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ABSTRACT
Pattern generalization was proposed recently as an avenue to increase the acquisition speed of single-pixel imaging set-
ups. This approach consists of designing some positive patterns that reproduce the target patterns with negative values
through linear combinations. This avoids the typical burden of acquiring the positive and negative parts of each of the
target patterns, which doubles the acquisition time. In this study, we consider the generalization of the Daubechies wavelet
patterns and compare images reconstructed using our approach and using the regular splitting approach. Overall, the
reduction in the number of illumination patterns should facilitate the implementation of compressive hyperspectral lifetime
imaging for fluorescence-guided surgery.
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1. INTRODUCTION
Most conventional cameras rely on high resolution arrays of detectors. However, building arrays for sophisticated detectors
(e.g., hyperspectral, time resolved) is costly, if feasible. In this case, single-pixel imaging might be a good alternative to
conventional imaging, as it only requires a single photodetector.1 It is particularly relevant for hyperspectral time-resolved
imaging, which can retrieve intensity, lifetime, and FRET occurrence maps in vitro.2, 3

Single-pixel imaging experimentally measures the inner product between the scene and some modulation patterns,
and then it reconstructs the image of the scene computationally.4 The modulation patterns are usually taken with some
transform basis to benefit from fast reconstruction. Common choices include Fourier,5, 6 wavelet,7–12 and Hadamard13, 14

basis patterns.

While most reconstruction schemes are based on patterns that have both positive and negative values, spatial light
modulators can only implement positive patterns. To deal with this issue, it is common practice to split the patterns into
two sets of positive patterns, and then to recombine them to measure the target patterns.15 However, the splitting requires
two measurements to acquire one target pattern. Recently, a pattern generalization method was introduced to circumvent
this issue.16 The idea is to find some positive patterns that lead to the target pattern through linear combinations. To
do so, we solve a modified semi-positive factorization problem by means of a time-consuming optimization algorithm.
This has two drawbacks: real-time implementation is not feasible, and the approximation framework induces a remaining
factorization error that can translate into reconstruction artifacts.

In this paper, we show a whole family of analytical solutions of the pattern generalization problem. As in Ref. 16, our
solution only requires (I + 1) measurements to measure I target patterns. However, contrary to Ref. 16, this is an exact
factorization scheme and it has fast implementation.

2. SINGLE-PIXEL THEORY
2.1 Acquisition
Let f ∈ RN×1 be an image with N pixels. The power emitted by the light source (e.g., laser, ambient light) is denoted by
N0 ∈ R+, where the units are photons per second (ph/s). We denote α ∈ R+ (in ph/s) as the dark current; i.e., the signal
read by the single detector when N0 = 0 ph/s. The signal mk (in ph) measured by the single detector during the integration
time ∆t ∈ R+ (in s) can be modeled as4, 17

mk =
(

N0p>k f+α

)
∆t, (1)



where pk ∈RN×1
+ is a spatial light modulator (SLM) pattern, and f and p are normalized; i.e., f∈ [0,1]N×1 and pk ∈ [0,1]N×1.

Let P = (p1, . . . ,pK)
> ∈ RK×N

+ be the matrix that contains the sequence of K SLM patterns pk. The measurement vector
m = (m1, . . . ,mK)

> ∈ RK×1
+ that regroups the sequence of measurements mk of Equation (1) is hence given by the matrix

equation
m = (N0Pf+α1K)∆t, (2)

where 1K = (1, . . . ,1)> ∈ RK×1.

2.2 Choice for patterns and reconstruction
Different approaches have been proposed to design a set of patterns P and to recover the image f from the measurements
m. Most of these have considered patterns with negative values. Patterns are usually chosen in bases such as Fourier,5, 6

discrete cosine transform,18 wavelets,7–12 and Hadamard13 (see Ref. 19 for a comparison), where the image f is supposed
to be a sparse, so that the number of nonzero measurements K will be much smaller than the dimensions of the image N.

In addition, it is common to assume that there is no dark current, so that the image formation model classically consid-
ered for image restoration is

mtar = N0q>f ∆t, (3)

where q ∈ RN×1 is a SLM pattern with positive and negative values. From now on, we will refer to q (resp. mtar) as
the target SLM pattern (resp. measurement). We denote Q = (q1, . . . ,qI)

> ∈ RI×N as the set of I target patterns and
mtar = (mtar

1 , . . . ,mtar
I )> as the vector that contains the corresponding set of target measurements. Applying Equation (3) to

the collection of patterns Q leads to the target measurements

mtar = N0Qf ∆t. (4)

The image can finally be reconstructed by computing the least-squares solution. Assuming again that the image f admits a
sparse representation mtar, and therefore belongs to the column space of Q, we estimate f as

f∗ = Q†mtar, (5)

where Q† = Q>(QQ>)−1 is the Moore-Penrose generalized inverse of Q. When f is sparse in some basis, `1-penalized
algorithms allows perfect reconstruction of f from I� N patterns.4

Unfortunately, the absence of dark current in Equation (4) is unrealistic and the patterns Q with negative values cannot
be physically implemented on a SLM.

3. IMPLEMENTATION OF NEGATIVE PATTERNS
3.1 Splitting method
One of the most practical ways to handle negative patterns is to split them into two sets of positive patterns Q+ ∈ RI×N

+

and Q− ∈ RI×N
+ such that Q = Q+−Q−, where Q+ and Q− are chosen as the positive and negative parts of Q; i.e.,

Q+
i,n = max(Qi,n,0) and Q−i,n = max(−Qi,n,0) ∀(i,n). (6)

Then we acquire the image with both the positive and negative patterns; i.e.,

m+ =
(
N0Q+f+α1K

)
∆t and m− =

(
N0Q−f+α1K

)
∆t. (7)

Finally, the resulting measurements m+ ∈ RI and m− ∈ RI are subtracted to get the target measurements mtar. Mathemat-
ically

mtar = m+−m+. (8)

This method cancels the impact of the dark current α because by taking the difference of both measurements m+ and m−
it can be seen that the dark current is dissipated. Unfortunately, this technique requires 2I measurements to get I target
measurements.



3.2 Shifting method
Another approach is to shift the patterns toward positive values and measure additional patterns to recover the direct current
(DC) component. Let Qshift ∈ RI×N

+ be the shifted patterns and Qdc be the DC patterns, such that Q = Qshift−Qdc, where
Qshift and Qdc are chosen as

Qshift
i,n = Qi,n−min(Q) and Qdc

i,n =−min(Q), ∀(i,n). (9)

Next, we measure the image for the shifted and DC patterns. Note that as all of the patterns in Qdc are the same, we only
need to acquire them once. Therefore, in practice, we measure

mshift =
(

N0Qshiftf+α

)
∆t and mdc =

(
N0 min(Q)(1, . . . ,1)>f+α

)
∆t (10)

Finally, the target measurements are computed as

mtar
i,n = mshift

i,n −mdc ∀(i,n). (11)

Once again, this method also removes the bias introduced by the dark current α . The shifting method only requires I +1
measurements to get I target measurements. However, it is very sensitive to noise and has limited practical interest, as will
be shown in Section 5.

3.3 Pattern generalization
Recently, pattern generalization was introduced as a generalization of the splitting and shifting approaches.16 As depicted
in the pipeline of Fig. 1, pattern generalization starts by seeking a collection of K positive patterns P ∈ RK×N

+ such that
Q = TP (12a)
P≥ 0 (12b)
T1I = 0I (12c)

where P ≥ 0 is shorthand for Pk,n ≥ 0, ∀(k,n), T ∈ RI×K is a transformation matrix, 0I = (0, . . . ,0)> ∈ RI×1. As the
patterns P are positive, they can be physically implemented (see Equation (2)).

The patterns defined by P will henceforth be called generalized patterns. Then, the raw measurements m are measured
by uploading the positive patterns P into the single-pixel camera. Finally, the target measurements mtar of Equation (4) are
obtained as

mtar = Tm (13)

Note that due to the conditions T1I = 0I , the target measurements mtar are not biased by the dark current α that corrupts
the raw measurements m.

As shown in Ref. 16, Equation (12) can be solved numerically for the case K = I +1. However, this approach leads to
inexact solutions; i.e., Q ≈ TP and T1I ≈ 0I . Moreover, this optimization problem is computationally intensive and time
consuming, making real-time adaptive methods12 very difficult to implement.

4. EXACT PATTERN GENERALIZATION
In this section, we show a framework for the exact solutions for the pattern generalization problem, which are fast to com-
pute.20 Specifically, we present solutions for which only K = I +1 positive patterns are required to acquire I nonpositive
target patterns.



Figure 1: Framework of the pattern generalization method.

4.1 Shifting variant
First, let us consider the following matrices:

T =
[
II −1I

]
and P =

[
Q
0>N

]
(14)

where II ∈ RI×I is the identity matrix. We can verify that Q = TP and T1I = 0I ; i.e., the pair of matrices T ∈ RI×(I+1)

and P ∈ R(I+1)×N introduced in Equation (14) satisfy the pattern generalization conditions of Equations (12a) and (12c).
It is also worth noting that Q = T(P+[c11I . . .cN1I ]) = TP, ∀(c1, . . . ,cN)

> ∈ RN , as T1I = 0I . In other words, given the
pair of matrices defined by Equation (14), any matrix obtained by adding a constant c ∈R to any column of P also satisfies
Equation (12a). Choosing c greater than or equal to the lowest value in each column of Q enables Equation (12b) to be
satisfied. In summary, the following pair of matrices exactly solves the generalization problem

T =
[
II −1I

]
and P =

[
Q
0>N

]
−
[
c11K . . .cN1K

]
. (15)

where K = I +1 and cn = min
i
(Qi,n). This solution is referred to as the shifting variant, as the patterns are shifted so as to

make them positive. Contrary to the regular shifting method, each pixel in the patterns is shifted by a different value.

4.2 Prefactorization method
In this paragraph, we propose to generalize Equation (15). Assuming that A ∈ RI×I and B ∈ RI×N are such that

Q = AB (16)

the matrices

T =
[
A −A1I

]
and P =

[
B
0>P

]
(17)

satisfy Equations (12a) and (12c). As for the shifting variant, the positivity conditions of Equation (12b) can be enforced,
choosing

T =
[
A −A1I

]
and P =

[
B
0>P

]
−
[
c11K . . .cN1K

]
. (18)

where K = I +1 and cn = mini(Qi,n).

Many different prefactorization variants can be designed depending on the prefactorization that is retained for Equation
(16). Natural prefactorization schemes include:



• Shifting variant. This correspond to the trivial choice

A = I and B = Q. (19)

• Singular value decomposition (SVD). Given the SVD Q = UΣΣΣV>, we can choose

A = U and B = ΣΣΣV>. (20)

• Random. Any full rank matrix C ∈ RI×I can be chosen at random. Therefore, we can choose

A = C−1 and B = CQ. (21)

4.3 Batched factorization
Here, we introduce batched factorization, which relies on splitting the set of patterns Q into L subsets of patterns; i.e.,
to consider Q> = [Q>1 , . . . ,Q

>
L ], where Q` ∈ RI`×N is the `-th subset of patterns. This consists of solving the pattern

generalization problem for each patterns subset independently
Q` = T`P` (22a)
P` ≥ 0 (22b)
T`1 = 0 (22c)

where T` ∈ RI`×I`+1 and P` ∈ R(I`+1)×N . Therefore, a straightforward solution of the full pattern generalization problem
is given by

T = Diag(T1, . . . ,TL) and P = Diag(P1, . . . ,PL) (23)

where T ∈ RK×(K+L) and K = ∑ I`.

5. RESULTS AND DISCUSSION
5.1 Numerical simulations
The experimental parameters were set to α = 20000 photons/s, N0 = 2100 photons/s, and ∆t = 0.1 s. The measurements
were corrupted by Poisson noise. The image of the scene is 256×256, leading to N = 2562. We considered the well-known
Lena image as well as the Jaszczak and bone images provided in the Spirit Toolbox.21 All of the simulations were carried
out with Daubechies wavelet patterns with four vanishing moments. We performed simulations for varying numbers of
target patterns I, which led to different compression ratios, as defined in the next paragraph. For each matrix, we will
choose K = I + 1 for the full factorization method. When we use batched factorization, we will choose to have all of
the batches of the same size bs = 16 (∀i ≤ L I` = bs), in which case the total number of required measurements will be
K = I + d I

bs
e.

We compute matrix C by uniform sampling over [0,1], and then we orthogonalize this so that we only need to keep
one matrix in the random access memory. Pattern generalizations were carried out using all of the methods described in
Secs. 3 and 4. Note that the inexact factorization method has always been implemented using batches of size I` = 16, ∀`.
Indeed, the inexact factorization time without batches takes about 24 h, whereas it only takes a few minutes with batches,
on an Intel(R) Core(TM) i5-8400H CPU @ 2.50 GHz.

5.2 Evaluation metrics
The reconstruction quality will be measured by the peak signal-to-noise ratio (PSNR). The PSNR between the original
image f and the reconstructed image f∗ can be defined by

psnr(f, f∗) = 10 log10

(
d2N
‖f− f∗‖2

2

)
, (24)

where d = 256 is the dynamic range of the image f and ‖ · ‖2 denotes the Euclidean norm.

The acquisition compression ratio is defined by

cr = 100× N− I
N

, (25)

This ranges from 0% to 100% (i.e., from no acquisition to no compression).
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Figure 2: Reconstructions for the different methods for solving the full pattern generalization problem. The compression
rate is set to 97.5%. (a) Ground truth. (b) Split. (c) Inexact. (d) Shift variant. (e) Singular value decomposition. (f)
Random. The inexact factorization is computed using batches of size 16, to reduce the computational burden, while no
batches are used for the other methods.

Table 1: Peak-to-noise ratios for the reconstructed images for the full pattern generalization problem. Different images and
compression ratios are considered across rows, and different methods down columns. SVD, singular value decomposition.

Image Compression ratio (%) State of the art Proposed
Split Shift Inexact Shift variant SVD Random

Lena
99 21.92 16.61 21.03 18.90 20.97 21.64
97.5 24.24 5.47 21.61 10.7 16.45 21.69
95 24.99 2.36 21.13 7.27 NaN 21.91

Jaszczak
99 19.71 17.93 19.63 18.87 19.34 19.55
97.5 24.12 11.97 22.55 16.26 20.01 22.52
95 24.51 3.24 21.67 8.19 12.25 19.25

Bone Image
99 22.77 13.60 22.11 16.70 20.39 21.97
97.5 25.29 1.51 22.77 6.27 13.54 19.86
95 25.21 -1.63 19.83 3.51 9.64 20.01

5.3 Influence of the pattern generalization method
In Fig. 2, we show visual comparisons between the images that are reconstructed from patterns that originate from different
pattern generalization methods. In Table 1, we report the PSNRs of the reconstructions for the different images and
compression ratios. Note that the inexact factorization is computed using batches of size 16, to reduce the computational
burden, while no batches are used for the other methods.

It appears that the best reconstruction is obtained by the splitting methods. However, both the inexact factorization and
the proposed random exact factorization lead to similar visual quality. The shifting variant and the exact SVD factorization
both fail to recover the image.

For decreasing compression ratios, the reconstruction with both the proposed shift variant and the SVD-based factor-



Table 2: Peak signal-to-noise ratios for the full and batched pattern generalization problems. The batch size was set to
I` = 16. Different images and compression ratios are considered across rows, and different methods down columns.

Image Compression ratio (%) Shifting variant Singular value decomposition Random
Full Batched Full Batched Full Batched

Lena
99 18.90 21.57 20.97 21.54 21.64 21.68
97.5 10.70 22.58 16.45 22.37 21.69 23.00
95 7.27 22.32 NaN 21.95 21.91 22.80

Jaszczak
99 18.87 19.47 19.34 19.50 19.55 19.56
97.5 16.26 21.82 20.01 21.82 22.52 22.52
95 8.19 20.99 12.25 20.92 19.25 21.85

Bone image
99 16.7 21.80 20.39 21.73 21.97 22.09
97.5 6.27 21.48 13.54 21.03 19.87 22.25
95 3.51 20.50 9.64 20.00 20.01 21.15

ization dramatically decrease in quality. While the random exact factorization performs better, at low compression ratios it
is outperformed by the split method.

5.4 The interest in batched factorization
In Fig. 3, we can see that the use of batches greatly improves the accuracy of our reconstruction, particularly when com-
pared to Fig. 2. We can see that the use of batches provides well reconstructed images, even when the shift variant is
used.

Table 2 compares the PSNRs computed from the reconstructed images obtained using the different proposed exact
factorization patterns with and without the use of batches. In all of our simulated results, batched factorization outperforms
full factorization.

Batch factorization increases the number of measurements to be made with respect to full factorization. If L batches are
considered, then batch factorization requires I +L measurements, while full factorization only requires I measurements.
However, this increase is negligible, as L� I.

Comparing the results given in Table 2 with those of Table 1, we can see that the proposed random factorization with
batches is the best alternative to splitting methods, which provide the best performance, but require doubled the acquisition
time (I +L vs. 2I measurements).

5.5 Real-time adaptive imaging
Table 3 compares the different processing times for the different methods. We divided the computation into off-flight com-
putation, which does not require knowledge of the patterns Q, and on-flight computation, which does. This is relevant for
adaptive acquisition strategies where the patterns to be measured are determined progressively during the acquisition.12, 22

Nonadaptive strategies that always measure the same set of patterns can be fully precomputed offline, whatever the retained
method for pattern generalization.

It appears that both the proposed shifting variant and the proposed random factorization have relatively low on-flight
computation times, which might enable real-time adaptive imaging.

The shift method takes longer with batches because our code for batches is generic and it was not optimized for special
cases such as shifting, where the computation could be made easier, so the pre-computation time of the shift method with
batches could potentially be improved.

The factorization time is several times faster as the blocks are reduced in size. Also, for highly noisy set-ups, the
combination of several very noisy measurements results in a reconstruction where the noise is highly amplified. Hence,
reducing the size of the batches might ensure that we are combining less highly noisy measurements.



Table 3: Computation times for different methods and compression ratios. The measurement time is K∆t. The pattern
generalization precomputation time is denoted by ∆toff and the pattern generalization on-flight computation time by ∆ton.
The total acquisition time of an image through an adaptive strategy is K∆t +∆ton.

Method
Offline

computation Batches Compression ratio (%) I K ∆toff (s) ∆ton (s)

Split Yes -
99 640 1280 0.7 -
97.5 1638 3276 1.6 -
95 2867 5734 2.3 -

Shift Yes

No
99 640 641 0.17 -
97.5 1638 1639 0.4 -
95 2867 2868 0.8 -

Yes
99 640 680 0.3 -
97.5 1638 1740 1 -
95 2867 3046 2.2 -

Inexact No Yes
99 640 680 - 600
97.5 1638 1740 - 584
95 2867 3046 - 925

Shift variant Yes

No
99 640 641 0.001 0.2
97.5 1638 1639 0.01 0.7
95 2867 2868 0.06 1.2

Yes
99 640 680 0.3 0.6
97.5 1638 1740 0.7 1.5
95 2867 3046 1.2 2.3

Singular value decomposition No

No
99 640 641 - 4.5
97.5 1638 1639 - 22
95 2867 2868 - 69

Yes
99 640 680 - 2.5
97.5 1638 1740 - 6.7
95 2867 3046 - 11

Random Yes

No
99 640 641 0.07 0.6
97.5 1638 1639 1.5 2.5
95 2867 2868 10 6.4

Yes
99 640 680 0.3 0.6
97.5 1638 1740 0.9 1.7
95 2867 3046 1.4 2.8
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Figure 3: Comparison of the different pattern generalization methods for a compression rate cr = 97.5 % and a batch size
I` = 16. (a) Ground truth. (b) Split. (c) Inexact. (d) Shift variant. (e) Singular value decomposition. (f) Random.

6. CONCLUSION AND PERSPECTIVES
We have defined here a factorization framework that enables reduced acquisition times of single-pixel camera applications,
by a factor of two. The use of batches further improves the quality of the acquisition, albeit decreasing the speed-up
provided by the pattern generalization method.

The batch method allows us to choose the best compromise between measurement time and measurement quality. The
choice of the size of the batch can be from I - the total number of target patterns - to 2 (in which case we get the splitting
method exactly).

A certain number of questions still remain. What initialization for our method yields the best results, and why? Empir-
ically the random orthogonal initialization appears to yield the best results, but we have yet to define theoretical conclusive
results. Another question would be how to choose the size of the batches that best reflects the compromise sought between
speed and accuracy. Furthermore, we are working on the experimental implementation of these methods.
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