
HAL Id: hal-02017155
https://hal.science/hal-02017155v1

Submitted on 27 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SaGe: Web Preemption for Public SPARQL Query
Services

Thomas Minier, Hala Skaf-Molli, Pascal Molli

To cite this version:
Thomas Minier, Hala Skaf-Molli, Pascal Molli. SaGe: Web Preemption for Public SPARQL Query
Services. The World Wide Web Conference 2019 (WWW’19), May 2019, San Francisco, United States.
�10.1145/3308558.3313652�. �hal-02017155�

https://hal.science/hal-02017155v1
https://hal.archives-ouvertes.fr

SaGe: Web Preemption for Public SPARQLQuery Services
Thomas Minier

LS2N, University of Nantes
Nantes, France

thomas.minier@univ-nantes.fr

Hala Skaf-Molli
LS2N, University of Nantes

Nantes, France
hala.skaf@univ-nantes.fr

Pascal Molli
LS2N, University of Nantes

Nantes, France
pascal.molli@univ-nantes.fr

ABSTRACT

To provide stable and responsive public SPARQL query services,
data providers enforce quotas on server usage. Queries which ex-
ceed these quotas are interrupted and deliver partial results. Such
interruption is not an issue if it is possible to resume queries exe-
cution afterward. Unfortunately, there is no preemption model for
the Web that allows for suspending and resuming SPARQL queries.
In this paper, we propose SaGe: a SPARQL query engine based on
Web preemption. SaGe allows SPARQL queries to be suspended
by the Web server after a fixed time quantum and resumed upon
client request. Web preemption is tractable only if its cost in time
is negligible compared to the time quantum. The challenge is to
support the full SPARQL query language while keeping the cost
of preemption negligible. Experimental results demonstrate that
SaGe outperforms existing SPARQL query processing approaches
by several orders of magnitude in term of the average total query
execution time and the time for first results.

ACM Reference Format:

Thomas Minier, Hala Skaf-Molli, and Pascal Molli. 2019. SaGe: Web Preemp-
tion for Public SPARQLQuery Services. In Proceedings of the 2019WorldWide
Web Conference (WWW’19), May 13–17, 2019, San Francisco, CA, USA. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3308558.3313652

1 INTRODUCTION

Context and motivation: Following the Linked Open Data prin-
ciples (LOD), data providers published billions of RDF triples [5, 24].
However, providing a public service that allows anyone to execute
any SPARQL query at any time is still an open issue. As public
SPARQL query services are exposed to an unpredictable load of ar-
bitrary SPARQL queries, the challenge is to ensure that the service
remains available despite variation in terms of the arrival rate of
queries and resources required to process queries.

To overcome this problem, most public LOD providers enforce a
fair use service policy based on quotas [3]. According to DBpedia
administrators:“A Fair Use Policy is in place in order to provide a
stable and responsive endpoint for the community.”1 The public
DBpedia SPARQL endpoint 2 Fair Use Policy prevents the execution
of SPARQL longer than 120 seconds or that return more than 10000
results, with a limit of 50 concurrent connections and 100 requests

1http://wiki.dbpedia.org/public-sparql-endpoint
2http://dbpedia.org/sparql

WWW ’19, May 13–17, 2019, San Francisco, CA, USA
© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of the
2019 World Wide Web Conference (WWW’19), May 13–17, 2019, San Francisco, CA, USA,
https://doi.org/10.1145/3308558.3313652.

per second per IP address. Quotas aim to share fairly server re-
sources among Web clients. Quotas on communications limit the
arrival rate of queries per IP. Quotas on space prevent one query to
consume all the memory of the server. Quotas on time aim to avoid
the convoy phenomenon [6], i.e., a long-running query will slow
down a short-running one, in analogy with a truck on a single-lane
road that creates a convoy of cars. The main drawback of quotas is
that interrupted queries can only deliver partial results, as they cannot
be resumed. This is a serious limitation for Linked Data consumers,
that want to execute long-running queries [22].

Related works: Existing approaches address this issue by de-
composing SPARQL queries into subqueries that can be executed
under the quotas and produce complete results [4]. Finding such
decomposition is hard in the general case, as quotas can be different
from one server to another, both in terms of values and nature [4].
The Linked Data Fragments (LDF) approach [17, 27] tackles this
issue by restricting the SPARQL operators supported by the server.
For example, in the Triple Pattern Fragments (TPF) approach [27], a
TPF server only evaluates triple patterns. However, LDF approaches
generate a large number of subqueries and substantial data transfer.

Approach and Contributions: We believe that the issue re-
lated to time quotas is not interrupting a query, but the impossi-
bility for the client to resume the query execution afterwards. In
this paper, we propose SaGe, a SPARQL query engine based on
Web preemption. Web preemption is the capacity of a Web server
to suspend a running query after a time quantum with the inten-
tion to resume it later. When suspended, the state Si of the query
is returned to the Web client. Then, the client can resume query
execution by sending Si back to the Web server.

Web preemption adds an overhead for the Web server to sus-
pend the running query and resume the next waiting query. Conse-
quently, the main scientific challenge here is to keep this overhead
marginal whatever the running queries, to ensure good query exe-
cution performance. The contributions of this paper are as follows:
• We define and formalize a Web preemption model that allows

to suspend and resume SPARQL queries.
• We define a set of preemptable query operators for which

we bound the complexity of suspending and resuming of these
operation, both in time and space. This allows to build a preemptive
Web server that supports a large fragment of the SPARQL query
language.
• We propose SaGe, a SPARQL query engine, composed of a

preemptiveWeb server and a smartWeb client that allows executing
full SPARQL queries3.
• We compare the performance of the SaGe engine with existing

approaches used for hosting public SPARQL services. Experimental
results demonstrate that SaGe outperforms existing approaches

3The SaGe software and a demonstration are available at http://sage.univ-nantes.fr

https://doi.org/10.1145/3308558.3313652
http://wiki.dbpedia.org/public-sparql-endpoint
http://dbpedia.org/sparql
https://doi.org/10.1145/3308558.3313652
http://sage.univ-nantes.fr

PREFIX dbo : < h t tp : / / dbped ia . org / on to l ogy / >
PREFIX r d f s : < h t tp : / /www. w3 . org / 2 0 0 0 / 0 1 / rd f−schema # >
SELECT ? a c t o r ?name ? b i r t h P l a c e WHERE {

? a c t o r a dbo : Ac to r ; r d f s : l a b e l ?name ; dbo : b i r t h P l a c e ? c i t y .
? c i t y a dbo : C i ty ; r d f s : l a b e l ? b i r t h P l a c e .

}

Figure 1: SPARQL Query Q1: finds all actors’ birth cities.

by several orders of magnitude in term of the average total query
execution time and the time for first results.

This paper is organized as follows. Section 2 summarizes related
works. Section 3 defines the Web preemption execution model and
details the SaGe server and the SaGe client. Section 4 presents
our experimental results. Finally, conclusions and future work are
outlined in Section 5.

2 RELATEDWORKS

SPARQL endpoints. SPARQL endpoints follow the SPARQL
protocol 4, which “describes a means for conveying SPARQL queries
and updates to a SPARQL processing service and returning the re-
sults via HTTP to the entity that requested them”. Without quotas,
SPARQL endpoints execute queries using a First-Come First-Served
(FCFS) execution policy [10]. Thus, by design, they can suffer from
convoy effect [6]: one long-running query occupies the server re-
sources and prevents other queries from executing, leading to long
waiting time and degraded average completion time for queries.

To prevent convoy effect and ensure a fair sharing of resources
among end-users, most SPARQL endpoints configure quotas on
their servers. They mainly restrict the arrival rate per IP address
and limit the execution time of queries. Restricting the arrival rate
allows end-users to retry later, however, limiting the execution
time leads some queries to deliver only partial results. To illustrate,
consider the SPARQL query Q1 of Figure 1. Without any quota, the
total number of results of Q1 is 35 215, however, when executed
against the DBpedia SPARQL endpoint, we found only 10 000 results
out of 35 215 5.

Delivering partial results is a serious limitation for a public
SPARQL service. In SaGe, we deliver complete results whatever the
query. In some way, quotas interrupt queries without giving the
possibility to resume their execution. SaGe also interrupts queries,
but allows data consumers to resume their execution later on.

Decomposing queries and restricting server interfaces. Eval-
uation strategies [4] have been studied for federated SPARQL queries
evaluated under quotas. Queries are decomposed into a set of sub-
queries that can be fully executed under quotas. The main draw-
backs of these strategies are: (i) They need to know which quotas
are configured. Knowing all quotas that a data provider can im-
plement is not always possible. (ii) They can only be applied to a
specific class of SPARQL queries, strongly bounded SPARQL queries,
to ensure complete and correct evaluation results.

The Linked Data Fragments (LDF) [17, 27] restrict the server
interface to a fragment of the SPARQL algebra, to reduce the com-
plexity of queries evaluated by the server. LDF servers are no more

4https://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/
5All results were obtained on DBpedia version 2016-04.

compliant with the W3C SPARQL protocol, and SPARQL query pro-
cessing is distributed between smart clients and LDF servers. Hartig
et al. [17] formalized this approach using Linked Data Fragment ma-
chines (LDFMs). The Triple Pattern Fragments (TPF) approach [27]
is one implementation of LDF where the server only evaluates pag-
inated triple pattern queries. As paginated triple pattern queries can
be evaluated in bounded time [18], the server does not suffer from
the convoy effect. However, as joins are performed on the client,
the intensive transfer of intermediate results leads to poor SPARQL
query execution performance. For example, the evaluation of the
query Q1, of Figure 1, using the TPF approach generates 507156
subqueries and transfers 2Gb of intermediate results in more than
2 hours. The Bindings-Restricted Triple Pattern Fragments (BrTPF)
approach [15] improves the TPF approach by using the bind-join
algorithm [14] to reduce transferred data but joins still executed by
the client. In this paper, we explore how Web preemption allows
the server to execute a larger fragment of the SPARQL algebra,
including joins, without generating convoy effects. Processing joins
on server side allow to drastically reduce transferred data between
client and server and improve significantly performance. For exam-
ple, SaGe executes the query Q1 of Figure 1 in less than 53s, with
553 requests and 2.1Mb transferred.

Preemption and Web preemption. FCFS scheduling policies
and the convoy effect [6] have been heavily studied in operating
systems. In a system where the duration of tasks vary, a long-
running task can block all other tasks, deteriorating the average
completion time for all tasks. The Round-Robin (RR) algorithm [19]
provides a fair allocation of CPU between tasks, avoids convoy
effect, reduces the waiting time and provides good responsiveness.
RR runs a task for a given time quantum, then suspends it and
switches to the next task. It repeatedly does so until all tasks are
finished. The value of this time quantum is critical for performance:
when too high, RR behaves like FCFS with the same issues, and
when its too low, the overhead of context switching dominates
the overall performance. The action of suspending a task with the
intention of resuming it later is called preemption. In public Web
servers, preemption is already provided by the operating systems,
but only between running tasks, excluding those waiting in the
server’s queue. If we want to build a fully preemptive Web server,
we need to consider the queries sent to the server as the tasks and
the Web server as the resource that tasks competed to get access
to. In this paper, we explore how preemption can be defined at the
Web level to execute SPARQL queries.

3 WEB PREEMPTION APPROACH

We defineWeb preemption as the capacity of a Web server to sus-
pend a running query after a fixed quantum of time and resume the
next waiting query. When suspended, partial results and the state of
the suspended query Si are returned to the Web client 6. The client
can resume query execution by sending Si back to the Web server.
Compared to a First-Come First-Served (FCFS) scheduling policy,
Web preemption provides a fair allocation of Web server resources
across queries, a better average query completion time per query and
a better time for first results [2]. To illustrate, consider three SPARQL

6Si can be returned to the client or saved server-side and returned by reference.

https://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/

FCFS

|
0

|
60
|
65
|
70

Q1 Q2 Q3

Web preemption

|
0

|
30
|
33
|
38
|
43
|
46

|
76

Q1 Q2 Q3 Q1

Figure 2: First-Come First-Served (FCFS) policy compared to

Web Preemption (time quantum of 30s and overhead of 3s).

New
querystart

Waiting
in queue

Running

Suspended

Saved Done

Preemptive Web Server

Smart Web Client

Q sent
to server

Worker
available

Execution
completed

Quantum
exhausted

Server
sends Si

Client sends Si

Figure 3: Possible states of a query execution in a preemptive

Web Server.

queries Q1,Q2, and Q3 submitted concurrently by three different
Web clients. Q1,Q2,Q3 execution times are respectively 60s, 5s and
5s. Figure 2 presents a possible execution of these queries with a
FCFS policy on the first line. In this case, the throughput of FCFS
is 3

70 = 0.042 queries per second, the average completion time per
query is 60+65+70

3 = 65s and the average time for first results is also
65s. The second line describes the execution of Q1 −Q3 using Web
preemption, with a time quantum of 30s. We consider a preemption
overhead of 3s (10% of the quantum). In this case, the throughput is
3
76 = 0.039 query per second but the average completion time per
query is 76+38+43

3 = 52.3s and the average time for first results is ap-
proximately 30+38+43

3 = 37s . If the quantum is set to 60s, then Web
preemption is equivalent to FCFS. If the quantum is too low, then
the throughput and the average completion time are deteriorated.

Consequently, the challenges with Web preemption are to bound
the preemption overhead in time and space and determine the time
quantum to amortize the overhead.

3.1 Web Preemption Model

We consider a preemptive Web server, hosting RDF datasets, and a
smart Web client, that evaluates SPARQL queries using the server.
For the sake of simplicity, we only consider read-only queries 7 in
this paper. The server has a pool of server workers parameterized
with a fixed time quantum. Workers are in charge of queries execu-
tion. The server has also a query queue to store incoming queries

7Preemption and concurrent updates raise issues on correctness of results.

when all workers are busy. We consider an infinite population of
clients, a finite server queue and a finite number of Web workers.

The preemptive Web server suspends and resumes queries after
the time quantum. A running query Qi is represented by its physi-
cal query execution plan, denoted PQi . Suspending the execution
of Qi is an operation applied on PQi that produces a saved state
Si ; Suspend(PQi) = Si . Resuming the execution of a query Qi is
the inverse operation, it takes Si as parameter and restores the
physical query execution plan in its suspended state. Therefore, the
preemption is correct if Resume(Suspend(PQi)) = PQi .

Figure 3 presents possible states of a query. The transitions are
executed either by the Web server or by the client.

The Web server accepts, in its waiting queue, Web requests
containing either SPARQL queries Qi , or suspended queries Si . If a
worker is available, it picks a query in the waiting queue. For Qi ,
the worker produces a physical query execution plan PQi using the
optimize-then-execute [12] paradigm and starts its execution for the
time quantum. For Si , the server resumes the execution of Qi . The
time to produce or resume the physical query execution plan for a
query is not deducted from the quantum.

If a query terminates before the time quantum, then results are
returned to the Web client. If the time quantum is exhausted and
the query is still running, then the Suspend operation is triggered,
producing a state Si which is returned to the Web client with par-
tial results. The time to suspend the query is not deducted from
the quantum. Finally, the Web client is free to continue the query
execution by sending Si back to the Web server.

The main source of overhead in this model is the time and space
complexity of the Suspend and Resume operations, i.e., time to stop
and save the running query followed by the time to resume the next
waiting query. Our objective is to bound these complexities such
that they depend only on the query complexity, i.e., the number of
operations in the query plan. Consequently, the problem is to deter-
mine which physical query plans PQi have a preemption overhead
bounded in O(|Q |), where |Q | denotes the number of operators in
the expression tree of PQi .

3.2 Suspending and Resuming Physical Query

Execution Plans

The Suspend operation is applied to a running physical query ex-
ecution plan PQi . It is obtained from the logical query execution
plan ofQi by selecting physical operators that implement operators
in the logical plan [11]. A running PQi can be represented as an
expression tree of physical operators where each physical operator
has a state, i.e., all internal data structures allocated by the operator.
Suspending a plan PQi requires to traverse the expression tree of
the plan and save the state of each physical operator. To illustrate,
consider the execution of query Q2 in Figure 4a. The state of PQ2
can be saved as described in Figure 4b: the state of the Scan oper-
ator is represented by the id of the last triple read ti , the state of
the Index Loop Join operator is represented by mappings pulled
from the previous operator and the state of the inner scan of tp1.
Suspending and resuming a physical query execution plan raise
several major issues.

Suspending physical operators in constant time. Bounding
the time complexity of Suspend(PQi) to O(|Qi |) requires to save

PREFIX schema : < h t tp : / / schema . org / c o n t e n t S i z e / >
PREFIX gr : < h t tp : / / p u r l . o rg / g o o d r e l a t i o n s / >
SELECT DISTINCT ? vo ? v1 WHERE {
? v0 gr : i n c l u d e s ? v1 . # t p 1
? v1 schema : c o n t e n t S i z e ? v3 . # t p 2

}

(a) SPARQL query Q2, from the Waterloo SPARQL Diversity Test

suite benchmark [1]

A SaGe page
Mappings Saved state

π?v0, ?v1
µc = { ?v0 7→ wm:Offer81505,

?v1 7→ wm:Product11,
?v3 7→ "4355" }

Index Loop join
µc = { ?v1 7→ wm:Product12, ?v3 7→ "4356" }

Index Scan ⟦tp2⟧D
ti = 224

so
ur
ce

Index Scan ⟦µc (tp1)⟧D
ti = 2

inner

?v0 7→ wm:Offer79386
?v1 7→ wm:Product10014

?v0 7→ wm:Offer81506
?v1 7→ wm:Product10066

µ1

µ2

...

(b) One page returned by the SaGe server during Q2 evaluation.

Figure 4: A tree representation of a page returned by the

SaGe server when executing SPARQL query Q2 with the

saved plan passed by value.

the state of all physical operators in constant time. However, some
physical operators need to materialize data, i.e., build collections
of mappings collected from other operators to perform their ac-
tions. We call these operators full-mappings operators, in opposi-
tion tomapping-at-a-time operators that only need to consume one
mapping at a time from child operators8. Saving the state of full-
mappings operators cannot be done in constant time. To overcome
this problem, we distribute operators between a SaGe server and a
SaGe smart client as follows:
• Mapping-at-a-time operators are suitable for Web preemp-
tion, so they are supported by the SaGe server. These opera-
tors are a subset of CoreSPARQL [17], composed of Triple
Patterns, AND, UNION, FILTER and SELECT. We explain
how to implement these operators server-side in Section 3.3.
• Full-mappings operators do not support Web preemption, so
they are implemented in the SaGe smart client. These opera-
tors are: OPTIONAL, SERVICE, ORDER BY, GROUP BY, DIS-
TINCT, MINUS, FILTER EXIST and aggregations (COUNT,
AVG, SUM, MIN, MAX). We explain how to implement these
operators in the smart client in Section 3.4.

As proposed in LDF [17, 27], the collaboration of the SaGe smart
client and the SaGe server allows to support full SPARQL queries.

8This is a clear reference to full-relation and tuple-at-a-time operators in database
systems [11][Chapter 15.2]

Algorithm 1: Implementation of the Suspend and Resume
functions following the iterator model
Require: I: pipeline of iterators, S : serialized pipeline state

(as generated by Suspend)
1 Function Suspend(I):
2 let root←first iterator in I
3 Call root.Stop()
4 return root.Save()

5 Function Resume(I, S):
6 let root←first iterator in I
7 Call root.Load(S)
8 return I

Communication between operators. Bounding the time com-
plexity of Suspend(PQi) to O(|Qi |) requires to avoid materializa-
tion of intermediate results when physical operators communicate.
This only concerns operators of the SaGe server. To solve this is-
sue, we follow the iterator model [12, 13]. In this model, operators
are connected in a pipeline, where they are chained together in a
pull-fashion, such as one iterator pulls solution mappings from its
predecessor(s) to produce results.

Saving consistent states of the physical query plan. Some
physical query operators have critical sections and cannot be inter-
rupted until exiting those sections. Saving the physical plan in an
inconsistent state leads to incorrect preemption. In other words, we
could have Resume(Suspend(PQi)) , PQi . To solve this issue, we
have to detail, for each physical operator supported by the SaGe
server, where are located critical sections and estimate if the waiting
time for exiting the critical section is acceptable.

Resuming physical operators in constant time. Reading a
saved plan as the one presented in Figure 4b should be in O(|Q |).
The Index Scan ⟦tp2⟧D has been suspended after reading the triple
with id = 224. Resuming the scan requires that the access to the
triple with id ≥ 224 is in constant time. This can be achieved with
adequate indexes. To solve this issue, we have to define clearly for
each physical operator what are the requirements on backend to
bound the overhead of resuming.

3.3 The SaGe Preemptable Server

The SaGe server supports Triple Patterns, AND, UNION, FILTER
and SELECT operators. The logical and physical query plans are
builds thanks to the optimize-then-execute [12] paradigm. The main
issues here are the cost of the Suspend and Resume operations on
the physical plan and how to interrupt physical operators.

To support preemption, we extend classical iterators to preempt-
able iterators, formalized inDefinition 3.1. As iterators are connected
in a pipeline, we consider that each iterator is also responsible for
recursively stopping, saving and resuming its predecessors.

Definition 3.1 (Preemptable iterator). A preemptable iterator is an
iterator that supports, in addition to the classic Open, GetNext and
Close methods [13], the following methods:
• Stop: interrupts the iterator and its predecessor(s). Stop
waits for all non interruptible sections to complete.
• Save: serializes the current state of the iterator and its pre-
decessor(s) to produce a saved state.
• Load: reloads the iterator and its predecessor(s) from a saved
state.

Preemptable Space complexity Time complexity of Remarks

iterator of local state loading local state

πv1, ...,vk (P) O(k + |var (P)|) O(1)
Index Scan tp O(|tp | + |id |) O(logb (|D|)) Require indexes

on all kinds of
triple patterns

Merge Join
P1 ▷◁ P2

O(|var (P1)| + |var(P2)|) O(1)

Index Loop
Join P ▷◁ tp

O(|var (P)| + |tp | + |id |) O(logb (|D|))

P1 UNION P2 O(1) O(1) Multi-set Union
P Filter R O(|var (P)| + |R |) O(1) Pure logical ex-

pression only
Server physi-
cal plan

O(|Q | × log2(|D|) O(|Q | × logb (|D|))

Table 1: Complexities of preemption of physical query iter-

ators. |id | and |tp | denote the size of encoding an index key

and a triple pattern, respectively.

Algorithm 1 presents the implementation of the Suspend and
Resume functions for a pipeline of preemptable query iterators.
Suspend simply stops and saves recursively each iterator in the
pipeline and Resume reloads the pipeline in the suspended state
using a serialized state. To illustrate, consider the SaGe page of
Figure 4b. This page contains the plan that evaluates the SPARQL
queryQ2 of size |Q2 | = 4, using index loop joins [12]. The evaluation
of tp2 has been preempted after scanning 224 solution mappings.
The index loop join with tp1 has been preempted after scanning
two triples from the inner loop.

In the following, we review SPARQL operators implemented by
the SaGe server as preemptable query iterators. We modify the
regular implementations of these operators to include non inter-
ruptible section when needed. Operations left unchanged are not
detailed. Table 1 resumes the complexities related to the preemption
of server operators, where var (P) denotes the set of variables in P
as defined in [21].

Algorithm 2: A Preemptable Select Iterator
Require: V = {v1, . . . ,vk }: projection variables, I:

predecessor in the pipeline
Data: µ ← nil

1 Function GetNext():
2 if µ = nil then
3 µ ←I.GetNext()
4 non interruptible

5 let µ ′ ← Proj(µ,V)
6 µ ← nil

7 return µ ′

8 Function Save():
9 return µ

10 Function Load(µ ′):
11 µ ← µ ′

SELECT operator: The projection operator πV (P) [25], also
called SELECT, performs the projection of mappings obtained from
its predecessor P according to a set of projection variables V =
{v1, . . . ,vk }. Algorithm 2 gives the implementation of this iterator.
In this algorithm, Lines 4-7 are non-interruptible. This is necessary
to ensure that the operator does not discard mappings without
applying projection to them. Consequently, after the termination

of Suspend(P), πV (P) can be suspended in O(k + |var(P)|) in space.
The projection iterator reloads its local state in O(1).

Triple Pattern: The evaluation of a triple pattern tp over D
⟦tp⟧D [21] is the set of solution mappings of tp. µ is a solution
mapping if µ(tp) = t where t is the triple obtained by replacing the
variables in tp according to µ, such that t ∈ D. The evaluation of
⟦tp⟧D requires to read D and produce the corresponding set of
solutions mappings.

The triple pattern operator supposes that data are accessed us-
ing index scans and a clustered index [11]. Algorithm 3 gives the
implementation of a preemptable index scan for evaluating a triple
pattern. We omitted the Stop() operation, as the iterator does not
need to do any action to stop. The Save() operation stores the
triple pattern tp and the index’s id(t) of the last triple t read. Thus,
suspending an index scan is done in constant time and the size of
the operator state is in O(|tp | + |id(t)|).

The Load() operation uses the saved index’s id(t) on tp to find
the last matching RDF triple read. The time complexity of this oper-
ation predominates the time complexity of Resume. This complexity
depends on the type of index used. With a B+-tree [7], the time
complexity of resuming is bound to O(logb (|D|)). B+-tree indexes
are offered by many RDF data storage systems [8, 20, 28].

Algorithm 3: A Preemptable Index Scan Iterator, evaluating
a triple pattern tp using an index
Require: tp: triple pattern, D: RDF dataset queried, Itp :

clustered index over tp
Data: t : last matching RDF triple read

1 Function GetNext():
2 non interruptible

3 t ← next RDF triple matching tp in D
4 let µ ← set of solutions mappings such as µ(t) = tp

5 return µ

6 Function Save():
7 return ⟨tp, id(t)⟩

8 Function Load(id):
9 t ←Itp .Locate(id) // Locate the last triple read

Basic Graph patterns (AND):. A Basic Graph pattern (BGP)
evaluation corresponds to the natural join of a set of triple patterns.
Join operators fall into three categories [11]: (1) Hash-based joins
e.g., Symmetric Hash join or XJoin, (2) Sort-based joins, e.g., (Sort)
Merge join, (3) Loop joins, e.g., index loop or nested loop joins.

Hash-based joins [12, 29] operators are not suitable for preemp-
tion. As they build an in-memory hash table on one or more inputs
to evaluate the join, they are considered as full-mappings operators.
The sort-based joins and loop joins are mapping-at-a-time oper-
ators; consequently, they could be preempted with low overhead.
However, for sort-based joins, we can only consider merge joins,
i.e., joins inputs are already sorted on the join attribute. Otherwise,
this will require to perform an in-memory sort on the inputs. In the
following, we present algorithms for building preemptable Merge
join and preemptable Index Loop join operators:

Algorithm 4: A Preemptable Merge Join Iterator I , joining
the output of two iterators Ileft and Iright.
Require: Ileft: the outer join input, Iright: the inner join

input, µl : the last element read from Ileft, µr : the
last element read from Iright, D: RDF dataset
queried

1 Function Stop():
2 Ileft.Stop()
3 Iright.Stop()

4 Function Save():
5 let sl ← Ileft.Save()
6 let sr ← Iright.Save()
7 return ⟨sl , sr , µl , µr ⟩

8 Function Load(sl , sr , µ ′l , µ
′
r):

9 Ileft.Load(sl)
10 Iright.Load(sr)
11 µl ← µ ′l
12 µr ← µ ′r

Algorithm 5: A Preemptable Index Join Iterator Ii : a pre-
emptable join operator used by SaGe for BGP evaluation
Require: Ileft: the iterator responsible for the evaluation of

the outer join input, tpr : the inner join input, D:
RDF dataset queried.

1 Function Open():
2 Ileft.Open()

3 µc ← nil

4 Ifind ← a PreemptableIndexScanIterator over ∅
5 Function GetNext():
6 while ¬Ifind.HasNext() do

7 µc ← Ileft.GetNext()

8 if µc = nil then
9 return nil

10 Ifind ← PreemptableIndexScanIterator over ⟦µc (tpr)⟧D
11 non interruptible

12 let µ ← Ifind.GetNext()

13 return µ ∪ µc

14 Function Load(tp′, µ ′, t):
15 tpr ← tp′

16 if µ ′ , nil then
17 µc ← µ ′

18 Ifind ← PreemptableIndexScanIterator over ⟦µc (tpi)⟧D
19 Ifind.Load(t);

20 Function Save():
21 let t ← the last triple read

by Ifind
22 return ⟨tpr , µc , t⟩

23 Function Stop():
24 Ileft.Stop()

25 Ifind.Stop()

Preemptable merge join: The Merge join algorithm merges
the solutions mappings from two join inputs, i.e., others operators
sorted on the join attribute. SaGe extends the classic merge join
[12] to the Preemptable Merge join iterator as shown in Algorithm 4.
Basically, its Stop, Save and Load functions recursively stop, save
or load the joins inputs, respectively. Thus, the only internal data
structures holds by the join operator are the two inputs and the last

sets of solution mappings read from them. As described in Table 1,
the local state of a merge join is resumable in constant time, while
its space complexity depends on the size of two sets of solution
mappings saved.

Preemptable Index Loop join: The Index Loop join algorithm
[12] exploits indexes on the inner triple pattern for efficient join
processing. This algorithm has already been used for evaluating
BGPs in [16]. SaGe extends the classic Index Loop joins to a Pre-
emptable Index join Iterator (PIJ-Iterator) presented in Algorithm 5.
To produce solutions, the iterator executes the same steps repeat-
edly until all solutions are produced: (1) It pulls solutions mappings
µc from its predecessor. (2) It applies µc to tpi to generate a bound
pattern b = µc (tpi). (3) If b has no solution mappings in D, it tries
to read again from its predecessor (jump back to Step 1). (4) Other-
wise, it reads triple matching b inD, produces the associated set of
solution mappings and then goes back to Step 1.
A PIJ-Iterator supports preemption through the Stop, Save and
Load functions. The non-interruptible section of GetNext() only
concerns a scan in the dataset. Therefore, in the worse case, the
iterator has to wait for one index scan to complete before being
interruptible. As with the merge join, the Save and Load functions
needs to stop and resume the left join input. The latter also needs
to resume an Index Scan, which can be resumed in O(logb (|D|).
Regarding the saved state, the iterator saves the triple pattern joined
with the last set of solution mappings pulled from the predecessor
and an index scan. For instance, in Figure 4b, the saved state of the
join of tp2 and tp1 is µc = {?v1 7→ wm:Product12, ?v3 7→ "4356"}.

UNION fragment: The UNION fragment is defined as the union
of solution mappings from two graph patterns. We consider amulti-
set union semantic, as set unions require to save intermediate results
to remove duplicates and thus cannot be implemented as mapping-
at-a-time operators. The set semantic can be restored by the smart
Web client using the DISTINCT modifier on client-side. Evaluating
a multi-set union is equivalent to the sequential evaluation of all
graph patterns in the union. When preemption occurs, all graph
patterns in the union are saved recursively. So the union has no
local state on its own. Similarly, to resume an union evaluation,
each graph pattern is reloaded recursively.

FILTER fragment: A SPARQL FILTER is denoted F = σR (P),
where P is a graph pattern and R is a built-in filter condition. The
evaluation of F yields the solutions mappings of P that verify R.
Some filter conditions require collection of mappings to be evalu-
ated, like the EXISTS filter which requires the evaluation of a graph
pattern. Consequently, we limit the filter condition to pure logical
expressions (=, <, ≥,∧, etc) as defined in [21, 25]. The preemption
of a FILTER is similar to those of a projection. We only need to
suspend or resume P , respectively. For the local state, we need to
save the last solution mappings pulled from P and R.

Table 1 summarizes the complexities of Suspend and Resume in
time and space. The space complexity to Save a physical plan is
established toO(|Q | × log2(|D|). We supposed that |var (P)| and the
number of |tp | to save are close to |Q |. However, the size of index
IDs are integers that can be as big as the number of RDF triples
in D. Hence, they can be encoded in at most log2(|D|) bits. The
time complexity to Resume a physical plan is O(|Q | × logb (|D|)). It
is higher than the time complexity of Suspend, as resuming index

PREFIX r d f s : < h t tp : / /www. w3 . org / 2 0 0 0 / 0 1 / rd f−schema # >
PREFIX dbo : < h t tp : / / dbped ia . org / on to l ogy / >
SELECT ?name ? p l a c e WHERE {
? a c t o r a dbo : Ac to r . # t p 1
? a c t o r r d f s : l a b e l ?name . # t p 2
OPTIONAL { ? a c t o r dbo : b i r t h P l a c e ? p l a c e . # t p 3 }
}

(a) SPARQL query Q3: finds all actors with their names and their

birth places, if they exist.

π?name, ?place

BindLeftJoin

tp1 ▷◁ tp2 tp3

SaGe client

SaGe server

(b) Client-side physical query execution plan.

Figure 5: Physical query execution plan used by the SaGe

smart Web client for the query Q3.

scans can be costly. Overall, the complexity of Web preemption is
higher than the initial O(|Q |) stated in Section 3.1. However, we
demonstrate empirically in Section 4 that time and space complexity
can be kept under a few milliseconds and kilobytes, respectively.

3.4 SaGe smart Web client

The SaGe approach requires a smart Web client for processing
SPARQL queries for two reasons. First, the smart Web client must
be able to continue query execution after receiving a saved plan
from the server. Second, as the preemptable server only implements
a fragment of SPARQL, the smart Web client has to implement
the missing operators to support full SPARQL queries. It includes
SERVICE, ORDER BY, GROUP BY, DISTINCT, MINUS, FILTER
EXIST and aggregations (COUNT, AVG, SUM, MIN, MAX), but also
▷◁,∪, ▷◁ and π to be able to recombine results obtained from the
SaGe server. Consequently, the SaGe smart client is a SPARQL
query engine that accesses RDF datasets through the SaGe server.
Given a SPARQL query, the SaGe client parses it into a logical query
execution plan, optimizes it and then builds its own physical query
execution. The leafs of the plan must correspond to subqueries
evaluable by a SaGe server. Figure 5b shows the execution plan
build by the SaGe client for executing query Q3, from Figure 5a.

Compared to a SPARQL endpoint, processing SPARQL queries
with the SaGe smart client has an overhead in terms of the number
of request sent to the server and transferred data9. With a SPARQL
endpoint, a web client executes a query by sending a single web
request and receives only query results. The smart client overhead
for executing the same query is the additional number of request
and data transfered to obtain the same results. Consequently, the
client overhead has two components:

Number of requests: To execute a SPARQL query, a SaGe
client needs n ≥ 1 requests. We can distinguish two cases: (1) The
query is fully supported by the SaGe server, son is equal to the num-
ber of time quantum required to process the query. Notice that the

9The client overhead should not be confused with the server overhead.

client needs to pay the network latency twice per request. (2) The
query is not fully supported by the SaGe server. Then, the client
decomposes the query into a set of subqueries supported by the
server, evaluate each subquery as in the first case, and recombine
intermediate results to produce query results.

Data transfer: We also distinguish two cases: (1) If the query
is fully supported by the SaGe server, the only overhead is the
size of the saved plan Si multiplied by the number of requests.
Notice that the saved plan Si can be returned by reference or by
value, i.e., saved server-side or client-side. (2) If the query is not
fully supported by the SaGe server, then the client decomposes the
query and recombine results of subqueries. Among these results,
some are intermediate results and part of the client overhead.

Consequently, the challenge for the smart client is to minimize
the overhead in terms of the number of requests and transferred data.
The data transfer could be reduced by saving the plans server-side
rather than returning it to clients10. However, the main source of
client overhead comes from the decomposition made to support full
SPARQL queries, as these queries increase the number of requests
sent to the server. Some decompositions are more costly than others.
To illustrate, consider the evaluation of (P1 OPTIONAL P2) where
P1 and P2 are expressions supported by the SaGe server. A possible
approach is to evaluate ⟦P1⟧D and ⟦P2⟧D on the server, and then
perform the left outer join on the client. This strategy generates
only two subqueries but materializes ⟦P2⟧D on client. If there is
no join results, ⟦P2⟧D are just useless intermediate results.

Another approach is to rely on a nested loop join approach: eval-
uates ⟦P1⟧D and for each µ1 ∈ ⟦P1⟧D , if µ2 ∈ ⟦µ1(P2)⟧D then
{µ1 ∪ µ2} are solutions to P1 ▷◁ P2. Otherwise, only µ1 is a solution
to the left-join. This approach sends at least as many subqueries to
the server than there is solutions to ⟦P1⟧D .

To reduce the communication, the SaGe client implements Bind-
LeftJoins to process local join in a block fashion, by sending unions
of BGPs to the server. This technique is already used in federated
SPARQL query processing [26] with bound joins and in BrTPF [15].
Consequently, the number of request to the SaGe server is reduced
by a factor equivalent to the size of a block of mappings. However,
the number of requests sent still depends on the cardinality of P1.

Consequently, we propose a new technique, called OptJoin, for
optimizing the evaluation of a subclass of left-joins. The approach
relies on the fact that:

⟦P1 ▷◁ P2⟧D = ⟦P1 ▷◁ P2⟧D ∪ (⟦P1⟧D \ ⟦πvar (P1)(P1 ▷◁ P2)⟧D)
So we can deduce that: ⟦P1 ▷◁ P2⟧D ⊆ ⟦(P1 ▷◁ P2) ∪ P1⟧D . If
both P1 and P2 are evaluable by the SaGe server, then the smart
client computes the left-join as follows. First, it sends the query
(P1 ▷◁ P2) ∪ P1 to the server. Then, for each mapping µ received,
it builds local materialized views for ⟦P1 ▷◁ P2⟧D and ⟦P1⟧D . The
client knows that µ ∈ ⟦P1 ▷◁ P2⟧D if dom (µ) ⊂ var (P1 ▷◁ P2),
otherwise µ ∈ ⟦P1⟧D . Finally, the client uses the views to process
the left-join locally. With this technique, the client only use one
subquery to evaluate the left-join and, in the worst case, it transfers
⟦P1 ▷◁ P2⟧D as additional intermediate results.

To illustrate, consider query Q3 from Figure 5a. Q3, with 88334
solutions. The cardinality of tp1 ▷◁ tp2 is also of 88334, as every

10In our implementation, we choose to save plans client-side to tolerate server failures.

0 50 100 150 200
Query

100

101
E

xe
cu

ti
on

ti
m

e
(s

)

Figure 6: Distribution of query execution time.

actor has a birth place. This is the worse case for a BindLeftJoin,
which will require 88334

Block size additional requests to evaluate the left
join. However, with an OptJoin, the client is able to evaluate Q3 in
approximately 500 requests.

We implement both BindLeftJoin and OptJoin as physical
operators to evaluate OPTIONALs, depending on the query. We
also implement regular BindJoin for processing SERVICE queries.

4 EXPERIMENTAL STUDY

Wewant to empirically answer the following questions: What is the
overhead of Web preemption in time and space? Does Web preemp-
tion improves the average workload completion time? Does Web
preemption improves the time for first results? What are the client
overheads in terms of numbers of requests and data transfer? We
use Virtuoso as the baseline for comparing with SPARQL endpoints,
with TPF and BrTPF as the baselines for LDF approaches.

We implemented the SaGe client in Java, using Apache Jena11.
As an extension of Jena, SaGe is just as compliant with SPARQL
1.1. The SaGe server is implemented as a Python Web service and
uses HDT [9] (v1.3.2) for storing data. Notice that the current imple-
mentation of HDT cannot ensure loдb (n) access time for all triple
patterns, like (?s p ?o). This impacts negatively the performance of
SaGe when resuming some queries. The code and the experimental
setup are available on the companion website12.

4.1 Experimental setup

Dataset and Queries: We use the Waterloo SPARQL Diversity
Benchmark (WatDiv13) [1]. We re-use the RDF dataset and the
SPARQL queries from the BrTPF [15] experimental study14. The
dataset contains 107 triples and queries are arranged in 50 work-
loads of 193 queries each. They are SPARQL conjunctive queries
with STAR, PATH and SNOWFLAKE shapes. They vary in complex-
ity, up to 10 joins per query with very high and very low selectivity.
20% of queries require more than ≈ 30s to be executed using the
virtuoso server. All workloads follow nearly the same distribution
of query execution times as presented in Figure 6. The execution
times are measured for one workload of 193 queries with SaGe and
an infinite time quantum.

Approaches: We compare the following approaches:

11https://jena.apache.org/
12https://github.com/sage-org/sage-experiments
13http://dsg.uwaterloo.ca/watdiv/
14http://olafhartig.de/brTPF-ODBASE2016

106 107 108

1

1.5 1.44

1.66
1.51

1.15

0.89 0.85

WatDiv Dataset size (nb of triples)

Av
g.
du

ra
tio

n
(m

s)

Resume Suspend

Figure 7: Average preemption overhead.

Mean Min Max Standard deviation

1.716 kb 0.276 kb 6.212 kb 1.337 kb
Table 2: Space of saved physical query execution plans.

• SaGe: We run the SaGe query engine with various time quantum:
75ms and 1s, denoted SaGe-75ms and SaGe-1s respectively. HDT
indexes are loaded in memory while HDT data is stored on disk.
• Virtuoso: We run the Virtuoso SPARQL endpoint [8] (v7.2.4),
without any quotas or limitations .
• TPF: We run the standard TPF client (v2.0.5) and TPF server
(v2.2.3) with HDT files as backend (same settings as SaGe).
• BrTPF: We run the BrTPF client and server used in [15], with
HDT files as backend (same settings as SaGe). BrTPF is currently
the LDF approach with the lowest data transfer [15].

Servers configurations: We run all the servers on a machine
with Intel(R) Xeon(R) CPU E7-8870@2.10GHz and 1.5TB RAM.

Clients configurations: In order to generate load over servers,
we rely on 50 clients, each one executing a different workload of
queries. All clients start executing their workload simultaneously.
The clients access servers through HTTP proxies to ensure that
client-server latency is kept around 50ms.

Evaluation Metrics: Presented results correspond to the aver-
age obtained of three successive execution of the queries workloads.
(1) Workload completion time (WCT): is the total time taken by a
client to evaluate a set of SPARQL queries, measured as the time
between the first query starting and the last query completing.
(2) Time for first results (TFR) for a query: is the time between
the query starting and the production of the first query’s results.
(3) Time preemption overhead: is the total time taken by the server’s
Suspend and Resume operations. (4) Number of HTTP requests and
data transfer : is the total number of HTTP requests sent by a client
to a server and the number of transferred data when executing a
SPARQL query.

4.2 Experimental results

We first ensure that the SaGe approach yield complete results. We
run both Virtuoso and SaGe and verify that, for each query, SaGe
delivers complete results using Virtuoso results as ground truth.

What is the overhead in time of Web preemption? The overhead
in time of Web preemption is the time spent by the Web server

https://jena.apache.org/
https://github.com/sage-org/sage-experiments
http://dsg.uwaterloo.ca/watdiv/
http://olafhartig.de/brTPF-ODBASE2016

0 10 20 30 40 50
Number of clients

104

A
vg

.
w

or
kl

oa
d

co
m

pl
et

io
n

ti
m

e
(s

)

Virtuoso

BrTPF

SaGe-1s

TPF

SaGe-75ms

Figure 8: Average workload completion time per client, with

up to 50 concurrent clients (logarithmic scale).

0 10 20 30 40 50
Number of clients

104

A
vg

.
w

or
kl

oa
d

co
m

pl
et

io
n

ti
m

e
(s

)

Virtuoso 1 worker

Virtuoso 4 workers

SaGe-75ms 1 worker

SaGe-75ms 4 workers

Figure 9: Average workload completion time per client, with

4 workers (logarithmic scale).

0 10 20 30 40 50
Number of clients

0

20

40

60

A
vg

.
ti

m
e

fo
r

F
ir

st
re

su
lt

s
(s

)

Virtuoso

BrTPF

SaGe-1s

TPF

SaGe-75ms

Figure 10: Average time for first results (over all queries),

with up to 50 concurrent clients (linear scale).

for suspending a running query and the time spent for resuming
the next waiting query. To measure the overhead, we run one
workload of queries using SaGe-75ms and measure time elapsed for
the Suspend and Resume operations. Figure 7 shows the overhead in

time for SaGe Suspend and Resume operations using different sizes
of the WatDiv dataset. Generally, the size of the dataset does not
impact the overhead, which is around 1ms for Suspend and 1.5ms
for Resume. As expected, the overhead of the Resume operation is
greater than the one of the Suspend operation, due to the cost of
resuming the Index scans in the plan. With a quantum of 75ms, the
overhead is ≈ 3% of the quantum, which is negligible.

What is the overhead in space of Web preemption? The overhead
in space of the Web preemption is the size of saved plans produced
by the Suspend operation. According to Section 3.3, we determined
that the SaGe physical query plans can be saved inO(|Q |). To mea-
sure the overhead, we run a workload of queries using SaGe-75ms
and measure the size of saved plans. Saved plans are compressed
using Google Protocol Buffers 15. Table 2 shows the overhead in
space for SaGe. As we can see the size of a saved plan remains very
small, with no more than 6 kb for a query with ten joins. Hence,
this space is indeed proportional to the size of the plan suspended.

Does Web preemption improve the average workload completion
time? To enable Web preemption, the SaGe server has a restricted
choice of physical query operators, thus physical query execution
plans generated by the SaGe server should be less performant than
those generated by Virtuoso. This tradeoff only make sense if the
Web preemption compensates the loss in performance. Compensa-
tion is possible only if the workload alternates long-running and
short running queries. In the setup, each client runs a different
workload of 193 queries that vary from 30s to 0.22s, following an
exponential distribution. All clients execute their workload concur-
rently and start simultaneously. We experiment up to 50 concurrent
clients by step of 5 clients. As there is only one worker on the Web
server, and queries execution time vary, this setup is the worst case
for Virtuoso.

Figure 8 shows the average workload completion time obtained
for all approaches, with a logarithmic scale. As expected, Virtuoso is
significantly impacted by the convoy effect and delivers the worse
WTC after 20 concurrent clients. TPF and BrTPF avoid the convoy
and behave similarly. BrTPF is more performant thanks to its bind-
join technique that group requests to the server. SaGe-75ms and
SaGe-1s avoid the convoy effect and delivers better WTC than TPF
and BrTPF. As expected, increasing the time quantum also increases
the probability of convoy effect and, globally, SaGe-75ms offers
the best WTC. We rerun the same experiment with 4 workers for
SaGe-75ms and Virtuoso. Figure 9 shows the average workload
completion time obtained for both approaches. As we can see, both
approaches benefit of the four workers. However, Virtuoso still
suffers from the convoy effect.

Does Web preemption improve the time for the first results? The
Time for first results (TFR) for a query is the time between the
query starting and the production of the first query’s results. Web
preemption should provides better time for first results. Avoiding
convoy effect allows to start queries earlier and then get results
earlier. We rerun the same setup as in the previous section and
measure the time for first results (TFR). Figure 10 shows the results
with a linear scale. As expected, Virtuoso suffers from the convoy
effect that degrades significantly the TFR when the concurrency
15https://developers.google.com/protocol-buffers/

https://developers.google.com/protocol-buffers/

Dataset Virtuoso SaGe-1s SaGe-75ms BrTPF TPF

WatDiv 107 193 645 4 082 9, 2 · 104 2, 55 · 105

FEASIBLE 166 1 822 3 305 2, 95 · 104 1, 86 · 105

(a) Results with WatDiv and FEASIBLE-DBpedia datasets

Time quantum SaGe+BindLeftJoin SaGe+OptJoin

75ms 72 489 5 656
1s 70 964 511
(b) Comparison for BindLeftJoin and OptJoin operators

Table 3: Average number of HTTP requests sent to server

increases. TPF and BrTPF do not suffer from the convoy effect and
TFR is clearly stable over concurrency. The main reason is that
delivering a page of result for a single triple pattern takes ≈ 5ms
in our experiment, so the waiting time on the TPF server grows
very slowly. BrTPF is better than TPF due to its bind-join technique.
The TFR for SaGe-75ms and SaGe-1s increases with the number
of clients and the slope seems proportional to the quantum. This
is normal because the waiting time on the server increases with
the number of clients, as seen previously. Reducing the quantum
improves the TFR, but increases the number of requests and thus
deteriorates the WTC.

What are the client overheads in terms of number of requests and
data transfer? The client overhead in requests is the number of
requests that the smart client sent to the server to get complete
results minus one, as Virtuoso executes all queries in one request.
As WatDiv queries are pure conjunctive queries and supported by
the SaGe server, the number of requests to the server is the number
of time quantum required to evaluate the whole workload. We
measure the number of requests sent to servers with one workload
for all approaches, with results shown in Table 3(a). As expected,
Virtuoso just send 193 requests to the server. SaGe-75ms send
4082 requests to the server, while TPF send 2.55 × 105 requests to
the TPF server. We can see also that increasing the time quantum
significantly reduces the number of requests; SaGe-1s send only 645
requests. However, this seriously deteriorates the averageWCT and
TFR as presented before. To compute the overhead in data transfer
of SaGe, we just need to multiply the number of requests by the
average size of saved plans; for SaGe-75ms, the client overhead in
data transfer is 4082 × 1, 3 kb = 5.45 Mo. As the total size of results
is 51Mo, the client overhead in data transfer is ≈ 10%. For TPF, the
average size of a page is 7ko; 2.5 · 105 × 7k = 1.78 Go, so the data
transfer overhead is ≈ 340% for TPF.

What are the client overheads in terms of numbers of requests and
data transfer formore complex queries? TheWatDiv benchmark does
not generate queries with OPTIONAL or FILTER operators. If some
filters are supported by the SaGe server, the OPTIONAL operator
and other filters clearly impact the number of requests sent to the
SaGe server, as explained in Section 3.4. First, we run an experiment
to measure the number of requests for queries with OPTIONAL.
We generate new WatDiv queries from one set of 193 queries, us-
ing the following protocol. For each query Q = {tp1, . . . , tpn },

we select tpk ∈ Q with the highest cardinality, then we gener-
ate Q ′ = tpk ▷◁ (Q \ tpk). Such queries verify conditions for using
BindLeftJoin andOptJoin. They are challenging for the BindLeft-
Join as they generate many mappings; they are also challenging for
the OptJoin as all joins yield results. Table 3(b) shows the results
when evaluating OPTIONAL queries with OptJoin and BindLeft-
Join approaches. We observe that, in general, OptJoin outperforms
BindLeftJoin. Furthermore, OptJoin is improved when using a
higher quantum, as the single subquery sent is evaluated more
quickly. This is not the case for BindLeftJoin, as the number of
requests still depends on the number of intermediate results.

Finally, we re-use 166 SELECT queries from Feasible [23] with
the DBpedia 3.5.1 dataset, which were generated from real-users
queries. We excluded queries that time-out, identified in [23], and
measure the number of requests sent to the server. Table 3(a) shows
the results. Of course, Virtuoso just send 166 requests to the server.
As we can see the ratio of requests between SaGe-75 and TPF
is nearly the same as the previous experiment. However, the dif-
ference between SaGe-1s and SaGe-75ms has clearly decreased,
because most requests sent are produced by the decomposition of
OPTIONAL and FILTER and not by the evaluation of BGPs.

5 CONCLUSION AND FUTUREWORKS

In this paper, we demonstrated how Web preemption allows not
only to suspend SPARQL queries, but also to resume them. This
opens the possibility to efficiently execute long-running queries
with complete results. The scientific challenge was to keep the Web
preemption overhead as low as possible; we demonstrated that the
overhead of large a fragment of SPARQL can be kept under 2ms.

Compared to SPARQL endpoint approaches without quotas,
SaGe avoids the convoy effect and is a winning bet as soon as
the queries of the workload vary in execution time. Compared to
LDF approaches, SaGe offers a more expressive server interface
with joins, union and filter evaluated server side. Consequently,
this considerably reduces data transfer and the communication cost,
improving the execution time of SPARQL queries.

SaGe opens several perspectives. First, for the sake of simplicity,
we made the hypothesis of read-only datasets in this paper. If we
allow concurrent updates, then a query can be suspended with a
version of a RDF dataset and resumed with another version. The
main challenge is then to determine which consistency criteria can
be ensured by the preemptive Web server. As SaGe only accesses
the RDF dataset when scanning triple patterns, it could be possible
to compensate concurrent updates and deliver, at least, eventual
consistency for query results. Second, we aim to explore how the
interface of the server can be extended to support named graphs
and how the optimizer of the smart client can be tuned to produce
better query decompositions, especially in the case of federated
SPARQL query processing. Third, we plan to explore if more elabo-
rated scheduling policies could increase performance. Finally, the
Web preemption model is not restricted to SPARQL. An interesting
perspective is to design a similar approach for SQL or GraphQL.

ACKNOWLEDGMENTS

This work has been partially funded through the FaBuLA project,
part of the AtlanSTIC 2020 program.

REFERENCES

[1] Günes Aluç, Olaf Hartig, M. Tamer Özsu, and Khuzaima Daudjee. 2014. Diver-
sified Stress Testing of RDF Data Management Systems. In The Semantic Web -
ISWC 2014 - 13th International Semantic Web Conference, Riva del Garda, Italy, Oc-
tober 19-23, 2014. Proceedings, Part I (Lecture Notes in Computer Science), Vol. 8796.
Springer, 197–212. https://doi.org/10.1007/978-3-319-11964-9_13

[2] Thomas Anderson and Michael Dahlin. 2014. Operating Systems: Principles and
Practice (2nd ed.). Recursive books.

[3] Carlos Buil Aranda, Aidan Hogan, Jürgen Umbrich, and Pierre-Yves Vanden-
bussche. 2013. SPARQL Web-Querying Infrastructure: Ready for Action?. In
The Semantic Web - ISWC 2013 - 12th International Semantic Web Conference,
Sydney, NSW, Australia, October 21-25, 2013, Proceedings, Part II (Lecture Notes
in Computer Science), Vol. 8219. Springer, 277–293. https://doi.org/10.1007/
978-3-642-41338-4_18

[4] Carlos Buil Aranda, Axel Polleres, and Jürgen Umbrich. 2014. Strategies for
Executing Federated Queries in SPARQL1.1. In The Semantic Web - ISWC 2014 -
13th International Semantic Web Conference, Riva del Garda, Italy, October 19-23,
2014. Proceedings, Part II (Lecture Notes in Computer Science), Vol. 8797. Springer,
390–405. https://doi.org/10.1007/978-3-319-11915-1_25

[5] Christian Bizer, Tom Heath, and Tim Berners-Lee. 2009. Linked Data - The Story
So Far. Int. J. Semantic Web Inf. Syst. 5, 3 (2009), 1–22. https://doi.org/10.4018/
jswis.2009081901

[6] Mike W. Blasgen, Jim Gray, Michael F. Mitoma, and Thomas G. Price. 1979. The
Convoy Phenomenon. Operating Systems Review 13, 2 (1979), 20–25. https:
//doi.org/10.1145/850657.850659

[7] Douglas Comer. 1979. The Ubiquitous B-Tree. ACM Comput. Surv. 11, 2 (1979),
121–137. https://doi.org/10.1145/356770.356776

[8] Orri Erling and Ivan Mikhailov. 2009. RDF Support in the Virtuoso DBMS. In
Networked Knowledge - Networked Media - Integrating Knowledge Management,
New Media Technologies and Semantic Systems. 7–24. https://doi.org/10.1007/
978-3-642-02184-8_2

[9] Javier D. Fernández, Miguel A. Martínez-Prieto, Claudio Gutiérrez, Axel Polleres,
and Mario Arias. 2013. Binary RDF representation for publication and exchange
(HDT). J.Web Sem. 19 (2013), 22–41. https://doi.org/10.1016/j.websem.2013.01.002

[10] Dennis W. Fife. 1968. R68-47 Computer Scheduling Methods and Their Counter-
measures. IEEE Trans. Computers 17, 11 (1968), 1098–1099. https://doi.org/10.
1109/TC.1968.226869

[11] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. 2009. Database
systems - the complete book (2. ed.). Pearson Education.

[12] Goetz Graefe. 1993. Query Evaluation Techniques for Large Databases. ACM
Comput. Surv. 25, 2 (1993), 73–170. https://doi.org/10.1145/152610.152611

[13] Goetz Graefe and William J. McKenna. 1993. The Volcano Optimizer Generator:
Extensibility and Efficient Search. In Proceedings of the Ninth International Con-
ference on Data Engineering, April 19-23, 1993, Vienna, Austria. IEEE Computer
Society, 209–218. https://doi.org/10.1109/ICDE.1993.344061

[14] Laura M. Haas, Donald Kossmann, Edward L. Wimmers, and Jun Yang. 1997.
Optimizing Queries Across Diverse Data Sources. In VLDB’97, Proceedings of 23rd
International Conference on Very Large Data Bases, August 25-29, 1997, Athens,
Greece. Morgan Kaufmann, 276–285.

[15] Olaf Hartig and Carlos Buil Aranda. 2016. Bindings-Restricted Triple Pattern
Fragments. In On the Move to Meaningful Internet Systems: OTM 2016 Confer-
ences - Confederated International Conferences: CoopIS, C&TC, and ODBASE 2016,
Rhodes, Greece, October 24-28, 2016, Proceedings (Lecture Notes in Computer Science),
Vol. 10033. Springer, 762–779. https://doi.org/10.1007/978-3-319-48472-3_48

[16] Olaf Hartig, Christian Bizer, and Johann Christoph Freytag. 2009. Executing
SPARQL Queries over the Web of Linked Data. In The Semantic Web - ISWC

2009, 8th International Semantic Web Conference, ISWC 2009, Chantilly, VA, USA,
October 25-29, 2009. Proceedings (Lecture Notes in Computer Science), Vol. 5823.
Springer, 293–309. https://doi.org/10.1007/978-3-642-04930-9_19

[17] Olaf Hartig, Ian Letter, and Jorge Pérez. 2017. A Formal Framework for Comparing
Linked Data Fragments. In The Semantic Web - ISWC 2017 - 16th International
Semantic Web Conference, Vienna, Austria, October 21-25, 2017, Proceedings, Part
I (Lecture Notes in Computer Science), Vol. 10587. Springer, 364–382. https:
//doi.org/10.1007/978-3-319-68288-4_22

[18] Lars Heling, Maribel Acosta, Maria Maleshkova, and York Sure-Vetter. 2018.
Querying Large Knowledge Graphs over Triple Pattern Fragments: An Empiri-
cal Study. In The Semantic Web - ISWC 2018 - 17th International Semantic Web
Conference, Monterey, CA, USA, October 8-12, 2018, Proceedings, Part II. 86–102.
https://doi.org/10.1007/978-3-030-00668-6_6

[19] Leonard Kleinrock. 1964. Analysis of A time-shared processor. Naval research
logistics quarterly 11, 1 (1964), 59–73.

[20] Thomas Neumann and Gerhard Weikum. 2010. The RDF-3X engine for scalable
management of RDF data. VLDB J. 19, 1 (2010), 91–113. https://doi.org/10.1007/
s00778-009-0165-y

[21] Jorge Pérez, Marcelo Arenas, and Claudio Gutiérrez. 2009. Semantics and
complexity of SPARQL. ACM Trans. Database Syst. 34, 3 (2009), 16:1–16:45.
https://doi.org/10.1145/1567274.1567278

[22] Axel Polleres, Maulik R. Kamdar, Javier D. Fernández, Tania Tudorache, and
Mark A. Musen. 2018. A More Decentralized Vision for Linked Data. In Proceed-
ings of the 2nd Workshop on Decentralizing the Semantic Web co-located with the
17th International Semantic Web Conference, DeSemWeb@ISWC 2018, Monterey,
California, USA, October 8, 2018.

[23] Muhammad Saleem, Qaiser Mehmood, and Axel-Cyrille Ngonga Ngomo. 2015.
FEASIBLE: A Feature-Based SPARQL Benchmark Generation Framework. In
The Semantic Web - ISWC 2015 - 14th International Semantic Web Conference,
Bethlehem, PA, USA, October 11-15, 2015, Proceedings, Part I. 52–69. https://doi.
org/10.1007/978-3-319-25007-6_4

[24] Max Schmachtenberg, Christian Bizer, and Heiko Paulheim. 2014. Adoption of
the Linked Data Best Practices in Different Topical Domains. In The Semantic
Web - ISWC 2014 - 13th International Semantic Web Conference, Riva del Garda,
Italy, October 19-23, 2014. Proceedings, Part I (Lecture Notes in Computer Science),
Vol. 8796. Springer, 245–260. https://doi.org/10.1007/978-3-319-11964-9_16

[25] Michael Schmidt, MichaelMeier, andGeorg Lausen. 2010. Foundations of SPARQL
query optimization. In Database Theory - ICDT 2010, 13th International Conference,
Lausanne, Switzerland, March 23-25, 2010, Proceedings. ACM, 4–33. https://doi.
org/10.1145/1804669.1804675

[26] Andreas Schwarte, Peter Haase, Katja Hose, Ralf Schenkel, and Michael Schmidt.
2011. FedX: Optimization Techniques for Federated Query Processing on Linked
Data. In The Semantic Web - ISWC 2011 - 10th International Semantic Web Con-
ference, Bonn, Germany, October 23-27, 2011, Proceedings, Part I (Lecture Notes
in Computer Science), Vol. 7031. Springer, 601–616. https://doi.org/10.1007/
978-3-642-25073-6_38

[27] Ruben Verborgh, Miel Vander Sande, Olaf Hartig, Joachim Van Herwegen, Lau-
rens De Vocht, Ben De Meester, Gerald Haesendonck, and Pieter Colpaert. 2016.
Triple Pattern Fragments: A low-cost knowledge graph interface for the Web. J.
Web Sem. 37-38 (2016), 184–206. https://doi.org/10.1016/j.websem.2016.03.003

[28] Cathrin Weiss, Panagiotis Karras, and Abraham Bernstein. 2008. Hexastore:
sextuple indexing for semantic web data management. PVLDB 1, 1 (2008), 1008–
1019. https://doi.org/10.14778/1453856.1453965

[29] Annita N. Wilschut and Peter M. G. Apers. 1993. Dataflow Query Execution in
a Parallel Main-memory Environment. Distributed and Parallel Databases 1, 1
(1993), 103–128. https://doi.org/10.1007/BF01277522

https://doi.org/10.1007/978-3-319-11964-9_13
https://doi.org/10.1007/978-3-642-41338-4_18
https://doi.org/10.1007/978-3-642-41338-4_18
https://doi.org/10.1007/978-3-319-11915-1_25
https://doi.org/10.4018/jswis.2009081901
https://doi.org/10.4018/jswis.2009081901
https://doi.org/10.1145/850657.850659
https://doi.org/10.1145/850657.850659
https://doi.org/10.1145/356770.356776
https://doi.org/10.1007/978-3-642-02184-8_2
https://doi.org/10.1007/978-3-642-02184-8_2
https://doi.org/10.1016/j.websem.2013.01.002
https://doi.org/10.1109/TC.1968.226869
https://doi.org/10.1109/TC.1968.226869
https://doi.org/10.1145/152610.152611
https://doi.org/10.1109/ICDE.1993.344061
https://doi.org/10.1007/978-3-319-48472-3_48
https://doi.org/10.1007/978-3-642-04930-9_19
https://doi.org/10.1007/978-3-319-68288-4_22
https://doi.org/10.1007/978-3-319-68288-4_22
https://doi.org/10.1007/978-3-030-00668-6_6
https://doi.org/10.1007/s00778-009-0165-y
https://doi.org/10.1007/s00778-009-0165-y
https://doi.org/10.1145/1567274.1567278
https://doi.org/10.1007/978-3-319-25007-6_4
https://doi.org/10.1007/978-3-319-25007-6_4
https://doi.org/10.1007/978-3-319-11964-9_16
https://doi.org/10.1145/1804669.1804675
https://doi.org/10.1145/1804669.1804675
https://doi.org/10.1007/978-3-642-25073-6_38
https://doi.org/10.1007/978-3-642-25073-6_38
https://doi.org/10.1016/j.websem.2016.03.003
https://doi.org/10.14778/1453856.1453965
https://doi.org/10.1007/BF01277522

	Abstract
	1 Introduction
	2 Related Works
	3 Web preemption Approach
	3.1 Web Preemption Model
	3.2 Suspending and Resuming Physical Query Execution Plans
	3.3 The SaGe Preemptable Server
	3.4 SaGe smart Web client

	4 Experimental study
	4.1 Experimental setup
	4.2 Experimental results

	5 Conclusion and Future Works
	Acknowledgments
	References

