
HAL Id: hal-02017158
https://hal.science/hal-02017158v1

Submitted on 13 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compact Topological Map
Guillaume Damiand, Brandel Sylvain, J. Rossignac

To cite this version:
Guillaume Damiand, Brandel Sylvain, J. Rossignac. Compact Topological Map. [Research Report]
LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université Lumière Lyon
2/École Centrale de Lyon. 2017. �hal-02017158�

https://hal.science/hal-02017158v1
https://hal.archives-ouvertes.fr

Compact Topological Map

Guillaume Damiand1, Sylvain Brandel1, and Jarek Rossignac2

1 Univ Lyon, CNRS, LIRIS, UMR5205, F-69622 France
2 School of Interactive Computing, Georgia Institute of Technology, Atlanta, USA

Abstract. Several work have shown that a topological map is a good
tool to describe and handle a labeled image. Indeed, it allows describing
the full topology of the image: its subdivision in cells (vertices, edges,
faces) and all the incidence and adjacency relations between these cells,
contrary to simpler models like region adjacency graphs. Thanks to this
description, a topological map allows computing and updating several
features that can mix topological and geometrical information. One ma-
jor problem of topological map, that often limits its use, is the memory
size required by its representation. In this paper, we solve this drawback
by proposing two compact representations of topological maps that offer
different space/time efficiency compromises. These two representations
are based on the links between topological maps and linel maps, where
each edge corresponds to a linel, and on an implicit encoding of linel
darts. Our experiments show a major reduction on memory space com-
paring to previous encoding, and allows us to envisage to process big
images without memory constraint.

Keywords: 2D Image Representation; Multi-Label Image; Combinato-
rial Maps; Topological Maps.

1 Introduction

In order to describe the content of a 2D image, for example to analyze its content
or to track moving objects, image’s pixels are often grouped in homogeneous
area, for a given criterion, for example by segmenting the image. This grouping
of pixels can be described by a labeled image , an image where each pixel is
associated with a label (which can be a number, a name, a physical property. . .).
Then tools must be defined in order to represent a labeled image, to compute
features on the proposed representation and operations must be designed in
order to handle and update the representation. Moreover, memory and time
complexity of data-structures and algorithms must be, as usual, the best possible.

Several work have studied the question of data-structures and operations to
represent a labeled image. One first solution was the region adjacency graph
(RAG) [18] where each region (a maximal connected set of pixels having the
same label) of a labeled image is described by a vertex in the graph, and an
edge exists between two vertices if the corresponding two regions are adjacent.
Thanks to this graph, it is possible to test if two regions R1 and R2 are adjacent
in linear time regarding the number of regions adjacent to R1 (or R2). Moreover,

2 G. Damiand, S. Brandel, J. Rossignac

when two adjacent regions are merged, the graph can be updated accordingly
only by contracting the corresponding edge. Despite these advantages, a region
adjacency graph has several drawbacks: it does not describe multi-adjacency
relations (i.e. if two regions are adjacent several times), and it does not describe
the order of the adjacency relations (it is not possible to iterate through all the
regions adjacent to a given region in an ordered way).

Dual-graphs [14] solve these limitations. This is a pair of multi-graph. A
first one, G, is the extension of a RAG to represent multiple adjacency relations.
The second one is the dual of G (the graph having one vertex per face of G,
and one edge between two vertices when the two corresponding faces of G are
adjacent). Another solution is the ordered graph [12] that describes a graph
plus the order of edges around each vertex. Several other solutions have been
proposed based on combinatorial maps [17]. A 2D combinatorial map can be
seen as an oriented graph that represents also the order of edges around vertices
and thus can be used to describe and handle a labeled image [10, 3].

The main advantages of combinatorial maps are to be defined in any dimen-
sion and to have consistency contraints that guarantee the topological validity
of represented objects. Moreover many operations exist that allow to compute
features and to modify described objects [8]. For all of these reasons, many work
have used combinatorial maps in 2D and 3D image processing algorithms, defin-
ing topological maps for the specialization of combinatorial maps to represent
discrete images. Topological maps were used for example for image segmentation
[4, 2], polygonal approximation [7], objects detection [1] or to compute topolog-
ical invariants [9], sometimes by using multi-levels approaches [5, 11].

All these advantages and these work show that a topological map is a good
tool to handle a labeled image. However, one main drawback of topological maps,
that often limits its use, is the memory size required by its representation which
can be too big to deal with large images. The main contribution of this work
solves this drawback by proposing two compact representations of topological
maps that offer different space/time efficiency compromises. These two solutions
give two choices to users to favor memory or speed depending on their needs.

In this paper, we start to introduce preliminary notions in Sect. 2. In Sect. 3,
we define linel combinatorial map, called l -map, and show that it is possible
to retrieve all the information of a topological map thanks to its corresponding
l -map. This allows us to define an implicit representation of l -maps in Sect. 4
by using only pointels and local numbering. This implicit representation is then
used in Sect. 5 in order to define our two compact encodings of l -maps, which
give directly, thanks to the link with topological maps, a compact encoding of
topological maps. We present experiments in Sect. 6 in order to evaluate our
solutions and conclude and give some future works in Sect. 7.

2 Preliminary Notions

A pixel is an element of N2. Two pixels p = (x, y) and p′ = (x′, y′) are 4-
adjacent if |x − x′| + |y − y′| = 1. A 4-path between two pixels p and p′ is a

Compact Topological Map 3

x(0,0)

y

5

R
R

6
R

0

R

1

4

R
3

R
2

R

(a)

R
0

y
(0,0) x

3

14

17

18

19

20

13
11

12

6
7

16

4
5

8

10
9

15

1
2

(b)

R
1

R
4

R
3

R
0

R
2

R
6

R
5

(c)

Fig. 1. (a) A 2D labeled image. (b) The corresponding minimal 2D combinatorial map
and its interpixel embedding. (c) The region enclosure tree.

sequence of pixels (p = p1, . . . , pk = p′) such that each pair of consecutive pixels
are 4-adjacent. A set of pixels S is 4-connected if there is a 4-path between
any pair of pixels in S having all its pixels in S.

An image I is a finite set of pixels (the image domain), and a mapping bet-
ween I and a set of colors or gray levels (the pixel values). In a labeled image ,
each pixel p ∈ I is also associated with a label l(p), a value in a given finite set
L. A region in a labeled image is a maximal 4-connected set of pixels having
the same label. Regions form a partition of the image: two different regions are
disjointed, and the union of all the regions is the whole image. A specific region,
called infinite region , and denoted R0, is the complement of I. A region R1 is
enclosed in a region R2 if each 4-path between any pixel of R1 and any pixel
of R0 has at least one pixel in R2 (intuitively a path starting from R1 and going
to the exterior necessarily goes through R2). R1 is directly enclosed in R2 if
there is no region R3 6= R2 with R1 enclosed in R3 and R3 enclosed in R2.

Interpixel [13] topology considers the cellular decomposition of the eu-
clidean space R2: pixels are elements of dimension 2 (unit squares) of the de-
composition, linels are elements of dimension 1 (unit segments) between pixels,
and pointels are elements of dimension 0 (points) between linels.

In 2D, a combinatorial map, called 2-map, describes a subdivision of
the plane (or of a surface) in cells (vertices, edges and faces), and describes
all the incidence and adjacency relations between these cells. All the cells are
described by using a single basic element, called dart (drawn by oriented curves
in Fig. 1(b) and numbered). Two mappings are defined on these darts: β1(d)
gives, for each dart, the next dart in the same face than d; β2(d) gives, for each
dart, the other dart in the same edge but in the other face than d (for example,
in Fig. 1(b), β1(5) = 6 and β2(5) = 8). We denote by β0 = β−11 (note this is not
a third mapping but only a notation); allowing to retrieve the previous dart of
a given dart in the same face (for example, in Fig. 1(b), β0(5) = 4).

A 2-map can be used to describe a labeled image I through the notion of
topological map: a triplet TM = (C, T, P) (see [6] for exact definitions and an
example in Fig. 1). (1) C is a 2-map such that each face of C corresponds to
a boundary of a region of I. Furthermore C is minimal in its number of darts.
Thanks to this minimality, each edge of C corresponds to a maximal frontier
between two adjacent regions. (2) T is an enclosure tree of regions: each node of

4 G. Damiand, S. Brandel, J. Rossignac

(a)

4

2

1

3

(b)

Fig. 2. (a) The linel combinatorial map of the topological map shown in Fig. 1. (b) An
example of edge split to illustrate the links between l-darts and darts.

T corresponds to a region of I, and has a child for every region which is directly
enclosed in it; the root of T being R0. (3) P is an interpixel matrix describing the
geometry of C (its embedding). In this matrix, a linel is on iff it is between two
pixels that belong to two different regions; and a pointel is on iff it is incident to
more that two linels on (except if a sequence of adjacent linels is a loop without
any pointel on, one arbitrary pointel of the loop is switched on).

Links exist between the three elements of a topological map. For each dart
d, region(d) is the region of T that contains dart d; pointel(d) is the pointel of P
at the beginning of the oriented edge containing d (which is necessarily on); and
linel(d) is the linel of P which is the first linel of the oriented edge described by
d (which is also necessarily on). end-pointel(d) is the pointel at the end of the
oriented edge containing d (which is also necessarily on). Lastly, for each region
R, representative(R) is one dart of C belonging to the external boundary of R.

3 Linel Combinatorial Map

In this section, we introduce linel combinatorial maps, called l-maps, and
show that it is possible to retrieve all the information of a topological map
thanks to its corresponding l -map. In a second step, we show that l -maps can
be represented implicitly by using only linels and local numbering of darts.

Definition 1 (linel combinatorial map). Let TM = (C, T, P) be a 2D topo-
logical map, with C = (D,β1, β2). The linel combinatorial map of TM , called
l-map, and denoted by Cl = (Dl, β

l
1, β

l
2), is the 2-map obtained by splitting each

edge of C so that each edge of Cl corresponds to a linel.

We call l-darts the darts of a linel combinatorial map, keeping word darts
for the darts of the topological map. Since each l -dart d corresponds to a linel,
linel(d) is now the unique linel of the edge containing d, and thus we have
linel(d) =linel(βl

2(d)). An example of l -map is given in Fig. 2.
Let us consider D0 = {d ∈ Dl| pointel(d) is on in P} (the subset of l -darts

having their pointel on, l -darts with red dots in Fig. 2). There is a one to one
mapping between l -darts of D0 and darts of C (the minimal combinatorial map
of TM). Indeed, all darts in C are associated with pointels on; and insertion

Compact Topological Map 5

operation does not switch any new pointel on. In the following of this paper, we
use this one to one mapping to simplify our notations, denoting d both for an
original dart in C and for its corresponding l -dart in Cl.

The following relationships between βi mappings and βl
i mappings can be

given knowing that each edge in C is split in several unit edges in Cl, and that
all new l -darts have their pointel off : ∀d ∈ Do:

– β1(d) = βlk

1 ◦ βl
1(d), k ≥ 0 is the smallest integer such that βlk

1 ◦ βl
1(d) ∈ Do;

– β2(d) = βlk

0 ◦ βl
2(d), k ≥ 0 is the smallest integer such that βlk

0 ◦ βl
2(d) ∈ Do.

βlk

1 means apply βl
1 k times. Since β0 = β−11 , we have β0(d) = βl

0(d) ◦ βlk

0 .
These relationships are illustrated in the example given in Fig. 2(b). The

initial edge made of the two darts {1, 2} is split in eighteen l -darts (black oriented
segments in the figure). β1(1) = 3, the l -dart obtained from βl

1(1) and using βl
1

eight times. When following this path of l -darts, all pointels are off (because
the corresponding l -darts result of the split of the initial edge) except the last
pointel of l -dart 3. Things are similar for β0(4) = 2, the l -dart obtained starting
from βl

0(4) and using βl
0 eight times; and for β2(1) = 2, the l -dart obtained from

βl
2(1) and using βl

0 eight times.

Algorithm 1: Compute β1(d)

Input: d: a dart.
Output: β1(d).
d′ ← βl

1(d);
while pointel(d′) is off do

d′ ← βl
1(d′);

return d′

These relationships give us directly the
three algorithms that take a dart d as pa-
rameter and compute βi(d) by using only
l -darts, βl

i mappings, and the test if a
pointel is off . Algorithm 1 allows to com-
pute β1(d). Note that this algorithm takes
a dart d as input, and thus pointel(d) is
on by definition. Algorithms to compute
β0(d) and β2(d) are similar.

One major advantage of a linel combinatorial map, and its relationships with
a corresponding topological map, is the possibility to be considered at two different
layers. (1) We can use βi links and iterate through a l-map exactly as if it is
were a topological map. This is useful to compute easily “topological information”
as the number of times two regions are adjacent or to retrieve all the regions
adjacent to a given one. (2) We can use the βl

i links that allow to iterate through
the “geometry” of the topological map; for example to draw the contours of a
region by iterating through all its linels.

4 Implicit Representation of Linel Combinatorial Map

A l -dart d can be uniquely labeled by a pair (p, n), called descriptor , and
denoted by desc(d). p is the end-pointel of d, and n is a number between 0 and
3: 0 for the bottom l -dart around p, 1 for the right l -dart, 2 for the top l -dart
and 3 for the left l -dart (cf. Fig. 3(a)). Given desc(d), it is straightforward to
retrieve pointel(d) and linel(d), which are directly encoded in the descriptor.

Now we define the three algorithms that compute the βl
i mappings by using

only descriptors and test if a linel is on. Algorithm 2 allows to compute βl
2(d).

6 G. Damiand, S. Brandel, J. Rossignac

(0,1)

02

3

02

(1,0)(−1,0) 1

(0,−1)

3

1

(a)

(4,2)

1

2

3 4

5

6
714

11
10

9

8

12
13

(0,1)

(b)

Fig. 3. (a) Descriptors for l-darts. Pointel (0, 0), in black, can be the pointel of four
l-darts (black oriented segments), numbered locally from 0 to 3. The two l-darts to the
right of this pointel have descriptors ((0, 0), 1) for the black l-dart and ((1, 0), 3) for
the green l-dart. (b) Example to illustrate βl

i(d) computation. Pointels are drawn by
dots, red for pointels on, and blue for pointels off .

Algorithm 2: Compute βl
2(d).

Input: ((i, j), n): descriptor of d.
Output: descriptor of βl

2(d).
switch n do

case 0: j ← j + 1; n← 2;
case 1: i← i+ 1; n← 3;
case 2: j ← j − 1; n← 0;
case 3: i← i− 1; n← 1;

return ((i, j), n)

Algorithm 3: Compute βl
1(d).

Input: (p, n): descriptor of d.
Output: descriptor of βl

1(d).
repeat

n← (n+ 1) mod 4;
until linel(p, n) is on;
return β2(p, n)

This algorithm tests the four possible cases of l -darts, by using the local
l -dart number, and returns directly the descriptor of βl

2(d) depending on each
case. For example, if n = 0, βl

2(d) is the dart with local number 2 and having
pointel (i, j + 1) as end-pointel.

In the example given in Fig. 3(b), βl
2(1) = 14 with desc(1) = ((1, 1), 3) and

desc(14) = ((0, 1), 1) (case 3 in Algo. 2). Another example is βl
2(2) = 13 with

desc(2) = ((1, 0), 0) and desc(13) = ((1, 1), 2) (case 0 in Algo. 2).
Algorithm 3 allows to compute βl

1(d). We turn around p, the end-pointel of
d, in counter-clockwise order, until finding a linel on, l′, incident to p (same
principle is used in digital boundary tracking, for example in [15]). We turn
counter-clockwise because external contours are oriented clockwise, thus each
l -dart has its region to its right (this is also true for inner contours because
they are oriented counter-clockwise). βl

1(d) is the l -dart having l′ as linel and
pointel(d) as end-pointel: this is the l -dart β2(p, n). Note that by definition it
is not possible to have only one linel on around a pointel. Thus starting from a
l -dart (having hence its linel on l), we necessarily find a second linel on l′ 6= l.

If we look at Fig. 3(a), we can observe that given a black l -dart d as input,
βl
1(d) is necessarily a colored l -dart because d and its βl

1 have necessarily two dif-
ferent end-pointels. For example βl

1(3) is necessarily one l -dart among ((0, 1), 2),
((1, 0), 3), ((0,−1), 0) and ((−1, 0), 1), depending on the local configuration of
linels on around the black pointel.

Compact Topological Map 7

In the example given in Fig. 3(b), βl
1(1) = 2 with desc(1) = ((1, 1), 3) and

desc(2) = ((1, 0), 0). In the iteration around pointel (1, 1), the first linel on found,
after linel(1), is linel(13) (desc(13) = ((1, 1), 2)); then βl

2(13) = 2 is returned.
The algorithm to compute βl

0(d) is similar to the one that computes βl
1(d) by

reversing the orders of operations: we start to use β2(p, n), then iterate clockwise
around the end-pointel of d.

5 Compact Encoding of l-maps

In this section, we present two compact encodings of linel combinatorial maps.
Thanks to the relationships between l -maps and topological maps, the two en-
coding of l -maps give us directly two compact encodings of topological maps.
Note that in both cases, our encoding describes both the minimal combinato-
rial map C and the interpixel matrix P of the topological map within the same
data-structure, increasing even more the memory space reduction.

5.1 Matrix Representation

In this version, a l -map is encoded by a matrix M of three Booleans. M [i, j]
encodes the configuration around pointel p = (i, j) by three Booleans: the first
Boolean represents pointel p, the second Boolean the bottom linel of p and the
third Boolean the right pointel of p. The value of each Boolean is false if the
corresponding element is off , and true if it is on.

The main advantage of this encoding is to provide a direct access to each
pointel/linel. Testing if pointel (i, j) is on is achieved directly by testing the first
bit of M [i][j]. To test if linel ((i, j), n) is on, three cases must be considered.
(1) If n = 0 or n = 1, testing if linel ((i, j), n) is on is directly the value of bit
number n + 1 of M [i][j]. (2) If n = 2, testing if linel ((i, j), 2) is on is done by
testing linel ((i, j − 1), 0). Indeed the top linel of pointel (i, j) is the same than
the bottom linel of pointel (i, j − 1); but is only represented in pointel (i, j − 1).
(3) Similarly, if n = 3, testing if linel ((i, j), 3) is on is done by testing linel
((i− 1, j), 1).

Another main advantage of this encoding is to allow simple modification op-
erations. Indeed, it is enough to switch on/off some pointels/linels in order to
modify the underlying topological map. Similarly, extraction algorithm becomes
much simpler since it only consists to iterate through a labeled image and to
switch on some pointels and linels based on local properties.

The main drawback of this representation is to “lose” some memory space to
represent empty cells. The second representation proposed in this paper solves
this drawback by do not representing at all the empty cells, but this is to the
detriment of operations complexity.

5.2 Stacked Row Representation

The goal of this second version is to not store anything for empty cells. To do
so, a l -map is now encoded by an array R of bitset. R[j] is the concatenation

8 G. Damiand, S. Brandel, J. Rossignac

of the encoding of all the active pointels of row number j. A pointel is active
either if it is on, or if it is incident to one bottom, right or top linel on. Each
active pointel is encoded by four Booleans: the first Boolean represents pointel
p, the second Boolean the bottom linel of p, the third Boolean the right linel of
p and the fourth Boolean the top linel of p. The value of each Boolean is false if
the corresponding element is off , and true if it is on.

With this solution, each row is now encoded by a variable length representa-
tion which has 4nj bits, nj being the number of active pointels in row number j.
For this reason, it is no more possible to access directly, like for the previous so-
lution, to a given pointel p = (i, j). We are going to explain now how to retrieve
the neighbor pointels of p when we use this compact representation.

First, each l -dart descriptor ((i, j), n) is replaced by a descriptor, ((a, j), n),
where a is the index of pointel p = (i, j) among the list of active pointels in

the jth row (a = 0 for the first active pointel whatever its position, a = 1
for the second one, . . .). This index allows to directly retrieve the four bits
associated with pointel p which start at position 4a in R[j]. This index allows
also to retrieve directly the previous and the next pointel of p in row j which
are pointels (a− 1, j) and (a+ 1, j). Note that these two formula are only valid
if pointel p is active and its previous or next pointel is also active, but these
formula will only be used in these cases.

Things are more complex to find pointels above and below p. Indeed, the
number of active pointels in two consecutive rows are not necessarily the same,
and thus it is not possible to use index a of row j to deduce index a′ in row j−1
or j + 1. One solution is to encode, after each active pointel, the index of the
pointels above and bellow it; but in this case the memory reduction compared to
the matrix based solution becomes very small and is thus not really interesting.

Our solution is to recompute these indices instead of storing them. Given an
active pointel p = (a, j), the following principle is used to retrieve p′ = (a′, j−1),
the active pointel above p. (1) We count the number n1 of top linels on, before or
equal to p in row j. (2) We iterate through active pointels of row j − 1, starting
from a′ = 0, incrementing a′, and counting the number n2 of bottom linels on.
When n1 = n2, the current pointel p′ = (a′, j − 1) is the active pointel above
pointel p. Same principle is applied to retrieve the pointel below p by counting
bottom linels on in row j, and top linels on in row j + 1.

Note that this encoding has some redundancy, because each vertical linel
is stored twice: once as vertical linel above a given pointel (i, j); and once as
vertical linel below pointel (i, j − 1). But this redundancy is necessary in order
to retrieve up and down neighbors of a given pointel.

The main advantage of this solution is that no information is stored for non
active pointels. Thus, the memory space is very compact and depends only on
the size of the region boundaries, and not on the global size of the image. The
main drawback is that the complexity to access to up and down neighbors pointel
of a given pointel is no constant anymore but linear in number of active pointels.

Testing if pointel (a, j) is on is achieved directly by testing the bit at position
4a in R[j]. Testing linels ((a, j), n) is also done directly when n = 0, 1 or 2: the

Compact Topological Map 9

Fig. 4. Examples of 2D segmented images. (Left) arbogreens05. (Right) football05.

value of the linel is the bit at position 4a + n + 1 in R[j]. For n = 3, testing if
linel ((a, j), 3) is on is done by testing linel ((a− 1, j), 1).

5.3 Links Between Darts and Regions

The two previous sections have shown how to retreive βl
i, pointel and linel of

any l -dart by using only dart descriptors and tests if pointels and linels are on
or off . In order to represent all the information of a topological map, it misses
us to retrieve region(d) that gives the region that contains dart d.

To do so, an associative array, A, is added to our compact representation,
that associates region identifiers to dart descriptors (e.g. a pointer or an
index depending on how regions are stored). For each face of the l -map Cl, the
minimal dart of the face is stored in A (minimal by using a lexicographic order
on descriptors). To retrieve the region of a dart d, given by its descriptor, we
iterate through all the darts of its face, using β1, until going back to d, and
keeping the minimal dart, dmin, encountered during this walk. The region of d
is directly obtained by A[dmin].

This solution has the main advantage to not require a big memory space
since there is only one entry in A for each face of Cl. Its main drawback is the
complexity of the operation to retrieve region(d) which is no more in constant
time but linear in number of l -darts of the face containing d, plus the complexity
to retrieve dmin in A. This complexity is linear in number of faces of Cl, #f ,
when A is represented by an array, is in log(#f) when A is sorted, and is in
average constant time if A is represented by a hash map.

6 Experiments

We have implemented our two compact representations of l -maps and compared
memory spaces and computation times of our two solution (referenced in the
following as compact storage with matrix or stacked row representation) with
a classical implementation of 2D topological maps based on darts and pointers
(referenced in the following as classical storage). We have used 224 images from
[16] (arborgreens, cherries, football, greenlake and swissmountains classes) after
a segmentation pre-processing. All these images have same resolution 756×504
(see two images in Fig. 4). We performed all benchmarks on the same computer,
an Intel core-i7 4790 4-cores 3.6GHz with 32Go RAM.

10 G. Damiand, S. Brandel, J. Rossignac

We have first compared the memory space used by the three versions (see
table 1). On average for all input images, the memory space used for regions tree
is about the same for the three versions. In classical storage, each representative
dart is stored as a pointer (8 bytes in 64bits architectures), while in compact
storage, each dart is stored as a descriptor (2 integers and a character, that is 9
bytes), explaining the small difference between both implementations.

Storage classical
compact

matrix representation stacked row representation

Map storage 680,161 195,288 112,401

Region tree storage 192,409 202,536 202,536

Table 1. Mean of used memory space (Bytes) with 224 images.

The memory space used for the 2-map in compact storage with a matrix
is about 3 times smaller than in classical storage, and compact storage with
stacked row is about 2 times smaller than the one using a matrix. These dif-
ferences are more important in particular cases. For example, if the number of
regions is small compared to the image size, the map size using stacked row rep-
resentation can be 20 times smaller than one using matrix representation. More
precisely, since we store one pointel for each pixel in the matrix and we store only
active pointels in the stacked row, the memory space reduction between both
representations depends of the ratio between active pointels and all pointels.
Similarly, the performances in terms of memory space of our three implementa-
tions strongly depend of the image contents: the memory space reduction of our
compact representations is better for topological map having many small darts
than for images having large regions represented by only few darts.

Second, we have compared computation times (see table 2). Accesses to all
elements of a topological map are in constant time for classical storage. For
matrix representation, region(d) is linear in number of dart per face, and the
complexity of βi mapping is linear in number of linels of the edge. For stacked
row representation, the complexity of βi mapping depends also on the number
of active pointel of traversed rows. This explains why times are generally faster
with classical storage than with our compact storages.

Storage classical
compact

matrix representation stacked row representation

Map extraction 91.6 10.2 66.7

Region tree building 0.5 38.9 637.1

All regions traversal 2.1 1.7 20.3

Segmentation 0.3 3.9 40.0

Table 2. Mean of computation time (ms) with 224 images.

Compact Topological Map 11

We have analyzed the computation time for building topological maps from
labeled images. This step is much faster with compact storage than with clas-
sical storage because compact storage computes only interpixel matrix, while
classical storage computes additionally the 2-map. However, computation of the
enclosure tree is faster with the classical representation due to the use of many
βi operations.

Then, we have analyzed the computation time of two operations that iterate
through a topological map TM . First we iterate through all regions of TM ,
and for each region R, we iterate through all its boundaries (as would do a
method to visualize TM). In this case, the matrix representation is the fastest
method because we directly iterate through l -darts, while with the classical
representation we need to iterate through TM then to each linel of each dart
(but the difference is very small). As planned, the stacked row representation is
slower due to the additional time required by the βi operations.

The second operation analyzed consists in iterating through all regions of
TM , and for each region R, through each dart in its boundaries. For each dart
d, we test the color difference between region(d) and region(β2(d)) and count as
many differences are smaller than a given threshold (this is the first step of a re-
gion growing segmentation). Here, the method using the classical representation
is about 10 times faster than method the method using the matrix representa-
tion, itself 10 times faster than the method using the stacked row representation.

Our two compact representations give very good results in term or memory
space occupation. Of course this is to the detriment of the complexity of opera-
tions. But even with the stacked row representation, our results show that these
complexities are still good enough to allow to process big images. And moreover,
some operations are even faster than with the classical representation.

7 Conclusion

In this paper, we have proposed two compact representations of topological maps,
solving the main drawback of these models which was the big memory space
required to store them. These compact representations are based on the notion
of linel combinatorial map and on relationships between darts and βi links of the
topological map, and l -darts and βl

i links of the l -map. The first representation,
based on an interpixel matrix, allows direct access to each interpixel element and
simplifies the modification of the topological map. The second representation
is very compact, avoiding to represent empty elements, but implies a bigger
complexity of operations. Users can choose between these two representations
depending on their priorities.

As future work, we plan to integrate modification algorithms in both pro-
posed representations, like split and merge methods. It could be interesting to
study the impact of the second representation on the computation time of these
methods. Some algorithms should perhaps be modified in order to improve their
complexities in this specific case. We plan to study other representations more
compact than the matrix while trying to decrease the complexity of operations.

12 G. Damiand, S. Brandel, J. Rossignac

We also would like to decrease the memory space used by the region tree. Lastly,
we want to extend these compact representations in 3D.

References

1. Esther Antúnez, Rebeca Marfil, Juan Pedro Bandera Rubio, and Antonio Bandera.
Part-based object detection into a hierarchy of image segmentations combining
color and topology. Pattern Recognition Letters, 34(7):744–753, 2013.

2. J.P. Braquelaire, P. Desbarats, J.P. Domenger, and C.A. Wüthrich. A topological
structuring for aggregates of 3D discrete objects. In Proc. of GbRPR, pages 193–
202, Austria, May 1999.

3. L. Brun, J.-P. Domenger, and J.-P. Braquelaire. Discrete maps: a framework for
region segmentation algorithms. In Proc. of GbRPR, Lyon, Apr. 1997. IAPR-TC15.
published in Advances in Computing (Springer).

4. L. Brun and J.P. Domenger. A new split and merge algorithm with topological
maps and inter-pixel boundaries. In Proc. of WSCG, pages 21–30, Feb. 1997.

5. L. Brun and W.G. Kropatsch. Contraction kernels and combinatorial maps. Pat-
tern Recognition Letters, 24(8):1051–1057, 2003.

6. G. Damiand, Y. Bertrand, and C. Fiorio. Topological model for two-dimensional
image representation: Definition and optimal extraction algorithm. Computer Vi-
sion and Image Understanding, 93(2):111–154, Feb. 2004.

7. G. Damiand and D. Coeurjolly. A generic and parallel algorithm for 2D digital
curve polygonal approximation. Journal of Real-Time Image Processing, 6(3):145–
157, Sep. 2011.

8. G Damiand and P. Lienhardt. Combinatorial Maps: Efficient Data Structures for
Computer Graphics and Image Processing. A K Peters/CRC Press, Sep. 2014.

9. G. Damiand, S. Peltier, and L. Fuchs. Computing homology for surfaces with gen-
eralized maps: Application to 3D images. In Proc. of ISVC, volume 4292 of LNCS,
pages 235–244, Lake Tahoe, Nevada, USA, Nov. 2006. Springer Berlin/Heidelberg.

10. C. Fiorio. A topologically consistent representation for image analysis: the frontiers
topological graph. In Proc. of DGCI, number 1176 in LNCS, pages 151–162, Lyon,
France, Nov. 1996.

11. R. Goffe, G. Damiand, and L. Brun. A causal extraction scheme in top-down
pyramids for large images segmentation. In Proc. of SSPR, volume 6218 of LNCS,
pages 264–274, Cesme, Izmir, Turkey, Aug. 2010. Springer Berlin/Heidelberg.

12. X. Jiang and H. Bunke. Marked subgraph isomorphism of ordered graphs. In Proc.
of ICAPR, volume 1451 of LNCS, pages 122–131, 1998.

13. V.A. Kovalevsky. Finite topology as applied to image analysis. Computer Vision,
Graphics, and Image Processing, 46:141–161, 1989.

14. W.G. Kropatsch and H. Macho. Finding the structure of connected components
using dual irregular pyramids. In Proc. of DGCI, pages 147–158, Sep. 1995.

15. J.-O. Lachaud. Coding cells of digital spaces: a framwork to write generic digital
topology algorithms. In Proc. of IWCIA, volume 12 of ENDM, Palerme, Italy,
2003. Elsevier.

16. Y. Li and L. G. Shapiro. Object and concept recognition for content-based image
retrieval. http://www.cs.washington.edu/research/imagedatabase/.

17. P. Lienhardt. Topological models for boundary representation: a comparison with
n-dimensional generalized maps. Computer Aided Design, 23(1):59–82, 1991.

18. A. Rosenfeld. Adjacency in digital pictures. Information and Control, 26-1:24–33,
1974.

