k z k .
We now prove the following lemma.

Lemma 1. Let us fix z ∈ (-∞, 0). The function Ψ z (t) admits an asymptotic expansion as t → 0, t > 0, given by

Ψ z (t) := - 1 z ∞ k=0 ϕ k (1/z)t k+1 = - t z Φ -1/z (t),
where the coefficients ϕ k (X) are Touchard exponential polynomials of degree k in X.

Proof. We first use Proposition 2 in [START_REF]On the arithmetic nature of the values of the Gamma function, Euler's constant and Gompertz's constant[END_REF] to get the following alternative expression for Ψ z (t): for any z ∈ (-∞, 0) and t > 0,

Ψ z (t) = ∞ 0 e -u (1 -zu) 1+1/t du. We now set v = ln(1 -uz), so that Ψ z (t) = - 1 z ∞ 0 e (e v -1)/z e -v/t dv (3.1)
for z ∈ (-∞, 0) and t > 0. Since v → e (e v -1)/z is C ∞ at v = 0, non-zero at v = 0, and 

∞ 0 e (e v -1)/z e -v/
Ψ z (t) ∼ - 1 z ∞ k=0 d k dv k e (e v -1)/z |v=0 t k+1 = - t z ∞ k=0 ϕ k (1/z)t k , t → 0, t > 0.
This complete the proof of the lemma.

From now on, we view Ψ z (t) as a formal series in C

[1/z][[t]].
As observed in the Introduction, the identity Ψ z (t) = -t z Φ -1/z (t) enables us to immediately get the Padé approximant [p/p] of Ψ z (t) at t = 0. More generally, let β := (β j ) j=1,...,r denote a family of pairwise distinct complex numbers. Then, without further efforts, we even obtain the type II Padé approximants at t = 0 of parameters (rp, p) of the formal power series ( Ψ β j z (t)) j=1,...,r for j = 1, . . . , r. They are given by t β j z P j,1/β,p (t, -1/z)

Q 1/β,p (t, -1/z) , j = 1, . . . , r where 
P j,1/β,p (t, -1/z) = (-t) rp-1 p k 1 ,...,kr=0 r i=1 p k i (β i z) k i -p (-1/t) k 1 +•••+kr k 1 +•••+kr i=1 (-β j z) 1-i (-1/t) i , Q 1/β,p (t, -1/z) = (-t) rp p k 1 ,...,kr=0 r i=1 p k i (β i z) k i -p (-1/t) k 1 +•••+kr .
We now substitute 1/(b -1 + n) for t in these expressions, which is possible because (b) > 0 and n ≥ 1. Since Q 1/β,p (1/(b -1 + n), -1/z) is clearly not identically zero, we get simultaneous RPAs of the family (E b (β j z)) j=1,...,r given by the formulas: where T n (z) := n k=0 (b) k z k . We are now in position to complete the proof of Theorem 2. We take r = 1 and β 1 = 1 in (3.2).

n-1 k=0 (b) k (β j z) k -(b) n (β j z) n-1 (b -1 + n) P j,1/β,p ( 1 b-1+n , -1 z ) Q 1/β,p
Proof of (i). It is immediate that the degrees of the numerator and denominator of the rational function in (3.2) are bounded by n -1 and p respectively. We now want to prove that, formally,

E b (z) - n-1 k=0 (b) k z k + (b) n z n-1 (b -1 + n) P j,1,p ( 1 b-1+n , -1 z ) Q 1,p ( 1 b-1+n , - 1 z ) 
= O(z n+p ).

(

The denominator of the right-hand side of (3. is the sum of a polynomial P (z) of degree ≤ n -1 and a formal power series of order ≥ n + p at z = 0. This in fact means that we want to prove that P (z)/Q(z) is the [n -1/p] Padé approximant of E b (z). This is indeed the case because we recognize Q(z) in (3.4) as being of the form given in [START_REF] Sidi | A new method for deriving Padé approximants for some hypergeometric functions[END_REF] and unicity of Padé approximant enables us to conclude.

Proof of (ii). This is simply a summary of what was proved in (i). We have 

E b (z) =

Theorem 2 .

 2 Let us fix b ∈ C \ Z ≤0 , and the integers n ≥ 1, p ≥ 0 such that n ≥ p. (i) The degrees of the numerator and denominator of the RPA in (1.6) are bounded by n -1 and p respectively, and moreover S n,p (z) = O(z n+p ) exists and is finite. (ii) The RPA in (1.6) coincides with the Padé approximant [n -1/p] of E b (z). In other words,

  z) k i -p (-1) Kr T n-Kr-1 (β j z)/(b) z) k i -p (-1) Kr /(b) n-Kr . (3.2)

  prove(3.3) it is enough to prove that the formal series expansion of n-k z k E b (z)

  k z k + (b) n z n ([p/p] Ψz(t) ) |t=1/(b-1+n) + O(z n+p ) (3.5)and the bounds for the degrees show thatn-1 k=0 (b) k z k + (b) n z n ([p/p] Ψz(t) ) |t=1/(b-1+n) = [n -1/p] E b (z) .

It is possible to extend the notion of RPA when f diverges everywhere but is summable in some sense; we present an exemple of this situation in Theorem

1

The above results are a priori proved under the assumption that (b) > 0. They hold under the weaker assumption that b ∈ C \ Z ≤0 because all these identities between rational fractions extend to this case.