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Résumé — Migration latérale sous écoulement — Le transport de particules dans une conduite, et de
façon plus générale dans un écoulement cisaillé, a longtemps été modélisé en supposant la concentration
uniforme. Pourtant, dès 1836, Poiseuille observe des distributions radiales non homogènes dans ses
études sur le comportement des globules rouges dans le sang. 

L’observation expérimentale d’une répartition inhomogène des particules dans plusieurs écoulements
cisaillés a cependant conduit à identifier différents types de mécanismes de migration. Avant d’aborder
les mécanismes de migration collectifs, essentiellement actifs à bas nombre de Reynolds, nous décrivons
les mécanismes de migration « à une particule », généralement observés en présence d’inertie. Une courte
partie sur les migrations latérales pour des fluides viscoélastiques sera également abordée. La dernière
partie aborde le rôle de la sédimentation sur les effets latéraux. 

Abstract — Lateral Forces on a Sphere — The observation of inhomogeneous radial distributions of
particles in tube flow dates from the work of Poiseuille (1836) who was mainly concerned by the flow of
blood and the behavior of the red and white corpuscles it carries. These results were then generalized to
non-biological flows and experiments on pipe flow of suspensions also indicated that significant devia-
tions from ideal Poiseuille flow could occur in the presence of particles.
We will consider systems where the fluid flow in the absence of particles is unidirectional. We will first
present how fluid-particle interactions can induce lateral migration in the case of a single rigid particle
in a shear flow, as a function of the Reynolds number. While the focus is upon inertial migration, a brief
discussion of lateral migration in polymeric and viscoelastic fluids, where the nonlinearity results from
the non-Newtonian behavior of the suspending fluid, will be presented at the conclusion of this Section.
The role of interparticle interactions in a sheared fluid will be considered in the third section in the case
of Stokes flow. The last section will briefly present how sedimentation can affect lateral motion.

Solid/Liquid Dispersions in Drilling and Production
Fluides chargés en forage et production pétrolière

D o s s i e r

http://ogst.ifp.fr/
http://www.ifp.fr/
http://ogst.ifp.fr/index.php?option=toc&url=/articles/ogst/abs/2004/01/contents/contents.html


Oil & Gas Science and Technology – Rev. IFP, Vol. 59 (2004), No. 1

1 EARLY EXPERIMENTAL OBSERVATIONS

The observation of inhomogeneous radial distributions of
particles in tube flow dates from the work of Poiseuille
(1836) who was mainly concerned by the flow of blood and
the behavior of the red and white corpuscles it carries.
Poiseuille observed that there was a region devoid of 
particles close to the walls of the tube, an observation later
confirmed by Fåhraeus and Lindquist (1931). These results
were generalized to nonbiological flows by Scott-Blair
(1930) and later Maude and Whitmore (1956).

Experiments on the rheology of blood and more generally
on pipe flow of suspensions also indicated that significant
deviations from ideal Poiseuille flow could occur in the 
presence of particles. It was, for instance, observed that sus-
pensions flowed “relatively more readily” in narrow than
wider capillaries, an effect mentioned for the first time in
1919 by Bingham and Green for the flow of paints. This
reduction in viscosity observed when a suspension was
flowed through a thin capillary, termed the sigma-effect by
Scott-Blair (1930), was believed to be related to a lateral
migration of the suspended particles towards regions of low
shear, tending again to confirm the existence of lateral
motion in unidirectional flows. The review paper of Scott-
Blair (1958) gives a review of most of the anomalous viscos-
ity behaviors observed up to its date of publication. In 1962,
Segré and Silberberg provided an extensive and quantitative
study of a radial migration phenomenon. Surprisingly, they
gave evidence of a lateral migration directed towards the wall
of a tube, i.e. opposed to most of the previous experimental
observations. Their work triggered a series of experimental
and theoretical studies, but before looking at them we need to
establish more precisely the framework of this problem.

We will consider systems where the fluid flow in the
absence of particles is unidirectional. The lateral migration of
a spherical neutrally-buoyant particle is a “nonlinear”
phenomenon, in the sense that any lateral force can only
depend nonlinearly upon the unperturbed fluid velocity. To
illustrate that, the typical example is that of a rigid sphere
suspended in Poiseuille flow of a Newtonian fluid at
vanishing Reynolds number, i.e. for linear conditions. If
under axial flow in a given direction the particle underwent
lateral migration towards the wall, it would be expected to
migrate towards the centreline under flow reversal (based
upon the reversibility arising from linearity of the Stokes
equations). However due to the symmetry of the problem the
two situations are incompatible, and migration is therefore
disallowed at zero Reynolds number. The nonlinearity
necessary to achieve migration can potentially arise from the
presence of inertia (finite Reynolds number flows), or from
any non-Newtonian effect. In particular, the rheology of
finite volume fraction suspensions is generally non-
Newtonian owing to a range of factors including irreversible 

particle interactions. Hence, lateral migration phenomena of
suspensions in Newtonian fluids are expected to depend upon
the particle volume fraction and the Reynolds number.
Deformation of the suspended bodies can also introduce rate
dependence and therefore nonlinearity, but we will restrict
our attention to the migration of rigid particles. Lateral
motion of deformable particles, relevant in the case of drops
or red cells in blood flow, is addressed in Leal (1980),
Legendre and Magnaudet (1998) and the references therein.
We will first present how fluid-particle interactions can
induce lateral migration in the case of a single rigid particle
in a shear flow, as a function of the Reynolds number. While
the focus is upon inertial migration, a brief discussion of
lateral migration in polymeric and viscoelastic fluids, where
the nonlinearity results from the non-Newtonian behavior of
the suspending fluid, will be presented at the conclusion of
this section. The role of interparticle interactions in a sheared
fluid will be considered in the third section in the case of
Stokes flow. The last section will briefly present how
sedimentation can affect lateral motion.

2 SINGLE PARTICLE MIGRATION

2.1 Experimental Observations

Single particle experimental situations present a twofold
interest. They serve as a useful validation for lateral
migration analytical models, which generally cannot deal
with many-particle effects, but they also help understand
migration patterns still present at finite but low
concentrations. Bretherton (1962) pointed out the absence of
lateral migration for a rigid isotropic body in the zero
Reynolds number unidirectional flow of a Newtonian fluid,
and thus the importance of finite Reynolds number effects in
single particle issues.

The behavior of a neutrally buoyant rigid sphere in pipe
flow was studied experimentally by Segré and Silberberg
(1962). They observed that a rigid sphere in a cylindrical
Poiseuille flow (pipe of radius R) migrated to an equilibrium
position located at r = 0.62 R in conditions of small but finite
Reynolds number (Fig. 1). The effect was called the tubular
pinch effect, because of the tube-like shape of the annular
region to which particles migrate.

Their experiment prompted a strong interest in the
suspension community, mainly because the theoretical
evidence to support lateral migration at the time (Saffman,
1956) could only predict lateral forces directed towards the
centre of the pipe.

These results were confirmed by several following
experimental studies. The case of non neutrally buoyant
particles in vertical Poiseuille flow was also studied
experimentally by several authors (Oliver, 1962; Repetti and
Leonard, 1964; Jeffrey and Pearson, 1965; Karnis et al., 
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Figure 1

Experimental results of Segré and Silberberg (1962), showing
how radial migration develops in a pipe from a uniform
concentration at the entrance. The pipe radius is r = 5.6 mm.

1966; Tachibana, 1973; Aoki et al., 1979). They found that
the equilibrium position for nonneutrally buoyant particles
may be moved either towards the axis or towards the wall
depending upon the relative densities of the fluid and the
particle. In vertical ascending Poiseuille flow for instance,
particles heavier than the fluid (thus going slower) can be
observed to migrate towards the centre of the pipe, whereas a
particle which is less dense than the fluid (thus going faster)
will migrate towards the wall. Some of these studies also
investigated the behavior of rigid particles in other sheared
flows. In plane Couette flow for instance, neutrally buoyant
particles are observed to migrate towards the median plane. If
the particles have a different density, this symmetry is
broken: in a frame where one of the plates is stationary
particles will migrate towards the moving plate if they lag the
flow, and conversely towards the fixed plate if they lead the
flow. Mechanisms for these migration phenomena were
suggested first by Saffman (1965), then specified to the case
of bounded and quadratic flows by Ho and Leal (1974) and
Vasseur and Cox (1976). In the next Section we present an
outline of their respective approaches as well as a suggestion
of the physical mechanisms which come into play.

2.2 Mechanisms of Single Particle Migration

Segré and Silberberg’s experiment aroused a strong interest
in the fluid mechanics community, since it gave the first
quantitative experimental evidence of lateral migration of a
sphere in the unidirectional flow of a Newtonian fluid.
Bretherton (1962) had shown that in Stokes flow no lateral

migration could occur for rigid spherical particles in a
unidirectional flow.  Hence, in order to predict Segré and
Silberberg’s experimental result finite Reynolds number
studies were undertaken to include inertial effects. The first
analytical studies addressed the problem of lift forces on a
particle in a slightly inertial flow, and considered the simplest
case of unbounded flows. One of the first analyses of this
type was performed by Rubinow and Keller (1961). They
calculated, via a matched asymptotic expansion method, the
lift force on a rigid sphere translating in a quiescent fluid
with a rotation perpendicular to the translation, in the limit of
small Reynolds numbers. They found that in such conditions
a sphere experiences a force given by FRK = πa3ρΩ × U,
where a is the radius of the sphere, ρ the fluid density, Ω the
rotation vector and U the velocity of the fluid. Though this
particular expression of the lateral force on a sphere is only
valid for low Reynolds numbers, this type of force due to the
rotation of a body in a uniform flow is present in more
strongly inertial flows, since its physical origin is contained
in Bernoulli’s theorem: the rotation creates a reduction in
pressure on the side where rotation tends to increase the
velocity of the fluid (Fig. 2). It accounts for the curving of
the trajectory of a spinning ball. Rubinow and Keller’s force
does not depend on the viscosity, and this is consistent with
the perfect fluid mechanism suggested by Bernoulli’s
theorem.

In the case of Poiseuille flow, force-free neutrally buoyant
particles are known to lag behind the fluid (even at vanishing
Reynolds number), as the result of the finite size influence
proportional to a2 ∇ 2U in the Faxén law (Kim and Karrila,
1991). This combined with the rotation of the particle induced
by the shear yields a lateral force of the form mentioned
above, but this force is in this case directed towards the axis,
and thus cannot explain Segré and Silberberg’s observations.
This indicates that the Rubinow-Keller force, though present,
is not the dominant contribution to the lateral force exerted
on a neutrally buoyant particle.

Figure 2

Force exerted on a rigid sphere in the uniform flow of a
perfect fluid (Magnus effect): U is the velocity of the fluid, Ω
the rotation vector. The force is directed towards the larger
velocity side (in a frame moving with the particle).
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Saffman (1965) extended Rubinow and Keller’s
calculations to the case of a simple unbounded shear flow.
The lift force is calculated via the matched asymptotic
expansion method. Saffman found that to largest order in the
reciprocal of the viscosity the particle experiences a lift force
induced by the shear. This force can be seen as arising from
the interaction of the Stokeslet velocity field created by the
particle with the velocity gradient. The magnitude of this
force is FS = Ka2 γ–1/2 (µρ)1/2 V, where K is a numerical
constant (K ∼ 6.46), γ–1 is the rate of shear, µ is the dynamic
viscosity of the Newtonian fluid and V, the relative velocity
of particle and fluid measured on the streamline through the
centre of the particle. This lift force, unlike the Rubinow-
Keller force, is independent of particle rotation. 

The direction of the force can be found by noting that the
sphere will migrate towards the side where the fluid velocity
(relative to the particle) is the largest (Fig. 3). A comparison
between FRK and FS can be made in the simplest case 
Ω = γ-1/2 (freely rotating particle), and shows that the
condition FRK < FS is equivalent to Re1/2 < K, i.e. Re < 6600,
and thus valid in the present case of small Reynolds numbers.
Consequently, Saffman’s force, due to the interaction of slip
velocity and shear, will generally be at least one order of
magnitude larger than Rubinow-Keller’s force due to the
interaction of slip velocity and rotation of the particle. In the
case of a neutrally buoyant particle in Poiseuille flow, the
particle is force-free and cannot generate a Stokeslet in the
base flow, so there is no Saffman force (the lag of the particle
relative to the flow generates a Stokeslet, but it is balanced by
an opposite Stokeslet emanating from the curvature of the
base flow). Saffman’s force is however relevant in the case
of non neutrally buoyant particles, since those create a
Stokeslet in the flow.  The evolution of lateral migration with
sedimentation observed by Jeffrey and Pearson (1965) in
Poiseuille flow is consistent with the influence of this lateral

force when the particle is heavier of lighter than the
suspending fluid.

Although the previous results helped understand some of
the physics of the Segré-Silberberg effect in the case of non-
neutrally buoyant particles, they cannot explain Segré-
Silberberg’s observations for neutrally-buoyant particles. By a
regular perturbation method including the influence of the
walls and the quadratic nature of the unperturbed fluid veloc-
ity, Ho and Leal (1974) and later Vasseur and Cox (1976)
eventually predicted most of the experimental observations
for neutrally or nonneutrally buoyant particles in linear or
quadratic flow. Both studies show that in conditions of low
Reynolds number, neutrally buoyant particles in a simple
shear Couette flow will migrate towards the centre plane
because of the influence of the walls (agreeing with experi-
mental observations by Halow and Wills 1970). In quadratic
Poiseuille flow there will be in general a competition between
an inwards force and an outwards force, leading to an equilib-
rium position at about 60% from the centre plane to the walls
at small Re (Segré and Silberberg experimental result).

To understand the physical mechanisms controlling the
lateral migration of a rigid sphere in a shear flow, we can
follow Feng et al. (1994) and distinguish in the global lift
force three different types of contributions:
– The interaction of a Stokeslet arising from any non-

hydrodynamical force on the particle with the simple
shear component of the fluid velocity will generate a
Saffman contribution to the lift force. This type of force is
dominant in the case of nonneutrally buoyant particles in a
vertical flow: for a vertical ascending plane Couette flow
for instance particles will migrate towards the mobile plate
if they are heavier than the fluid and hence lag the flow. If
on the contrary they are lighter than the fluid and lead the
flow, migration will be towards the still plate (Fig. 4).

62
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Figure 3

Force exerted on a rigid sphere in a simple shear flow (Saffman, 1965): V is the velocity of the sphere, and the fluid velocity is zero for the
streamline going through the sphere centre. The dotted fluid velocity is relative to the sphere velocity; a) V > 0, the sphere moves faster than
the fluid; b) V < 0, it is going slower than the fluid.
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– Walls tend to push away the particles. This effect makes a
particle which sediments in a quiescent fluid or a neutrally
buoyant particle in a plane Couette flow migrate to a
position equidistant from both walls. For a particle moving
parallel to a wall, the pressure field around the sphere will
be greater on the wall side, and will consequently make
the mid-plane an equilibrium position. When the particle
is nonneutrally buoyant, there is a competition between
the wall forces and Saffman’s force, and the balance
between them will determine the equilibrium position.

– There is a third source of migration, important in the case
of quadratic flows and needed to explain Segré and
Silberberg’s results. This mechanism is related to the
curvature of the velocity profile in such flows (Ho and
Leal, 1974; Feng et al., 1994). If we make the approxi-
mation that a particle set in a quadratic flow has a zero
mean velocity relative to the fluid, due to the curvature of
the velocity field, the fluid velocity will be (absolutely)
higher on the wall side than on the centreline side in the
reference frame of the particle (Fig. 5). By analogy with
Saffman’s force, this dissymmetry will cause a lower
pressure on the side where the velocity of the fluid is
higher, leading the particle to migrate away from the axis
until the wall pushes it away.
This third type of lateral force on neutrally buoyant

particles can be interpreted in terms of the stresslet velocity
field induced by the rigid particle. This velocity field,
equivalent to a force dipole on the particle, would yield no
lateral motion in a simple shear, but causes the particle to
migrate in the presence of a gradient of shear. The equili-
brium position of a neutrally buoyant particle in Poiseuille

flow will be a balance between the force due to the curvature
directed towards the wall and the wall repulsion. When the
particles are not neutrally buoyant, Saffman’s force has to be
added to the former lateral forces. The traditional pinch effect
equilibrium position will consequently be moved towards the
wall if the particle leads the flow and towards the axis if the
particle lags the flow, in agreement with experimental results
(Jeffrey and Pearson, 1965).

Figure 5

Force exerted on a neutrally buoyant rigid sphere in a
quadratic flow: in the frame moving with the particle the
fluid velocity is larger on the wall side due to the concavity
of the velocity profile.

AxisWall
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Figure 4

Force exerted on a nonneutrally buoyant rigid sphere in a vertical plane Couette flow: V is the absolute velocity of the sphere, U the velocity
of the mobile plate. The dotted fluid velocity is relative to the sphere velocity; a) the particle is denser than the fluid; b) the particle is less
dense than the fluid.
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2.3 Influence of Inertia on Particle Migration

All the studies mentioned above assumed finite but low
Reynolds numbers. Under this assumption, the equilibrium
position in pipe or channel flow can be found to be at 
r = 0.63 R from the centreline. Segré and Silberberg (1962)
suggest that when the Reynolds number is increased the
equilibrium position of a sphere in quadratic flow, is moved
towards the wall, the effect beginning as soon as Re > 30.
Schonberg and Hinch (1989) and more recently Asmolov
(1999) calculated the force on a neutrally buoyant particle in
a two dimensional quadratic flow for Reynolds numbers up
to 1500 by integrating the solution of the matched asymptotic
expansion problem in Fourier space (the particle Reynolds
number is assumed to be small). The calculations are made
for channel flow, so a possible influence of curvature effects
in the case of pipe flow cannot be captured. Their results
show that the repulsive influence of the walls is strongly
reduced for high Reynolds numbers, leading to equilibrium
positions x much closer to the wall (for instance x = 0.87 L
for Re = 500. L is taken to be the half width of the channel
with L = R the radius of the pipe in the case of pipe flow).
We present in Figure 6 the profiles of the force on a neutrally
buoyant particle calculated for several Reynolds numbers
following the method suggested by Schonberg and Hinch
(1989) and Asmolov (1999). The calculations, based on a
matched asymptotic expansion, assume a small particle
Reynolds number: Rep = Re (a/L)2<< 1, where a is the
particle radius. It can be shown that the force scales with
(d/D)–3, i.e. the particle size has a dramatic influence on the
lateral force. The evolution of these profiles with the
Reynolds number (Fig. 6) shows clearly that the equilibrium
position is moved towards the wall (Asmolov, 1999). It can
be noted that the lateral force scaled by U2 decreases when
the Reynolds number is increased: this indicates that though
the lateral force is enhanced for large Reynolds numbers, it
increases less quickly than U2.

We have performed experimental measurements of
concentration profiles in the case of neutrally buoyant
particles in pipe flow for different Reynolds numbers. The
particles were polystyrene spheres and were set in a mixture
of 20% glycerol and 80% water matching their density. The
particle volume fraction was of order ϕ = 5.10–3, so
interparticle effects could be neglected. This very dilute
suspension was flowed in a horizontal glass tube of inner
diameter D = 8 mm, and of length L = 2.6 m. A laser was
positioned at 2.5 m  from the entrance, and produced a
vertical sheet intersecting the pipe at a right angle. A
plexiglas vessel was placed around the test section and filled
with glycerol: the index of refraction of glycerol being close
to that of glass, this allows a matching of the refraction at the
cylindrical outer wall of the tube, and limits the deformation
of the image. The cross section was filmed with a digital
video camera (see Fig. 7), and the images were analyzed 

Figure 6

Non-dimensionalized force F’ exerted on a neutrally buoyant
particle in a quadratic flow as a function of position for
different Reynolds numbers, where F’ = (d/D)–4(ρU2D2)–1F,
d the particle diameter, D the channel width, ρ the fluid
density and U the maximum velocity of the quadratic flow. x
is the distance to the channel centre and L = D/2 the half
width of the channel. The equilibrium position is shifted
closer to the wall when the Reynolds number is increased.

Figure 7

Measurement of particle position in the pipe: the camera
records the position of the particles intersecting the vertical
laser sheet.

with public domain software NIH Image to yield particle
positions. Once calibrated to account for the deformation of
the image due to refraction at the inner wall of the tube and
the plane wall of the Plexiglas vessel, the data gives the
cumulated particle distribution over the circular cross section.
Typical distributions for two different Reynolds numbers are
represented on Figure 8.
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We compare these experimental results with the predictions
of the theory by assuming that the influence of the curvature
is small. These graphs are for particles of a diameter d = 
900 µm in the pipe of diameter D = 8 mm, i.e. rather large
particles, for which migration is achieved more rapidly.
Figure 8 shows clearly that there is a strong radial migration
in our experimental conditions, and that for Reynolds num-
bers of 60 and 350, we obtain equilibrium positions req = 0.64
± 0.04 and req = 0.78 ± 0 .04 respectively. The value of req for
Re = 60 is in agreement with the experimental data of Segré
and Silberberg (1962), who measured a similar equilibrium
position for this Reynolds number and with the same ratio of
particle to pipe diameter. The comparison between 8a and 8b
shows that the increase in the Reynolds number shifts the
equilibrium position towards the wall, as predicted by the
theory. The prediction of the matched asymptotic expansion
calculation for these Reynolds numbers is respectively of req =
0.71 and req = 0.85, in both cases larger than the measured
experimental value. A possible explanation for this difference
can be the relatively large size of the particles: the force
calculations are performed in particular with the assumption
of very small particle Reynolds number, which is not true for
these particles for which Rep = 0.7 and Rep = 4 respectively.
When the experiments are made with smaller particles 
(200 µm), we observed that they yield equilibrium positions
closer to that predicted by the theory. The discrepancies can
also be due to the influence of the curvature of the pipe,
neglected in the theory.

When the flow rate is further increased, we observed that
particles were distributed not only on the previous equilibrium
position but also on a second, smaller annulus (Fig. 9a). 
For a Reynolds number of 1500, this inner annulus is the 
only equilibrium position observed (Fig. 9b). A possible

explanation for this new equilibrium position can be found on
the force profiles of Figure 6. It can be seen that for a Reynolds
number Re = 1000, there is a change in the concavity of the
curve, leading to a region around r = 0.5 ± 0.2 R where the
radial force is much smaller than at the centre of the pipe.
This region of low force can be observed from Re = 500. An
explanation of the results of Figure 9 could then be that
though particles still tend to leave the centre of the pipe, now
they accumulate in this region of low radial force situated at 
r = 0.5 ± 0.2 R. However, we cannot exclude the possibility
that this inner annulus be a real equilibrium position not
captured by the 2D theory, and this issue remains an open
question. The fact that the outer equilibrium position is not
observed on Figure 9b could be due to the strong velocity
fluctuations of the particles at these Reynolds number, for
which the system is close to the laminar-turbulent transition
(Matas et al., 2003).

We have seen in this paragraph how inertially induced
nonlinearity could generate lateral motion of a single particle.
We now turn to the problem of lateral motion in non-
Newtonian suspending liquids, where the nonlinearity arises
from the rheology.

2.4 Single-Particle Migration in Polymeric and
Viscoelastic Fluids

In applications where maintaining particles suspended for
extended distances is an issue, with a number of examples in
petroleum production including sand and other proppant
transport in hydraulic fracturing, the suspending fluid is often
a polymer solution or other strongly non-Newtonian liquid
(for example oils gelled using surfactants). In shear-thinning
or viscoelastic fluids, it has long been known that particles
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Experimental distribution of particle centres (particle diameter is 900 µm) over a cross section of the flow observed for Reynolds numbers of
a) Re = 60 and b) Re = 350. The lengths are scaled by the tube radius. 
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migrate laterally in pressure-driven flows. Here we touch
briefly on these observations and efforts at their description.   

Experimental work in this area by Mason and coworkers
(e.g. Karnis and Mason, 1966) is among the best known.
Gauthier, Goldsmith and Mason (1971) showed that for rigid
spheres suspended in a predominantly shear-thinning fluid,
migration is towards the wall of pressure-driven tube flow,
while for a highly elastic liquid the migration is towards the
tube centreline. 

The experiments of Tehrani (1996) sought to examine the
issue of elasticity upon cross-stream migration by varying the
level of elasticity in aqueous solutions of guar (a naturally
occurring polysaccharide) through variation of the
crosslinking density induced by addition of borax (sodium
borate). Tehrani found that for suspensions from 5-12% solid
fraction, migration was towards the channel centreline for the
moderately cross-linked fluids, while there was very little
migration for very highly cross-linked and elastically-
dominated fluids. It was argued that the migration requires
both normal stress and a radial variation in the shear rate,
with the apparent lack of migration in highly elastic fluids
resulting from plug flow over a substantial portion of the
interior of the pipe. Experiments on migration of solids
suspended in viscoelastic media in other geometries include
torsional flow studies of single particles (Karis, Prieve and
Rosen, 1984) and the recent study by Kim (2001) showing
strong outward radial migration of particles in suspensions of
10-30% overall solid fraction subject to parallel-plate flow.

While many experiments were at volume fractions of
order 10% or greater, migration behavior for an elastic fluid
was shown in theoretical work by Ho and Leal (1976) to be
describable at the single particle level using a second-order
fluid constitutive model; this work indicated that it was a

normal stress imbalance across the particle which results in
the migration in viscoelastic fluid. Brunn (1980) has shown
that the inclusion of interaction effects between particles or
of a particle with the boundary leads to discrepancies
between observation and theory. There is reason to expect
progress in this area through a combination of techniques as
numerical work has progressed to the point that Huang 
and Joseph (2000) have computed migration in nondilute
suspensions in two-dimensional Poiseuille flow at finite
Reynolds number and finite elasticity.  

3 COLLECTIVE EFFECTS AND MIGRATION

3.1 The Rheology of Suspensions

When a rigid spherical particle is set in a shear flow, it does
not possess any mechanism to relieve the local straining
motion. Even a force free and torque free rigid particle in a
sheared flow will create a disturbance in the velocity field
which will eventually increase the dissipation of the system.
In the limit of small concentrations, this added dissipation
can be calculated by neglecting multi-particle effects. In
1906, Einstein showed that in this limit it was equivalent to
an increase in the viscosity of the effective fluid: ηeff(ϕ) = 
η0 (1+5/2 ϕ), where ϕ is the particle volume fraction.

The influence of particles on the rheology of a suspension
for larger concentrations was quantitatively modelled by
Krieger (1972), who proposed the following formula to take
into account the added dissipation induced by spherical
particles in a homogeneous suspension:

ηeff(ϕ) = η0(1 – ϕ/ϕm)–1.82
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Figure 9

Experimental distribution of particle centres (particle diameter is 550 µm) over a cross section of the flow for Reynolds numbers of 
a) Re = 760, and b) Re = 1500. For Re = 760, a second equilibrium position appears in the pipe at r = 0.5 ± 0.2 R. For Re = 1500 it is the
only equilibrium position observed.
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where η0 is the viscosity of the pure fluid, and ϕm the
maximum (close-packing) volume fraction, for which the
viscosity of the system diverges, evaluated at ϕm = 0.68 for
hard spheres. This formula yields in the limit of low volume
fractions ηeff (ϕ) ≈ η0(1 + ϕ/ϕm*1.82) ≈ η0(1+ 2.68 ϕ), close
to Einstein’s formula ηeff(ϕ) = η0 (1 + 2.5 ϕ). A number of
other empirical formulae for the viscosity are typically similar
to the Krieger result in taking a divergence at maximum
packing and often also have similar forms of the divergence.

While studying the rheology of suspensions of neutrally
buoyant hard spheres in the viscous regime, Gadala-Maria
and Acrivos (1980) noticed that for volume fractions larger
than 40%, the viscosity (measured with a Couette dynamic
viscometer) was decreasing with time under constant shear
rate. This behavior was explained a few years later, when
Leighton and Acrivos (1987) presented a model for shear-
induced migration. They pointed out that in sheared
concentrated suspensions, non-Brownian particles migrated
from regions of high shear and high concentration to regions
of low shear and low concentration. In the experiment of
Gadala-Maria and Acrivos, this phenomenon caused a
migration of the particles out of the sheared Couette gap, thus
causing a decrease of the concentration of the sample, and
hence a decreasing effective viscosity. This work was
followed by a number of theoretical or numerical studies
(Phillips et al., 1992; Phan-Tien and Zang, 1994; Nott and
Brady, 1994; Mills and Snabre, 1995; Morris and Brady,
1998; Morris and Boulay, 1999) but also experimental works
(Abbott et al., 1991; Altobelli et al., 1991; Koh et al., 1994;
Hampton et al., 1997; Lyon and Leal, 1998 or Butler et al.,
1999). 

The first experimental studies to investigate the concen-
tration profile in the flow of concentrated suspensions were
based upon laser doppler anemometry measurements (Koh et
al., 1994, Lyon and Leal, 1998). These studies observed a
strong migration of the particles towards the centre of the
pipe in Stokes flow, provided that the bulk concentration is
large enough. Koh et al., (1994) for instance measured a
volume fraction ϕ of 60% at the centre of the pipe for a
global volume fraction of 30%, the largest reached in their
work. The main experimental difficulties in this kind of study
are the necessity to match the index of refraction of the fluid
to that of the particles, and to ensure that the entry length
necessary to reach a stationary concentration profile is
smaller than the test section. Lyon and Leal (1998) managed
to reach volume fractions of 50%, for which they observed a
considerably flattened velocity profile and concentrations
close to close-packing at the centre of the channel (Fig. 10).

A number of studies avoided the problem of index
matching by using nuclear magnetic resonance imaging
(MRI) (Abbott et al., 1991; Sinton and Chow, 1991;
Averbakh et al., 1997; Hampton et al., 1997; Butler et al.,
1999). These studies confirm and complete the results
obtained by LDA.

Figure 10

Experimental measurements of the velocity, the volume
fraction and the velocity fluctuations for the channel flow of
concentrated suspensions (from Lyon and Leal, 1998). For
very concentrated suspensions the velocity profile is blunted.
There is a strong migration of particles towards the centre of
the channel.

NMR was also used by Han et al. (1999) who studied
shear-induced migration in a broad range of concentration
but also of Reynolds number. They show that for relatively
low concentrations (ϕ about 10%) there can be a competition
between migration towards the centre of the pipe and the
inertial migration towards r = 0.6 R (Segré and Silberberg’s
tubular pinch effect). For a given concentration, the balance
between both effects is controlled by the particle Reynolds
number, the tubular pinch being enhanced for inertial flows
(Fig. 11).

3.2 Mechanisms of Low Reynolds Number Migration

Leighton and Acrivos (1987) proposed equations to describe
the migration of particles in conditions of low Reynolds
number. To account for the diffusion like behavior of the
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non-Brownian suspension in the experiment of Gadala-Maria
and Acrivos (1980), they suggested that irreversible inter-
particle interactions due to surface roughness could lead to
particle drift. Another possible source of irreversibility apart
from particle roughness is three-body interactions (Phillips et
al., 1992): whereas two-body interactions are known to be
reversible in Stokes flow (for smooth particles), the presence
of a third particle on two-body interactions can break this
reversibility. An expression for the diffusive flux is derived in
terms of the gradients in concentration and shear rate (corres-
ponding to a spatially varying particle interaction frequency).
The gradient in concentration-dependent viscosity will also
create a diffusive flux (Leighton and Acrivos, 1987). This
model has later been extended by Phillips et al. (1992) who
apply it to several flow configurations. Physically, a given

particle in a unidirectional shear flow will have a larger
number of collisions on the side where the shear is larger,
leading to migration towards the opposite side.

Nott and Brady (1994) developed a rather different
approach (based on ideas in Jenkins and McTigue, 1990)
which has been termed the suspension balance model: they
consider the dynamics of the suspension not through
diffusion but via mass, momentum and energy balances for
the particulate phase and the entire suspension. In both Nott
and Brady (1994) and Morris and Brady (1998), this model
was used to predict the cross-stream migration of particles,
with the latter study considering the balance of shear-induced
migration with sedimentation of heavy particles. The basis
for migration of solids at zero Reynolds number within this
model is the presence of normal stresses due to the particles.
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Figure 11

Concentration profiles for the pipe flow of suspensions with average particle volume fraction a) ϕ0 = 0.06, b) ϕ0 = 0.20, and c) ϕ0 = 0.28.
Here the particle Reynolds number is defined as Rep = Re (d/D). For low particle volume fractions the pinch effect is the only 
migration observed. For particle volume fractions larger than 20% migration towards the centre of the pipe can occur if the flow is viscous
enough. For larger concentrations there is a competition between both types of migrations (Han et al., 1999).

0.3

0.2

0.1

0.0

0.8

0.6

0.5

0.2

0.0

0.7

0.4

0.3

0.1

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Rep = 0.192
Rep = 0.341

Rep = 0.051
Rep = 0.227
Rep = 0.376

0.8

0.6

0.5

0.2

0.0

0.7

0.4

0.3

0.1

0.0 0.2 0.4 0.6 0.8 1.0

Rep = 0.035
Rep = 0.178
Rep = 0.279

a) b)

c)



JP Matas et al. / Lateral Forces on a Sphere

Both of the noted studies employed a constitutive model
which accounted for the normal stress through dependence
upon the “suspension temperature,” defined as the mean
square velocity fluctuation (this quantity has been determined
experimentally by Shapley et al., 2002). A more recent
model (Morris and Boulay, 1999) accounts for the migration
in more general flow conditions by showing that for flows
with curved streamlines the normal stress differences are
relevant. The constitutive modelling of the normal stresses is
written directly in terms of the shear rate and concentration in
this work, and the suspension temperature is thus not
considered. The work of Zarraga et al. (2000) showed that
the bulk of existing shear-induced migration results could be
explained by considering bulk normal stresses, and thus
support the modelling of migration as driven by particle-
induced normal stresses.

4 INFLUENCE OF SEDIMENTATION ON LATERAL
MIGRATION

Following the work of Segré and Silberberg (1962) on
neutrally buoyant particles, a few authors investigated how
sedimentation affected the migration phenomenon. The
experimental studies of Jeffrey and Pearson (1965) and Aoki
et al., (1979) on vertical pipe flow of a Newtonian fluid
demonstrated that the equilibrium position of a rigid sphere
could be observed to be closer to the axis or closer to the wall
according to the experimental conditions. If the sphere is
leading the flow the equilibrium is achieved closer to the
wall, but if the sphere is lagging the flow equilibrium is
observed to be closer to the channel axis. These results were
obtained theoretically by Hogg (1994) for general flow
configurations by a matched asymptotic expansion method.
The results for nonneutrally buoyant particles differ from
those for neutrally buoyant particles mainly due to the
presence of a significant Saffman’s lift in these situations. A
much stronger lead or lag velocity than in the neutrally
buoyant case can respectively displace the equilibrium
position towards the wall or towards the channel centreline
(Fig. 2). In the case where the pipe or channel is horizontal,
lateral migration is controlled by gravity, the previously
mentioned lateral forces being first order corrections (in the
Reynolds number). The cylindrical symmetry in pipe flow is
broken, and in a given section of the pipe there is a single
equilibrium position, at the bottom of the pipe if particles are
heavier than the fluid, to which all particles will eventually
tend to migrate.

Results showing the interaction of sedimentation with
shear-induced migration in the viscous regime have been
obtained in both experimental and simulational studies.
Leighton and Acrivos (1986) first described the viscous
resuspension of particles at vanishing Reynolds number.
Experiments using magnetic resonance imaging (MRI) by

Altobelli, Givler and Fukushima (1991) illustrated that a
region of dense solids can be supported by a less-
concentrated (and therefore less-dense) layer owing to the
interplay of sedimentation and shear-induced diffusion;
Zhang and Acrivos (1994) modelled this phenomenon using
the diffusive flux approach. This result was also seen in the
Stokesian dynamics simulation of Morris and Brady (1998),
where the phenomenon was modelled using the suspension
balance approach.  Viscous resuspension and particle
migration in the context of a hydraulic fracture is considered
in Miskin et al. (1996).
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