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The prediction models do not generally take into account the spatiotemporal dynamics of mobile entities for which the prediction is made. This paper aims to show the impact of considering this constraint in a prediction model. The approach used is based on a mathematical equation of population dynamics, completed with the balance method based on particles diffusion, to obtain a diffusion equation form on which the model is based. The discretization is made using the finite volume method on homogeneous mesh. The resulting model is strongly linked to a probabilistic diffusion coefficient that highlights the random nature of the displacement of mobile entities within a closed environment. This approach is illustrated to the traditional SIR epidemiological model which is completed with the spatiotemporal constraints.

Introduction

The observation of scientists and researchers has made considerable progress in predicting phenomena that rely on existing or created models and theories [3, 4, 5, 6, 7, 8, 10, 17, 18, 19 and 20]. With the recent development in technologies, the prediction of phenomena becomes an important decision support tool. Given the complexity of this research topic, there are several approaches due to the random behavior of mobile entities on the one hand and geographic constraints on the other. It would therefore be possible to change approach to overcome these difficulties by considering for each phenomenon a suitable theory or an adapted model.

In this study, the work is done in a closed environment broken down into several distinct sites. In this environment, mobile entities move from one site to another in a random manner, thus influence the size of the population.

In the prediction of phenomena sometimes there is an incoherence between the expected and the reality, hence the idea of trying to understand a phenomenon in all the outlines so that its modes of emergence can be modeled in mathematical equations to obtain renderings that are the most reliable. One notices that, most prediction models consider only the phenomenon dynamics without explicitly highlighting the impact of the spatiotemporal dynamics of mobile entities concerned by the prediction model. From this observation, evolve the following ideas:

-Studying the behavior of a phenomenon dynamically as a function of time and space in its evolution -Taking a phenomenon into an atomic division according to the spatiotemporal behaviors and combine afterwards to find the global behavior -Finding for each phenomenon a spatiotemporal behavior which adapts to an existing model or to propose a model -Dissociating the dynamics of the individuals to that of a phenomenon then associating the different results to predict a future behavior -Writing probabilistic time equations in order to arrive at a model that can integrate the random aspect of a phenomenon and its spatiotemporal evolution. Some researchers (Jianhong Wu and P. van den Driessche [START_REF] Driessche | Spatial Structure: Patch Models[END_REF]) have progressed in this direction. Without having the pretension to control the whole manifestation of all the contours related to a phenomenon in the case of the prediction, our contribution will be much more oriented towards the impact of the spatiotemporal dynamics of mobile entities in the prediction model as in [START_REF] Basileu | Modélisation structurelle des réseaux sociaux : Application à un système d'aide à la décision en cas de crise sanitaire[END_REF] and [START_REF] Driessche | Spatial Structure: Patch Models[END_REF].

The rest of this paper is structured as follows: section 2 presents the literature review where the main tools used are exposed. Section 3 presents the methodology, the manner in which the model is built. Section 4 describes a hybrid SIR obtained by applying this idea on the traditional SIR model. We will end in section 5 with a conclusion and perspectives.

2. Literature review.

Population dynamics: parabolic partial differential equation

In this part, our attention was mainly focused on equations took in [START_REF] Garnier | Analyse mathématique de modèles de dynamique des populations : équationsaux dérivées partielles paraboliques et équations intégro-différentielles[END_REF] with following forms

𝜕𝑢(𝑡,𝑥) 𝜕𝑡 = 𝐷(𝑢)(𝑡, 𝑥) + 𝑓(𝑥, 𝑢(𝑡, 𝑥)) 𝑡 > 0 , 𝑥 ∈ 𝑅 (1) 
These equations occur in a wide variety of fields such as combustion, chemistry, biology or ecology [START_REF] Fisher | The wave of advance of advantageous genes[END_REF], [START_REF] N S Kolmogorov | Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF]. They generally model the evolution of entities that interact with each other and move. In particular, in the field of population dynamics or population genetics, the quantity u (t, x) represents the population density at time t and at position x. The reaction term f (x, u) corresponds to the growth rate of the population. It allows to model the interactions between individuals and the characteristics of the habitat or environment. This term of reaction depends on the density u one hand and with the environment in which the population evolves through the variable of space x on the other hand. The movement of individuals is described by the dispersion operator D. Depending on the mode of movement of the individuals, this operator will be local or non-local. In this large set, we will focus mainly on a single type of reactiondispersion equation where the dispersion operator D is an elliptic differential operator of the second order [START_REF] Garnier | Analyse mathématique de modèles de dynamique des populations : équationsaux dérivées partielles paraboliques et équations intégro-différentielles[END_REF].

𝜕𝑢(𝑡,𝑥) 𝜕𝑡 = 𝜕 2 𝑢(𝑡,𝑥) 𝜕𝑥 2 + 𝑓(𝑥, 𝑢(𝑡, 𝑥)) (2) 
In this first family of equations we found that our equation of dimension is not valid, the equation is purely mathematical but the objective of this work is to deal with real quantities to better represent reality. This motivated a balance approach that originated in the particles diffusion

Particles diffusion

The equations resulting from the particles diffusion come from the balances of mobile entities in a control volume, this approach was built with the help of [START_REF] Salamito | Damien physique tout en un Editeur[END_REF]. It results in the case of one dimension without particles creation:

𝜕𝑛(𝑥, 𝑡) 𝜕𝑡 = - 𝜕𝑗 𝑥 (𝑥, 𝑡) 𝜕𝑥 (3) 
𝑛(𝑥, 𝑡) Represents the number of mobile entities per unit volume, 𝑗 ⃗(𝑥, 𝑡) = 𝑛(𝑥, 𝑡)𝑣 ⃗(𝑥, 𝑡) where 𝑣 ⃗(𝑥, 𝑡) is the mobile entity's velocity. In the case where there is production or disappearance of the mobile entities, let p (x, t) be the number of mobile entities produced per unit of time and volume (it will be a positive algebraic production when mobile entities are created and negative when mobile entities disappear). 

The interesting thing here is that it has been proven in [START_REF] Salamito | Damien physique tout en un Editeur[END_REF] that these equations are valid whatever the geometry, but if need be, the divergence operator can change depending on the coordinate system adopted.

The difficulty in this approach was to find the right form of the divergence operator (𝑑𝑖𝑣𝑗 ⃗ ) to best fit population dynamics with respect of the dimension equations.

In the same way like in this paper, Jianhong Wu [START_REF] Driessche | Spatial Structure: Patch Models[END_REF] starting with the basic concepts developed a model for the spatial spread of diseases involving hosts in random displacement during certain stages of the progression of the disease. It led to a diffusion model based on the conservation law and Fick's law. He applied this model to the study of two cases, namely the spread of rabies in continental Europe during the period 1945-1985 and the rate of spread of West Nile virus in North America.

Methodology

Approach: the base of the model

The modeling begins with the balance approach where we want to know at every moment and with the greatest accuracy possible, the number of mobile entities present in a site during the prediction of a phenomenon, in order to improve the precision. For that we relied on the theory of the particle's diffusion in two dimension by assuming that mobile entities move in a plane. In the following it was necessary to:

-Find an explicit form of equations ( 1) and (2) as a function of time and space -Find the equivalence of the operator (𝑑𝑖𝑣𝑗 ⃗) as a function of density of mobile entities n (M, t) This concern brought us back to equation (2) of population dynamics with the objective of a way to replace the divergence operator (𝑑𝑖𝑣𝑗 ⃗) as in Fick's law which states that "the flow due to random movement is approximately proportional to gradient of the number of individuals". Which gives: 𝑗 = -𝐷𝜕𝑛(𝑥, 𝑡)/𝜕𝑥 (8) To have the following form of diffusion equation 𝜕𝑛(𝑥, 𝑡)/𝜕𝑡 = 𝐷∆𝑛(𝑥, 𝑡) (9) Where D is the diffusion coefficient and Δ is the Laplacian operator. The equation ( 2) is also exploited. Indeed, according to our analysis, it combines particle dynamics and Fick's law, notwithstanding a residual coefficient D (diffusion coefficient). This went well to the form of equation sought. To continue in our reasoning, we made the following approximations on equation ( 2):

-We first neglect the creation factor f (x, u (t, x)) given the time difference between t and t + dt that will not be at the scale of a duration that can hold significantly account for the death or birth of a new mobile entity. -Add a coefficient D in front of the second-order elliptical differential operator to take into account the randomness moving of mobile entities from one site to another on the one hand and the homogeneity with the dimensional equation on the other hand.

-The coefficient D can be constant or follow a law of variation according to the complexity linked to the inter-site dynamics of mobile entities. All this gives a first form of equations for the problem in 2 dimensions

𝜕𝑢(𝑡, 𝑥) 𝜕𝑡 = 𝐷 ( 𝜕 2 𝑢(𝑡, 𝑥) 𝜕𝑥 2 + 𝜕 2 𝑢(𝑡, 𝑥) 𝜕𝑦 2 ) ( 10 
)
The main difficulty of this modeling resided on the capacity to give an adapted form to the diffusion coefficient D. Seen in this way the diffusion coefficient D will be responsible for the adaptive character of this model.

Model development

For a first approach we will consider a closed environment as a homogeneous site distribution as shown in the diagram below. (See Fig 1)

Given the configuration of this environment, we found that the discrete model was suitable. Our choice fell on the finite volume discretization method which is adapted to the equations that represent conservation laws [13, 14, 15 and 16]. Since we want to show the appearance of a random distribution in time through the diffusion coefficient D, it was difficult for us to obtain an analytical solution like a simple diffusion with a constant diffusion coefficient. The diffusion coefficient D in this case will highlight not only the randomness of the movement of the mobile entities, but also the contribution of each neighboring site to a giving site i. Seen in this way, the diffusion coefficient D will be a probabilistic matrix representing the neighboring contributions in giving site leading to the modification of its population. Then D is built according to the following hypotheses: H1) whenever a mobile entity is in a site it can decide to move or not according to its state H2) the probability of moving from one site to another depends on the number of neighboring sites H3) there is equiprobability to leave a site i to go to any site, this probability will be equal to the inverse of the number of neighbors that own the site i H4) the effective probability of moving or not when we are in a site i will be noted β H5) the final probability 𝑃 𝑖𝑗 to leave a site i to a site j will finally be the product of the probabilities of H3 * H4 it means that if N is the number of neighbors and β the effective probability of movement of a mobile entity in a site i, we will have P = β x1 / N H6) the probability q of not leaving his site will be q = 1p H7) the coefficient D will be a probabilistic contribution matrix from the assumptions above. The D general term is 𝐷 𝑖,𝑗 = 𝜔𝑃 𝑖,𝑗 where 𝜔 ≈ (∆𝑥^2)/∆𝑡 Depends on the average speed characteristic of the flow moving of mobile entities. After applying the finite volume method and considering the above assumptions the following numerical scheme is obtained 

𝑢 𝑖,𝑗 𝑛+1 = ∆𝑡𝐷 𝑖
For 𝑗 = 2 𝑡𝑜 𝑃 -1 𝑢 1,1 𝑛+1 = ∆𝑡𝐷 𝑖,𝑗 ∆𝑥 2 (𝑢 2,1 𝑛 ) + ∆𝑡𝐷 𝑖,𝑗 ∆𝑦 2 (𝑢 1,2 𝑛 ) + (1 -2( ∆𝑡𝐷 𝑖,𝑗 ∆𝑥 2 + ∆𝑡𝐷 𝑖,𝑗 ∆𝑦 2 ))𝑢 1,1 𝑛 (12) 
For 𝑗 = 1 

Example of application

In this section, the purpose is to present how the idea of taking into account the spatiotemporal factor can bring a corrective term to the traditional prediction model. Suppose a homogeneous population where each individual in the population can be identified by their position in a site within the enclosed environment considered above. Let's examine the case of a disease that acts on mobile entities and whose dynamics is modeled in traditional SIR model. Let's do a combination with the probabilized diffusion approach.

For this, a set of assumptions must be made knowing that individuals represent the basic unit of any diffusion

Assumptions

-An individual of the population can be in 3 possible states:

-Susceptible (S) these are healthy individuals who can be infected -Infected (I) those who carry the disease -Remove (R) the number of those who have been cared for and who have developed immunity -The number of individuals of the site i being in one of its states will be noted Si (t), Ii (t), Ri

-The population of a site is supposed to be homogeneous, then individuals are indistinguishable and the exchanges between the various immediate neighboring sites are possible -The transfer rate of individuals from one site to another is assumed to be independent of status or the state of an individual -The parameters of de model are assumed to be greater than or equal to zero (> = 0); because these characteristics are related to the population -To simplify, we will assume that the birth rate and the natural death rate are negligible compared to the characteristic duration of calculation -For a site i, the total number of individuals Ni (t) is given by: Ni (t) = Si (t) + Ii (t) + Ri 

SIR hybrid model construction

As a result of the foregoing and in view of the previous hypotheses, the modeling will lead to ordinary differential equations firstly, if the inter-site migration is not taken in to account. We will therefore have another system of differential equations that highlights the impact of the inter-site migration which is the goal in this example. In the following, we assume that it is the same disease that occurs and spreads across all the different sites. For this purpose, let α, β and γ be respectively the rates of infection, cure and return to the susceptible condition of the individuals of a site. Let P be the total number of sites contained in the closed environment, it first results in a set of 3P ordinary differential equations describing the infection dynamics within the population in a site i. Then, in a second step, a set of 3P complex differential equations describing the dynamics of the infection combined with the inter-site dynamic of the populations. a) Characteristic equation system for the 3P differential equations without taking into account the dynamics between sites Where D is the diffusion coefficient built above and

∆= 𝜕 2 𝜕𝑥 2 + 𝜕 2 𝜕𝑦 2
In this way, is a discrete coefficient because finding analytical solutions of (33) was difficult. It is better to find the system of discrete equation that characterizes the 3P equation to solve These equations result from pre-established modeling with diffusion. Here the unknowns are the different states S, I and R at times t + dt knowing their states at time t. The time t is represented by the index n and the time t + dt by the index n + 1. The indices i and j represent the geographical position of the site in 2 dimension in the discrete space and for the sake of concordance the index k represent the site number in which equations are written, this numbering depends on the problem configurations. It is this given number, k that will be considered in the scalar product represented by the Kronecker's symbol

SIR adaptive model construction

A simulation is made using a program written in python language. This is the outline of the pseudocode A similar algorithm is also written for the case without diffusion. In the following the program is executed on a sample of 4 sites the results are represented in a histogram. These results show a clear modification due to the impact of the spatiotemporal dynamics taken into account in the hybrid model The analysis of these results show that:

-Spatiotemporal dynamics in an epidemiological prediction model on mobile entities have a non-negligible impact. Then we always recommend to take into account this aspect when the prediction of any phenomenon is related to mobile entities.

-If the diffusion coefficients are very large compared to the propagation coefficient of an epidemic (population move very quickly and anarchically), the epidemic can disappear because the disease will not have the time to propagate given that mobile entities would have already changed position in space.

-Through these results it is clear that certain prediction models based on mobile entities can be modified by the superposition of a diffusion equation to give a hybrid model that better reflects reality 

Conclusion

The purpose in this paper was to draw attention to the spatiotemporal aspect in prediction models when any prediction model is designed for systems related to mobile entities in a geographical area. Some research have been done in this domain, but our contribution is strongly related to 2D probabilistic diffusion equations. Subsequently and on the basis of clearly defined hypothesis, we have designed a model based on a system of Partial Differential Equations taking origin on diffusion equations. These equations have been discretized using homogeneous mesh due to the constraints of the considered closed environment. After having the model which deals only with the dynamic part of the mobile entities, an adaptive superposition is made on the SIR epidemiological model to find another type of hybrid equation system that highlights the spatiotemporal dynamics aspect. The results of the simulation in this paper show us a clear modification of prediction when the dynamic aspect of mobile entities is explicitly taken into account. This validates the hypothesis that the explicit consideration of the spatiotemporal dynamics of mobile entities in a prediction model has a significant impact in the prediction of phenomena.

The further works will focus on:

-Making a discretization in a non-homogeneous mesh since it will be close to the reality, -Formalizing how to build the probabilistic diffusion matrix, -Proposing diffusion rate intervals depending on the nature of the problem so that the results can be realistic
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 1 Fig. 1 -close environment with regular mesh

  (t). And by N = Σ Ni, the total number of the population in the whole close environment Note that an individual before being in a Remove state (R) must previously passed through the infected state; and only susceptible individuals can become infected. The propagation dynamics of the infection is illustrated by the diagram below (see fig 2)

Fig. 2

 2 Fig. 2 Transition state diagram of an individual of the population

  transmission coefficients of the epidemic a = α, b = β et c = γ (2) // Structure for representation in the close environment // nomber of site in the close environment ← (3) ← // the Function that calculate the next state of the close environment by knowing the current state

Fig. 5 -

 5 Fig. 3 -Initial distribution of entities

Fig. 6 -

 6 Fig. 6 -entities distribution after three periods

  For the coefficient 𝐷 𝑖,𝑗 found in these equations it is a general matrix term 𝐷 𝑖,𝑗 = 𝜔𝑃 𝑖𝑗 On the other hand, since 𝐷 𝑖,𝑗 is a matrix that multiplies all 𝑢 𝑖,𝑗 𝑛 that do not have identical contributions in the diffusion of each site i, it is better to combine the matrix 𝐷 𝑖,𝑗 to Kronecker's symbol so that the product 𝐷 𝑖,𝑗 𝑢 𝑖,𝑗 𝑛 behaves like a dot product then each 𝑢 𝑖,𝑗 𝑛 can have a diffusion coefficient which characterizes its contribution.

	For 𝑖 = 𝑄 𝑢 𝑄,𝑗,𝑘 𝑛+1 = ∆𝑡𝐷 𝑙,𝑘 ∆𝑥 2 (𝑢 𝑄-1,𝑗,𝑥 𝑛 For 𝑖 = 2 𝑡𝑜 𝑄 -1	𝛿 𝑙,𝑥 ) +	∆𝑡𝐷 𝑙,𝑘 ∆𝑦 2 (𝑢 𝑄,𝑗+1,𝑦 𝑛	𝛿 𝑙,𝑦 + 𝑢 𝑄,𝑗-1,𝑡 𝑛	𝛿 𝑙,𝑡 ) + (1 -2(	∆𝑡𝐷 𝑙,𝑘 ∆𝑥 2 +
	At the boundary 𝑗 = 𝑃 𝑢 𝑖,𝑃 𝑛+1 = ∆𝑡𝐷 𝑖,𝑗 ∆𝑥 2 (𝑢 𝑖+1,𝑃 𝑛 + 𝑢 𝑖-1,𝑃 𝑛 ∆𝑡𝐷 𝑙,𝑘 ∆𝑦 2 ))𝑢 𝑄,𝑗,𝑘 𝑛 𝛿 𝑙,𝑘 𝑢 𝑄,1,𝑘 𝑛+1 = ∆𝑡𝐷 𝑙,𝑘 ∆𝑥 2 (𝑢 𝑄-1,1,𝑥 𝑛 𝛿 𝑙,𝑥 ) + ∆𝑡𝐷 𝑙,𝑘 ) + ∆𝑦 2 (𝑢 𝑄,2,𝑦 ∆𝑡𝐷 𝑖,𝑗 ∆𝑦 2 (𝑢 𝑖,𝑃-1 𝑛 𝑛 𝛿 𝑙,𝑦 ) + (1 -2( ) + (1 -2( ∆𝑡𝐷 𝑙,𝑘 ∆𝑡𝐷 𝑖,𝑗 ∆𝑥 2 + ∆𝑥 2 + ∆𝑡𝐷 𝑙,𝑘 ∆𝑦 2 ))𝑢 𝑄,1,𝑘 𝑛 ∆𝑡𝐷 𝑖,𝑗 ∆𝑦 2 ))𝑢 𝑖,𝑃 𝛿 𝑙,𝑘 𝑛 For 𝑗 = 2 𝑡𝑜 𝑃 -1 For 𝑖 = 𝑄 (29)	(25) (19)
	For 𝑖 = 2 à 𝑄 -1 𝑢 𝑄,1,𝑘 𝑛+1 = ∆𝑡𝐷 𝑙,𝑘 ∆𝑥 2 (𝑢 𝑄-1,1,𝑥 𝑛 At the boundary 𝑗 = 𝑃	𝛿 𝑙,𝑥 ) +		∆𝑡𝐷 𝑙,𝑘 ∆𝑦 2 (𝑢 𝑄,2,𝑦 𝑛	𝛿 𝑙,𝑦 ) + (1 -2(	∆𝑡𝐷 𝑙,𝑘 ∆𝑥 2 +	∆𝑡𝐷 𝑙,𝑘 ∆𝑦 2 ))𝑢 𝑄,1,𝑘 𝑛	𝛿 𝑙,𝑘
	𝑢 1,𝑃 𝑛+1 = 𝑢 𝑖,𝑃,𝑘 𝑛+1 = For 𝑗 = 1 ∆𝑡𝐷 𝑖,𝑗 ∆𝑥 2 (𝑢 2,𝑃 𝑛 ) + ∆𝑡𝐷 𝑙,𝑘 ∆𝑥 2 (𝑢 𝑖+1,𝑃,𝑥 𝑛 𝛿 𝑙,𝑥 + 𝑢 𝑖-1,𝑃,𝑦 ∆𝑡𝐷 𝑖,𝑗 ∆𝑦 2 (𝑢 1,𝑃-1 𝑛 𝑛 𝛿 𝑙,𝑦 ) + ) + (1 -2( ∆𝑡𝐷 𝑙,𝑘 ∆𝑦 2 (𝑢 𝑖,𝑃-1,𝑧 ∆𝑡𝐷 𝑖,𝑗 ∆𝑥 2 + 𝑛 𝛿 𝑙,𝑧 ) + (1 -2( ∆𝑡𝐷 𝑖,𝑗 ∆𝑦 2 ))𝑢 1,𝑃 𝑛 (20) ∆𝑡𝐷 𝑙,𝑘 ∆𝑥 2 + (30)	(26) ∆𝑡𝐷 𝑙,𝑘 ∆𝑦 2 ))𝑢 𝑖,𝑃,𝑘 𝑛 𝛿 𝑙,𝑘
	𝑢 𝑄,𝑃,𝑘 𝑛+1 = For 𝑖 = 2 𝑡𝑜 𝑄 -1 ∆𝑡𝐷 𝑙,𝑘 ∆𝑥 2 (𝑢 𝑄-1,𝑃,𝑥 𝑛	𝛿 𝑙,𝑥 ) +	∆𝑡𝐷 𝑙,𝑘 ∆𝑦 2 (𝑢 𝑄,𝑃-1,𝑦 𝑛	𝛿 𝑙,𝑦 ) + (1 -2(	∆𝑡𝐷 𝑙,𝑘 ∆𝑥 2 +	∆𝑡𝐷 𝑙,𝑘 ∆𝑦 2 ))𝑢 𝑄,𝑃,𝑘 𝑛	𝛿 𝑙,𝑘
								(27)
	At the boundary 𝑗 = 1 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑄 𝑢 1,𝑃,𝑘 𝑛+1 = ∆𝑡𝐷 𝑙,𝑘 ∆𝑥 2 (𝑢 2,𝑃,𝑥 𝑛 𝛿 𝑙,𝑥 ) + ∆𝑡𝐷 𝑙,𝑘 ∆𝑦 2 (𝑢 1,𝑃-1,𝑦 𝑛	𝛿 𝑙,𝑦 ) + (1 -2 (	∆𝑡𝐷 𝑙,𝑘 ∆𝑥 2 +
	𝑢 𝑖,1,𝑘 𝑛+1 = ∆𝑡𝐷 𝑙,𝑘 ∆𝑦 2 )) 𝑢 1,𝑃,𝑘 ∆𝑡𝐷 𝑙,𝑘 ∆𝑥 2 (𝑢 𝑖+1,1,𝑥 𝑛 𝑛 𝛿 𝑙,𝑘	𝛿 𝑙,𝑥 + 𝑢 𝑖-1,1,𝑦 𝑛	𝛿 𝑙,𝑦 ) +	∆𝑡𝐷 𝑙,𝑘 ∆𝑦 2 (𝑢 𝑖,2,𝑧 𝑛 𝛿 𝑙,𝑧 ) + (1 -2( (31) ∆𝑡𝐷 𝑙,𝑘 ∆𝑥 2 +	∆𝑡𝐷 𝑙,𝑘 ∆𝑦 2 ))𝑢 𝑖,1,𝑘 𝑛 𝛿 𝑙,𝑘
	The discretized equations will then be modified to highlight this consideration in the following (28)
	manner For 𝑖 = 2 𝑡𝑜 𝑄 -1						
	𝑢 𝑖,𝑃 𝑛+1 = 𝑢 𝑖,𝑗,𝑘 𝑛+1 = ∆𝑡𝐷 𝑙,𝑘 ∆𝑦 2 ))𝑢 𝑖,𝑗,𝑘 ∆𝑡𝐷 𝑖,𝑗 ∆𝑥 2 (𝑢 2,𝑃 𝑛 ) + ∆𝑡𝐷 𝑙,𝑘 ∆𝑥 2 (𝑢 𝑖+1,𝑗,𝑥 ∆𝑡𝐷 𝑖,𝑗 ∆𝑦 2 (𝑢 𝑖,𝑃-1 𝑛 𝑛 𝛿 𝑙,𝑥 + 𝑢 𝑖-1,𝑗,𝑦 ) + (1 -2( ∆𝑡𝐷 𝑖,𝑗 ∆𝑥 2 + 𝑛 𝛿 𝑙,𝑦 ) + ∆𝑡𝐷 𝑙,𝑘 ∆𝑦 2 (𝑢 𝑖,𝑗+1,𝑧 ∆𝑡𝐷 𝑖,𝑗 𝑛 𝑢 𝑄,1,𝑘 𝑛+1 = ∆𝑡𝐷 𝑙,𝑘 ∆𝑥 2 (𝑢 𝑄-1,1,𝑥 𝑛 𝛿 𝑙,𝑥 ) + ∆𝑡𝐷 𝑙,𝑘 ∆𝑦 2 (𝑢 𝑄,2,𝑦 𝑛 𝛿 𝑙,𝑦 ) + (1 -2( 𝑛 𝛿 𝑙,𝑧 + 𝑢 𝑖,𝑗-1,𝑡 𝑛 ∆𝑡𝐷 𝑙,𝑘 ∆𝑥 2 + ∆𝑡𝐷 𝑙,𝑘 𝛿 𝑙,𝑡 ) + (1 -2( (13) (21) 𝑛 𝛿 𝑙,𝑘 ∆𝑦 2 ))𝑢 𝑄,1,𝑘 𝑛 𝛿 𝑙,𝑘 For 𝑖 = 𝑄 (29) ∆𝑦 2 ))𝑢 1,𝑃 1 < 𝑗 < 𝑃 𝑒𝑡 1 < 𝑖 < 𝑄 At the boundary 𝑗 = 𝑃	∆𝑡𝐷 𝑙,𝑘 ∆𝑥 2 +
	For 𝑗 = 𝑃 At the boundary 𝑖 = 𝑄 𝑎𝑛𝑑 𝑗 = 1 𝑡𝑜 𝑃 𝑢 𝑄,𝑗 𝑛+1 = ∆𝑡𝐷 𝑖,𝑗 ∆𝑥 2 (𝑢 𝑄-1,𝑗 𝑛 ) + ∆𝑡𝐷 𝑖,𝑗 ∆𝑦 2 (𝑢 𝑄,𝑗+1 𝑛 + 𝑢 𝑄,𝑗-1 𝑛 𝑗 = 2 𝑡𝑜 𝑃 -1 For boundaries conditions: 𝑢 𝑖,𝑃,𝑘 𝑛+1 = ∆𝑡𝐷 𝑙,𝑘 ∆𝑥 2 (𝑢 𝑖+1,𝑃,𝑥 𝑛 𝛿 𝑙,𝑥 + 𝑢 𝑖-1,𝑃,𝑦 𝑛 𝛿 𝑙,𝑦 ) + ∆𝑡𝐷 𝑙,𝑘 ) + (1 -2( ∆𝑦 2 (𝑢 𝑖,𝑃-1,𝑧 𝑛 𝛿 𝑙,𝑧 ) + (1 -2( ∆𝑡𝐷 𝑖,𝑗 ∆𝑥 2 + ∆𝑡𝐷 𝑖,𝑗 ∆𝑦 2 ))𝑢 𝑄,𝑗 𝑛 ∆𝑡𝐷 𝑙,𝑘 ∆𝑥 2 + For 𝑖 = 1 𝑎𝑛𝑑 𝑗 = 1 𝑡𝑜 𝑃 𝑢 1,𝑗,𝑘 𝑛+1 = ∆𝑡𝐷 𝑙,𝑘 ∆𝑥 2 (𝑢 2,𝑗,𝑥 𝑛 𝛿 𝑙,𝑥 ) + ∆𝑡𝐷 𝑙,𝑘 ∆𝑦 2 (𝑢 1,𝑗+1,𝑦 𝑛 𝛿 𝑙,𝑦 + 𝑢 1,𝑗-1,𝑧 𝑛 𝛿 𝑙,𝑧 ) + (1 -2 ( ∆𝑡𝐷 𝑙,𝑘 𝑛 𝛿 𝑙,𝑘 (30) ∆𝑦 2 ))𝑢 𝑖,𝑃,𝑘 ∆𝑡𝐷 𝑙,𝑘 ∆𝑥 2 + For 𝑖 = 2 𝑡𝑜 𝑄 -1	(14)	For
	𝑢 𝑄,1 𝑛+1 = ∆𝑡𝐷 𝑙,𝑘 ∆𝑦 2 )) 𝑢 1,𝑗,𝑘 ∆𝑡𝐷 𝑖,𝑗 ∆𝑥 2 (𝑢 𝑄-1,1 𝑛 𝑛 𝛿 𝑙,𝑘 𝑢 1,𝑃,𝑘 𝑛+1 = ∆𝑡𝐷 𝑙,𝑘 ∆𝑥 2 (𝑢 2,𝑃,𝑥 𝑛 𝛿 𝑙,𝑥 ) + ) + ∆𝑡𝐷 𝑖,𝑗 ∆𝑦 2 (𝑢 𝑄,2 𝑛 ) + (1 -2( ∆𝑡𝐷 𝑙,𝑘 ∆𝑦 2 (𝑢 1,𝑃-1,𝑦 𝑛 𝛿 𝑙,𝑦 ) + (1 -2 ( ∆𝑡𝐷 𝑖,𝑗 ∆𝑥 2 + ∆𝑡𝐷 𝑖,𝑗 ∆𝑦 2 ))𝑢 𝑄,1 𝑛 ∆𝑡𝐷 𝑙,𝑘 ∆𝑥 2 +	(15) (22)
	For 𝑗 = 1 𝑢 𝑄,𝑃 𝑛+1 = ∆𝑡𝐷 𝑖,𝑗 ∆𝑥 2 (𝑢 𝑄-1,𝑃 𝑛 At the boundary 𝑗 = 1 , 𝑖 = 1 𝑡𝑜 𝑄 ) + ∆𝑡𝐷 𝑖,𝑗 ∆𝑦 2 (𝑢 𝑄,𝑃-1 𝑛 For 𝑗 = 2 𝑡𝑜 𝑃 -1 𝑢 1,1,𝑘 𝑛+1 = ∆𝑡𝐷 𝑙,𝑘 ∆𝑥 2 (𝑢 2,1,𝑥 𝑛 𝛿 𝑙,𝑥 ) + ∆𝑡𝐷 𝑙,𝑘 ∆𝑦 2 (𝑢 1,2,𝑦 ) + (1 -2( 𝑛 𝛿 𝑙,𝑦 ) + (1 -2( ∆𝑡𝐷 𝑖,𝑗 ∆𝑥 2 + ∆𝑡𝐷 𝑙,𝑘 ∆𝑡𝐷 𝑖,𝑗 ∆𝑦 2 ))𝑢 𝑄,𝑃 𝑛 ∆𝑥 2 + ∆𝑡𝐷 𝑙,𝑘 𝑛 𝛿 𝑙,𝑘 ∆𝑦 2 )) 𝑢 1,𝑃,𝑘 ∆𝑡𝐷 𝑙,𝑘 ∆𝑦 2 ))𝑢 1,1,𝑘 (31) 𝑛 𝛿 𝑙,𝑘 (23) (16) For 𝑗 = 1 𝑢 𝑄,𝑃,𝑘 𝑛+1 = ∆𝑡𝐷 𝑙,𝑘 ∆𝑥 2 (𝑢 𝑄-1,𝑃,𝑥 𝑛 𝛿 𝑙,𝑥 ) + ∆𝑡𝐷 𝑙,𝑘 ∆𝑦 2 (𝑢 𝑄,𝑃-1,𝑦 𝑛 𝛿 𝑙,𝑦 ) + (1 -2( ∆𝑡𝐷 𝑙,𝑘 ∆𝑥 2 + ∆𝑡𝐷 𝑙,𝑘 ∆𝑦 2 ))𝑢 𝑄,𝑃,𝑘 𝑛 𝛿 𝑙,𝑘
	𝑢 𝑖,1 𝑛+1 = 𝑢 𝑖,𝑃,𝑘 𝑛+1 = At the boundary 𝑗 = 1 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑄 ∆𝑡𝐷 𝑖,𝑗 ∆𝑥 2 (𝑢 𝑖+1,1 𝑛 + 𝑢 𝑖-1,1 𝑛 ) + ∆𝑡𝐷 𝑖,𝑗 ∆𝑦 2 (𝑢 𝑖,2 𝑛 ) + (1 -2( ∆𝑡𝐷 𝑙,𝑘 ∆𝑥 2 (𝑢 2,𝑃,𝑥 𝑛 𝛿 𝑙,𝑥 ) + ∆𝑡𝐷 𝑙,𝑘 ∆𝑦 2 (𝑢 𝑖,𝑃-1,𝑦 𝑛 𝛿 𝑙,𝑦 ) + (1 -2( ∆𝑡𝐷 𝑖,𝑗 ∆𝑥 2 + ∆𝑡𝐷 𝑙,𝑘 ∆𝑥 2 + ∆𝑡𝐷 𝑖,𝑗 ∆𝑡𝐷 𝑙,𝑘 ∆𝑦 2 ))𝑢 1,𝑃,𝑘 𝑛 𝑛 (27) ∆𝑦 2 ))𝑢 𝑖,1 For 𝑗 = 𝑃 For 𝑖 = 2 𝑡𝑜 𝑄 -1 𝑢 𝑄,1 𝑛+1 = ∆𝑡𝐷 𝑖,𝑗 ∆𝑥 2 (𝑢 𝑄-1,1 𝑛 ) + ∆𝑡𝐷 𝑖,𝑗 ∆𝑦 2 (𝑢 𝑄,2 𝑛 ) + (1 -2( ∆𝑡𝐷 𝑖,𝑗 ∆𝑥 2 + ∆𝑡𝐷 𝑖,𝑗 ∆𝑦 2 ))𝑢 𝑄,1 𝑛 𝑢 𝑖,1,𝑘 𝑛+1 = ∆𝑡𝐷 𝑙,𝑘 ∆𝑥 2 (𝑢 𝑖+1,1,𝑥 𝑛 𝛿 𝑙,𝑥 + 𝑢 𝑖-1,1,𝑦 𝑛 𝛿 𝑙,𝑦 ) + ∆𝑡𝐷 𝑙,𝑘 ∆𝑦 2 (𝑢 𝑖,2,𝑧 𝑛 𝛿 𝑙,𝑧 ) + (1 -2( ∆𝑡𝐷 𝑙,𝑘 ∆𝑥 2 + ∆𝑡𝐷 𝑙,𝑘 ∆𝑦 2 ))𝑢 𝑖,1,𝑘 (17) 𝛿 𝑙,𝑘 (24) 𝑛 𝛿 𝑙,𝑘 (18) At the boundary 𝑖 = 𝑄 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑝 (28)