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A complete framework for linear filtering
of bivariate signals

Julien Flamant, Student Member, IEEE, Pierre Chainais, Senior Member, IEEE, and Nicolas Le Bihan

Abstract—A complete framework for the linear time-invariant
(LTI) filtering theory of bivariate signals is proposed based on a
tailored quaternion Fourier transform. This framework features
a direct description of LTI filters in terms of their eigenproperties
enabling compact calculus and physically interpretable filtering
relations in the frequency domain. The design of filters exhibiting
fondamental properties of polarization optics (birefringence, di-
attenuation) is straightforward. It yields an efficient spectral syn-
thesis method and new insights on Wiener filtering for bivariate
signals with prescribed frequency-dependent polarization prop-
erties. This generic framework facilitates original descriptions
of bivariate signals in two components with specific geometric
or statistical properties. Numerical experiments support our
theoretical analysis and illustrate the relevance of the approach
on synthetic data.

Index Terms—Bivariate signal, Polarization, LTI filter, Quater-
nion Fourier transform, Wiener denoising, Spectral synthesis,
Decomposition of bivariate signals

I. INTRODUCTION

B IVARIATE signals appear in numerous physical areas
such as optics [1], oceanography [2], geophysics [3], [4]

or EEG analysis [5]. A bivariate signal x(t) is usually resolved
into orthogonal components corresponding to real-valued sig-
nals x1(t) and x2(t). Then x(t) can be expressed either in
vector form x(t) = [x1(t) x2(t)]T or as the complex valued
signal x(t) = x1(t) + ix2(t). Benefits of each representation
have been reviewed recently [6].

Linear time-invariant (LTI) filtering theory is a cornerstone
of signal processing. Its extension to the case of bivariate
signals depends on the chosen representation – vector or
complex form. The use of the complex representation x(t) =
x1(t) + ix2(t) leads to the concept of widely linear filtering
[7]–[11], meaning that the signal x(t) and its conjugate
x(t) are in general filtered differently. While the use of the
complex representation is often advocated for in the signal
processing literature [10], [12], the use of the vector form
x(t) = [x1(t) x2(t)]T is more common in physical sciences,
e.g. polarization optics [13], [14]. The vector x(t) is usually
replaced by its analytic signal version – the so-called Jones
vector. LTI filters are then represented in the spectral domain
by 2 × 2 complex matrices called Jones matrices. These
matrices describe optical elements or media with fondamental
optical properties such as birefringence and diattenuation. See
e.g. [15] for a review of the Jones formalism.
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A complete framework for LTI filtering of bivariate signals
should exhibit some desirable properties: (i) a description
of bivariate signals as single algebraic objects for simple
calculations (in contrast with e.g. rotary components [16]),
(ii) a convenient duality between time and frequency to define
easily interpretable Fourier representations, (iii) a simple rep-
resentation of LTI filters in terms of their main properties, such
as eigenvectors and eigenvalues (in contrast with e.g. Jones
matrices or widely linear filters), and (iv) a fast implementa-
tion, e.g. relying on FFT. As noticed, existing approaches do
not fullfill these properties all at once.

We have recently introduced a powerful alternative approach
to bivariate signal processing [17], [18] using a tailored
quaternion Fourier transform (QFT). The proposed frame-
work exhibits an unifying structure by directly connecting
usual physical quantities from polarization to well-defined
mathematical (quaternion-valued) quantities such as spectral
densities, covariances, time-frequency representations, etc. It
provides at no extra cost an elegant, compact and insightful
calculus which highlights the geometric treatment of polariza-
tion states. Note that first attempts in this direction root in
optics [19]–[23] that provide a clear geometric formulation of
Jones formalism. However its generic use for bivariate signal
processing is hindered by ignoring phase terms, assuming
monochromatism and unpractical implementation.

The QFT framework enables an efficient description of LTI
filters and overcomes the limitations of previous approaches
by answering all the desirable requirements mentioned above.
In the proposed representation LTI filters are explicitly given
in the spectral domain in terms of their eigenproperties. It
provides clear and economical expressions. The interaction
between LTI filters and bivariate signals is then easy to inter-
pret or prescribe. It directly relates to fondamental properties
of optical media known as birefringence and diattenuation.
This complete framework provides a new interpretable and
generic approach to standard signal processing operations
such as spectral synthesis and Wiener filtering for instance.
Moreover it makes natural various original descriptions of
bivariate signals in two components with specific geometric
or statistical properties.

This paper is organized as follows. In Section II we gather
useful properties of the QFT. Based on a usual decomposition
[14], [15] which separates LTI filters into unitary and Hermi-
tian ones, Section III presents a thorough study of each family
in the QFT domain. Section IV presents practical applications
of those filters: usual ones (spectral synthesis, Wiener filtering)
and original decompositions of bivariate signals into two
components with prescribed properties. Section V gathers
concluding remarks. Detailed calculations are remitted to
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appendices. For the sake of reproducibility, an implementation
of the QFT framework along with tools presented in this paper
will be available through the open-source Python companion
toolbox BiSPy1.

II. BACKGROUND

Section II-A and Section II-B present two key ingredients of
this work: quaternions and the quaternion Fourier transform.
Section II-C introduces the quaternion spectral density of a
bivariate signal, a fundamental quantity that allows numerous
physical and geometrical interpretations.

A. Quaternions

Quaternions form a four dimensional algebra denoted H and
with canonical basis {1, i, j,k}, where i, j,k are imaginary
units i2 = j2 = k2 = −1 such that

ij = k, ij = −ji, ijk = −1. (1)

Importantly, like matrix product quaternion multiplication is
noncommutative, i.e. in general for p, q ∈ H one has pq 6= qp.
Any quaternion q ∈ H can be written as

q = a+ bi+ cj + dk (2)

where a, b, c, d ∈ R. The scalar or real part of q is S(q) =
a ∈ R and its vector or imaginary part is V(q) = q − S(q) ∈
span {i, j,k}. When S(q) = 0, q is said to be pure. The
quaternion conjugate of q is q = S(q) − V(q). Its modulus
is |q|2 = qq = qq = a2 + b2 + c2 + d2. Involutions with
respect to i, j,k are defined by qi = −iqi, qj = −jqj, qk =
−kqk. Involutions somehow extend the notions of complex
conjugation as they represent reflections, e.g. qi = a + bi −
cj − dk.

Quaternions generalize naturally complex numbers. Con-
cepts such as imaginary units, polar forms extend nicely. For
instance Cj = span {1, j} or Ci = span {1, i} are complex
subfields of H isomorphic to C. As a result, given a pure
unit quaternion µ such that µ2 = −1 and θ ∈ R, one gets
exp(µθ) = cos θ + µ sin θ.

As it is essential to our analysis we mention another
property of quaternions. Any quaternion can be represented
as a pair of complex numbers. Let q = q1 + iq2, q1, q2 ∈ Cj .
The vector representation of q is the 2-dimensional complex
vector q = [q1, q2]T ∈ C2×2

j . For more about quaternions, the
reader is referred to dedicated textbooks e.g. [24].

B. Quaternion Fourier transform

Several Quaternion Fourier transforms have been proposed
so far, see [25] for a review. We briefly survey the Quaternion
Fourier Transform (QFT) first introduced in [26] and further
studied in [17]. Recent works [17], [18] have demonstrated the
relevance of this QFT to process bivariate signals. In particular
the QFT decomposes directly bivariate signals into a sum of
polarized monochromatic signals. It also allows novel, natural
and direct interpretation of polarization features for bivariate
signals.

1documentation available at https://bispy.readthedocs.io/

A bivariate signal written as a Ci-valued signal reads x(t) =
x1(t)+ix2(t), where x1, x2 are real signals. Suppose for now
that x(t) is deterministic. The QFT of x(t) is then

X(ν) ,
∫ +∞

−∞
x(t)e−j2πνtdt = X1(ν) + iX2(ν) ∈ H. (3)

where X1, X2 are the standard Fourier transform (FT) of
x1, x2, taken as Cj-complex valued. The inverse QFT is given
by

x(t) =

∫ +∞

−∞
X(ν)ej2πνtdν. (4)

The QFT (3) is very similar to the usual FT where the axis
i of the FT has simply been replaced by j. Importantly, the
exponential kernel is located on the right, a crucial point due
to the noncommutative nature of the quaternion product. Eq.
(3) shows that a bivariate signal x(t) ∈ Ci has a quaternion-
valued spectral description X(ν) ∈ H. Moreover the QFT of
Ci-valued signals exhibits the i-Hermitian symmetry [26]

X(−ν) = X(ν)
i
. (5)

Eq. (5) illustrates that for bivariate signals negative frequencies
carry no information additional to positive frequencies. In
[17] we demonstrated that it permits to construct a direct
bivariate counterpart of the usual analytic signal by cancel-
ing out negative frequencies of the spectrum. This first tool
called the quaternion embedding of a complex signal allows
identification of both instantaneous phase and polarization
(i.e. geometric) properties of narrow-band bivariate signals.
This approach can be extended to wideband signals using a a
polarization spectrogram based on a short-time QFT. See [17]
for details.

For finite energy signals a generalized Parseval-Plancherel
theorem gives yields two invariants:∫ +∞

−∞
|x(t)|2dt =

∫ +∞

−∞
|X(ν)|2dν, (6)∫ +∞

−∞
x(t)jx(t)dt =

∫ +∞

−∞
X(ν)jX(ν)dν. (7)

Eq. (6) is classical, energy is conserved. Eq. (7) illustrates
that an additional quadratic quantity of geometric nature is
conserved. Importantly, the term X(ν)jX(ν) ∈ span{i, j,k}
represents a vector in R3 which can be meaningfully inter-
preted in terms of polarization attributes [17], [18].

C. Quaternion spectral density of bivariate signals

The QFT has two invariants (6) and (7). As a result for
finite energy deterministic signals the quantities |X(ν)|2 and
X(ν)jX(ν) summarize the second-order spectral properties
of the bivariate signal x(t). These quantities can be adequatly
combined to form a quaternion energy spectral density:

Γxx(ν) = |X(ν)|2 +X(ν)jX(ν). (8)

Many signals however are random and only of finite power,
which makes the spectral density definition (8) no longer
applicable. Fortunately thanks to a spectral representation
theorem based on the QFT [18] one can extend the definition

https://bispy.readthedocs.io/
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(8) to define a quaternion power spectral density for stationary
random bivariate signals. In short the standard QFT X(ν) is
replaced by the spectral increment dX(ν): see Appendix D for
details. Note however that for ease of notation we will make
the slight abuse of writing X(ν) either when x(t) is random,
keeping in mind the correspondence described in Appendix D.

The quaternion power spectral density of a stationary ran-
dom signal x(t) reads:

Γxx(ν) = S0,x(ν)︸ ︷︷ ︸
scalar part

+ Φx(ν)S0,x(ν)µx(ν)︸ ︷︷ ︸
vector part

. (9)

The scalar part of Γxx(ν), S0,x(ν) ≥ 0 is standard and
gives the total2 power spectral distribution. The vector part
of Γxx(ν) describes the polarization properties of x at every
frequency. They are summarized by two parameters: the po-
larization axis µx(ν), a pure unit quaternion, describes the
polarization ellipse at this frequency. The degree of polariza-
tion Φx(ν) ∈ [0, 1] quantifies the balance between polarized
and unpolarized parts at this frequency. When Φx(ν) = 0
(resp. = 1) the signal is unpolarized (resp. fully polarized) at
ν; else it is partially polarized.

Figure 1 depicts the Poincaré sphere of polarization states.
It allows a direct geometric interpretation of the vector part of
the spectral density, i.e. of polarization properties. Normalizing
in (9) the vector part of Γxx(ν) by the power distribution
S0,x(ν) gives the pure quaternion Φx(ν)µx(ν). Given any ν
this quaternion identifies a vector of R3. It is represented as
a point on the surface of Poincaré sphere of radius Φx(ν).
This point encoded by the pure unit quaternion µx(ν) gives
the polarization ellipse of the signal at frequency ν. For
instance, µx(ν) = i corresponds to counter-clockwise circular
polarization, while µx(ν) = −j corresponds to vertical linear
polarization. Equivalently, µx(ν) can be specified using spher-
ical coordinates (2θ, 2χ), giving respectively the orientation θ
and ellipticity χ of the polarization ellipse; µx(ν) can also
be specified in Cartesian coordinates using normalized Stokes
parameters, see e.g [13] for details. Orthogonal polarizations
correspond to antipodal points on the Poincaré sphere of radius
Φx = 1: e.g. clockwise and counter-clockwise circular are or-
thogonal polarizations. While it may sound disturbing at first,
two axes µx and µy correspond to orthogonal polarizations
in the usual sense when they are anti-aligned 〈µx,µy〉 = −1.

III. LTI FILTERING FOR BIVARIATE SIGNALS

The purpose of this section is to write a complete and clean
formulation of the theory of linear-time invariant (LTI) filtering
for bivariate signals within the QFT framework.

LTI filters can be classified into two categories: unitary
filters and Hermitian filters. This decomposition originates
from optics, where one usually separates birefringence effects
(unitary) from diattenuation or dichroism effects (Hermitian)
[14], [15]. It is often implicitly assumed that one operates at a
single frequency. In contrast we provide frequency-dependent
expressions for unitary and Hermitian filters to deal with
generic wideband bivariate signals. It must be pointed out

2The term “total” refers to the fact that S0,x(ν) contains power contribu-
tions from the unpolarized and polarized part, see [18]

i, S3

S0

j, S1

S0

k, S2

S0

Φ

2θ

2χ

Fig. 1. Poincaré sphere of polarization states. The vector part of Γxx(ν)
(9) normalized by S0,x(ν) identifies a vector in R3 which describes the
polarization attributes of x(t) at frequency ν. Spherical coordinates (2θ, 2χ)
gives the orientation θ and ellipticity χ. The radius Φ gives the degree of
polarization. Cartesian coordinates give the normalized Stokes parameters, an
alternative characterization of polarization properties [13].

that in general, in the time-domain there is no simple form
involving a convolution for these filters.

The quaternion representation offers a direct description
of these filters in terms of birefringence and diattenuation
parameters. Precisely, the use of quaternion algebra allows to
write unitary and Hermitian filters in terms of eigenvectors
and eigenvalues of their matrix representation. It explicitely
uses the eigenpolarizations of the filter, giving a natural way
to identify the parameters of each filter.

Section III-A recalls that any LTI filter can be decomposed,
at each frequency, into the combination of a unitary and
a Hermitian transform. Lemmas 1 and 2 give quaternion
representations of such transforms. Section III-B and III-C
study unitary filters and Hermitian filters, respectively. We
emphasize physical and geometric interpretations of these two
filters. See Appendix A for technical details.

A. Matrix and quaternion representation

In the following, time-domain (resp. frequency-domain)
quantities are given in lowercase letters (resp. uppercase).
Scalar quantities (in general, quaternion-valued) are denoted
by standard case letters x,X . Vectors are denoted by bold
straight letters x,X and matrices are written as bold straight
underlined letters m, M. Vector and matrices are always
complex Cj-valued.

A generic LTI filter is described by its matrix impulse
response m(t) ∈ C2×2

j or by its Fourier Transform (FT)
M(ν) ∈ C2×2

j . In the frequency domain the filtering relation
between bivariate signals x and y reads:

Y(ν) = M(ν)X(ν). (10)
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For each ν, Eq (10) defines a linear relation between vectors
Y(ν) and X(ν). For the rest of this section we fix ν and drop
now this dependence. The polar decomposition [27] of M is

M = UH, (11)

where U is unitary and H is Hermitian semi-definite pos-
itive, i.e. H∗ = H and its eigenvalues are nonnegative.
Geometrically (11) decomposes M as a stretch (Hermitian
matrix H) followed by a rotation (unitary matrix U). The
polar decomposition (11) suggests to study separately two
fundamental transforms, respectively unitary and Hermitian
ones. Remarkably these two transforms have a direct interpre-
tation in the quaternion representation. In particular parameters
are directly related to eigenvectors and eigenvalues of each
transform.

Recall the equivalence between vector and quaternion rep-
resentations:

X = [X1, X2]T ∈ C2
j ←→ X = X1+iX2 ∈ H, X1, X2 ∈ Cj .

(12)
Lemma 1 gives the representation of unitary transforms in the
quaternion domain.

Lemma 1 (Unitary transform). Let U ∈ U(2). Then

Y = UX⇐⇒ Y = eµ
α
2 Xejϕ (13)

where µ2 = −1, and α,ϕ ∈ [0, 2π).

The proof is given in Appendix A-B. The parameter ϕ is the
argument of detU. When ϕ = 0, U ∈ SU(2), i.e. U is unitary
with unit determinant, and (13) highlights the well known
[28] quaternion representation of special unitary matrices. The
parameter µ gives the eigenvectors of U, while α encodes its
eigenvalues, see Appendix A-B.

Lemma 2 gives the representation of Hermitian transforms
in the quaternion domain.

Lemma 2 (Hermitian transform). Let H ∈ C2×2
j be Hermitian

positive semi-definite. Then

Y = HX⇐⇒ Y = K[X − ηµXj] (14)

where µ2 = −1, K ∈ R+ and η ∈ [0, 1].

The proof is given in Appendix A-C. The parameter µ
encodes the eigenvectors of H. Parameters K and η depend
on, respectively, the sum and difference of eigenvalues, see
Appendix A-C.

The quaternion representation allows a direct interpretation
and control of each transform parameters. More importantly
these key results enable efficient design of unitary and Her-
mitian filters, see Sections III-B and III-C below.

B. Unitary filters

A unitary filter performs a unitary transform for each
frequency. Such filter only modifies the polarization axis of the
input signal: the total PSD and degree of polarization are not
affected. It is defined by three frequency-dependent quantities:
a birefringence axis µ(ν), a birefringence angle α(ν) and
phase ϕ(ν). The parameter ϕ(ν) is classical and quantifies

the time delay associated to each frequency. Quantities µ(ν)
and α(ν) model birefringence [14], [15]. This phenomenom
is of fundamental importance in many areas e.g. optical fiber
transmission [29], [30].

Proposition 1 gives the unitary filtering relation for bivariate
signals. Relations between corresponding quaternion spectral
densities are given below, which permit further physical and
geometric interpretations.

Proposition 1 (Unitary filter). Let x be the input and y be
the output of the unitary filter, with respective QFTs X and
Y . The filtering relation is

Y (ν) = eµ(ν)
α(ν)

2 X(ν)ejϕ(ν), (15)

with µ(−ν) = µ(ν)
i
, α(−ν) = α(ν) and ϕ(−ν) = −ϕ(ν).

The spectral density of y is

Γyy(ν) = eµ(ν)
α(ν)

2 Γxx(ν)e−µ(ν)
α(ν)

2 (16)

Sketch of proof. Eq. (15) is obtained directly from Lemma 1.
To obtain (16) use the correspondence described in Appendix
D. Plugging (15) into the spectral density definition (72) yields
(16).

Symmetry conditions in (15) ensure that the i-Hermitian
symmetry (5) is satisfied for Y (ν) so that y(t) is Ci-valued.
Plugging (9) into (16) yields

Γyy(ν) = eµ(ν)
α(ν)

2 S0,x(ν)[1 + Φx(ν)µx(ν)]e−µ(ν)
α(ν)

2

= S0,x(ν) + Φx(ν)eµ(ν)
α(ν)

2 µx(ν)e−µ(ν)
α(ν)

2 .
(17)

Eqs. (16)–(17) show that the unitary filter performs a geomet-
ric operation: a 3D rotation of the spectral density Γxx(ν).
Birefringence affects the output polarization axis µy(ν), which
is given by the rotation of the input polarization axis µx(ν).
Birefringence axis µ(ν) and angle α(ν) define this rotation.
This geometrical operation can be visualized on the Poincaré
sphere in Fig. 1. Eq. (17) highlights that the total PSD and de-
gree of polarization are rotation invariant: S0,y(ν) = S0,x(ν)
and Φy(ν) = Φx(ν). The output polarization axis µy(ν) is
given by the rotation of angle α(ν) of µx(ν) around the axis
µ(ν).

Eigenpolarizations. At a given ν, unitary filters have two
orthogonal eigenpolarizations. These are fully polarized spec-
tral components Z±(ν) with polarization axis is µz±(ν) =
±µ(ν). As as result one gets

eµ(ν)
α(ν)

2 Z±(ν)ejϕ(ν) = Z±(ν)ej(ϕ(ν)±α(ν)/2). (18)

Eq. (18) is another illustration of birefringence. It shows
that unitary filters introduce a phase difference α(ν) between
the fast eigenpolarization Z+(ν) and slow eigenpolarization
Z−(ν).

Eigenpolarizations properties (18) give a simple way to
identify the parameters of the filter. The approach is analogous
to what is done in experimental optics [14]. Working with
monochromatic signals of increasing frequency, one can adjust
input polarization axis such that the output polarization axis
are the same. It gives immediatly the birefringence axis µ(ν).
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Measuring phase delays with respect to fast and slow eigen-
polarizations then permits using (18) to identify birefringence
angle α(ν) and phase ϕ(ν).

C. Hermitian filters
A Hermitian filter performs a Hermitian transform at each

frequency. This second type of filter acts on both power and
polarization properties of the input signal. Three frequency-
dependent quantities are necessary to define a Hermitian filter:
the homogeneous gain K(ν) ≥ 0 and two quantities related to
diattenuation: the polarizing power η(ν) and the diattenuation
axis µ(ν). When η(ν) = 0, K(ν) has a classical interpretation
as the gain of the filter. When η(ν) 6= 0 the gain of the filter
depends on the projection of the polarization axis µx(ν) onto
the diattenuation axis µ(ν). In particular eigenpolarizations,
which are spectral components with polarization axis ±µ(ν)
correspond to maximum and minimum gain values.

Proposition 2 gives the Hermitian filtering relation for
bivariate signals. Relations between input and output spectral
densities are presented. The use of (9) yields an explicit
rewriting of Γyy(ν) in terms of input polarization properties.

Proposition 2 (Hermitian filter). Let x be the input and y be
the output of the Hermitian filter, with respective QFTs X and
Y . The filtering relation is

Y (ν) = K(ν)[X(ν)− η(ν)µ(ν)X(ν)j] (19)

with K(−ν) = K(ν), η(−ν) = η(ν) and µ(−ν) = µ(ν)∗i.
Using (9), the spectral density of y is then given by (dropping
ν dependence for convenience)

S (Γyy) = S0,xK
2
[
1 + η2 + 2ηΦx 〈µ,µx〉

]
(20)

V (Γyy) = S0,xK
2
[
2ηµ+ Φx[µx − η2µµxµ

]
(21)

where 〈µ1,µ2〉 = S(µ1µ2) is the usual inner product of R3.

Sketch of proof. Eq. (19) is obtained directly from Lemma
2. To obtain (20)-(21) use the correspondence described in
Appendix D. Plugging (19) into the spectral density definition
(72) with the use of (9) yields (16).

Symmetry conditions in (19) ensure that the i-Hermitian
symmetry (5) is satisfied for Y (ν) so that y(t) is Ci-valued.
In the sequel, we work at a fixed frequency ν. Explicit
dependence in ν is dropped to avoid notational clutter.

Gain. The power gain G of the filter is defined by

G =
S (Γyy)

S (Γxx)
=
S0,y

S0,x
(22)

Using Eq. (20) this gain becomes

G = K2
[
1 + η2 + 2η Φx 〈µ,µx〉

]
. (23)

When η = 0 the power gain reduces to its usual expression
G = K2. When η 6= 0, the gain depends on K and η but most
importantly, on the alignment 〈µ,µx〉 between diattenuation
and input polarization axes.

Eigenpolarizations. Hermitian filters have two orthogonal
eigenpolarizations. These are fully polarized spectral compo-
nents Z± with polarization axis µz± = ±µ. From (19) one
has

K[Z± − ηµZ±j] = K[1± η]Z±. (24)

Eq. (24) characterizes diattenuation [14], [15]. Orthogonal
eigenpolarizations have different gains; the polarizing power
η controls the gap between respective gain values.

As with the unitary filter, eigenpolarization properties (24)
give a natural way to identify filter parameters. Note first
that eigenpolarizations correspond directly to maximum and
minimum values of the gain G (23). Thus, finding the maxi-
mum and minimum value of the gain by changing the input
polarization allows to identify directly parameters K, η and µ.
Let Gmax and Gmin denote the maximal/minimal gain values,
one has

2η

1 + η2
=
Gmax −Gmin

Gmax +Gmin
and K2 =

Gmax −Gmin

4η
. (25)

Repeating the operation for a wide range of frequencies
completes the characterization procedure.

Identification using unpolarized WGN. The spectral den-
sity of the response of the Hermitian filter to an unpolarized
white Gaussian noise input provides a simple and practical
way to identify its parameters. The input unpolarized WGN
noise w(t) has constant spectral density Γww(ν) = σ2

0 ≥ 0,
with σ2

0 the noise variance. It is unpolarized for every fre-
quency since Φw(ν) = 0. Then the output y(t) has spectral
density

Γyy(ν) = σ2
0K

2(ν)[1 + η2(ν) + 2η(ν)µ(ν)]. (26)

Filter parameters η(ν) and µ(ν) completely define the output
polarization state. Identifying (9) for Γyy with (26) yields the
filter parameters:

η(ν) =
1−

√
1− Φ2

y(ν)

Φy(ν)
(Φy(ν) 6= 0)

K2(ν) =
S0,y(ν)

σ2
0(1 + η2(ν))

µ(ν) = µy(ν)

(27)

and η(ν) = 0 when Φy(ν) = 0.
This result is fundamental. In the bivariate case, unpolarized

white noise plays the role of white noise in the univariate
case. It permits a direct identification of the parameters of the
Hermitian filter. Moreover any bivariate signal with arbitrary
spectral density Γyy can be obtained as a Hermitian filtered
version of unpolarized white noise. Section IV-A exploits
the latter property to simulate stationary bivariate signals via
spectral synthesis.

Examples. Hermitian filters are characterized by non-trivial
interactions between input polarization properties and filter pa-
rameters. Two particular cases illustrate how far the proposed
approach is rich and interpretable. Frequency dependence is
omitted in what follows.

Null polarizing power η = 0. One has Y = KX and Γyy =
K2Γxx. The output is a purely amplified/attenuated version of
the input signal. Polarization properties are not modified.

Maximal polarizing power η = 1. The Hermitian filter is
called a polarizer since the output polarization properties do
not depend on the input polarization properties. Geometrically,
starting from (21) the term µx − µµxµ corresponds to the
projection of µx onto µ, up to a factor 2: the filter performs
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a projection onto the diattenuation axis µ. The output polar-
ization axis is µy = µ; the output is totally polarized Φy = 1.
The gain G quantifies how ‘close’ µx is to µ:

G = 2S0,xK
2[1 + Φx 〈µx,µ〉] (28)

In particular, for eigenpolarizations Z±:

Y+ = 2KZ+ and Y− = 0 (29)

meaning that when the input polarization axis is µx = −µ
(orthogonal polarization) and totally polarized, the output
cancels out. It illustrates how the alignment between input
polarization and diattenuation axes affects the gain of the filter.

IV. APPLICATIONS

A. Spectral synthesis

We propose a new simulation method for Gaussian sta-
tionary random bivariate signals based on the filtering of
a bivariate white Gaussian noise. Eq. (26) shows that any
bivariate signal with arbitrary spectral density can be obtained
by Hermitian filtering of unpolarized white noise. This result
allows to generalize a well-known approximate simulation
algorithm [31] to the case of bivariate random signals.

Let Γ0(ν) = S0(ν)[1 + Φ0(ν)µ0(ν)] denote the spectral
density of the target signal to sample from. Let w(t) be
an unpolarized white noise: its spectral density is constant
Γww(ν) = σ2

0 ∈ R+. Let x(t) be the result of Hermitian
filtering of w(t). Adapting notations from (26) one gets

Γxx(ν) = σ2
0K

2(ν)[1 + η2(ν)]

[
1 +

2η(ν)

1 + η2(ν)
µ(ν)

]
. (30)

Remark that (30) is of the form (9). Identifying filter parame-
ters to match the target spectral density Γ0(ν) yields the same
expressions as in (27).

In practice one wants to generate a discrete, N -length
realization of the signal x(t). One starts by generating an
i.i.d unpolarized white noise sequence of length M ≥ N
(see Appendix C). Filtering this sequence thanks to discrete
implementation of (19) and keeping the first N samples gives
a discretized realization of the signal x(t). As in the univariate
setting [31], the quality of the simulation is increasing with
M .

Figure 2a depicts a realization of a narrow-band stationary
random bivariate signal with constant polarization properties.
The simulation is of length N = 1024 and was obtained using
a M = 10N length unpolarized white noise sequence. The
signal is partially polarized Φx = 0.7 and exhibits elliptical
polarization axis. The power is distributed in a Gaussian-
shaped fashion around normalized frequency ν0 = 0.02, see
Figure 2b for details. Note that the instantaneous polarization
state evolves with time. This is a feature of partial polarization
for quasi-monochromatic signals with constant polarization
axis.

B. Wiener denoising

Wiener filtering is an ubiquitous tool in signal processing.
We show that the Wiener filter for bivariate signals has a
convenient quaternion representation. It allows meaningful

physical interpretations and a direct parametrization in terms
of polarization parameters. We restrict our analysis to the
denoising case. Our goal is to estimate a signal of interest
x(t) from which we have measurements y(t) of the form

y(t) = x(t) + w(t) (31)

where w(t) is bivariate noise, independent from x(t). All
signals are assumed to be zero-mean, second-order stationary
with known spectral densities. The Wiener filter solves the
minimum-mean-square-error (MMSE) problem

min E
{
|x̂(t)− x(t)|2

}
(32)

where x̂(t) is obtained by linear filtering of y(t). Intuitively
when searching for a polarized deterministic signal x(t) in
unpolarized noise w(t), the Wiener filter should behave like
a polarizer. It means that every spectral component of y is
projected along the polarization axis µx(ν). Fortunately, this
intuition is proven right by the generic expression of the
Wiener filter.

Frequency dependence is omitted for convenience. The
Wiener denoising filter is a Hermitian filter (see Appendix
B for calculations):

X̂ =
S0,x (1− ΦxΦy 〈µx,µy〉)

S0,y[1− Φ2
y]

[
Y − Φxµx − Φyµy

1− ΦxΦy 〈µx,µy〉
Y j

]
.

(33)
Quantities K(ν),µ(ν), η(ν) of Proposition 2 can be readily

identified from (33). Note the use of the explicit form (9) of
Γyy(ν) = Γxx(ν) + Γww(ν) to simplify notations.

In many situations the noise w(t) can be assumed unpolar-
ized for every frequency. Then Γww(ν) = σ2(ν) ∈ R+ and

Γyy(ν) = S0,x(ν) + σ2(ν)︸ ︷︷ ︸
S0,y(ν)

+S0,x(ν)Φx(ν)µx(ν)︸ ︷︷ ︸
S0,y(ν)Φy(ν)µy(ν)

(34)

The polarization axis is not affected by the noise: µy(ν) =
µx(ν) for all ν. We introduce α = S0,x/σ

2, the frequency-
domain signal-to-noise ratio (SNR). The degree of polarization
is Φy(ν) = α(ν)Φx(ν)/(1+α(ν)). The Wiener filter (33) then
simplifies to

X̂ =
α+ α2[1− Φ2

x]

1 + 2α+ α2[1− Φ2
x]

[
Y − Φx

1 + α[1− Φ2
x]
µxY j

]
.

(35)
The diattenuation axis of the filter is the polarization axis of
the target µx. Homogeneous gain and polarizing power depend
on the target degree of polarization Φx and frequency-domain
SNR α. In particular, when x is deterministic (hence totally
polarized at all frequencies) then the Wiener filter reduces to

X̂(ν) =
S0,x(ν)

2S0,x(ν) + σ2(ν)
[Y (ν)− µx(ν)Y (ν)j] . (36)

Eq. (36) defines a polarizer and validates our initial intuition.
Each spectral component of y is projected along the polariza-
tion axis µx(ν).

The MMSE is εopt = E
{
|x̂(t)− x(t)|2

}
with x̂(t) given

by (33). The MMSE can be rewritten as a frequency domain
integral (see Appendix B)

εopt =

∫ ∞
−∞

εopt(ν)dν (37)
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Fig. 2. Numerical simulations illustrating the novel tools introduced in this paper. a Partially elliptically polarized narrow-band signal obtained using the
spectral synthesis method of Sec. IV-A. This reference signal is used in all subsequent simulations. b Power spectral distribution and parameters used in a.
c Reference signal in partially (Φw = 0.4) vertically polarized white noise with SNR = −5 dB. d Output of the Wiener denoising filter described in Sec.
IV-B. Dashed lines indicate the original signal of Fig. 2a.

where εopt(ν) is:

εopt(ν) = S0,x

(
1− S0,x

S0,y

1 + Φ2
x − 2ΦxΦy 〈µx,µy〉

1− Φ2
y

)
(38)

= S0,x
1− Φ2

w + α[1− Φ2
x]

1− Φ2
w + α2[1− Φ2

x] + 2α[1− ΦxΦw 〈µx,µw〉]
.

(39)

Eqs (38)-(39) illustrate the dependence of the optimal error in
terms of polarization properties of the signal x, observation y
or noise w. Fixing all parameters excepted 〈µx,µw〉 in (39),
the optimal error is minimum when signal and noise exhibit
orthogonal polarizations, i.e. when their polarization axes are
anti-aligned 〈µx,µw〉 = −1. The error is maximum when
signal and noise have same polarization 〈µx,µw〉 = 1. Given
α, asymmetry between minimum and maximum values is
accentuated for strongly polarized signal and noise (Φx,Φw '
1). For α � 1 (39) becomes εopt(ν) ' S0,x(ν)/α(ν), while
for α << 1 one gets εopt(ν) ' S0,x(ν), as expected.

We conclude by a numerical example of Wiener filter
denoising. The signal x(t) is taken as the synthetized signal
of Fig. 2a. It is a partially elliptically polarized narrow-band
signal. Spectral density parameters are given in Fig 2b. Mea-
surements y(t) are obtained using (31) with w(t) a partially
vertically polarized white Gaussian noise, see Appendix C for
details. Its spectral density is Γww(ν) = σ2(1− 0.4j). Noise
variance is adjusted so that SNR = −5 dB.

Figure 2c depicts the measurements y(t). Clearly, noise
level is larger on the vertical axis on account of the
partial vertical polarization of w(t). Figure 2d shows the
output of the Wiener filter. The reconstruction SNR is
10 log10(‖x(t)‖22/‖x̂(t) − x(t)‖22) = 9.92 dB, where ‖ · ‖2
is the standard 2-norm. It illustrates the good performances in
recovering the original signal x(t).

C. Some decompositions of stationary bivariate signals

It is known [13], [18] that the spectral density of a bivariate
signal x(t) can be uniquely decomposed as the sum of
unpolarized and totally polarized spectral densities:

Γxx(ν) = [1− Φx(ν)]S0,x(ν) + Φx(ν)S0,x(ν)[1 + µx(ν)]

= ΓUxx(ν) + ΓPxx(ν), (40)

where superscripts U and P stand respectively for unpolarized
and polarized parts. The decomposition (40) motivates the
search for decompositions of the bivariate signal x(t) into two
parts xa(t) and xb(t) such that

x(t) = xa(t) + xb(t). (41)

Comparing (41) with (40), we search a linear filter such that
xa(t) is fully polarized along µx(ν) for every frequency. Addi-
tionaly the two parts should satisfy: (i) xa(t) has spectral den-
sity ΓPxx(ν); (ii) xb(t) is unpolarized for every frequency, with
spectral density ΓUxx(ν); (iii) xa(t) and xb(t) are uncorrelated.
Unfortunately no such linear filter exists. Each requirement
corresponds to a distinct filter: only one requirement at a time
can be met.

Since unitary filters do not affect the degree of polarization
or are not able to decorrelate two signals, it is necessary to use
a Hermitian filter. Moreover since we search for xa(t) fully
polarized along µx(ν), one has to use a polarizer along the
polarization axis of x(t):

Xa(ν) = K(ν) (X(ν)− µx(ν)X(ν)j) , (42)
Xb(ν) = X(ν)−Xa(ν)

= (1−K(ν))

(
X(ν) +

K(ν)

1−K(ν)
µx(ν)X(ν)j

)
.

(43)
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TABLE I
DIFFERENT DECOMPOSITIONS OBTAINED BY CHANGING THE HOMOGENEOUS GAIN K(ν).

K(ν) Γxa,xa (ν) Γxb,xb (ν) correlation

(i)

√
Φx(ν)

2(1 + Φx(ν))
S0,x(ν)Φx(ν)[1 + µx(ν)] κ(ν)S0,x(ν) [1− Φ(ν)µx(ν)]

with κ(ν) = (1 + Φx(ν)− 2(Φx(ν) + 1)K(ν))

Φ(ν) =
1− 2Φx(ν) + 2[Φx(ν) + 1]K(ν)

1 + Φx(ν)− 2[Φx(ν) + 1]K(ν)

correlated

(ii) 1−
Φx(ν)

Φx(ν) + 1−
√

1− Φx(ν)2
2S0,x(ν)K2(ν)[1 + Φx(ν)][1 + µx(ν)] S0,x(ν)[1− Φx(ν)] correlated

(iii)
1

2

S0,x(ν)

2
[1 + Φx(ν)][1 + µx(ν)]

S0,x(ν)

2
[1− Φx(ν)][1− µx(ν)] uncorrelated

The second component xb(t) is such that (41) holds. Note
that in (42)-(43) the gain K(ν) is not fixed. Requirements (i),
(ii) or (iii) correspond to distinct values of this gain. Stated
differently, K(ν) rules the nature of the decomposition (41).

Table I summarizes expressions of the gain and spectral
densities of xa(t) and xb(t) for requirements (i), (ii) and (iii).
In addition correlation properties of the two components are
given. To meet (i) the gain K(ν) is adjusted thanks to (20) such
that Γxa,xa(ν) = ΓPxx(ν). However xb(t) is partially polarized
and components are correlated. For (ii) starting from (43) and
using (21) with µ(ν) = −µx(ν) one computes the vector part
of Γxb,xb(ν). Then the gain K(ν) is obtained by imposing
Φb(ν) = 0 for every ν. Fortunately the corresponding expres-
sion for K(ν) yields Γxb,xb(ν) = ΓUxx(ν). The first component
xa(t) is fully polarized like x(t), but has weaker intensity
than that of ΓPxx(ν). Components are also correlated. Finally
(iii) is fulfilled by enforcing decorrelation between xa(t) and
xb(t). See Appendix D for technical details. Importantly xa(t)
and xb(t) are both fully polarized with orthogonal polarization
axes. Respective intensities are controlled by the degree of
polarization Φx(ν). Fig. 3 illustrate decompositions (ii) and
(iii) on the synthetized signal of Fig. 2a. Decomposition (i)
is not presented as it is similar to (iii), excepted that xb(t) is
only (strongly) partially polarized.

Taking another polarization axis in (42)-(43) will not enable
satisfying requirements (i)-(ii)-(iii). Indeed the filter corre-
sponding to (ii) and defined in Table I is the unique depolarizer
of x(t), i.e. the only filter that outputs an unpolarized signal
from a partially polarized input (Φx < 1). Moreover the unique
linear filter producing decorrelated signals for xa(t) and xb(t)
is the one defined by (iii) in Table I.

This discussion answers an important and natural question.
Since the decomposition (40) holds, is it possible to decom-
pose by linear filtering any bivariate signal into uncorrelated
unpolarized and polarized components? Unfortunately the
answer is negative. However, this hypothetical decomposition
can still be used as a synthesis tool, as already shown [18].
Moreover in practical situations where such a decomposition
may be needed, one can choose the appropriate filter according
to the desired requirement (i), (ii) or (iii).

V. CONCLUSION

This paper provides a complete and powerful framework
for linear time-invariant filtering of bivariate signals. The
proposed framework yields a direct description of filtering
in terms of physical quantities borrowed from polarization
optics. Our formalism reveals the specifity of bivariate signals
and is crucial to the physical understanding of even basic
operations such as linear filtering. The natural expression of
each filter directly in terms of eigenproperties and relevant
physical parameters simplifies modeling, design, calculations
and interpretations. By studying in detail the two types of
filters called unitary and Hermitian filters, we have also
been able to give strong physical interpretations in terms of
birefringence or diattenuation effects.

We have emphasized the relevance of our work on three
fundamental applications of signal processing. A spectral
synthesis method to simulate any Gaussian stationary ran-
dom bivariate signal with desired spectral and polarization
properties has been presented. It has been shown that the
Wiener denoising problem can be efficiently designed in the
quaternion domain, leading to new interpretations for the
bivariate case. Original decompositions of bivariate signals
into two parts with specific properties have been studied. Our
approach paves the way to further developments in estimation,
simulation and modelling of bivariate signals. The approach is
numerically efficient and relies on the use of FFT. An open-
source implementation of the presented framework will be
soon available in the Python companion package BiSPy3.

APPENDIX A
LINEAR ALGEBRA AND QUATERNION EQUIVALENCE

A. Matrix-vector and quaternion operations

Eq. (12) shows that quaternions can be represented as
complex Cj-vectors. Let X = [X1, X2]T and Y = [Y1, Y2]T

complex Cj-vectors corresponding to quaternions X and Y .
Let M denote an arbitrary complex 2-by-2 matrix. The matrix-
vector relation Y = MX describes an arbitrary linear trans-
form of C2

j .

3Documentation available at https://bispy.readthedocs.io/

https://bispy.readthedocs.io/
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Fig. 3. Decompositions (ii) and (iii) of the bivariate signal of Fig. 2a. See Table I for expressions. a polarized part and b unpolarized part of decomposition
(ii). Components are correlated. c and d: uncorrelated, orthogonal polarized parts of the original signal obtained thanks to decomposition (iii).

To obtain the corresponding relation between quaternions
Y and X , write explicitly the matrix-vector relation(

Y1

Y2

)
=

(
a b
c d

)(
X1

X2

)
=

(
aX1 + bX2

cX1 + dX2

)
(44)

where a, b, c, d ∈ Cj . Using (12) and that for any q = q1 +
iq2 ∈ H, q1, q2 ∈ Cj one has q1 = (q + qj)/2 and iq2 =
(q − qj)/2:

Y = Y1 + iY2 = aX1 + bX2 + i (cX1 + dX2)

=
1

2
(a− bi+ ic− idi)X

− 1

2
(a+ bi+ ic+ idi) jXj. (45)

Eq. (45) is the quaternion domain representation of a generic
linear transform of vectors of C2

j .

B. Unitary transforms

Let U ∈ U(2) ⊂ Cj2×2, i.e. such that UU∗ = U∗U = I2.
Remark that U = Ũdet(U) where Ũ ∈ SU(2) and detU =
exp(jϕ) ∈ Cj .

Using notations from (44), the matrix Ũ is characterized by
d = a, c = −b and |a|2 + |b|2 = 1. Thus (45) simplifies as

Y = (a− bi)X = exp(µα)X. (46)

Since |a|2 + |b|2 = 1, a− bi is a unit quaternion which can be
reparameterized in polar form by its axis µ and angle α such
that

µ =
−iRe b+ jImja+ kImjb

| − iRe b+ jImja+ kImjb|
, (47)

α = arccos Re a (48)

Back to U ∈ U(2), remark that

Y = UX = Ũ

[
X1e

jϕ

X2e
jϕ

]
, (49)

so that replacing X by the quaternion Xejϕ in (46) yields,

For U ∈ U(2), Y = UX⇐⇒ Y = eµθXejϕ. (50)

C. Hermitian transforms

Let H be Hermitian, i.e. such that H† = H. Using notations
from (44) one has a, d ∈ R and c = −b ∈ Cj . Positive
semidefiniteness is given by Sylvester Criterion: a ≥ 0 ad−
|b|2 ≥ 0, which also implies that d ≥ 0. Eq. (45) becomes

Y =
1

2
(a+ d)X − 1

2
(2bk + (a− d)j)Xj (51)

which can be reparameterized such as

K =
a+ d

2
∈ R+ (52)

µ =
(a− d)j + 2bk

[(a− d)2 + 4|b|2]
1/2

, µ2 = −1 (53)

η =

[
(a− d)2 + 4|b|2

]1/2
a+ d

∈ [0, 1] (54)

Respective domains of K,µ, η ensure that the change of
variable defines a valid one-to-one mapping. Finally, the input-
output relation reads

Y = K (X − ηµXj) . (55)

Parameters K and η can be expressed in terms of eigenvalues
λ1, λ2 (λ1 ≥ λ2 ≥ 0) of the matrix M:

K =
λ1 + λ2

2
η =

λ1 − λ2

λ1 + λ2
. (56)
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APPENDIX B
WIENER FILTER DERIVATION

We keep notations from Section IV-B. Let y(t), x̂(t),x(t)
denote vector representations of quaternions signals y(t), x̂(t)
and x(t). Remark that (32) is equivalent to its vector form:

min E
{
‖x̂(t)− x(t)‖2

}
, (57)

where ‖ · ‖ is the Euclidean norm of C2
j . The solution to (57)

in the Fourier domain is well known [10]

X̂(ν) = Pxy(ν)P−1
yy (ν)Y(ν) (58)

where Pxy(ν),Pyy(ν) are the usual (cross-) spectral density
matrices of x(t),y(t), respectively. The Wiener filter for the
denoising problem (31) is

X̂(ν) = Pxx(ν)P−1
yy (ν)Y(ν) (59)

Eq. (59) shows that X̂(ν) is obtained from Y(ν) by 2
successive Hermitian filters, since spectral density matrices
are Hermitian – and so are their sum and inverse. Introducing
an intermediate variable Z one gets

Z(ν) = P−1
yy (ν)Y(ν) (60)

X̂(ν) = Pxx(ν)Z(ν) (61)

Quaternions equivalents are readily obtained using (45) and
definitions of matrix spectral densities in terms of Stokes
parameters Si, i = 0, 1, 2, 3 [10, p. 214]:

Z(ν) = 2
[
(1− Φ2

y(ν))S0,y(ν)
]−1

× (Y (ν) + Φy(ν)µy(ν)Y (ν)j) (62)

X̂(ν) = 2−1S0,x(ν) (Z(ν)− µx(ν)Φx(ν)Z(ν)j) (63)

since Stokes parameters and polarization axis are related like
[18] S0Φµ = iS3 + jS1 + kS2. Plugging (62) into (63)
and reorganizing terms yields to the general Wiener filter
expression (33). To obtain the error expression remark that
[18, Theorem 1]

ε =

∫ ∞
−∞
S(Γee(ν))dν (64)

where e(t) = x̂(t)−x(t). Using the spectral density definition
(72) together with the Wiener filter expression (33) one gets
the optimal error expression (38) by developing (64). To obtain
(39) start by writing explicitly Γyy(ν) = Γxx(ν) + Γww(ν)
such that (ν-dependence omitted):

Γyy = S0,x + S0,w + S0,xΦxµx + S0,wΦwµw (65)
= S0,y[1 + Φyµy], (66)

where, using α = S0,x/S0,w the frequency domain SNR:

S0,y = S0,x + S0,w (67)

Φyµy =
α

1 + α
Φxµx +

1

α+ 1
Φwµw. (68)

Plugging (67) and (68) into (38) yields (39).

APPENDIX C
SIMULATION OF BIVARIATE WHITE NOISE

For sake of completeness we recall some recent results from
[18]. A bivariate white noise w(t) = u(t)+iv(t) has a constant
spectral density given by

Γww(ν) = σ2
u + σ2

v + j(σ2
u − σ2

v) + 2kρuvσuσv. (69)

where σ2
u, σ

2
v are variances of white noises u(t) and v(t), and

ρuv is the correlation between u(t) and v(t). This spectral
density has no i-component, meaning that a bivariate white
noise is always partially linearly polarized. Importantly, w(t)
is unpolarized when σ2

u = σ2
v and ρuv = 0, i.e. when w(t) is

proper [12].
Simulating a bivariate white noise w(t) is equivalent to

simulating 2 correlated real white noises u(t) and v(t).
Alternatively [18], one can simulate w(t) directly with the
desired polarization properties using an unpolarized/polarized
parts decomposition. Let 0 ≤ Φ ≤ 1 be the desired degree
of polarization, and θ ∈ [−π/2, π/2] the linear polarization
orientation angle and S0,w > 0 the total power. Let wu(t) be
an unpolarized white noise and wp(t) be a real-valued white
noise, both of unit variance and independent from each other.
Then the white noise w(t) constructed as

w(t) =
√

1− Φ
√
S0,ww

u(t) +
√

Φ
√
S0,w exp(iθ)wp(t)

(70)
has spectral density Γww(ν) = S0,w + jΦS0,w cos 2θ +
kΦS0 sin 2θ where one recognizes a linear polarization state
with spherical coordinates (Φ, 2θ, 0), see Fig. 1.

APPENDIX D
SPECTRAL REPRESENTATION OF STATIONARY BIVARIATE

SIGNALS

We recall some important results from [18]. When x(t) is
a random bivariate signal the QFT definition (3) is no longer
valid. Instead it has to be replaced with the spectral represen-
tation theorem [18, Theorem 1] which states for harmonizable
signals x(t) there exist spectral increments dX(ν) such that

x(t) =

∫ +∞

−∞
dX(ν)ej2πνt, (71)

the equality being in the mean-square sense. Then one defines
the quaternion spectral density Γxx(ν) accordingly [18] as

Γxx(ν)dν = E
{
|dX(ν)|2

}
+ E

{
dX(ν)jdX(ν)

}
(72)

where E {·} denotes the mathematical expectation.
Let x(t) and y(t) be two jointly stationary bivariate signals.

These signals are uncorrelated [18] if and only if, for all ν

E
{

dX(ν)dY (ν)
}

= E
{

dX(ν)jdY (ν)
}

= 0. (73)

This is the quaternion equivalent to saying that the cross-
spectral density matrix is zero: Pxy(ν) = 0.
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de la Lumière Par des Quaternions,” Optica Acta : International Journal
of Optics, vol. 31, pp. 415–434, 1984.

[22] T. Tudor, “Vectorial Pauli algebraic approach in polarization optics. I.
Device and state operators,” Optik - International Journal for Light
and Electron Optics, vol. 121, no. 13, pp. 1226–1235, 2010. [Online].
Available: http://dx.doi.org/10.1016/j.ijleo.2009.01.004

[23] ——, “Vectorial Pauli algebraic approach in polarization optics .
II . Interaction of light with the canonical polarization devices,”
Optik - International Journal for Light and Electron Optics,
vol. 121, no. 23, pp. 2149–2158, 2010. [Online]. Available:
http://dx.doi.org/10.1016/j.ijleo.2009.08.001

[24] J. H. Conway and D. A. Smith, On quaternions and octonions: their
geometry, arithmetic, and symmetry, 2003.

[25] E. Hitzer and S. J. Sangwine, Quaternion and Clifford Fourier Trans-
forms and Wavelets, 2013.

[26] N. Le Bihan, S. J. Sangwine, and T. A. Ell, “Instantaneous frequency and
amplitude of complex signals based on quaternion Fourier transform,”
Signal Processing, vol. 94, pp. 308–318, aug 2014.

[27] P. Lancaster and M. Tismenetsky, The theory of matrices: with applica-
tions. Elsevier, 1985.

[28] S. L. Altmann, Rotations, quaternions, and double groups. Courier
Corporation, 2005.

[29] J. P. Gordon and H. Kogelnik, “PMD fundamentals: Polarization mode
dispersion in optical fibers,” Proceedings of the National Academy of
Sciences, vol. 97, no. 9, pp. 4541–4550, 2000. [Online]. Available:
http://www.pnas.org/content/97/9/4541.abstract

[30] C. Francia, F. Bruyère, D. Penninckx, and M. Chbat, “PMD Second-
Order Effects on Pulse Propagation in Single-Mode Optical Fibers,”
IEEE Photonics Technology Letters, vol. 10, no. 12, pp. 1739–1741,
1998.

[31] D. B. Percival, “Simulating Gaussian Random Processes with Specified
Spectra,” Computing Science and Statistics, vol. 24, pp. 534–538, 1992.

http://www.sciencedirect.com/science/article/pii/S1063520317300507
http://www.sciencedirect.com/science/article/pii/S1063520317300507
http://www.opticsinfobase.org/abstract.cfm?URI=josa-61-9-1207{%}5Cnhttp://www.opticsinfobase.org/DirectPDFAccess/9A42F7BC-03AB-48AF-5496AF705A237F45{_}54460/josa-61-9-1207.pdf?da=1{&}id=54460{&}seq=0{&}mobile=no
http://www.opticsinfobase.org/abstract.cfm?URI=josa-61-9-1207{%}5Cnhttp://www.opticsinfobase.org/DirectPDFAccess/9A42F7BC-03AB-48AF-5496AF705A237F45{_}54460/josa-61-9-1207.pdf?da=1{&}id=54460{&}seq=0{&}mobile=no
http://www.opticsinfobase.org/abstract.cfm?URI=josa-61-9-1207{%}5Cnhttp://www.opticsinfobase.org/DirectPDFAccess/9A42F7BC-03AB-48AF-5496AF705A237F45{_}54460/josa-61-9-1207.pdf?da=1{&}id=54460{&}seq=0{&}mobile=no
http://www.opticsinfobase.org/abstract.cfm?URI=josa-61-9-1207{%}5Cnhttp://www.opticsinfobase.org/DirectPDFAccess/9A42F7BC-03AB-48AF-5496AF705A237F45{_}54460/josa-61-9-1207.pdf?da=1{&}id=54460{&}seq=0{&}mobile=no
http://www.opticsinfobase.org/abstract.cfm?URI=josa-61-9-1207{%}5Cnhttp://www.opticsinfobase.org/DirectPDFAccess/9A42F7BC-03AB-48AF-5496AF705A237F45{_}54460/josa-61-9-1207.pdf?da=1{&}id=54460{&}seq=0{&}mobile=no
http://dx.doi.org/10.1016/j.ijleo.2009.01.004
http://dx.doi.org/10.1016/j.ijleo.2009.08.001
http://www.pnas.org/content/97/9/4541.abstract

	I Introduction
	II Background
	II-A Quaternions
	II-B Quaternion Fourier transform
	II-C Quaternion spectral density of bivariate signals

	III LTI filtering for bivariate signals
	III-A Matrix and quaternion representation
	III-B Unitary filters
	III-C Hermitian filters

	IV Applications
	IV-A Spectral synthesis
	IV-B Wiener denoising
	IV-C Some decompositions of stationary bivariate signals

	V Conclusion
	Appendix A: Linear algebra and quaternion equivalence
	A-A Matrix-vector and quaternion operations
	A-B Unitary transforms
	A-C Hermitian transforms

	Appendix B: Wiener filter derivation
	Appendix C: Simulation of bivariate white noise
	Appendix D: Spectral representation of stationary bivariate signals
	References

