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Supporting information 

The so-called “lumping approach” is widely used to study complex processes such as hydrocracking 

of vacuum residue. In order to describe the composition changes in such systems, not only must the 

kinetic parameters be determined, but the lumped reactions that occur should also be identified. In 

this study, the modeling of catalytic hydrocracking of vacuum gas oil  has been carried out using six 

component lumps. Three different identification strategies have been developed to determine the  

reaction subnetwork containing a given number of reaction pathways that provides the data fit. The 

strategies were compared according to their tendency to provide increasingly better results, as a 

function of the number of reactions present. Although, in this way, 40% of the original reaction 

superstructure was eliminated from the system, the kinetic parameters of the remaining reactions 

still could not be identified with complete certainty. Hence, the linearized state -space model 

representations of the reaction networks have been further analyzed with the objective of 

identifying observable subsystems. The results show that there  exists a five-reaction network that is 

observable and can be determined using the finally proposed identification strategy, while its  curve 

fitting is also satisfactory. It has also been shown that it gives the best results from all possible five -

reaction subsystems. 
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Introduction 

The hydrocracking process, which involves catalytic cracking of  long-chained hydrocarbon molecules 

under a hydrogen atmosphere, has a growing importance in the oil industry.  Important 

nonconventional feedstocks such as vacuum gas oil  (VGO), various vegetable oils, or even waste 

cooking oil can be utilized to produce fuels, mainly biogas oil with high quality.1 Another advantage is 

that these can be co-processed and might be used in blends in different refinery technologies.2,3 The 

importance of fuels from alternative feedstocks have significantly increased with the oil prices rising 

in the 2000s, and, although the market situation has since normalized, the so-called biofuels still 

have great importance. Beyond that, there are environmental as well as legal reasons, e.g., there is a 

mandatory target of a 20% share of energy from renewable sources in overall energy consumption in 

the European Union by 2020.4 When calculating this share, plant-derived motor fuels count as a 

renewable source, and most of that is consumed in conventional and renewable source blends. 

Chemical kinetic modeling becomes increasingly difficult for complex processes such as the 

hydrocracking of VGO, where several thousands of individual species can be present and,  between 

them, an even larger number of reactions can occur. While concentration measurement for 

individual components is a routine task nowadays and one can generate full reaction networks 

automatically, the identification of all kinetic parameters and the subsequent model reduction is 

usually not a viable method to find a solution. Opposed to that, there  are two common methods for 

treating these systems:5 a priori lumping, which is carried out based on empirical rules such as 

constraining the total number of species and/or reactions, and a posteriori lumping, where the 

reaction network is generated first (although its parameters are not identified) and the component 

grouping is carried out based on the properties of the reaction network. 

The lumping approach is a widely used method for largescale  reaction networks. A great deal of 

reported applications comes from the oil industry. A five-lump kinetic model for the hydrocracking of 

heavy oils under moderate conditions was proposed by Sánchez et al., which was capable of 

predicting component concentrations with an average absolute error of  <5% at temperatures of 

380−420 °C and liquid hourly space velocity (LHSV) values of 0.33−1.5 h−1.6 The effect of pressure on 

the kinetics of hydrocracking can also be studied with the lumping approach.7 In addition, Nguyen et 

al. developed a structure-based kinetic model consisting of 16 lumps for the hydrodesulfurization of 

light gas oil, which can predict the composition of the reactor outlet and provides information about 

chemical structures as well.8 An exhaustive review of heavy petroleum fraction hydrocracking, 

lumped reaction schemes, and kinetic data has been reported by Ancheyta et al.9 The hydrocracking 

of VGO is usually carried out in a fixed-bed tubular reactor, but other configurations, i.e., ebullated 

bed reactors (EBRs), can be applied as well.10 

The process of catalytic upgrading of fuels, such as gasoline olefin content removal, can also be 

modeled with the lumping approach.11 Wang et al. applied lumped kinetic simulation to optimize 

catalyst grading in shale oil hydrotreatment.12 While the majority of publications involve quasi-

homogeneous phase models, the lumped kinetic modeling approach is applicable for describing 

multiphase systems in detail as well.13,14 A detailed, two-dimensional, nonisothermal, heterogeneous 

model was established by Forghani et al., by applying two different reaction kinetic networks 

between four lumps that is also applicable for scale-up design of green diesel production.15 

Lumped kinetic models can also be used in the case of  treating various oils from renewable sources, 

such as biomass tar cracking,16 catalytic cracking of vegetable oils,17,18 or waste cooking oil.19 

Moreover, this approach is not limited to modeling reactions in hydrocarbon mixtures; lumping 
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techniques can be used in biochemistry as well, for example, for predicting metabolism or modeling 

of fermentation processes.20,21 It can be assumed that the suggested strategies for lumped reaction 

network analysis and reduction reported here may be used in any of the previous fields with little to 

no modification. 

In the case of chemical reaction networks, the objective of model reduction is to identify a reaction 

subsystem as sparse as possible for which the calculated concentration values still show reasonable 

agreement, compared to the full kinetic network. If  the reaction system is dense, i.e., a large number 

of reactions are supposed to occur, there is an emerging possibility that the  system becomes 

overspecified, which means that practically that two or more identified kinetic parameter sets are 

equivalent and lead to the same composition profiles, as will later be shown. 

In order to investigate how reliable the results based on a specific dataset are, determination of the 

observability of the system can be useful. The concept of observability, i.e., whether the states of a 

system can be observed (and, consequently, estimated), comes from control theory, where Bayesian 

state estimators, most notably the Kalman filter and its variants, are  widely used to predict the states 

of the system from model output and measurements using state space models.22 The system is called 

“observable” if the values of state variables can be determined within a finite time from the values of 

outputs.23,24 State estimators can be effectively used to determine kinetic parameters from measured 

variables (such as concentrations or temperature) in an observable system.25,26 Despite this, the 

theoretical observability and identifiability of the suggested lumped reaction kinetic networks are 

almost never studied; hence, the results obtained using lumped kinetic models are often not 

applicable, for example, for process intensification. 

Another way to overcome this problem is using the continuous lumping method to model the 

chemical system. In that case, the reaction mixture is represented by a continuous function (such as 

a function of true boiling point (TBP)) that is then discretized in order to recover the concentration of 

the sought pseudo-components (defined by TBP range).27,28 The advantage of this approach is that 

any number of lumps can be defined and the reaction rate coefficient can be correlated to the 

normalized TBP, thus reducing the number parameters to be identified. 

In the following subsections, different reaction network reduction strategies are presented and 

compared for a priori selected lumps for the hydrocracking of VGO. The reduced networks are 

further investigated regarding system observability to determine whether the model parameters can 

be identified without any uncertainties. The proposed procedure is an effective tool to determine 

realizable models for the hydrocracking of VGO that are useable in plant modeling or process 

development. 

Reactor Model 

A quasi-homogeneous phase plug flow model of a pilot-scale hydrocracking reactor operating under 

isothermal conditions and its parameters were reported earlier by Sadighi et al. It applied six lumped 

components, i.e., unconverted vacuum gas oil or residue (VGO), diesel (D),  kerosene (K), heavy 

naphtha (HN), light naphtha (LN), and gas (G).29,30 The objective of the present work is to analyze the 

transitions between the lumped components; therefore, the  reported experimental data under 

different conditions are applied here without any modifications. Assuming a steady-state operation 

and constant catalytic activity, the component mass balance equations of the system can be 

formalized as follows: 

𝑑(𝑐 ∙ 𝓋)

𝑑ℓ
= 𝜂 ∙ 𝜀 ′ ∙ 𝐿 ∙ 𝑐 (1) 
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where ℓ is the dimensionless length of the reactor, η is the effectiveness factor of the heterocatalytic 

reactions, and ε′ the catalyst volume fraction. The values of η and ε′ are 0.8 and 0.264, respectively; 

each of these values was taken from the data supplied in the original article. Since the catalyst suffers 

from deactivation during the hydrocracking of heavy distillates, this assumption is only valid for a 

limited time operation. c is the component concentration column vector: 

𝑐 = [𝑐𝑉𝐺𝑂  𝑐𝐷 𝑐𝐾 𝑐𝐻𝑁 𝑐𝐿𝑁 𝑐𝐺]𝑇 (2) 

The actual space velocity (𝓋) is calculated from the LHSV, considering the density change along the 

reactor length (see eqs 3−5). LHSV values reported by Sadighi  et al. were 0.5, 1, 1.5, and 2 h−1.29 

𝓋 = 𝐿𝐻𝑆𝑉 ∙
𝜌𝑖𝑛

𝜌𝑎𝑐𝑡
 (3) 

𝜌𝑎𝑐𝑡 = ∑(𝑌𝑗 ∙ 𝜌𝑗)

6

𝑗=1

 (4) 

𝑌𝑖 =
𝑐𝑖 ∙ 𝓋

∑ (𝑐𝑗 ∙ 𝓋)6
𝑗=1

 (5) 

Here, 𝐿 is the Kirchhoff matrix of the reaction system.31 For six components, L is a 6-by-6 square 

matrix, the diagonal elements of which represent the reaction rate coefficients,  where the ith 

component is consumed (hence, the negative sums in the main diagonal), while the off-diagonal 

elements contains the rate coefficients of the reactions where the ith product is formed from the jth 

reactant. Because of the mass conservation law, 𝐿 is a column conservation matrix (i.e., the element 

summary for each column is zero). 

𝐿 = 𝑎𝑖𝑗 = {
−∑𝑘𝑖𝑙

𝑙

𝑖𝑓 𝑖 = 𝑗

𝑘𝑗𝑖 𝑖𝑓 𝑖 ≠ 𝑗

 (6) 

The initial or complete reaction network (also reported by Sadighi et al.29,30) consists of 15 reactions 

(Figure 1), including all pathways that are encountered during that chemical  decomposition. Each 

reaction is hypothesized to be a pseudo-first-order reaction with Arrhenius-type temperature 

dependency of the rate coefficient. 

𝑘𝑖 = 𝑘0,𝑖 ∙ exp (−
𝐸𝑎,𝑖

𝑅𝑇
) (7) 

where k0,i is the pre-exponential factor and Ea,i is the activation energy of the ith reaction (15 in total), 

R is the gas constant, and T is the absolute temperature of the reactor. The steady-state reactor 

model was implemented and solved in MATLAB R2011b using the single-step, second-order solver 

based on a modified Rosenbrock formula called ode23s.32 
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Figure 1. Initial (complete) reaction network consisting 6 component lumps and 15 lumped reactions. 

The reactor component balance equations expressed in eq 1 are similar to a state-space model in 

structure that has a general form as described in eqs 8 and 9. Given that a plug-flow reactor model 

can be rewritten as a cascade of continuous stirred-tank reactors, the concentration changes along 

the axial coordinate of the reactor are mathematically equivalent to time derivatives. Therefore, in 

our case, residence time was defined as the ratio of reactor length and actual space velocity, 

eliminating the necessity of model conversion. 

𝑑𝑥

𝑑𝑡
= 𝐴 ∙ 𝑥 + 𝐵 ∙ 𝑢 (8) 

𝑦 = 𝐶 ∙ 𝑥 (9) 

In the state-space model: 

• 𝐴 is the system matrix 𝐴 = 𝜂 ∙ 𝜀 ′ ∙ 𝐿  

• 𝑥 is the state vector 𝑥 = 𝑐 , 

 𝑦 is the output vector (𝑦 = 𝑐; the concentrations of all lumps are measured), 

• 𝐶 is the output matrix 𝐶 = 𝐼, and 

• the term 𝐵 ∙ 𝑢 is negligible (there are no inputs). 

This state space model might be extended to include the reaction rate coefficients as states as well. 

In this case, the length of the state vector increases with the number of reactions present in the 

system (a maximum of 15, albeit that gives space to model reduction), shown in eq 10. The output 

vector remains the same, because the rate coefficients are not measured, while the output matrix is 

expanded with zero vectors to accommodate to the increased number of states. 

𝑥𝑒 = [𝑐𝑇 𝑘𝑇]𝑇 (10) 

One of the main consequences of the extension of the state-space model that it becomes nonlinear, 

because L contains state variables in this interpretation. Hence, it should be  linearized in order to 

study the observability and identifiability of the system. This step was carried out using complex step 

differentiation, which has been described elsewhere,33 that is well-known for its accuracy, even for 

small step sizes. 
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Identification Strategies 

The main objective is to minimize the difference between the measured and calculated 

compositions, which is defined as 

𝑓(𝑥𝑛) = ∑ ∑ ∑ (
𝑦𝑚 − 𝑦𝑐

𝑦𝑚
𝑚𝑎𝑥

)
2

𝐿𝐻𝑆𝑉𝑐𝑜𝑚𝑝𝑇

 (11) 

where 𝑦𝑚 and 𝑦𝑐 are the measured and calculated mass concentration values, respectively, while 

𝑦𝑚
𝑚𝑎𝑥 represents the maximum measured mass concentration value for a specific component (comp) 

including all temperature (T) and LHSV values. Measured mass concentration values originate from 

the previously mentioned work of Sadighi et al.29 To solve the optimization problem, the NOMAD 

software package was used, which implements the Mesh Adaptive Direct Search (MADS) algorithm 

and is a well-suited solver for derivative-free optimization.34 It also has a MATLAB interface available 

that can be called directly from the OPTI Toolbox.35 The objective function variables are the reaction 

kinetic parameters; however, one must address the fact that not all reactions are necessarily present 

in the system. Considering the full and all possible reduced networks, there are 32 777 possible 

variants that cannot be evaluated on a reasonable time horizon. The solution presents itself as to 

assign existence variables to each reaction and solve the obtained MINLP problem; however, since 

the objective function for a lumped kinetic reaction network is  highly nonlinear and no a priori 

information is available for the reactions present, finding the best solution as the global  minimum is 

at least time-consuming and involves various trial-and-error searches, regarding the algorithm 

parameters, such as the initial function value. 
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Figure 2. First reaction network identification strategy. 

In order to overcome that obstacle, three different approaches were evaluated. The brief concept of 

the first, sensitivity-based selection strategy (shown in Figure 2) is described as follows: 

(1) For each reaction, the objective function value was calculated in a sensitivity study by varying 

the kinetic parameters of that reaction only from 1% to 200% of the middle of the related 

search intervals. 

(2) The reaction associated with the minimum objective function value was specified as part of 

the reaction network. 

(3) The kinetic parameters of the reaction network were identified by minimizing the  function 

value from eq 11. That means the dimension of the search space was increased by 2 in each 

step (from 2 to 30 in total). The results from the previous run were used as initial values for 

the algorithm in the next iteration. 

(4) The specified reaction was marked so that it does not participate in further sensitivity 

studies. 

(5) The second, third, …, 15th reaction was identified by repeating steps 1−4.  
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Figure 3. Second reaction network identification strategy. 

The second strategy (top-down elimination) consists of the following steps (shown in Figure 3): 

(1) Identification of the kinetic parameters for the full reaction network.  

(2) Identification of the kinetic parameters for each subsystems consisting of one less reaction.  

(3) The elimination of that one reaction where the identified subsystem leads to the best results 

(i.e., minimum objective function value). 

(4) Further reactions were eliminated stepwise by repeating steps 2 and 3. The parameter values 

identified in the previous step were used as initial values in the next step. 

This strategy is significantly more computation-intensive, as more than 100 nonlinear edge search 

problems must be solved in total. However, it has better convergence when applying the  results of 

an n-reaction subsystem as the initial values of the next in a given step. 
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Figure 4. Third reaction network identification strategy. 

Finally, a third strategy (shown in Figure 4) was defined that covers the conventional MINLP 

approach with a stepwise extension of the search space: 

(1) For the first step, there are 15 binary existence variables and 30 kinetic parameters. The 

reaction subnetwork to be identified consists of one reaction (e.g., the sum of existence 

variables is 1). The program searches for the reaction where the value of the objective 

function is at minimum and identifies the parameters of that reaction while keeping the 

values of all other kinetic parameters at zero at the same time. 

(2) For each subsequent step, the number of existence variables is decreased by one as the 

program searches for an additional reaction to expand the reaction network to minimize the 

value of the objective function further. The kinetic parameters of that additional reaction, as 

well as those of the previously added reactions, are identified.  
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The vector of search variables, x, from eq 11 has a general  form that is expressed in eqs 12 and 13. 

𝑥𝑛 = [𝑒𝑥𝑠𝑇 𝑘0
𝑛𝑇

𝐸𝑎
𝑛𝑇

]
𝑇

 (12) 

𝑥𝑎𝑐𝑡 = 𝑥𝑛 ∘ (𝑢𝑏 − 𝑙𝑏)+ 𝑙𝑏 (13) 

𝑥𝑛 is a column vector that consists of the normalized values of  existence variables, pre-exponential 

factors, and activation energies searched for in a given step of a given strategy (hence, the length of 

exs is zero for the first two strategies). All variables were normalized between 0 and 1 for faster and 

better convergence. The values of upper and lower bounds (summarized in Table 1) were 

determined from a set of preliminary studies regarding the complete reaction network as no a priori 

data are available for the lumped reactions. 

Table 1. Lower and Upper Bounds of Kinetic Parameters of the Specified Reactions Used in Every 

Identification Strategy 

Reaction 
k0 [m3 h-1 mcat

-3] Ea [J mol-1] 

lb ub lb ub 

VGO → D 3.6·109 3.6·1010 

0 4·105 

VGO → K 3.6·1016 3.6·1017 

VGO → HN 360 3600 

VGO → LN 3.6·1013 3.6·1014 

VGO → G 360 3600 

D → K 3.6·1015 3.6·1016 

D → HN 36 360 

D → LN 3.6 36 

D → G 3.6 36 

K → HN 3.6·109 3.6·1010 

K → LN 360 3600 

K → G 360 3600 

HN → LN 3.6·108 3.6·109 

HN → G 0.36 3.6 

LN → G 3.6·107 3.6·108 

Results and Discussion 

The values of the objective function, which can be interpreted as the sum of normalized error 

between measured and calculated yields for all six lumps, are shown in Figure 5. The  objective 

function values decrease exponentially, depending on the number of reactions considered in the 

model, depicted by a purple dashed line that is a result of the regression of an exponential decay 

function to the averages of the three objective function values against each set of reactions present.  

The values from each of the strategies decrease monotonously, which that suggests that the results 

are mostly free from numerical errors. The results from the sensitivity-based elimination strategy are 

the closest to the average, likely because of its relatively simple structure. For the second case, small 

objective function values were obtained, even for a smaller number of reactions than in case of the 

other two strategies as the search space in this case included a higher number of reaction network 
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subsystems, leading to more accurate results (at the cost of being more resource intensive,  

however). The results from the MINLP-based stepwise extension are the least accurate; for example, 

there is a plateau between five and seven reactions where the objective function value remains the 

same, which leads to the conclusion that, while it seems to be a somewhat evident choice, this is the 

least suitable for model reduction in our case. 

 
Figure 5. Objective function values for reaction subnetworks obtained by different model reduction 

methods. 

There can be a threshold assigned for the objective function value above that the identified system 

poorly agrees with the measured data (or even some of the lumps do not appear in the  model 

results). The value of this limit is ∼2.0 (marked with a solid blue line in Figure 5), two times higher 

than the lowest obtained value of the objective function. This threshold value is  an inherent part of 

the problem specified and cannot be considered as a general result; nevertheless, it can be used to 

evaluate the results. Hence, it can be assumed that a minimum of five reactions are necessary to 

describe the concentration changes of each defined lump in the system. It is apparent from the 

shape of the exponential function in Figure 5 that nine  reactions are sufficient to minimize the 

objective function value. If there are more reactions present in the identified subsystem,  the 

difference between the measured and calculated data series remains essentially the same. The 

square of Pearson correlation coefficients between measured and calculated data for each lump and 

the overall data series are listed in Table 2. The results are compared to the original work by Sadighi 

et al.30 and show a considerable improvement, even for a five-reaction subsystem, probably due to 

the use of more-complex optimization algorithms. With the correlation factors for individual 

components taken into consideration, the results for the nine reaction subsystem obtained from the 

third strategy can be assumed to be the best, predicting the yields of all lumps except Diesel (D) 
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adequately, and the latter may well indicate some underlying errors in the measured data, although 

there is no information available regarding this issue. 

Table 2. Pearson Correlations between Measured and Calculated Data 

 
Original work 

5 reactions 9 reactions 

Method 2 Method 1 Method 2 Method 3 

VGO 0.852 0.906 0.912 0.912 0.909 

Diesel 0.018 0.409 0.346 0.318 0.401 

Kerosene 0.731 0.920 0.921 0.913 0.916 

Heavy Naphtha 0.814 0.893 0.890 0.892 0.897 

Light Naphtha 0.652 0.937 0.945 0.947 0.827 

Gas 0.816 0.753 0.796 0.789 0.841 

Overall 0.589 0.928 0.932 0.931 0.931 

Consequently, the nine reaction subsystems identified with each strategy have been investigated 

more thoroughly. The reduced reaction networks for all strategies are shown in Figure 6. It can be 

seen that there are only five of the nine reactions (VGO→D, VGO→LN, VGO→G, D→K, and K→HN, 

highlighted with red directed lines) are present in all three  subsystems; in other words, these 

reaction networks differ significantly from each other, even though the resulting pseudocomponent 

yields are actually the same. Some of the differences can be explained with underlying consecutive 

reactions, i.e., a VGO→K lumped reaction can be substituted with a VGO→D→K consecutive pathway 

by choosing the values of the rate coefficients appropriately, whereas, in the case of other reactions 

(i.e., LN→G), these substitutions cannot be carried out. 
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Figure 6. Reaction networks consisting 6 lumps and 9 reactions, obtained by (a) Method 1, (b) 

Method 2, and (c) Method 3. Reactions that are not present in all three networks are marked with 

dashed lines. 

The existence of different reaction networks leading to almost the same results might explain the 

numerical uncertainties encountered while solving the optimization problems; however, more 

importantly, this raises some doubt about whether there exists a proper solution in the case of  

subnetworks consisting of nine (or more) reactions such that the objective function value has a global 

minimum. 

In order to address this problem systematically and quantitatively, the observability of the extended 

state-space model was investigated. If the concentrations of six lumps are  measured and 21 states 

are observable, all 15 reaction rate coefficients can be determined from the 6 states measured. 
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However, if less than 21 states are observable, not all of the rate  coefficients can be identified 

adequately. That has the practical consequence that two or more sets of parameter values in the  

model lead to the same output values. In other words, more kinetic parameters were identified in 

the given system than theoretically possible; therefore, that solution cannot be  considered to be 

valid. 

The number of observable states was determined by calculating the rank of the observability matrix 

(eq 14), where A is the system matrix, C is the output matrix, and n is the number of states in the 

system: 

𝒪 =

[
 
 
 
 

𝐶
𝐶𝐴
𝐶𝐴2

⋮
𝐶𝐴𝑛−1]

 
 
 
 

 (14) 

The state-space model was linearized around the reactor outlet; the results for the component VGO 

at 380 °C for each LHSV values are shown in Figure 7. For the sake of better understanding, both the 

original and the linearized state-space model were solved around the reactor outlet; naturally, the 

values for ℓ > 1 bear no physical meaning. The figures indicate good agreement between the results 

from solving the actual and the linearized state-space models; therefore, the system matrix of the 

latter can be used for the calculation of the observability matrix. 

 
Figure 7. Results of state-space model linearization at the outlet of the reactor for VGO at 380 °C.  

In Figure 8, the number of observable states is depicted as a function of states for the three 

strategies and for all identified reaction subnetworks. The discrete values are connected with solid 

lines for better readability. The maximum number of  observable states equals to the number of 

actual states in the model (marked with the blue line). It can be seen that the maximum number of 
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observable states are only 11, meaning only 5 reaction rate coefficients can be identified from the 

available measurement data, because of the 6 components. It is  also clear that only 1 from the 3 

identified 5-reaction subsystems has 11 observable states; two others have only 10.  The reason 

behind this is that the remaining 10 reactions were eliminated in such a way that the remaining five 

are not independent from each other. Such elimination could occur because the strategies do not 

consider any criteria for observability. The lesser number of observable states might as well explain 

the high difference between the objective function values that resulted from different strategies 

shown in Figure 5. In the case of the second top-down elimination strategy, the number of 

observable states for the reaction subsystems containing 1 and 2 reactions are actually less than the 

number of measurements; this is because only one lump has other-than-zero concentration at the 

reactor outlet, which counts as an actual measurement when calculating the rank of the observability 

matrix. 

 
Figure 8. Observability of reaction networks consisting 1−9 reactions,  obtained using different 

methods. 

If the subsystem containing 5 reactions identified in the second strategy is observable, that will mean 

the identified kinetic data represent an exact and unique solution that is the  global minimum for 5 

reactions, given that the performance of the optimization algorithm was good enough to find it. In 

order to prove this, all 5-reaction combinations from a set of 15 reactions, a total of 3003 

subsystems, must be identified. The task is time-consuming but can be performed within a 

reasonable time horizon. From the results, the subsets where  the objective function value was <10 

were taken and plotted on a histogram, using a bin size of 0.5 (Figure 9). The results indicates that 

the top-down elimination strategy is capable of finding the global minimum, as only 2 from 3003 5-

reaction combinations resulted in objective function values of <2 (1.755 and 1.811, to be more 

accurate), from which the smaller value coincides with the result given by top-down elimination 

(1.753), and moreover, the identified reaction subset here is exactly the same as the one identified 
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by the second strategy. Table 3 lists the values of reaction rate coefficients at 410 °C that agree to at 

least two significant digits; thus, the two solutions are essentially equal. 

 
Figure 9. Occurrence of objective function values for various 5-reaction networks. 

Table 3. Reaction Rate Coefficients at 410 °C for 5-Reaction Networks 

Reactions VGO → D VGO → LN D → K K → HN K → G 

Best result from the 
identification of all possible 
subsystems 

6.23 0.204 10.42 2.27 4.81 

Result from Method 2 6.29 0.206 10.34 2.27 4.83 

Another method to prove that the optimal values have been calculated is to perform a sensitivity 

analysis on the determined parameters. This was performed by means of ±25%  perturbations of the 

pre-exponential factors and ±5% perturbations of activation energies, on one parameter at a time, 

following the method described by Alcázar and Ancheyta.36 In each step, the objective function 

(eq 11) was evaluated; the resulting curves are shown in Figure 10. This analysis again indicates that 

the estimated parameter values are at the optimum, since the minimum values of all 10 curves are 

at 0% and any perturbation results in higher objective function values. 
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Figure 10. Sensitivity analysis of calculated parameters of the 5-reaction model from the second 

strategy. 

The final solution from the model reduction and identification is depicted in Figure 11. The model 

presented here somewhat disagrees with the well-known behavior of the hydrocracking reaction; in 

other words, the reactions do not follow a consecutive pattern (for example, Light Naphtha is  

produced from VGO instead of Heavy Naphtha). The main reason behind that observation is that the 

observability criterion strongly limits the number of reactions present in the final  model; one pseudo-

component can only be produced via one reaction pathway. In other words, there is only one 

possible 5-reaction subsystem where the consecutive reaction pathway occurs. The objective 

function value associated with the consecutive pathway is 9.2, which is more than five times higher 

than the final solution suggested in Figure 11 and Table 3. Hence, there are two solutions: the first 

includes more reactions, so the consecutive pathway is present and also the  value of the objective 

function is acceptable, and the second excludes some reactions from the consecutive pathway and 

includes the same number of nonconsecutive reactions, so the  resulting model gives a good 

description of the concentration changes of the pseudo-components while the system remains also 

observable. While the former approach describes the behavior of hydrocracking better, the latter 

ensures the certainty regarding the values of the identified kinetic parameters, which is more 

favorable, in terms of process development and intensification. Moreover, the algorithm presented 

here utilizes no a priori information about the reaction chemistry, and the purpose of these 

strategies is to identify a reaction system and its kinetic parameters suitable of  describing the 

concentration changes of pseudo-components based only on measured values of concentration; 

hence, the only constraints present regarding the structure of the identified network are the 

reactions that are included in the full network, i.e., the superstructure. 
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Figure 11. Reaction network consisting of 5 reactions, obtained by Method 2. 

The measured and calculated product compositions as a function of LHSV at 410 °C for 15 and 5 

reactions present are shown in Figures 12 (VGO, Diesel, Kerosene) and 13 (Heavy Naphtha, Light 

Naphtha and Gas). The shapes of the curves are mostly the same for the 5-reaction model and the 

original model consisting of 15 reactions. In some cases, the resulting curve from the former fits 

worse to the measured data (e.g., Gas); whereas, in other cases, the curve fitting is better (VGO). In 

some cases, somewhat poor correlation between measured and calculated data can be observed for 

both models (e.g., Diesel). However, the results of the sensitivity analysis on the  kinetic parameters 

implies that this issue is related, at least in part, to measured data and could be overcome by the 

application of different lumping strategies. This may well be  part of a further investigation. 

 
Figure 12. Concentration of VGO (blue), Diesel (red), and Kerosene (green) at the reactor outlet for 

different LHSV values at 410 °C. Data points represent measured data, dashed lines indicate the 15-

reaction system results, and solid lines represent the 5-reaction system results. 
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Figure 13. Concentration of Heavy Naphtha (blue), Light Naphtha (red), and Gas (green) at the 

reactor outlet for different LHSV values at 410 °C. Data points represent measured data, dashed lines 

indicate the 15-reaction system results, and solid lines represent the 5-reaction system results. 

Conclusions and Future Work 

In this work, multiple optimization studies for the heterocatalytic oxidation of HCl into Cl2 (the HCl 

conversion process) were carried out for a fixed-bed tubular reactor. Three different design methods 

were considered, the application of graded catalyst beds, multiple cooling zones , and finally, the 

coupling of the previous two into a generalized reactor zone. The number of zones (N) varied from 1 

to 6 in our investigations. The results obtained by using the initial objective function for HCl 

conversion maximization have shown that while reaching the equilibrium conversion is possible, this 

method does not properly address the temperature changes occuring in the reactor. Hence three 

other objective functions have been implemented, and the results were evaluated using the axial 

temperature gradient of the reactor temperature as a main indicator. With this method, the 

temperature deviation can be reduced to a reasonably low level using four catalyst beds with 

different activities. While splitting of the reactor shell is not necessary, a more flexible system can be 

achieved with it as shell side temperature may be altered in continuous operation of the reactor.  

Future work may consider the dynamic behavior of the reactor, for example, the effect of depleting 

activity of the catalyst that could be different in each zone and, along with that, control strategies to 

maintain the determined temperature profile. 
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Nomenclature 

A system matrix 

B input matrix 

C output matrix 

c mass concentration [kg m-3] 

Ea activation energy [J mol -1] 

exs existence variables 

I identity matrix 

k reaction rate coefficient [m3  h-1 mcat

-3
] 

k0 pre-exponential factor [m3 h-1  mcat

-3
] 

ℓ dimensionless length [-] 

L Kirchhoff matrix of the reaction system 

lb lower bounds of optimization variables 

𝒪 observability matrix 

R gas constant [J mol -1 K-1] 

T temperature [K] 

𝓋 actual space velocity [h-1] 

u state-space model input 

ub upper bounds of optimization variables 

x model state (in state-space model) 

xact actual optimization variables 

xn normalized optimization variables 
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y state-space model output 

Y pseudocomponent yield [-] 

 

Abbreviations 

D Diesel lump 

G Gas lump 

HN Heavy Naphtha lump 

K Kerosene lump 

LHSV Liquid Hourly Space Velocity [h-1] 

LN Light Naphtha lump 

OFV Objective function value 

VGO Vacuum Gas Oil lump 

 

Subscripts 

b bounds 

cat catalyst 

comp pseudocomponent, lump 

in inlet 

 

Superscripts 

act actual 

n normalized 

T transpose 

 

Greek letters 

ε’ catalyst volume fraction [mcat
3  mreactor

−3 ] 

η catalyst effectiveness factor [-] 

ρ density [kg m-3] 
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