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Heme and nonheme iron enzymes as well as their synthetic model compounds catalyze the hydroxylation of alkanes with high efficiency and selectivity. [1][START_REF] Shaik | P450 Enzymes: Their Structure, Reactivity, and Selectivity-Modeled by QM/MM Calculations[END_REF][START_REF] Lee | Hydrogen Atom Transfer Reactions of Mononuclear Nonheme Metal-Oxygen Intermediates[END_REF] High-valent iron(lV)-oxo porphyrin π-cation radical species (Porp +• )-Fe IV (O), referred to as compound I (Cpd-I), are the key intermediates responsible for the C-H hydroxylation of substrates in heme systems; a hydrogen atom is abstracted from substrate C-H bonds by Cpd-I (Scheme 1A, reaction a), followed by a fast oxygen rebound between the Fe(IV)-OH porphyrin species, referred to as compound II (Cpd-II), and the carbon radical (Scheme 1A, reaction b). 1,[START_REF] Huang | Groves JT Beyond Ferryl-Mediated Hydroxylation: 40 Years of the Rebound Mechanism and C-H Activation[END_REF] Since the H atom abstraction by Cpd-I is the rate-determining step (rds) (Scheme 1A, reaction a), the Orebound step has never been observed directly (Scheme 1A, reaction b). However, very recently, Goldberg and co-workers reported the first direct O-rebound process, in which an iron(IV)-hydroxide corrole complex, [Fe IV (OH)], [START_REF] Zaragoza | Goldberg DP Direct Observation of Oxygen Rebound with an Iron-Hydroxide Complex[END_REF] and a nonheme iron(III)-methoxide complex, [Fe III (OCH 3 )], [START_REF] Pangia | Goldberg DP Observation of Radical Rebound in a Mononuclear Nonheme Iron Model Complex[END_REF] were utilized in reactions with carbon-centered radicals. In the study, they demonstrated the C-O bond formation between Fe-OX (X = H and CH 3 ) and carbon radicals. [START_REF] Zaragoza | Goldberg DP Direct Observation of Oxygen Rebound with an Iron-Hydroxide Complex[END_REF][START_REF] Pangia | Goldberg DP Observation of Radical Rebound in a Mononuclear Nonheme Iron Model Complex[END_REF] Another interesting subject that has attracted much attention recently is the basicity of the Cpd-II Fe(IV)-OH; 1b,7,8 the basicity of the Fe(IV)-OH species is an important factor that determines the reactivity of Cpd-I in C-H activation reactions and that the strong electrondonating ability of the thiolate axial ligand increases the basicity of the iron-oxo moiety, influencing the reactivity of Cpd-I in H atom abstraction reactions. Indeed, pK a s of several Fe(IV)-OH intermediates were determined in heme enzymes, [START_REF] Green | Gray HB Oxoiron(IV) in Chloroperoxidase Compound II Is Basic: Implications for P450 Chemistry[END_REF]8 showing that Cpd-II with a high pK a is more reactive in C-H bond activation reactions.

High-valent iron-imido (Fe=NR) and iron-amido (Fe-NHR) species, which are iron-oxo (Fe=O) and iron-hydroxo (Fe-OH) analogs, respectively, have been proposed as reactive intermediates in nitrogen group transfer reactions. 9 Very recently, we reported that a highvalent iron(V)-imido complex, [(TAML)Fe V (NTs)] -( 2) (NTs = tosylimido), is capable of activating C-H bonds of substrates (Scheme 1B). 10 In the amination reactions, an iron(IV)amido intermediate, [(TAML)Fe IV (NHTs)] -(1), is generated as a transient intermediate (Scheme 1B, reaction a), as Cpd-II is proposed as a transient intermediate in heme systems (compare Scheme 1A and B). Then, the iron(IV)-amido intermediate is recombined with the carbon radical to yield an aminated product and an iron(III) product (Scheme 1B, reaction b). Encouraged by the successful synthesis of the Fe(V)-NTs complex and the reaction of the Fe(V)-NTs complex with alkane C-H bonds, 10a we attempted to synthesize an Fe(IV)-NHTs complex as an analog of Cpd-II and investigated the chemical properties/reactions of the Fe(IV)-NHTs complex in various aspects. Herein, we report a novel high-valent iron(IV)-amido complex, [(TAML)Fe IV (NHTs)] -(1), which is synthesized via a H atom abstraction reaction of 2 (Scheme 2, reaction a). We also report the pK a determination, nitrogen rebound, and H atom abstraction reactions of the Fe(lV)-NHTs complex (Scheme 2).

The mononuclear iron(V)-imido complex [(TAML)-Fe V (NTs)] -(2) was synthesized according to the literature procedures. 10 Upon addition of 1 equiv of TEMPOH (=2,2,6,6tetramethylpiperidin-1-ol) or excess amounts of 9,10-dihydroanthracene (DHA) or 1,4cyclohexadiene (CHD) to 2 in CH 3 CN (MeCN) at -40 °C, the color of the reaction solution changed from dark green to purple (Supporting Information (SI), Experimental Section). The purple intermediate (1) was metastable (t 1/2 ≈ 3 h) at -40 °C, allowing us to characterize it using various spectroscopies, such as UV-vis, cold spray time-of-flight mass spectrometry (CSI-MS), electron paramagnetic resonance (EPR), Mössbauer, and X-ray absorption spectroscopy/extended X-ray absorption fine structure (XAS/EXAFS). The UVvis spectrum of 1 exhibited two distinct absorption bands at 526 (ε = 6100 M -1 cm -1 ) and 690 nm (ε = 3600 M -1 cm -1 ) (Figure 1a; Figures S1-S3). CSI-MS of 1 in negative mode exhibited a prominent ion peak at m/z of 596.1, with mass and isotope distribution patterns corresponding to [(TAML)Fe(NHTs)] -(calculated m/z of 596.1) (Figure 1a, inset). When 1 was generated using 15 N-labeled 2, [(TAML)Fe V ( 15 NTs)] -, one-mass-unit shift from 596.1 to 597.1 was observed (Figure 1a, inset; Figures S4 and S5, inset). This result demonstrates that 1 contains one NHTs group. The X-band EPR spectrum of 1 was silent when 1 was generated using DHA or CHD (Figure S6). However, when 1 was generated using TEMPOH, the EPR spectrum of the reaction solution showed signals at g ~2.0 from TEMPO • (Figure S7).

1 was also analyzed with Mössbauer spectroscopy (Figure 1b). The spectrum recorded at 80 K without applied magnetic field is constituted by a quadrupole doublet accounting for 97% of the sample iron, with hyperfine parameters consistent with an S =1 Fe(lV) species. This assignment was confirmed by experiments at 4.5 K at 0 and 7 T (Figure S8). A global simulation of all spectra resulted in the following parameters: δ = -0.00 mm s -1 , ΔE Q = 3.33 mm s -1 , and D =15 cm -1 (Table S1), which match with those reported for other Fe(lV) complexes of related ligands. [START_REF] Collins | Transition Metal Chemistry. Synthesis and Characterization of an Intermediate-Spin Iron(IV) Complex of a Strong π-Acid Ligand[END_REF] Fe K-edge XAS was performed on solutions of 1 and 2, and the data are presented in Figure 2a. The data show that the rising edge of 1 is ~1 eV lower in energy relative to 2. A comparison of the pre-edge region is present in the inset of Figure 2a, which shows that the pre-edge energy position of 1 has shifted to lower energy by ~0.5 eV (7112.9 eV in 2 to 7112.4 eV in 1), and the intensity has decreased significantly in 1 relative to 2. This lowering of pre-edge energy position and decrease in intensity suggest a change in the Fe-N axial interaction on going from 2 to 1. 10b,12,13 Fe K-edge EXAFS data for 1 and 2 were measured and analyzed for local structure determination. A comparison is shown in Figure 2b, and fits to the data of 1 are shown in Figure S9 and Table S2. The best fits to the data for 1 reveal a first shell devoid of a short Fe-N interaction and consistent with either four or five Fe-N interactions at 1.89 Å (Table S2), suggesting elongation of the Fe-N relative to 2. These data are supported by TD-DFT simulations of the Fe K-edge pre-edge region on the triplet ground state structure of a five-coordinate 1 and comparing that to that of 2. The TD-DFT calculations (Figure S10) reveal an excellent agreement with the Fe K-pre-edge data, supporting the five-coordinate EXAFS fit. Based on the spectroscopic characterization and the density functional theory (DFT) calculations (see Figure S11 for the DFT-optimized structure; Table S3), 1 can be assigned as an S =1 iron(lV)-amido complex with a single Fe-N bond, [(TAML)Fe IV (NHTs)] -.

We then investigated the pK a of Fe(lV)-N(H)Ts by the spectroscopic titration with bases in MeCN at -40 °C (Scheme 2, reaction b). When 1 was reacted with pyridine (pK a = 12.3) [START_REF] Spillane | Elimination Mechanisms in the Aminolysis of Sulfamate Esters of the Type NH 2 SO 2 OC 6 HX -Models of Enzyme Inhibitors[END_REF] and 2-aminopyridine (pK a = 14.3), [START_REF] Spillane | Elimination Mechanisms in the Aminolysis of Sulfamate Esters of the Type NH 2 SO 2 OC 6 HX -Models of Enzyme Inhibitors[END_REF] we did not observe any spectral changes in the reactions. However, addition of 1 equiv of 4-dimethylaminopyridine (4-DMAPy, pK a = 17.6) 14 or 4-aminopyridine (4-APy, pK a = 17.2) [START_REF] Spillane | Elimination Mechanisms in the Aminolysis of Sulfamate Esters of the Type NH 2 SO 2 OC 6 HX -Models of Enzyme Inhibitors[END_REF] to 1 resulted in the fast disappearance of the peaks at 526 and 690 nm due to 1 with the formation of a new species (3) (Figures S12 andS13). Interestingly, addition of 1 equiv of HOTf to the solution of 3 regenerated 1 (Figure S14) (Scheme 2, reaction b). Thus, the results of the acid-base reaction indicate that addition of base to 1 generates a deprotonated species, [(TAML)Fe IV (NTs)] 2-(3), and 3 is converted back to 1 upon protonation (Scheme 2, reaction b). Since 3 is not stable (t 1/2 ≈ 550 s at -40 °C) (Figure S15) due to disproportionation to [(TAML)Fe V (NTs)] -and [Fe III (TAML)] -(Figure S16), we were not able to provide strong spectroscopic evidence for 3 except the UV-vis and EPR data. Indeed, such disproportion reaction of Fe(IV) to Fe(V) and Fe(III) is well documented in iron(IV)-oxo porphyrin chemistry. [START_REF] Pan | Newcomb M. Acid-Catalyzed Disproportionation of Oxoiron(IV) Porphyrins to Give Oxoiron(IV) Porphyrin Radical Cations[END_REF] Then, the K values of the deprotonation of 1 with 4-DMAPy and 4-APy were determined by fitting of the titration data (see SI, Experimental Section and Figures S17-S20). The pK a of 1 was then determined to be 15.7(1) with the K values and the pK a s of 4-DMAPy and 4-APy (eq 1). In addition, with the determined pK a value of 1, the BDE value of Fe-N(H)Ts in 1 was also determined to be 79.3 kcal mol -1 from the E red value (vs Fc+/Fc) of 2 using eq 2, [START_REF] Mayer | Hydrogen Atom Abstraction by Metal-Oxo Complexes: Understanding the Analogy with Organic Radical Reactions[END_REF] where E red (vs Fc+/Fc) of 2 = -0.07 V (Figure S21). 1 is less basic with the lower BDE than those of L mes Fe III -N(H)Ad + , an iron(III)-amido with pK a = 37 and BDE = 88( 5) kcal mol -1 , which may result from several factors including the nature of the amide substituent, Fe oxidation state, and charge of the complex. 17 pK a, (1) = -logK + pK a, (4 -X -py)

(1) BDE = 1.37pK a, (1) + 23.06E red + 59.4

(2)

With the spectroscopically well characterized 1 and 2, we investigated the H atom abstraction reaction of 2 (Scheme 1B, reaction a) and the N-rebound reaction of 1 (Scheme 1B, reaction b); triphenylmethane (Ph 3 CH) was used as a substrate. First, the reaction of 2 with Ph 3 CH yielded [Fe III (TAML)] -and Ph 3 C-NHTs (Figures S22-S24). The second-order rate constant of the reaction of 2 with Ph 3 CH was determined at different temperatures and then extrapolated to -40 °C (Figures S25-S27), 18 in which the second-order rate constant was determined to be 7.5 × 10 -5 M -1 s -1 at -40 °C (Scheme 1B, reaction a). Then, we examined the N-rebound reaction of 1 with triphenylmethyl radical (Ph 3 C • ) (Scheme 1B, reaction b; also see Scheme 2, reaction c). Addition of (Ph 3 C) 2 , which is in equilibrium with Ph 3 C • , 19 to a deaerated MeCN solution of 1 at -40 °C under an Ar atmosphere afforded the Ph 3 C-NHTs and [Fe III (TAML)] -products in ~90% yield (Figures S28 andS29). The rate constant of the N-rebound reaction between 1 and Ph 3 C at -40 °C was estimated to be larger than 2.4 × 10 3 M -1 s -1 from the first-order rate constant (7.2 × 10 -3 s -1 ) in Figure S30, inset, and the maximum concentration of [Ph 3 C • ] (<3 × 10 -6 M) in the equilibrium with (Ph 3 C) 2 . 20 Thus, by comparing the rate constants of the H atom abstraction of Ph 3 CH by 2 (7.5 × 10 -5 M -1 s -1 ) and the N-rebound reaction between 1 and Ph 3 C • (2.4 × 10 3 M -1 s -1 ), we can conclude that the N-rebound reaction (Scheme 1B, reaction b) is more than 3.2 × 10 7 times faster than the H atom abstraction reaction (Scheme 1B, reaction a).

Finally, the reaction of 1 with TEMPOH (BDE of O-H = 70.6 kcal mol -1 ) 16c was investigated (Scheme 2, reaction d). Addition of TEMPOH to 1 in MeCN at -40 °C resulted in the disappearance of 1 (Figure S31). The second-order rate constant (K 2 ) was determined to be 1.6 × 10 2 M -1 s -1 at -40 °C (Figure S32). Product analysis revealed the formation of NH 2 Ts and TEMPO • with the yields of ~95% and ~86%, respectively, as the organic products (Figures S33 andS34) and the formation of [Fe III (TAML)] -as the decay product of 1 (Figure S35); the overall reaction stoichiometry is shown in eq 3. Soc 2016, 138, 1983-1993. [PubMed: 26788747] (20). The concentration of Ph3C • during the reaction was too small to be detected, being estimated to be smaller than 3 × 10 -6 M from ΔA (<0.001) based on the ε value at 514 nm due to Ph 3 C • (SI, Experimental Section). The reaction of 1 with Ph 3 C • was much faster than the formation of Ph 3 C • from the dimer (SI, Figure S30). Schematic Representation for the Synthesis and Reactions of [(TAML)Fe IV (NHTs)] -

  Figure 1.

  (a) UV-vis spectra of [Fe V (NTs)(TAML)] -(2, black line) and [Fe IV (NHTs)(TAML)] -(1, red line). 1 was synthesized by reacting 2 (0.20 mM) with 1.0 equiv of TEMPOH (0.20 mM) in MeCN at -40 °C. Insets show CSI-MS spectra with the isotopic distribution patterns of the peaks at m/z 596.1 for 1-14 NHTs (left panel) and at m/z 597.1 for 1-15 NTs ( right panel). (b) Mössbauer spectra (black circles) with fits (red line) for 1 recorded at 80 K and 0 T. The solid line is a calculated spectrum with the following parameters: δ= -0.01 mm s -1 and ΔE Q = 3.28 mm s -1 .

Figure 2 .

 2 Figure 2. (a) Normalized Fe K-edge XAS data for 1 (red) and 2 (black). The inset shows the expanded pre-edge region. (b) Non-phase-shift-corrected Fourier transform (FT) data for 1 (red) and 2 (black). The inset shows the EXAFS data.
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(TAML)Fe IV NHT S -(1) + TEMPOH (TAML)Fe III -+ NH 2 Ts + TEMPO .

(3)

In summary, we have reported the synthesis and characterization of a mononuclear nonheme iron(IV)-amido complex, [(TAML)Fe IV (NHTs)] -(1). We have also reported the chemical properties and reactions of the iron(IV)-amido complex, such as the pK a and BDE values and the N-rebound and H atom abstraction reactions.
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