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Abstract

A mononuclear nonheme iron(IV)–amido complex bearing a tetraamido macrocyclic ligand, 

[(TAML)FeIV(NHTs)]− (1), was synthesized via a hydrogen atom (H atom) abstraction reaction of 

an iron(V)–imido complex, [(TAML)FeV(NTs)]− (2), and fully characterized using various 

spectroscopies. We then investigated (l) the pKa of 1, (2) the reaction of 1 with a carbon-centered 

radical, and (3) the H atom abstraction reaction of 1. To the best of our knowledge, the present 

study reports for the first time the synthesis and chemical properties/reactions of a high-valent 

iron(IV)–amido complex.

Heme and nonheme iron enzymes as well as their synthetic model compounds catalyze the 

hydroxylation of alkanes with high efficiency and selectivity.1–3 High-valent iron(lV)-oxo 

porphyrin π-cation radical species (Porp+•)-FeIV(O), referred to as compound I (Cpd-I), are 

the key intermediates responsible for the C–H hydroxylation of substrates in heme systems; 

a hydrogen atom is abstracted from substrate C–H bonds by Cpd-I (Scheme 1A, reaction a), 

followed by a fast oxygen rebound between the Fe(IV)–OH porphyrin species, referred to as 

compound II (Cpd-II), and the carbon radical (Scheme 1A, reaction b).1,4 Since the H atom 

abstraction by Cpd-I is the rate-determining step (rds) (Scheme 1A, reaction a), the O-

rebound step has never been observed directly (Scheme 1A, reaction b). However, very 

recently, Goldberg and co-workers reported the first direct O-rebound process, in which an 
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iron(IV)–hydroxide corrole complex, [FeIV(OH)],5 and a nonheme iron(III)–methoxide 

complex, [FeIII(OCH3)],6 were utilized in reactions with carbon-centered radicals. In the 

study, they demonstrated the C–O bond formation between Fe–OX (X = H and CH3) and 

carbon radicals.5,6

Another interesting subject that has attracted much attention recently is the basicity of the 

Cpd-II Fe(IV)–OH;1b,7,8 the basicity of the Fe(IV)–OH species is an important factor that 

determines the reactivity of Cpd-I in C–H activation reactions and that the strong electron-

donating ability of the thiolate axial ligand increases the basicity of the iron-oxo moiety, 

influencing the reactivity of Cpd-I in H atom abstraction reactions. Indeed, pKas of several 

Fe(IV)–OH intermediates were determined in heme enzymes,7,8 showing that Cpd-II with a 

high pKa is more reactive in C–H bond activation reactions.

High-valent iron–imido (Fe=NR) and iron–amido (Fe-NHR) species, which are iron–oxo 

(Fe=O) and iron–hydroxo (Fe–OH) analogs, respectively, have been proposed as reactive 

intermediates in nitrogen group transfer reactions.9 Very recently, we reported that a high-

valent iron(V)–imido complex, [(TAML)FeV(NTs)]− (2) (NTs = tosylimido), is capable of 

activating C–H bonds of substrates (Scheme 1B).10 In the amination reactions, an iron(IV)–

amido intermediate, [(TAML)FeIV(NHTs)]− (1), is generated as a transient intermediate 

(Scheme 1B, reaction a), as Cpd-II is proposed as a transient intermediate in heme systems 

(compare Scheme 1A and B). Then, the iron(IV)–amido intermediate is recombined with the 

carbon radical to yield an aminated product and an iron(III) product (Scheme 1B, reaction 

b). Encouraged by the successful synthesis of the Fe(V)–NTs complex and the reaction of 

the Fe(V)–NTs complex with alkane C–H bonds,10a we attempted to synthesize an Fe(IV)–

NHTs complex as an analog of Cpd-II and investigated the chemical properties/reactions of 

the Fe(IV)–NHTs complex in various aspects. Herein, we report a novel high-valent 

iron(IV)–amido complex, [(TAML)FeIV(NHTs)]− (1), which is synthesized via a H atom 

abstraction reaction of 2 (Scheme 2, reaction a). We also report the pKa determination, 

nitrogen rebound, and H atom abstraction reactions of the Fe(lV)–NHTs complex (Scheme 

2).

The mononuclear iron(V)–imido complex [(TAML)-FeV(NTs)]− (2) was synthesized 

according to the literature procedures.10 Upon addition of 1 equiv of TEMPOH (=2,2,6,6-

tetramethylpiperidin-1-ol) or excess amounts of 9,10-dihydroanthracene (DHA) or 1,4-

cyclohexadiene (CHD) to 2 in CH3CN (MeCN) at −40 °C, the color of the reaction solution 

changed from dark green to purple (Supporting Information (SI), Experimental Section). 

The purple intermediate (1) was metastable (t1/2 ≈ 3 h) at −40 °C, allowing us to 

characterize it using various spectroscopies, such as UV–vis, cold spray time-of-flight mass 

spectrometry (CSI-MS), electron paramagnetic resonance (EPR), Mössbauer, and X-ray 

absorption spectroscopy/extended X-ray absorption fine structure (XAS/EXAFS). The UV–

vis spectrum of 1 exhibited two distinct absorption bands at 526 (ε = 6100 M−1 cm−1) and 

690 nm (ε = 3600 M−1 cm−1) (Figure 1a; Figures S1–S3). CSI-MS of 1 in negative mode 

exhibited a prominent ion peak at m/z of 596.1, with mass and isotope distribution patterns 

corresponding to [(TAML)Fe(NHTs)]− (calculated m/z of 596.1) (Figure 1a, inset). When 1 
was generated using 15N-labeled 2, [(TAML)FeV(15NTs)]−, one-mass-unit shift from 596.1 

to 597.1 was observed (Figure 1a, inset; Figures S4 and S5, inset). This result demonstrates 
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that 1 contains one NHTs group. The X-band EPR spectrum of 1 was silent when 1 was 

generated using DHA or CHD (Figure S6). However, when 1 was generated using 

TEMPOH, the EPR spectrum of the reaction solution showed signals at g ~2.0 from 

TEMPO• (Figure S7).

1 was also analyzed with Mössbauer spectroscopy (Figure 1b). The spectrum recorded at 80 

K without applied magnetic field is constituted by a quadrupole doublet accounting for 97% 

of the sample iron, with hyperfine parameters consistent with an S =1 Fe(lV) species. This 

assignment was confirmed by experiments at 4.5 K at 0 and 7 T (Figure S8). A global 

simulation of all spectra resulted in the following parameters: δ = −0.00 mm s−1, ΔEQ = 3.33 

mm s−1, and D =15 cm−1 (Table S1), which match with those reported for other Fe(lV) 

complexes of related ligands.11

Fe K-edge XAS was performed on solutions of 1 and 2, and the data are presented in Figure 

2a. The data show that the rising edge of 1 is ~1 eV lower in energy relative to 2. A 

comparison of the pre-edge region is present in the inset of Figure 2a, which shows that the 

pre-edge energy position of 1 has shifted to lower energy by ~0.5 eV (7112.9 eV in 2 to 

7112.4 eV in 1), and the intensity has decreased significantly in 1 relative to 2. This 

lowering of pre-edge energy position and decrease in intensity suggest a change in the Fe–N 

axial interaction on going from 2 to 1.10b,12,13 Fe K-edge EXAFS data for 1 and 2 were 

measured and analyzed for local structure determination. A comparison is shown in Figure 

2b, and fits to the data of 1 are shown in Figure S9 and Table S2. The best fits to the data for 

1 reveal a first shell devoid of a short Fe–N interaction and consistent with either four or five 

Fe–N interactions at 1.89 Å (Table S2), suggesting elongation of the Fe–N relative to 2. 

These data are supported by TD-DFT simulations of the Fe K-edge pre-edge region on the 

triplet ground state structure of a five-coordinate 1 and comparing that to that of 2. The TD-

DFT calculations (Figure S10) reveal an excellent agreement with the Fe K-pre-edge data, 

supporting the five-coordinate EXAFS fit. Based on the spectroscopic characterization and 

the density functional theory (DFT) calculations (see Figure S11 for the DFT-optimized 

structure; Table S3), 1 can be assigned as an S =1 iron(lV)–amido complex with a single Fe–

N bond, [(TAML)FeIV(NHTs)]−.

We then investigated the pKa of Fe(lV)-N(H)Ts by the spectroscopic titration with bases in 

MeCN at −40 °C (Scheme 2, reaction b). When 1 was reacted with pyridine (pKa = 12.3)14 

and 2-aminopyridine (pKa = 14.3),14 we did not observe any spectral changes in the 

reactions. However, addition of 1 equiv of 4-dimethylaminopyridine (4-DMAPy, pKa = 

17.6)14 or 4-aminopyridine (4-APy, pKa = 17.2)14 to 1 resulted in the fast disappearance of 

the peaks at 526 and 690 nm due to 1 with the formation of a new species (3) (Figures S12 

and S13). Interestingly, addition of 1 equiv of HOTf to the solution of 3 regenerated 1 
(Figure S14) (Scheme 2, reaction b). Thus, the results of the acid–base reaction indicate that 

addition of base to 1 generates a deprotonated species, [(TAML)FeIV(NTs)]2− (3), and 3 is 

converted back to 1 upon protonation (Scheme 2, reaction b). Since 3 is not stable (t1/2 ≈ 
550 s at −40 °C) (Figure S15) due to disproportionation to [(TAML)FeV(NTs)]− and 

[FeIII(TAML)]− (Figure S16), we were not able to provide strong spectroscopic evidence for 

3 except the UV–vis and EPR data. Indeed, such disproportion reaction of Fe(IV) to Fe(V) 

and Fe(III) is well documented in iron(IV)-oxo porphyrin chemistry.15
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Then, the K values of the deprotonation of 1 with 4-DMAPy and 4-APy were determined by 

fitting of the titration data (see SI, Experimental Section and Figures S17–S20). The pKa of 

1 was then determined to be 15.7(1) with the K values and the pKas of 4-DMAPy and 4-APy 

(eq 1). In addition, with the determined pKa value of 1, the BDE value of Fe–N(H)Ts in 1 
was also determined to be 79.3 kcal mol−1 from the Ered value (vs Fc+/Fc) of 2 using eq 2,16 

where Ered (vs Fc+/Fc) of 2 = −0.07 V (Figure S21). 1 is less basic with the lower BDE than 

those of LmesFeIII−N(H)Ad+, an iron(III)–amido with pKa = 37 and BDE = 88(5) kcal mol
−1, which may result from several factors including the nature of the amide substituent, Fe 

oxidation state, and charge of the complex.17

pKa, (1) = − logK + pKa, (4 − X − py) (1)

BDE = 1.37pKa, (1) + 23.06Ered + 59.4 (2)

With the spectroscopically well characterized 1 and 2, we investigated the H atom 

abstraction reaction of 2 (Scheme 1B, reaction a) and the N-rebound reaction of 1 (Scheme 

1B, reaction b); triphenylmethane (Ph3CH) was used as a substrate. First, the reaction of 2 
with Ph3CH yielded [FeIII(TAML)]− and Ph3C-NHTs (Figures S22–S24). The second-order 

rate constant of the reaction of 2 with Ph3CH was determined at different temperatures and 

then extrapolated to −40 °C (Figures S25–S27),18 in which the second-order rate constant 

was determined to be 7.5 × 10−5 M−1 s−1 at −40 °C (Scheme 1B, reaction a). Then, we 

examined the N-rebound reaction of 1 with triphenylmethyl radical (Ph3C•) (Scheme 1B, 

reaction b; also see Scheme 2, reaction c). Addition of (Ph3C)2, which is in equilibrium with 

Ph3C•,19 to a deaerated MeCN solution of 1 at −40 °C under an Ar atmosphere afforded the 

Ph3C-NHTs and [FeIII(TAML)]− products in ~90% yield (Figures S28 and S29). The rate 

constant of the N-rebound reaction between 1 and Ph3C at −40 °C was estimated to be larger 

than 2.4 × 103 M−1 s−1 from the first-order rate constant (7.2 × 10−3 s−1) in Figure S30, 

inset, and the maximum concentration of [Ph3C•] (<3 × 10−6 M) in the equilibrium with 

(Ph3C)2.20 Thus, by comparing the rate constants of the H atom abstraction of Ph3CH by 2 

(7.5 × 10−5 M−1 s−1) and the N-rebound reaction between 1 and Ph3C• (2.4 × 103 M−1 s−1), 

we can conclude that the N-rebound reaction (Scheme 1B, reaction b) is more than 3.2 × 107 

times faster than the H atom abstraction reaction (Scheme 1B, reaction a).

Finally, the reaction of 1 with TEMPOH (BDE of O–H = 70.6 kcal mol−1)16c was 

investigated (Scheme 2, reaction d). Addition of TEMPOH to 1 in MeCN at −40 °C resulted 

in the disappearance of 1 (Figure S31). The second-order rate constant (K2) was determined 

to be 1.6 × 102 M−1 s−1 at −40 °C (Figure S32). Product analysis revealed the formation of 

NH2Ts and TEMPO• with the yields of ~95% and ~86%, respectively, as the organic 

products (Figures S33 and S34) and the formation of [FeIII(TAML)]− as the decay product 

of 1 (Figure S35); the overall reaction stoichiometry is shown in eq 3.
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(TAML)FeIV NHTS
−(1) + TEMPOH

(TAML)FeIII − + NH2Ts + TEMPO .
(3)

In summary, we have reported the synthesis and characterization of a mononuclear nonheme 

iron(IV)–amido complex, [(TAML)FeIV(NHTs)]− (1). We have also reported the chemical 

properties and reactions of the iron(IV)–amido complex, such as the pKa and BDE values 

and the N-rebound and H atom abstraction reactions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Am. Chem. Soc 2014, 136, 10930–10940. [PubMed: 24940616] (c)Iovan DA; Betley TA 
Characterization of Iron-Imido Species Relevant for N-Group Transfer Chemistry. J. Am. Chem. 
Soc 2016, 138, 1983–1993. [PubMed: 26788747] 

(20). The concentration of Ph3C• during the reaction was too small to be detected, being estimated to 
be smaller than 3 × 10−6 M from ΔA (<0.001) based on the ε value at 514 nm due to Ph3C• (SI, 
Experimental Section). The reaction of 1 with Ph3C• was much faster than the formation of 
Ph3C• from the dimer (SI, Figure S30).•−6
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Figure 1. 
(a) UV–vis spectra of [FeV(NTs)(TAML)]− (2, black line) and [FeIV(NHTs)(TAML)]− (1, 

red line). 1 was synthesized by reacting 2 (0.20 mM) with 1.0 equiv of TEMPOH (0.20 mM) 

in MeCN at −40 °C. Insets show CSI-MS spectra with the isotopic distribution patterns of 

the peaks at m/z 596.1 for 1-14NHTs (left panel) and at m/z 597.1 for 1-15NTs ( right panel). 

(b) Mössbauer spectra (black circles) with fits (red line) for 1 recorded at 80 K and 0 T. The 

solid line is a calculated spectrum with the following parameters: δ= −0.01 mm s−1 and 

ΔEQ= 3.28 mm s−1.

Lu et al. Page 8

J Am Chem Soc. Author manuscript; available in PMC 2020 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
(a) Normalized Fe K-edge XAS data for 1 (red) and 2 (black). The inset shows the expanded 

pre-edge region. (b) Non-phase-shift-corrected Fourier transform (FT) data for 1 (red) and 2 
(black). The inset shows the EXAFS data.
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Scheme 1. 
C–H Bond Activation Reactions of Cpd-I and Fe(V)–Imido Complex
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Scheme 2. 
Schematic Representation for the Synthesis and Reactions of [(TAML)FeIV(NHTs)]−
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