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ON LEIBNIZ COHOMOLOGY

JÖRG FELDVOSS AND FRIEDRICH WAGEMANN

Abstract. In this paper we prove the Leibniz analogues of several vanishing
theorems for the Chevalley-Eilenberg cohomology of Lie algebras. In par-
ticular, we obtain the second Whitehead lemma for Leibniz algebras. Our
main tools are three spectral sequences. Two are Leibniz analogues of the
Hochschild-Serre spectral sequence, one of which is an extension of the dual
of a spectral sequence of Pirashvili for Leibniz homology from symmetric bi-
modules to arbitrary bimodules, and the other one is due to Beaudouin. A
third spectral sequence (also due to Pirashvili in homology) relates the Leibniz
cohomology of a Lie algebra to its Chevalley-Eilenberg cohomology.

Introduction

In [1], the authors study the cohomology of semi-simple Leibniz algebras, i.e.,
the cohomology of finite-dimensional Leibniz algebras L with an ideal of squares
Leib(L) such that the corresponding canonical Lie algebra g := L/Leib(L) is semi-
simple, and conjecture that HL2(L,Lad) = 0. In [18], the authors determine the
deviation of the second Leibniz cohomology of a complex Lie algebra with adjoint or
trivial coefficients from the corresponding Chevalley-Eilenberg cohomology. With
these motivations, we transpose in the present article systematically Pirashvili’s
results to cohomology, extend them and prove that we have HL2(L,Lad) = 0 for a
semi-simple Leibniz algebra L over a field of characteristic zero (see Corollary 4.6).

The main theme of the present paper is the correct analogue of the Hochschild-
Serre spectral sequence for Leibniz algebras and its applications. Recall that the
Hochschild-Serre spectral sequence [21, Sections 2 and 3] for a Lie algebra extension

0 → k → g → q → 0

arises from a filtration of the standard cochain complex of g by cochains which van-
ish in case the first p arguments contain an element of k. When trying to generalize
the Hochschild-Serre spectral sequence from Lie algebras to Leibniz algebras, one
notices that on the one hand there are two ways to generalize the filtration from
skew-symmetric cochains to all multilinear cochains, namely, by filtering from the
left or from the right, and on the other hand that the resulting spectral sequences
(see Theorems 3.2 and 3.5, the latter being an extension of the cohomological
version of a homology spectral sequence of Pirashvili [33, Theorem C] from sym-
metric bimodules to arbitrary bimodules, while the former is due to Beaudouin [6,
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2 JÖRG FELDVOSS AND FRIEDRICH WAGEMANN

Théorème 3.2.16]) are less powerful than in the case of Lie algebra cohomology.
Our belief is that the correct replacement of the Hochschild-Serre spectral sequence
in the case of Leibniz algebras is not one spectral sequence, but the two spectral
sequences of Theorems 3.2 and 3.5.

The main applications of the Hochschild-Serre spectral sequence for Lie al-
gebras contain a complete description of the Chevalley-Eilenberg cohomology of
semi-simple Lie algebras (see [21]) as well as vanishing theorems for the Chevalley-
Eilenberg cohomology of nilpotent Lie algebras (see [13, [Théorème 1]) and solv-
able Lie algebras with values in certain irreducible modules (see [3, Theorems 2
and 3]). As applications of the spectral sequences in Theorems 3.2 and 3.5, we
generalize these results to Leibniz algebras. The method of proof for these the-
orems relies on the corresponding result for Lie algebras and works roughly as
follows. The Leibniz algebra L and the L-bimodule M must be chosen such that
the canonical Lie algebra g := L/Leib(L) associated to L and the corresponding
left g-module M satisfy the hypotheses of the relevant vanishing theorem for Lie
algebras. Therefore we have vanishing Chevalley-Eilenberg cohomology H•(g,M).
An entirely Lie-theoretical spectral sequence (see Theorem 2.5) and the long exact
sequence comparing Chevalley-Eilenberg and Leibniz cohomology of a Lie algebra
for symmetric Leibniz bimodules (see Proposition 2.2) show that these cohomolo-
gies coincide. Thus the vanishing of H•(g,M) implies that of HL•(g,M). The
spectral sequence of Theorem 3.2 has HL•(g,M) in its E2-term and converges to
the relative cohomology which therefore vanishes. As a consequence of the long ex-
act sequence linking the cohomologies of L and g (see Proposition 3.1), HL•(L,M)
vanishes for symmetric L-bimodules M . Then a reduction of the Leibniz coho-
mology with coefficients in anti-symmetric bimodules to the Leibniz cohomology
with coefficients in certain symmetric bimodules (see Lemma 1.5) in conjunction
with the previous argument yields the vanishing of HL•(L,M) for anti-symmetric
L-bimodules M . Finally, the general case can be obtained from the symmetric and
the anti-symmetric case by applying the long exact cohomology sequence to the
short exact sequence 0 → M0 → M → Msym → 0, where M0 denotes an anti-
symmetric sub-bimodule of the Leibniz bimodule M such that Msym := M/M0 is
symmetric. This method of proof is dual to the one used for Leibniz homology by
Pirashvili (see the proof of Propositions 2.1 and 4.3 in [33]; note that Pirashvili
considers only symmetric bimodules).

The main outcome are the following theorems. The Whitehead vanishing the-
orem for Leibniz cohomology (see Theorem 4.1) implies the following complete
description of the Leibniz cohomology of a semi-simple Leibniz algebra with coef-
ficients in a finite-dimensional bimodule (see Theorem 4.2):

Theorem 1. Let L be a finite-dimensional semi-simple left Leibniz algebra over
a field of characteristic zero, and let M be a finite-dimensional L-bimodule. Then
HLn(L,M) = 0 for every integer n ≥ 2, and there is a five-term exact sequence

0 → M0 → HL0(L,M) →MLLie

sym → HomL(Lad,ℓ,M0) → HL1(L,M) → 0 .

Moreover, if M is symmetric, then HLn(L,M) = 0 for every integer n ≥ 1.

Note that the case n = 2 of Theorem 1 is the second Whitehead lemma for Leib-
niz algebras. We deduce in particular the rigidity of semi-simple Leibniz algebras
in characteristic zero (see Corollary 4.6), show in examples that Theorem 1 fails in
non-zero characteristic or for infinite-dimensional modules (see Examples A and B,
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respectively), and prove that a semi-simple non-Lie Leibniz algebra in characteristic
zero always possesses a non-inner derivation (see Corollary 4.5).

Applying the spectral sequence of Theorem 3.2 to the Levi decomposition L =
s⋉Rad(L) of a Leibniz algebra L into a hemi-semidirect product of a semi-simple Lie
algebra s and its radical Rad(L) (see the main result of [4]), we obtain a reduction
formula for the Leibniz cohomology of L, which can be seen as an analogue of the
formula describing the Chevalley-Eilenberg cohomology of a finite-dimensional Lie
algebra in [21, Theorem 13]. Our formula is less general as it takes only into account
Leibniz cohomology with values in symmetric s-bimodules, or in other words, the
radical Rad(L) has to act trivially on the symmetric L-bimodule M . Under this
assumption, we have the following result:

Theorem 2. Let L be a finite-dimensional left Leibniz algebra with Levi decom-
position L = s ⋉ Rad(L), and let M be a symmetric L-bimodule such that the
radical Rad(L) acts trivially on M . Then for every non-negative integer n there
are isomorphisms

HLn(L,M) ∼=

{
M s if n = 0

HLn−1(L,HomF(Rad(L),M
s)s) if n ≥ 1

of vector spaces.

Applying now Dixmier’s theorem [13, Théorème 1] instead of Whitehead’s the-
orem, we derive by the same method of proof a vanishing theorem for the Leibniz
cohomology of nilpotent Leibniz algebras (see Theorem 5.1).

Theorem 3. Let L be a left Leibniz algebra such that LLie := L/Leib(L) is a
finite-dimensional nilpotent Lie algebra. If M is a finite-dimensional L-bimodule
such that ML = 0, then HLn(L,M) = 0 for every non-negative integer n.

The Leibniz cohomology of an abelian Lie algebra with trivial coefficients is
known. In Example C we compute the Leibniz cohomology of the trivial bimodule
for the smallest non-abelian nilpotent Lie algebra, namely, the three-dimensional
Heisenberg algebra (cf. [33, Example 1.4. iv)] for the corresponding Leibniz homol-
ogy), and in Example D we determine this cohomology for the smallest nilpotent
non-Lie Leibniz algebra.

Using Barnes’ vanishing theorem [3, Theorem 3], we obtain a vanishing theo-
rem for the cohomology of supersolvable Leibniz algebras (see Theorem 5.3) whose
natural setting is a field F of characteristic p > 0.

Theorem 4. Let L be a finite-dimensional supersolvable left Leibniz algebra over a
field F, and letM be a finite-dimensional irreducible L-bimodule such that dimFM 6=
1. Then HLn(L,M) = 0 for every positive integer n. Moreover, if M is symmetric,
then HLn(L,M) = 0 for every non-negative integer n.

As a first indication what to expect for the Leibniz cohomology of supersolv-
able Leibniz algebras with coefficients in one-dimensional bimodules, in Example E
we compute this Leibniz cohomology for the non-abelian two-dimensional Lie alge-
bra and in Example F for the non-nilpotent two-dimensional non-Lie left Leibniz
algebra.

Our observation is that Leibniz cohomology of Lie algebras is much more regular
than Chevalley-Eilenberg cohomology. This is one reason Leibniz cohomology is
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maybe more interesting. Future work in this direction is meant to illustrate our
intuition.

In this paper we will follow the notation used in [17]. All tensor products are
over the relevant ground field and will be denoted by ⊗. For a subset X of a vector
space V over a field F we let 〈X〉F be the subspace of V spanned by X . We will
denote the space of linear transformations from an F-vector space V to an F-vector
space W by HomF(V,W ). In particular, V ∗ := HomF(V,F) will be the space of
linear forms on a vector space V over a field F. Moreover, S2(V ) will denote the
symmetric square of a vector space V . Finally, the identity function on a set X
will be denoted by idX , and the set {0, 1, 2, . . .} of non-negative integers will be
denoted by N0.

1. Preliminaries

In this section we recall some definitions and collect several results that will be
useful in the remainder of the paper.

A left Leibniz algebra is an algebra L such that every left multiplication operator
Lx : L → L, y 7→ xy is a derivation. This is equivalent to the identity

(1.1) x(yz) = (xy)z + y(xz)

for all x, y, z ∈ L, which in turn is equivalent to the identity

(1.2) (xy)z = x(yz)− y(xz)

for all x, y, z ∈ L. We will call both identities the left Leibniz identity. There is a
similar definition of a right Leibniz algebra but in this paper we will only consider
left Leibniz algebras.

Every left Leibniz algebra has an important ideal, its Leibniz kernel, that mea-
sures how much the Leibniz algebra deviates from being a Lie algebra. Namely, let
L be a left Leibniz algebra over a field F. Then

Leib(L) := 〈x2 | x ∈ L〉F

is called the Leibniz kernel of L. The Leibniz kernel Leib(L) is an abelian ideal of
L, and Leib(L) 6= L when L 6= 0 (see [17, Proposition 2.20]). Moreover, L is a Lie
algebra if, and only if, Leib(L) = 0.

By definition of the Leibniz kernel, LLie := L/Leib(L) is a Lie algebra which we
call the canonical Lie algebra associated to L. In fact, the Leibniz kernel is the
smallest ideal such that the corresponding factor algebra is a Lie algebra (see [17,
Proposition 2.22]).

Next, we will briefly discuss left modules and bimodules of left Leibniz algebras.
Let L be a left Leibniz algebra over a field F. A left L-module is a vector space M
over F with an F-bilinear left L-action L×M → M , (x,m) 7→ x ·m such that

(1.3) (xy) ·m = x · (y ·m)− y · (x ·m)

is satisfied for every m ∈M and all x, y ∈ L.
By virtue of [17, Lemma 3.3], every left L-module is an LLie-module, and vice

versa. This is the reason that in [6, Définition 1.1.14] left Leibniz modules are called
Lie modules. Consequently, many properties of left Leibniz modules follow from
the corresponding properties of modules for the canonical Lie algebra.



LEIBNIZ COHOMOLOGY 5

The correct concept of a module for a left Leibniz algebra L is the notion of a
Leibniz bimodule. An L-bimodule is a left L-module M with an F-bilinear right
L-action M × L →M , (m,x) 7→ m · x such that

(1.4) (x ·m) · y = x · (m · y)−m · (xy)

and

(1.5) (m · x) · y = m · (xy)− x · (m · y)

are satisfied for every m ∈M and all x, y ∈ L (see [17, Section 3] for the motivation
behind this definition of a bimodule for a left Leibniz algebra).

The usual definitions of the notions of sub-(bi)module, irreducibility, complete
reducibility, composition series , homomorphism, isomorphism, etc., hold for left
Leibniz modules and Leibniz bimodules.

Let L be a left Leibniz algebra over a field F, and letM be an L-bimodule. Then
M is said to be symmetric if m ·x = −x ·m for every x ∈ L and every m ∈M , and
M is said to be anti-symmetric if m · x = 0 for every x ∈ L and every m ∈M . We
call

M0 := 〈x ·m+m · x | x ∈ L,m ∈M〉F

the anti-symmetric kernel of M . It is known that M0 is an anti-symmetric L-sub-
bimodule of M (see [17, Proposition 3.12]) such that M/M0 is symmetric (see [17,
Proposition 3.13]).

Moreover, for any L-bimodule M we will need its space of right L-invariants

ML := {m ∈M | ∀x ∈ L : m · x = 0}

and the annihilator

Annbi
L (M) := {x ∈ L | ∀m ∈M : x ·m = 0 = m · x}

Our first result will be useful in Sections 4 and 5.

Lemma 1.1. Let L be a left Leibniz algebra, and let M be an L-bimodule such that
ML = 0. Then M is symmetric. In particular, Leib(L) ⊆ AnnbiL (M).

Proof. Since M0 is anti-symmetric, it follows from the hypothesis that

M0 =ML
0 ⊆ML = 0 .

Hence we obtain from the definition of M0 that M is symmetric. The second part
is then an immediate consequence of [17, Lemma 3.10]. �

It is clear from the definition of ML that an L-bimodule M is anti-symmetric
if, and only if, ML = M . We will use Lemma 1.1 to show that the symmetry of
non-trivial irreducible Leibniz bimodules can also be characterized by the behavior
of their spaces of right invariants. As a preparation for this, we need to know that
the latter space is a sub-bimodule.

Lemma 1.2. Let L be a left Leibniz algebra, and let M be an L-bimodule. Then
ML is a sub-bimodule of M .

Proof. It follows from (1.4) that ML is invariant under the left action on M , and
it follows from (1.5) that ML is invariant under the right action on M . �
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Now we can characterize the symmetry of a non-trivial irreducible Leibniz bi-
module by the vanishing of its space of right invariants. In particular, for non-trivial
irreducible Leibniz bimodules we obtain the converse of Lemma 1.1. (Recall that an
irreducible bimodule M is a bimodule that has exactly two sub-bimodules, namely,
0 and M . In particular, an irreducible bimodule is by definition a non-zero vector
space.)

Corollary 1.3. Let L be a left Leibniz algebra, and let M be an irreducible L-
bimodule. Then M is symmetric with non-trivial L-action if, and only if, ML = 0.

Proof. SinceM is irreducible, we obtain from Lemma 1.2 thatML = 0 orML =M .
Suppose first that M is symmetric with non-trivial L-action. Then we have that
ML = 0. On the other hand, the converse follows immediately from Lemma 1.1. �

We propose to define the faithfulness of a Leibniz bimodule as follows. We call
an L-bimodule M faithful if Annbi

L (M) ⊆ Leib(L). Note that this is a more general
notion than the one used by Barnes in [5], and both definitions generalize this
concept from Lie algebras to Leibniz algebras.

For a faithful L-bimodule M , the chain of inclusions

Annbi
L (M) ⊆ Leib(L) ⊆ AnnL(M)

follows from [17, Lemma 3.3], where

AnnL(M) := {x ∈ L | ∀m ∈M : x ·m = 0}

is the annihilator of the left L-module M . Note that for a completely reducible
faithful Leibniz bimodule these inclusions are equalities.

Lemma 1.4. Let L be a left Leibniz algebra. If M is completely reducible faithful
L-bimodule, then Annbi

L (M) = Leib(L) = AnnL(M).

Proof. Since M is completely reducible, we have that M =
⊕
i∈I

Mi, where Mi is an

irreducible L-bimodule for every i ∈ I. According to [17, Theorem 3.14], irreducible
L-bimodules are symmetric or anti-symmetric, and therefore we obtain from the
proof of [17, Lemma 3.10] that AnnbiL (Mi) = Leib(L) = AnnL(Mi) for every i ∈ I.
Hence we conclude that

Annbi
L (M) =

⋂

i∈I

Annbi
L (Mi) = Leib(L) =

⋂

i∈I

AnnL(Mi) = AnnL(M) .

This completes the proof. �

Recall that every left L-moduleM of a left Leibniz algebra L determines a unique
symmetric L-bimodule structure onM by defining m ·x := −x ·m for every element
m ∈ M and every element x ∈ L (see [17, Proposition 3.15 (b)]). We will denote
this symmetric L-bimodule by Ms. Similarly, every left L-module M with trivial
right action is an anti-symmetric L-bimodule (see [17, Proposition 3.15 (a)]). We
will denote this module by Ma.

Similar to the boundary map in [29] for the homology of a right Leibniz algebra

with coefficients in a right module one can also introduce a coboundary map d̃•

for the cohomology of a left Leibniz algebra with coefficients in a left module as
follows.



LEIBNIZ COHOMOLOGY 7

Let L be a left Leibniz algebra over a field F, and let M be a left L-module.
For any non-negative integer n set CLn(L,M) := HomF(L

⊗n,M) and consider the

linear transformation d̃n : CLn(L,M) → CLn+1(L,M) defined by

(d̃nf)(x1, . . . , xn+1) :=

n+1∑

i=1

(−1)i+1xi · f(x1, . . . , x̂i, . . . , xn+1)

+
∑

1≤i<j≤n+1

(−1)if(x1, . . . , x̂i, . . . , xixj , . . . , xn+1)

for any f ∈ CLn(L,M) and all elements x1, . . . , xn+1 ∈ L. (Here and in the
remainder of the paper we identify the tensor power L⊗n with the corresponding
Cartesian power.)

Now let M be an L-bimodule and for any non-negative integer n consider the
linear transformation dn : CLn(L,M) → CLn+1(L,M) defined by

(dnf)(x1, . . . , xn+1) :=

n∑

i=1

(−1)i+1xi · f(x1, . . . , x̂i, . . . , xn+1)

+ (−1)n+1f(x1, . . . , xn) · xn+1

+
∑

1≤i<j≤n+1

(−1)if(x1, . . . , x̂i, . . . , xixj , . . . , xn+1)

for any f ∈ CLn(L,M) and all elements x1, . . . , xn+1 ∈ L.
It is proved in [12, Lemma 1.3.1] that CL•(L,M) := (CLn(L,M), dn)n∈N0

is a
cochain complex, i.e., dn+1◦dn = 0 for every non-negative integer n. Of course, the
original idea of defining Leibniz cohomology as the cohomology of such a cochain
complex for right Leibniz algebras is due to Loday [30, Section 1.8]. Hence one can
define the cohomology of L with coefficients in an L-bimodule M by

HLn(L,M) := Hn(CL•(L,M)) := Ker(dn)/Im(dn−1)

for every non-negative integer n. (Note that d−1 := 0.)

If M is a symmetric L-bimodule, then we have the identity d̃n = dn for any
non-negative integer n. Namely,

(d̃nf)(x1, . . . , xn+1) =
n∑

i=1

(−1)i+1xi · f(x1, . . . , x̂i, . . . , xn+1)

+ (−1)n+2xn+1 · f(x1, . . . , xn)

+
∑

1≤i<j≤n+1

(−1)if(x1, . . . , x̂i, . . . , xixj , . . . , xn+1)

= (dnf)(x1, . . . , xn+1)

for any f ∈ CLn(L,M) and all elements x1, . . . , xn+1 ∈ L. In particular, as men-
tioned earlier, any left L-module M can be turned into a symmetric L-module Ms,

and the fact that d• is a coboundary map for CL•(L,Ms) shows that C̃L
•
(L,M) :=

(CLn(L,M), d̃n)n∈N0
is a cochain complex, i.e., d̃n+1◦d̃n = 0 for every non-negative

integer n. Hence one can define the cohomology of L with coefficients in a left L-
module M by

H̃L
n
(L,M) := Hn(C̃L

•
(L,M)) := Ker(d̃n)/Im(d̃n−1)

for every non-negative integer n. (Note that as before d̃−1 := 0.)
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Now we are ready to state the next result (see [33, Lemma 2.2] for the analogous
result in Leibniz homology) whose second part generalizes [17, Corollary 4.4 (b)] to
arbitrary degrees and which will be crucial in Sections 4 and 5. (Note that the first
part has already been obtained in [12, Section 1.3.4]). For the convenience of the
reader we include a detailed proof.

Lemma 1.5. Let L be a left Leibniz algebra over a field F, and let M be a left
L-module. Then the following statements hold:

(a) If M is considered as a symmetric L-bimodule Ms, then

HLn(L,Ms) = H̃L
n
(L,M)

for every integer n ≥ 0.
(b) If M is considered as an anti-symmetric L-bimodule Ma, then

HL0(L,Ma) =M

and

HLn(L,Ma) ∼= H̃L
n−1

(L,HomF(L,M)) = HLn−1(L,HomF(L,M)s)

for every integer n ≥ 1, where HomF(L,M) is a left L-module via

(x · f)(y) := x · f(y)− f(xy)

for every f ∈ HomF(L,M) and any elements x, y ∈ L.

Proof. By virtue of the computation before Lemma 1.5, we only need to prove part
(b). Note that the first part of (b) is just [17, Corollary 4.2 (b)].

First, we show that HomF(L,M) is a left L-module via the given action. Let
f ∈ HomF(L,M) and x, y, z ∈ L be arbitrary. Then we obtain from the defining
identity of a left Leibniz module (1.3) and the left Leibniz identity (1.2) that

((xy) · f)(z) = (xy) · f(z)− f((xy)z)

= x · (y · f(z))− y · (x · f(z))− f(x(yz)) + f(y(xz)) ,

and

(x · (y · f))(z) = x · (y · f)(z)− (y · f)(xz)

= x · (y · f(z))− x · f(yz)− y · f(xz) + f(y(xz)) ,

as well as

(y · (x · f))(z) = y · (x · f)(z)− (x · f)(yz)

= y · (x · f(z))− y · f(xz)− x · f(yz) + f(x(yz)) .

Hence ((xy) · f)(z) = (x · (y · f)(z)− (y · (x · f)(z) for every z ∈ L, or equivalently,
(xy) · f = x · (y · f)− y · (x · f).

Now we will prove the second part of (b). Let n be any positive integer. Consider
the linear transformations ϕn : CLn(L,M) → CLn−1(L,HomF(L,M)) defined by
ϕn(f)(x1, . . . , xn−1)(x) := f(x1, . . . , xn−1, x) for any elements x1, . . . , xn−1, x ∈ L

and ψn : CLn−1(L,HomF(L,M)) → CLn(L,M) defined by ψn(g)(x1, . . . , xn−1, xn)
:= g(x1, . . . , xn−1)(xn) for any elements x1, . . . , xn−1, xn ∈ L. Then ϕn and ψn are
inverses of each other.
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Next, we will show that d̃n−1 ◦ ϕn = ϕn+1 ◦ dn. Compute

(d̃n−1 ◦ ϕn)(f)(x1, . . . , xn)(x) = d̃n−1(ϕn(f))(x1, . . . , xn)(x)

=

n∑

i=1

(−1)i+1(xi · ϕ
n(f))(x1, . . . , x̂i, . . . , xn)(x)

+
∑

1≤i<j≤n

(−1)iϕn(f)(x1, . . . , x̂i, . . . , xixj , . . . , xn)(x)

=

n∑

i=1

(−1)i+1xi · ϕ
n(f)(x1, . . . , x̂i, . . . , xn)(x)

−
n∑

i=1

(−1)i+1ϕn(f)(x1, . . . , x̂i, . . . , xn)(xix)

+
∑

i≤i<j≤n

(−1)if(x1, . . . , x̂i, . . . , xixj , . . . , xn, x)

=

n∑

i=1

(−1)i+1xi · f(x1, . . . , x̂i, . . . , xn, x)

+

n∑

i=1

(−1)if(x1, . . . , x̂i, . . . , xn, xix)

+
∑

1≤i<j≤n

(−1)if(x1, . . . , x̂i, . . . , xixj , . . . , xn, x)

and

(ϕn+1 ◦ dn)(f)(x1, . . . , xn)(x) = ϕn+1(dn(f))(x1, . . . , xn)(x)

= dn(f)(x1, . . . , xn, x)

=
n∑

i=1

(−1)i+1xi · f(x1, . . . , x̂i, . . . , xn, x)

+ (−1)n+1f(x1, . . . , xn) · x

+
∑

1≤i<j≤n

(−1)if(x1, . . . , x̂i, . . . , xixj , . . . , xn, x)

+

n∑

i=1

(−1)if(x1, . . . , x̂i, . . . , xn, xix)

for any elements x1, . . . , xn, x ∈ L. Since M is anti-symmetric, the second of the
last four summands vanishes, and thus the two compositions are equal. From the

identity d̃n−1 ◦ ϕn = ϕn+1 ◦ dn for every integer n ≥ 1 we obtain that

ϕn(Ker(dn)) ⊆ Ker(d̃n−1)

and

ϕn(Im(dn−1)) ⊆ Im(d̃n−2)

for every integer n ≥ 1. Hence ϕn induces an isomorphism of vector spaces between

HLn(L,M) and H̃L
n−1

(L,HomF(L,M)) for every integer n ≥ 1. In order to see
the remainder of the assertion, apply part (a). �
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In the special case of the trivial one-dimensional Leibniz bimodule we obtain
from Lemma 1.5 the following result which will be needed in Section 4 (see [29,
Exercise E.10.6.1] for the analogous result in Leibniz homology).

Corollary 1.6. Let L be a left Leibniz algebra over a field F. Then for every integer
n ≥ 1 there are isomorphisms

HLn(L,F) ∼= H̃L
n−1

(L,L∗) = HLn−1(L, (L∗)s)

of vector spaces, where L∗ := HomF(L,F) is a left L-module via (x·f)(y) := −f(xy)
for every linear form f ∈ L∗ and any elements x, y ∈ L.

Remark. Note that [22, Theorem 3.5] is an immediate consequence of the case
n = 2 of Corollary 1.6 and [17, Corollary 4.4 (a)].

2. A relation between Chevalley-Eilenberg cohomology and Leibniz

cohomology for Lie algebras

Let g be a Lie algebra, and letM be a left g-module, also viewed as a symmetric
g-bimodule Ms. In this section, we will develop some links between the Chevalley-
Eilenberg cohomology H•(g,M) and the Leibniz cohomology HL•(g,Ms). We follow
the analogous treatment for homology given in [33] very closely.

The Chevalley-Eilenberg cohomology of a Lie algebra g with trivial coefficients
is not isomorphic (up to a degree shift) to the Chevalley-Eilenberg cohomology of
g with coadjoint coefficients as it is the case for Leibniz cohomology (see Corol-
lary 1.6). Instead these cohomologies are only related by a long exact sequence (see
Proposition 2.1). The cohomology measuring the deviation from such an isomor-
phism will appear in a spectral sequence (see Theorem 2.5) which can be used to
relate the Leibniz cohomology of a Lie algebra to its Chevalley-Eilenberg cohomol-
ogy (see Proposition 2.2).

The exterior product map m : Λng⊗ g → Λn+1g given on homogeneous tensors
by x1 ∧ . . . ∧ xn ⊗ x 7→ x1 ∧ . . . ∧ xn ∧ x induces a monomorphism

m• : C
•
(g,F)[−1] →֒ C•(g, g∗),

where C
•
(g,F) is the truncated cochain complex

C
0
(g,F) := 0 and C

n
(g,F) := Cn(g,F) for every integer n > 0 .

The complex CR•(g) is defined by CR•(g) := Coker(m•)[−1]. Observe that classes
in CRn(g) are represented by cochains of degree n+ 1 with values in g∗, i.e., they
have n+ 2 arguments. From the short exact sequence

0 → C
•
(g,F)[−1] → C•(g, g∗) → CR•(g)[1] → 0

of cochain complexes we obtain a long exact cohomology sequence:

Proposition 2.1. For every Lie algebra g over a field F there is a long exact
sequence

0 → H2(g,F) → H1(g, g∗) → HR0(g)

→ H3(g,F) → H2(g, g∗) → HR1(g) → · · ·

and an isomorphism H1(g,F) ∼= H0(g, g∗).
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Remark. If we assume that the characteristic of the ground field F is not 2, then
HR0(g) ∼= [S2(g)∗]g is the space of invariant symmetric bilinear forms on g (see
[33, p. 403]). As a consequence, we obtain from Proposition 2.1 in the case that
char(F) 6= 2 the five-term exact sequence

0 → H2(g,F) → H1(g, g∗) → [S2(g)∗]g → H3(g,F) → H2(g, g∗) ,

which generalizes [16, Proposition 1.3 (1) & (3)]. Note that the map [S2(g)∗]g →
H3(g,F) is the classical Cartan-Koszul map defined by ω 7→ ω + B3(g,F), where
ω(x ∧ y ∧ z) := ω(xy, z) for any elements x, y, z ∈ g (see [33, p. 403]).

For a Lie algebra g and a left g-module M viewed as a symmetric Leibniz g-
bimodule Ms, we have a natural monomorphism

C•(g,M) →֒ CL•(g,Ms) .

The cokernel of this morphism is by definition (up to a shift in degree) the complex
C•

rel(g,M):

C•
rel(g,M) := Coker(C•(g,M) → CL•(g,Ms))[−2] .

We therefore have a long exact sequence in cohomology. (For degrees 0 and 1 see
[17, Corollary 4.2 (a)] and [17, Corollary 4.4 (a)].)

Proposition 2.2. Let g be a Lie algebra, and let M be a left g-module considered
as a symmetric Leibniz g-bimodule Ms. Then there are a long exact sequence

0 → H2(g,M) → HL2(g,Ms) → H0
rel(g,M)

→ H3(g,M) → HL3(g,Ms) → H1
rel(g,M) → · · ·

and isomorphisms

HL0(g,Ms) ∼= H0(g,M), HL1(g,Ms) ∼= H1(g,M) .

Remark. If we again assume that the characteristic of the ground field F is not
2, it follows from Theorem 2.5 in conjunction with [17, Proposition 4.1] and the
remark after Proposition 2.1 that H0

rel(g,F)
∼= HR0(g) ∼= [S2(g)∗]g is the space of

invariant symmetric bilinear forms on g. Hence when char(F) 6= 2 we obtain the
five-term exact sequence

0 → H2(g,F) → HL2(g,F) → [S2(g)∗]g → H3(g,F) → HL3(g,F)

as a special case of Proposition 2.2 (cf. [22, Proposition 3.2] for fields of characteristic
zero). Note that it follows from Corollary 1.6 that the second terms of the five-
term exact sequences in Proposition 2.1 and Proposition 2.2 are isomorphic, but
Example E in Section 5 shows that the fifth terms are not always isomorphic.

Observe that as for CRn(g), representatives of classes in Cn
rel(g,M) have n + 2

arguments.
On the quotient complex C•

rel(g,M) there is the following filtration

FpCn
rel(g,M) = {[c] ∈ Cn

rel(g,M) | c(x1, . . . , xn+2) = 0 if ∃ j ≤ p+ 1 : xj−1 = xj} .

Note that the condition is independent of the representative c of the class [c]. This
defines a finite decreasing filtration

F0Cn
rel(g,M) = Cn

rel(g,M) ⊃ F1Cn
rel(g,M) ⊃ · · · ⊃ Fn+1Cn

rel(g,M) = {0} ,

whose associated spectral sequence converges thus in the strong (i.e., finite) sense
to Hn

rel(g,M) thanks to the following lemma:
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Lemma 2.3. This filtration is compatible with the Leibniz coboundary map d•.

Proof. The Leibniz coboundary map, acting on a cochain c, is an alternating sum
of operators dij(c), δi(c) and ∂(c), where dij(c) is the term involving the product of
the i-th and the j-th element, δi(c) is the term involving the left action of the i-th
element, and ∂(c) is the term involving the right action of the (n + 1)-th element.
As the module is symmetric, the term involving the right action can be counted
among the terms involving the left actions.

We have to show that d•(FpCn
rel(g,M)) ⊆ FpCn+1

rel (g,M). We thus consider the
different terms of d•(c) with two equal elements as arguments in the first p+1 slots
and have to show that all terms are zero. For dij(c) with i, j ≤ p+1, the assertion
is clear because either the two equal elements do not occur in the product, and
then it is correct, or at least one of them occurs, and then the product generates
out of the sum of dij and dij+1 (or dij−1) an element xix⊗ x+ x⊗ xix, which is a
sum of symmetric elements thanks to

xix⊗ x+ x⊗ xix = (xix+ x)⊗ (xix+ x)− xix⊗ xix− x⊗ x .

Even more elementary, the assertion is clear for dij(c) with i, j ≥ p + 1. For
dij(c) with i ≤ p+1 and j ≥ p+2, the assertion is clear in case xi is not one of the
equal elements. In case it is, the two terms corresponding to the product action of
the two equal elements cancel (as they are equal and have different sign).

For the action terms δi(c) the reasoning is similar. In case i ≤ p+ 1, either the
two equal elements do not occur and the assertion is clear, or both occur and cancel
each other because of the alternating sign. For δi(c) with i ≥ p + 2, the assertion
is clear in any case. �

The next step is then to compute the 0-th term of the corresponding spectral
sequence, i.e., the associated graded vector space of the filtration:

Ep,q
0 := FpCp+q

rel (g,M) /Fp+1Cp+q
rel (g,M) .

Observe that the filtration can be expressed as

FpCp+q
rel (g,M) = {[c] ∈ Cn

rel(g,M) | c|(Ker(⊗p+1g→Λp+1g))⊗(⊗q+1g) = 0}.

This is useful, because by elementary linear algebra, we have

F⊥/G⊥ = HomF(G/F,M) ,

where F⊥ := {f : E → M | f |F = 0} and G⊥ := {f : E → M | f |G = 0} for
F ⊆ G ⊆ E.

In order to be able to find Ep,q
0 , we therefore have to compute

(Ker(⊗p+2g → Λp+2g)⊗ (⊗qg)) / (Ker(⊗p+1g → Λp+1g)⊗ (⊗q+1g)).

Using the isomorphism (see the proof of Theorem A in [33])

Ker(⊗p+2g → Λp+2g) / (Ker(⊗p+1g → Λp+1g)⊗ g) ∼= Ker(Λp+1g⊗ g → Λp+2g) .

we obtain

Ep,q
0 = {c : Ker(Λp+1g⊗ g → Λp+2g)⊗ CLq(g) →M} /Cp+q+2(g,M)

= Ker(Λp+1g⊗ g → Λp+2g)∗ ⊗ CLq(g,M) /Cp+q+2(g,M) .

It remains to observe that the first tensor factor is the kernel of the exterior mul-
tiplication map m, and thus

Ker(Λp+1g⊗ g → Λp+2g)∗ = Ker(m)∗ = Coker(m∗) = CRp(g) .
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Therefore the term Ep,q
0 takes the form

Ep,q
0 = CRp(g)⊗ CLq(g,M) .

Next, let us find the differential on Ep,q
0 .

Lemma 2.4. The differential on E•,•
0 induced from d• on C•

rel(g,M) identifies with

id
⊗(p+2)
CRp(g) ⊗ dqCLq(g,M).

Proof. By definition, the differential d0 of the spectral sequence is the differential
which is induced from the Leibniz coboundary map d• on the associated graded
quotients

d0 : FpCp+q
rel (g,M) /Fp+1Cp+q

rel (g,M) → FpCp+q+1
rel (g,M) /Fp+1Cp+q+1

rel (g,M) .

In order to examine which terms dij(c), δi(c) and ∂(c) are zero for a cochain c ∈

FpCp+q
rel (g,M), we have to insert two consecutive equal elements in the arguments

of c within the first p+ 2 arguments.
Now, by the same reasoning as in the proof of Lemma 2.3, the terms dij(c) are

zero in case i, j ≤ p + 2, because in case the equal elements are not involved, the
formula for dij(c) diminishes the number of arguments by one and as c is of degree
p in the filtration, this gives then zero. In case the elements occur, they create
once again a symmetric element of the form xix⊗ x+ x⊗ xix. Also for dij(c) with
i ≤ p+2 and j ≥ p+3, the terms are zero when the equal elements are not involved
and are zero in addition with dij+1(c) (or dij−1(c)), in case of multiplying with one
of the equal elements. The terms δi(c) for i ≤ p+ 1 are zero as the corresponding
formula diminishes the number of arguments by one in case the equal elements do
not occur and annihilate each other in case they occur.

There remain thus the terms dij(c) with i, j ≥ p+3, δi(c) with i ≥ p+3, and ∂(c),
which form together the coboundary map of the cochain complex CL•(g,M). �

In conclusion, we have as second term of the spectral sequence

Ep,q
2 = HRp(g)⊗HLq(g,Ms) ,

because the differential d1 is again induced by d•, but all terms involving terms of
HL•(g,M) are zero, because a Leibniz algebra acts trivially on its cohomology. This
follows from the Cartan relations for Leibniz cohomology (see [30, Proposition 3.1]
for the case of right Leibniz algebras and [12, Proposition 1.3.2] for the case of left
Leibniz algebras).

This discussion proves the following result:

Theorem 2.5. Let g be a Lie algebra, and let M be a left g-module considered as
a symmetric Leibniz g-bimodule Ms. Then there is a spectral sequence converging
to H•

rel(g,M) with second term

Ep,q
2 = HRp(g)⊗HLq(g,Ms) .

Remark. As the spectral sequence is the spectral sequence of a filtered complex,
the higher differentials in the spectral sequence are again induced by the total
Leibniz cohomology differential d•. We will see in Example C below an instance of
a concrete computation of d2.

Our main application of the spectral sequence will be the next theorem:
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Theorem 2.6. Let g be a Lie algebra, let M be a left g-module considered as a sym-
metric Leibniz g-bimodule Ms, and let n be a non-negative integer. If Hk(g,M) = 0

for every integer k with 0 ≤ k ≤ n, then HLk(g,Ms) = 0 for every integer k with 0 ≤
k ≤ n and HLn+1(g,Ms) ∼= Hn+1(g,M) as well as HLn+2(g,Ms) ∼= Hn+2(g,M).
In particular, H•(g,M) = 0 implies that HL•(g,Ms) = 0.

Proof. The proof follows the proof of Corollary 1.3 in [33] very closely.
According to Proposition 2.2, it suffices to prove that Hk(g,M) = 0 for every

integer k with 0 ≤ k ≤ n implies that Hn
rel(g,M) = 0 for every integer k with

0 ≤ k ≤ n. We proceed by induction on n. In the case n = 0, the hypothesis yields
that E0,0

2 = 0 for the second term of the spectral sequence of Theorem 2.5, and
therefore we obtain from the convergence of the spectral sequence that H0

rel(g,M) =
0 initializing the induction.

So suppose now that n ≥ 1 and Hk(g,Ms) = 0 for every integer k with 0 ≤ k ≤
n+ 1. By induction hypothesis, we obtain that Hn

rel(g,M) = 0 for every integer k

with 0 ≤ k ≤ n. Hence it follows from Proposition 2.2 that HLk(g,Ms) = 0 for every
integer k with 0 ≤ k ≤ n and HLn+1(g,Ms) ∼= Hn+1(g,M) = 0. Consequently, the
second term Ep,q

2 of the spectral sequence in Theorem 2.5 is zero for p+ q ≤ n+1,

and therefore Hn+1
rel (g,M) = 0. �

Remark. Note that the converse of Theorem 2.6 is also true, namely, Hk(g,M) = 0

for every integer k with 0 ≤ k ≤ n if, and only if, HLk(g,Ms) = 0 for every integer
k with 0 ≤ k ≤ n. In particular, H•(g,M) = 0 if, and only if, HL•(g,Ms) = 0.

We conclude this section by proving an extension of a result by Fialowski,
Magnin, and Mandal (see Corollary 2 in [18]), namely the fact that the vanish-
ing of the center C(g) of a Lie algebra g implies HL2(g, gad) = H2(g, g), where gad
denotes the adjoint Leibniz g-bimodule induced by the left and right multiplication
operator. Observe that for Lie algebras, this bimodule is indeed symmetric. The
spectral sequence of Theorem 2.5 with adjoint coefficients has as its E2-term

Ep,q
2 = HRp(g)⊗HLq(g, gad) .

We note that HL0(g, gad) = C(g) (see [17, Corollary 4.2 (a)]). Therefore it is an
immediate consequence of the case n = 0 of Theorem 2.6 that the vanishing of
the center implies that HL2(g, gad) = H2(g, g). By the same token for n = 1, we
can extend this to complete Lie algebras, i.e., to those Lie algebras g for which
H0(g, g) = H1(g, g) = 0:

Corollary 2.7. Let g be a complete Lie algebra. Then

HL2(g, gad) ∼= H2(g, g) and HL3(g, gad) ∼= H3(g, g) .

A class of examples of complete Lie algebras over an algebraically closed field F

of characteristic zero consists of those finite-dimensional Lie algebras g for which
g has the same dimension as its Lie algebra of derivations and dimF g/g

2 > 1
(see [10, Proposition 3.1]). Another example is the two-sided Witt algebra over a
field of characteristic zero. Indeed, this infinite-dimensional simple Lie algebra is
complete (see [15, Theorem A.1.1]). Hence we obtain from [34, Theorem 3.1] and
[15, Theorem 4.1] in conjunction with the case n = 3 of Theorem 2.6 the following
result:
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Corollary 2.8. Let W := Der(F[t, t−1]) be the two-sided Witt algebra over a field F

of characteristic zero. Then HL2(W ,Wad) = 0 and HL3(W ,Wad) = 0. Moreover,

HL4(W ,Wad) ∼= H4(W ,W) and HL5(W ,Wad) ∼= H5(W ,W) .

Remark. Very recently, Camacho, Omirov, and Kurbanbaev also proved that the
second adjoint Leibniz cohomology of W vanishes (see [9, Theorem 4]) by explicitly
showing that every adjoint Leibniz 2-cocycle (resp. Leibniz 2-coboundary) is an
adjoint Chevalley-Eilenberg 2-cocycle (resp. Chevalley-Eilenberg 2-coboundary) for
W .

3. Two spectral sequences for Leibniz cohomology

In this section we consider two Leibniz analogues of the Hochschild-Serre spectral
sequence for the Chevalley-Eilenberg cohomology of Lie algebras that converge to
the same relative cohomology. They will both play a role in Sections 4 and 5.

Let π : L → Q be an epimorphism of left Leibniz algebras, and let M be a
Q-bimodule. Then M is also an L-bimodule via π. Moreover, the epimorphisms
π⊗n : L⊗n → Q⊗n induce a monomorphism CL•(Q,M) → CL•(L,M) of cochain
complexes. Now set

CL•(L|Q,M) := Coker(CL•(Q,M) → CL•(L,M))[−1]

and

HL•(L|Q,M) := H•(CL•(L|Q,M)) .

Then by applying the long exact cohomology sequence to the short exact sequence

0 → CL•(Q,M) → CL•(L,M) → CL•(L|Q,M)[1] → 0

of cochain complexes one obtains the following result (see also [33, Proposition 4.1]
for the corresponding result on Leibniz homology).

Proposition 3.1. For every epimorphism π : L → Q of left Leibniz algebras and
every Q-bimodule M there exists a long exact sequence

0 → HL1(Q,M) → HL1(L,M) → HL0(L|Q,M)

→ HL2(Q,M) → HL2(L,M) → HL1(L|Q,M) → · · · .

We now come to the first of the two spectral sequences (see [6, Théorème 3.2.16]).

Theorem 3.2. Let 0 → I → L
π
→ Q → 0 be a short exact sequence of left Leibniz

algebras, and let M be an L-bimodule such that I ⊆ Annbi
L (M). Then M is a Q-

bimodule via x ·m := π−1(x) ·m and m · x := m · π−1(x) for every element x ∈ Q

and every element m ∈ M . Moreover, there is a spectral sequence converging to
HL•(L|Q,M)[1] with second term

Ep,q
2 =

{
HLq−1(L,HomF(I,HL

p(Q,M))s) if p ≥ 0, q ≥ 1
0 if p ≥ 0, q = 0 .

Remark. According to [17, Lemma 3.10], Theorem 3.2 applies to I := Leib(L)
and Q := LLie. Note that the L-bimodule HomF(I,HL

p(Q,M))s is viewed as a
symmetric bimodule in this theorem.
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Proof. This theorem is taken from Beaudouin’s thesis. For the convenience of the
reader we include a proof. We consider the following filtration on the complex
CL•(L,M):

FpCLn(L,M) := {c ∈ CLn(L,M) | c(x1, . . . , xn) = 0 if ∃ i ≥ n− p+ 1 : xi ∈ I} .

This defines a finite decreasing filtration

F0CLn(L,M) = CLn(L,M) ⊃ F1CLn(L,M) ⊃ · · ·

· · · ⊃ FnCLn(L,M) = CLn(Q,M),

whose associated spectral sequence converges in the strong (i.e., finite) sense to the
cohomology HLn(L|Q,M) of the quotient complex CLn(L,M) /CLn(Q,M) thanks
to the following lemma:

Lemma 3.3. The filtration is compatible with the Leibniz coboundary map d•.

Proof. We have to prove that d•(FpCLn(L,M)) ⊆ FpCLn+1(L,M). For this, we
consider the different terms dij(c), δi(c), and ∂(c), which constitute the differential
d•(c), where we have inserted an element of I within the last p arguments. The
vanishing is clear for the terms dij(c) with i, j ≥ n − p + 1, because even if the
element of I is concerned in the product, the product will again be in the ideal
I. The vanishing is also clear for the terms dij(c) with i, j ≤ n − p. The terms
d(c)ij(c) with i ≤ n− p and j ≥ n− p+ 1 are also zero, because I is an ideal.

The action terms follow a similar pattern. The terms δi(c) with i ≥ n − p + 1
are zero, because either the element of I occurs in the arguments, or it acts on M ,
which is zero by assumption. The same holds for the term ∂(c). The terms δi(c)
with i ≤ n−p are again zero, because the element of I occurs in the arguments. �

We get for the 0-th term of the spectral sequence

Ep,q
0 = HomF(L

q ⊗Qp,M) /HomF(L
q−1 ⊗Qp+1,M) ∼= HomF(L

q−1 ⊗ I⊗Qp,M)

if q ≥ 1, and = 0 in case q = 0. This isomorphism is induced by the inclusion
I →֒ L.

In order to describe the first and second term of the spectral sequence, note that
HomF(I⊗Qp,M) is a symmetric L-bimodule with respect to the usual left action

(x·f)(y, z1, . . . , zp) = x·f(y, z1, . . . , zp)−f(xy, z1, . . . , zn)−

n∑

i=1

f(y, z1, . . . , xzi, . . . , zn) .

Lemma 3.4. The differential d0 on E
p,q
0 reads dq−1|CLq−1(L,Hom(I⊗Qp,M)) for q ≥ 1

and is zero for q = 0.

Proof. The differential

d0 : FpCLn(L,M) /Fp+1CLn(L,M) → FpCLn+1(L,M) /Fp+1CLn+1(L,M)

is the differential induced by d•. Thus we have to examine which terms dij(c), δi(c)
and ∂(c) composing the differential d0(c) are non-zero in case we put an element of
I within the last p+ 1 entries.

It is clear that dij(c) = 0 for i, j ≥ n − p, because this is true if the element of
I is not involved in the product as the number of elements is diminished by one,
and it is also true if the element of I occurs in the product, because I is an ideal.
Considering the terms dij(c) for i ≤ n − p − 1 and j ≥ n − p together with δi(c)
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for i ≤ n− p − 1, we obtain the terms composing the above displayed action of L
on HomF(I ⊗Qp,M). Note that we are forced to view the latter as a symmetric
bimodule, because, while in the present expression all action terms are from the
left, that last action term has to be switched in order to make appear the Leibniz
coboundary operator. Furthermore, the terms δi(c) for i ≥ n− p are zero, because
if the element of I acts onM , it acts as zero, and otherwise the number of elements
is reduced by one. The same holds for ∂(c). We therefore are left with the terms
composing the differential on CLq−1(L,HomF(I⊗Qp,M)). �

The lemma readily implies that the first term of the spectral sequence reads for
any integer q ≥ 1:

Ep,q
1 = HLq−1(L,HomF(I,CL

p(Q,M))) ,

and we obtain for the second term of the spectral sequence for q ≥ 1:

Ep,q
2 = HLq−1(L,HomF(I,HL

p(Q,M))) .

This follows by examining the remaining potentially non-zero terms dij(c) for i, j ≥
n− p, δi(c) for i ≥ n− p, and ∂(c) of the differential d•, which did not contribute
to the E1-term. As I is an ideal acting trivially on M , the corresponding term in
d• is zero, and we are left with (idL∗)⊗q−1 ⊗ idI∗ ⊗ dp|CLp(Q,M). �

Finally, we derive a spectral sequence for certain short exact sequences of left
Leibniz algebras that is dual to and an extension of one of Pirashvili’s spectral se-
quence for Leibniz homology (see [33, Theorem C]). While Pirashvili considers only
symmetric bimodules, we extend the dual of his spectral sequence to all bimod-
ules. The filtration considered here is complementary to the filtration considered
in Theorem 3.2.

Theorem 3.5. Let 0 → I → L
π
→ Q → 0 be a short exact sequence of left Leibniz

algebras such that I ⊆ Cℓ(L). Then I is a Q-bimodule via x · y := π−1(x)y and
y · x := yπ−1(x) for every element x ∈ Q and every element y ∈ I, and there is
a similar bimodule structure for its dual I∗. Moreover, there is a spectral sequence
converging to HL•(L|Q,M) with second term

Ep,q
2 =

{
HLp(Q,HomF(I,HL

0(L,M))s) if p ≥ 0, q = 0
HLp(Q, (I∗)s)⊗HLq(L,M) if p ≥ 0, q ≥ 1

for every Q-bimodule M .

Corollary 3.6. If in the above situation the Q-bimodule M is symmetric, then for
any integers p, q ≥ 0 the E2-term of the spectral sequence simply reads

Ep,q
2 = HLp(Q, (I∗)s)⊗HLq(L,M) .

Remarks.

(a) According to [17, Proposition 2.13], Theorem 3.5 applies to I := Leib(L)
and Q := LLie (see [33, Remark 4.2] for the analogous statement for Leibniz
homology). Note that in the cohomology space HLp(Q, (I∗)s), the left Q-
module I∗ is here viewed as a symmetric bimodule (while it is naturally an
antisymmetric Q-bimodule).

(b) The higher differentials in the spectral sequence are again induced by the
the total Leibniz cohomology differential d•. Observe that the spectral
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sequence of the corollary is isomorphic to the spectral sequence of the bi-
complex CL•(Q, I∗)⊗ CL•(L,M). Therefore the description of the higher
differentials can be adapted from [23] (see in particular Remark 3.2 therein).
For example, it is clear that in case one of the two differentials in the bi-
complex is zero, all higher differentials vanish. We will see an instance of
this case in Example D below.

Proof. We consider the following filtration on the complex CL•(L,M)[−1].

FpCLn(L,M)[−1] := {c ∈ CLn+1(L,M) | c(x1, . . . , xn+1) = 0 if ∃ i ≤ p : xi ∈ I} .

This defines a finite decreasing filtration

F0CLn(L,M)[−1] = CLn(L,M)[−1] ⊃ F1CLn(L,M)[−1] ⊃ · · ·

· · · ⊃ Fn+1CLn(L,M)[−1] = CLn(Q,M)[−1],

whose associated spectral sequence converges in the strong (i.e., finite) sense to the
cohomology HLn(L|Q,M) of the quotient complex CLn(L,M)[−1] /CLn(Q,M)[−1]
thanks to the following result:

Lemma 3.7. The filtration is compatible with the Leibniz coboundary map d•.

Proof. We have to prove that d•(FpCLn(L,M)[−1]) ⊆ FpCLn+1(L,M)[−1]. For
this, we consider the different terms dij(c), δi(c), and ∂(c), which constitute the
differential d0(c), where we have inserted an element of I within the first p argu-
ments. The vanishing is clear for the terms dij(c) with i, j ≤ p, because even if the
element of I occurs in the product, the product will again be in the ideal I. The
vanishing is also clear for the terms dij(c) with i, j ≥ p+ 1. Concerning the terms
dij(c) with i ≤ p and j ≥ p + 1, we use the condition I ⊆ Cℓ(L) to conclude that
these are zero.

The action terms follow a similar pattern. The terms δi(c) with i ≤ p are zero,
because either the element of I occurs in the arguments, or it acts on M , which is
zero by assumption. The terms δi(c) with i ≥ p+1 are zero for elementary reasons,
as is the term ∂(c). �

We get for the 0-th term of the spectral sequence

Ep,q
0 = HomF(Q

p ⊗ Lq+1,M) /HomF(Q
p+1 ⊗ Lq,M) ∼= HomF(Q

p ⊗ I⊗ Lq,M) ,

where the isomorphism is induced by the inclusion I →֒ L.

Lemma 3.8. The differential d0 on Ep,q
0 reads id⊗p+1

CLp+1(Q,I∗)
⊗ dq|CLq(L,M).

Proof. The differential

d0 : FpCLn(L,M)[−1] /Fp+1CLn(L,M)[−1] →

→ FpCLn+1(L,M)[−1] /Fp+1CLn+1(L,M)[−1]

is the differential induced by d•. Thus we have to examine which terms dij(c), δi(c),
and ∂(c) composing the differential d0(c) are non-zero in case we put an element of
I within the first p+ 1 entries.

It is clear that dij(c) = 0 for i, j ≤ p+ 1, because this is true if the element of I
is not involved in the product as the number of elements is diminished by one, and
it is also true if the element of I is in the product as I is an ideal. We then have
dij(c) = 0 for i ≤ p+ 1 and j ≥ p+ 2 because in case the element of I acts in the
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product, it acts as zero by I ⊆ Cℓ(L). Furthermore, the terms δi(c) for i ≤ p + 1
are zero, because if the element of I acts on M , it acts as zero.

Note that in all action terms on I∗ the action is from the left, thus, in order
to make appear the Leibniz coboundary operator with values in I∗, we have to
switch around the last action term. This is the reason why we view I∗ here as
a symmetric Q-bimodule. We therefore are left with the terms composing the
differential d0|CLq(L,M). �

The first term of the spectral sequence is thus

Ep,q
1 = HomF(Q

p ⊗ I,F)⊗HLq(L,M) ,

and the second term reads for q > 0

Ep,q
2 = HLp(Q, (I∗)s)⊗HLq(L,M) ,

because a Leibniz algebra acts trivially on its cohomology. This follows again from
the Cartan relations for Leibniz cohomology (see [30, Proposition 3.1] for the case
of right Leibniz algebras and [12, Proposition 1.3.2] for the case of left Leibniz
algebras), but one needs to be careful since the Cartan relations do only hold
for q ≥ 1. Therefore, for an arbitrary bimodule M , Q will act non-trivially on
HL0(L,M). In case the bimodule M is symmetric however, the action is indeed
trivial on HL0(L,M). This ends the proof of Theorem 3.5. �

4. Cohomology of semi-simple Leibniz algebras

The first result in this section is the Leibniz analogue of Whitehead’s vanishing
theorem for the Chevalley-Eilenberg cohomology of finite-dimensional semi-simple
Lie algebras over a field of characteristic zero (see [11, Theorem 24.1] or [21, The-
orem 10]).

Theorem 4.1. Let L be a left Leibniz algebra over a field of characteristic zero
such that the canonical Lie algebra LLie associated to L is finite-dimensional and
semi-simple. If M is a finite-dimensional L-bimodule such that ML = 0, then
HLn(L,M) = 0 for every non-negative integer n.

Proof. As ML = 0, we obtain from Lemma 1.1 that M is a symmetric L-bimodule
and Leib(L) ⊆ Annbi

L (M). In particular, we have that M is a symmetric LLie-
bimodule. Since M is a symmetric L-bimodule, we conclude from [17, Proposi-
tion 4.1 and Corollary 4.2 (a)] that MLLie = 0. Hence Whitehead’s vanishing the-
orem for the Chevalley-Eilenberg cohomology of a finite-dimensional semi-simple
Lie algebra over a field of characteristic zero implies that Hn(LLie,M) = 0 for
every non-negative integer n. Since M is a symmetric LLie-bimodule, it follows
from Theorem 2.6 that HLn(LLie,M) = 0 for every non-negative integer n. As a
consequence, for the spectral sequence in Theorem 3.2 we have that Ep,q

2 = 0 for
all non-negative integers p and q. Hence the relative cohomology HLn(L|LLie,M)
vanishes for every non-negative integer n, and therefore we obtain from [17, Propo-
sition 4.1] and Proposition 3.1 that HLn(L,M) ∼= HLn(LLie,M) = 0 for every
non-negative integer n. �

Next, we derive the following generalization of Ntolo’s vanishing theorem for the
Leibniz cohomology of a finite-dimensional semi-simple Lie algebra over a field of
characteristic zero (see [32, Théorème 2.6]). We essentially proceed along the lines
of Pirashvili’s argument for the analogous result on Leibniz homology (see the proof
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of [33, Proposition 2.1]), but in the first step of our proof we also use Theorem 4.1
twice. Recall that a left Leibniz algebra L is called semi-simple if Leib(L) contains
every solvable ideal of L (see [17, Section 7]).

Theorem 4.2. Let L be a finite-dimensional semi-simple left Leibniz algebra over
a field of characteristic zero, and let M be a finite-dimensional L-bimodule. Then
HLn(L,M) = 0 for every integer n ≥ 2, and there is a five-term exact sequence

0 → M0 → HL0(L,M) →MLLie

sym → HomL(Lad,ℓ,M0) → HL1(L,M) → 0 .

Moreover, if M is symmetric, then HLn(L,M) = 0 for every integer n ≥ 1.

Proof. The proof is divided into three steps. First, we will prove the assertion
for symmetric L-bimodules. So suppose that M is symmetric. Since M is finite-
dimensional, it has a composition series. It is clear that sub-bimodules and ho-
momorphic images of a symmetric bimodule are again symmetric. By using the
long exact cohomology sequence, it is therefore enough to prove the second part
of the theorem for finite-dimensional irreducible symmetric L-bimodules. So sup-
pose now in addition that M is irreducible and non-trivial. Then we obtain from
Corollary 1.3 that ML = 0, and thus Theorem 4.1 yields that HLn(L,M) = 0
for every non-negative integer n. Finally, suppose that M = F is the trivial irre-
ducible L-bimodule. In this case it follows from Corollary 1.6 that HLn(L,F) ∼=
HLn−1(L, (L∗)s) for every integer n ≥ 1. Since LLie is perfect, we obtain from [17,
Proposition 4.1], Corollary 1.6, and [17, Corollary 4.4 (a)] that

(L∗)Ls
∼= HL0(L, (L∗)s) ∼= HL1(L,F) ∼= H1(LLie,F) = 0 .

Therefore another application of Theorem 4.1 yields that

HLn(L,F) ∼= HLn−1(L, (L∗)s) = 0

for every integer n ≥ 1. This finishes the proof for symmetric L-bimodules.
If M is anti-symmetric, then we obtain the assertion from Lemma 1.5 (b) and

the statement for symmetric bimodules. Finally, ifM is arbitrary, then in the short
exact sequence 0 → M0 → M → Msym → 0 the first term is anti-symmetric and
the third term is symmetric (cf. [17, Proposition 3.12 and Proposition 3.13]). Hence
another application of the long exact cohomology sequence in conjunction with the
statement for the anti-symmetric and the symmetric case yields HLn(L,M) = 0
for every integer n ≥ 2. Now we obtain the five-term exact sequence from the long
exact cohomology sequence together with [17, Corollary 4.2], [17, Corollary 4.4 (b)],
and the symmetric case. �

Note that Theorem 4.2 contains [17, Theorem 7.15] as the special case n = 1
and the second Whitehead lemma for Leibniz algebras as the special case n = 2.
Moreover, by the same argument as for Lie algebras (see [25, p. 87]) we obtain from
the second Whitehead lemma for Leibniz algebras another proof of Levi’s radical
splitting theorem for Leibniz algebras (see [4, Theorem 1]).

The following example shows that [32, Théorème 2.6] (and therefore also Theo-
rem 4.2) does not hold over fields of prime characteristic.

Example A. Let g := sl2(F) be the three-dimensional simple Lie algebra of trace-
less 2 × 2 matrices over a field F of characteristic p > 2. Moreover, let Fp denote
the field with p elements, and let L(n) (n ∈ Fp) denote the irreducible restricted
g-module of heighest weight n. (If the ground field F is algebraically closed, these
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modules represent all isomorphism classes of restricted irreducible g-modules.) It
is well known (see [14, Theorem 4]) that H•(g, L(n)) = 0 for any n 6≡ p− 2 (mod p)
and H1(g, L(p−2)) ∼= F2 ∼= H2(g, L(p−2)). (Note that by virtue of [14, Theorem 2],
H•(g,M) = 0 for every non-restricted irreducible g-module.)

We obtain from [17, Corollary 4.4 (a)] that

HL1(g, L(p− 2)s) ∼= H1(g, L(p− 2)) ∼= F
2 6= 0 .

Moreover, it follows from Proposition 2.2 that

0 6= F
2 ∼= H2(g, L(p− 2)) →֒ HL2(g, L(p− 2)s) .

In particular, this shows that [32, Théorème 2.6] (and therefore also Theorem 4.2)
is not true over fields of prime characteristic.

Remark. By using more sophisticated tools one can also say something about
the Leibniz cohomology of anti-symmetric irreducible g-bimodules, where again
g := sl2(F). It follows from Lemma 1.5 (b) in conjunction with [17, Corollary 4.2 (a)]
and [17, Corollary 4.4 (a)], respectively:

HL1(g, L(n)a) ∼= HL0(g,HomF(g, L(n))s) ∼= HomF(g, L(n))
g

and

HL2(g, L(n)a) ∼= HL1(g,HomF(g, L(n))s) ∼= H1(g,HomF(g, L(n))) .

Since g ∼= L(2) is a self-dual g-module, we have the following isomorphisms of
g-modules:

HomF(g, L(n)) ∼= L(2)⊗ L(n) .

Let us first consider the case p > 3. Then we obtain from the modular Clebsch-
Gordan rule (see [7, Theorem 1.11 (a)] or Satz a) in Chapter 5 of [19]) that

L(2)⊗ L(2) ∼= L(4)⊕ L(2)⊕ L(0)

and

L(2)⊗ L(p− 4) ∼=

{
L(3)⊕ L(1) if p = 5

L(p− 2)⊕ L(p− 4)⊕ L(p− 6) if p ≥ 7

Hence we conclude for p > 3 that

HL1(g, L(2)a) ∼= (L(2)⊗ L(2))g ∼= L(0)g ∼= F 6= 0

and

HL2(g, L(p− 4)a) ∼= H1(g, L(2)⊗ L(p− 4)) ∼= H1(g, L(p− 2)) ∼= F
2 6= 0 .

Let us now consider p = 3. Note that in this case L(2) is the Steinberg module,
i.e., L(2) is the unique projective irreducible restricted g-module. This implies that
L(2)⊗L(n) is also projective for every highest weight n ∈ F3. Then we obtain from
the modular Clebsch-Gordan rule (cf. [7, Theorem 1.11 (b) and (c)] or Satz b) and
c) in Chapter 5 of [19]) for p = 3 that

L(2)⊗ L(n) ∼=





L(2) if n ≡ 0 (mod 3)
P (1) if n ≡ 1 (mod 3) ,

P (0)⊕ L(2) if n ≡ 2 (mod 3)
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where P (n) denotes the projective cover (and at the same time also the injective
hull) of L(n). As a consequence, we have that

(L(2)⊗ L(n))g ∼=

{
F if n ≡ 2 (mod 3)
0 if n 6≡ 2 (mod 3)

Therefore, we obtain that

HL1(g, L(2)a) ∼= (L(2)⊗ L(2))g ∼= P (0)g ∼= F 6= 0 .

Moreover, by using the six-tem exact sequence relating Hochschild’s cohomology
of a restricted Lie algebra to its Chevalley-Eilenberg cohomology (see [20, p. 575]),
we also conclude that

HL2(g, L(2)a) ∼= H1(g, L(2)⊗ L(2)) ∼= F
3 6= 0 .

The next example shows that [32, Théorème 2.6] (and therefore also Theo-
rem 4.2) does not hold for infinite-dimensional modules.

Example B. Let g := sl2(C) be the three-dimensional simple complex Lie algebra
of traceless 2×2 matrices, and let V (λ) (λ ∈ C) denote the Verma module of highest
weight λ. (Here we identify every complex multiple of the unique fundamental
weight with its coefficient.) Verma modules are infinite-dimensional indecomposable
g-modules (see, for example, [24, Theorem 20.2 (e)]). Furthermore, it is well known
(see [24, Exercise 7 (c) in Section 7.2]) that V (λ) is irreducible if, and only if, λ is
not a dominant integral weight (i.e., with our identification, λ is not a non-negative
integer). Moreover, it follows from [37, Theorem 4.19] that

Hn(g, V (λ)) ∼=

{
C if λ = −2 and n = 1, 2
0 otherwise

This in conjunction with [17, Corollary 4.4 (a)] yields that

HL1(g, V (−2)s) ∼= H1(g, V (−2)) ∼= C 6= 0 .

Furthermore, it follows from Proposition 2.2 that

0 6= C ∼= H2(g, V (−2)) →֒ HL2(g, V (−2)s) .

In particular, this shows that [32, Théorème 2.6] (and therefore also Theorem 4.2)
is not true for infinite-dimensional modules.

We obtain as an immediate consequence of Theorem 4.2 the following general-
ization of [17, Corollary 7.9] (see [17, Corollary 4.5]).

Corollary 4.3. If L is a finite-dimensional semi-simple left Leibniz algebra over a
field of characteristic zero, then HLn(L,F) = 0 for every integer n ≥ 1.

Remark. It is well known that the analogue of Corollary 4.3 does not hold for
the Chevalley-Eilenberg cohomology of Lie algebras as H3(g,F) 6= 0 for any finite-
dimensional semi-simple Lie algebra g over a field F of characteristic zero (see [11,
Theorem 21.1]).

Next, we apply Theorem 4.2 to compute the cohomology of a finite-dimensional
semi-simple left Leibniz algebra over a field of characteristic zero with coefficients
in its adjoint bimodule and in its (anti-)symmetric counterparts (see Section 1 and
[17, Example 3.16] for the definition of the (anti-)symmetric adjoint bimodule Ls

resp. La of a Leibniz algebra L) as well as by deriving some consequences.
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Theorem 4.4. For every finite-dimensional semi-simple left Leibniz algebra L over
a field of characteristic zero the following statements hold:

(a)

HLn(L,Ls) =

{
Leib(L) if n = 0

0 if n ≥ 1

(b)

HLn(L,La) =





L if n = 0
EndL(Lad,ℓ) if n = 1 ,

0 if n ≥ 2

where EndL(Lad,ℓ) denotes the vector space of endomorphisms of the left
adjoint L-module Lad,ℓ.

(c)

HLn(L,Lad) =





Leib(L) if n = 0
HomL(Lad,ℓ,Leib(L)) if n = 1 ,

0 if n ≥ 2

where HomL(Lad,ℓ,Leib(L)) denotes the vector space of homomorphisms
from the left adjoint L-module Lad,ℓ to the Leibniz kernel Leib(L) considered
as a left L-module.

Proof. (a): According to [17, Proposition 4.1] and [17, Proposition 7.5] we have
that that HL0(L,Ls) = LL

s = Cℓ(L) = Leib(L). Moreover, we obtain the statement
for degree n ≥ 1 from the second part of Theorem 4.2.

(b): It follows from [17, Corollary 4.2 (b)] that HL0(L,La) = L, and it follows
from [17, Corollary 4.4 (b)] that HL1(L,La) = EndL(Lad,ℓ). The remainder of the
assertion is an immediate consequence of the first part of Theorem 4.2.

(c): As for the symmetric adjoint bimodule, we obtain from [17, Proposition 4.1]
and [17, Proposition 7.5] that HL0(L,Lad) = LL

ad = Cℓ(L) = Leib(L). Next, we
consider the short exact sequence

(4.1) 0 → Leib(L) → Lad → LLie → 0

of L-bimodules. According to [17, Example 3.11] and [17, Proposition 3.13], LLie

is a symmetric L-bimodule. Consequently, it follows from [17, Corollary 4.2 (a)]
and [17, Proposition 7.8] resp. the second part of Theorem 4.2 that HL0(L,LLie) =

LLLie

Lie = C(LLie) = 0 and HL1(L,LLie) = 0. Hence the long exact cohomology
sequence in conjunction with [17, Corollary 4.4 (b)] yields

HL1(L,Lad) ∼= HL1(L,Leib(L)) = HomL(Lad,ℓ,Leib(L)) .

Finally, the assertion for degree n ≥ 2 is again an immediate consequence of the
first part of Theorem 4.2. �

Remark. Note that the vanishing part of Theorem 4.4 (c) confirms a generalization
of the conjecture at the end of [1]. Moreover, parts (a) and (b) of Theorem 4.4 show
that the statements in Theorem 4.2 are best possible.

In particular, one can derive from Theorem 4.4 (c) that finite-dimensional semi-
simple non-Lie Leibniz algebras over a field of characteristic zero have outer deriva-
tions. In this respect they behave differently than finite-dimensional semi-simple
Lie algebras over a field of characteristic zero (see, for example, [24, Theorem 5.3]).
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Corollary 4.5. Every finite-dimensional semi-simple non-Lie Leibniz algebra over
a field of characteristic zero has derivations that are not inner.

Proof. If one applies the contravariant functor HomF(−,Leib(L)) to the short exact
sequence (4.1) considered as a short exact sequence of left L-modules, one obtains
the short exact sequence

0 → HomF(LLie,Leib(L)) → HomF(Lad,ℓ,Leib(L)) → HomF(Leib(L),Leib(L)) → 0

of left L-modules. Then the long exact cohomology sequence in conjunction with
Lemma 1.5 (a) yields the long exact sequence

0 → HomL(LLie,Leib(L)) → HomL(Lad,ℓ,Leib(L)) → HomL(Leib(L),Leib(L))

→ H̃L
1
(L,HomF(LLie,Leib(L))) = HL1(L,HomF(LLie,Leib(L))s)

According to the second part of Theorem 4.2, the fourth term is zero. Since the
third term contains the identity map, it is non-zero as by hypothesis L is a not a
Lie algebra. Hence in this case the second term is non-zero, and we obtain from
Theorem 4.4 (c) that HL1(L,Lad) ∼= HomL(Lad,ℓ,Leib(L)) 6= 0. �

Let F be an algebraically closed field of characteristic zero, let n be a non-negative

integer, and let Ln(F) ⊆ Fn3

denote the affine variety of structure constants of
the n-dimensional left Leibniz algebras over F with respect to a fixed basis of
F
n. Then the general linear group GLn(F) acts on Ln(F), and a point (= Leibniz

multiplication law) φ ∈ Ln(F) is called rigid if the orbit GLn(F)·φ is open in Ln(F).
It follows from Corollary 2.8 that the infinite-dimensional two-sided Witt algebra
over an algebraically closed field of characteristic zero is rigid as a Leibniz algebra.
By using [6, Théorème 3 in Chapitre 2] in conjunction with Theorem 4.4 (c) one
obtains the rigidity of any finite-dimensional semi-simple Lie algebra as a Leibniz
algebra.

Corollary 4.6. Every finite-dimensional semi-simple left Leibniz algebra over an
algebraically closed field of characteristic zero is rigid as a Leibniz algebra.

We conclude this section by applying the spectral sequence of Theorem 3.2 to the
Levi decomposition L = s⋉ Rad(L) of a Leibniz algebra L into a hemi-semidirect
product of a semisimple Lie algebra s and its largest solvable ideal Rad(L) (see the
main result of [4] or the remark after Theorem 4.2). This will give us a reduction
formula for the Leibniz cohomology of a finite-dimensional Leibniz algebra, which
can be seen as an analogue of the formula describing the Chevalley-Eilenberg coho-
mology of a finite-dimensional Lie algebra in [21, Theorem 13]. Our formula is less
general as it takes only into account Leibniz cohomology with values in symmet-
ric s-bimodules or, in other words, the radical Rad(L) has to act trivially on the
symmetric L-bimodule M . Under this assumption, we have the following result:

Theorem 4.7. Let L be a finite-dimensional left Leibniz algebra with Levi decom-
position L = s ⋉ Rad(L), and let M be a symmetric L-bimodule such that the
radical Rad(L) acts trivially on M . Then for every non-negative integer n there
are isomorphisms

HLn(L,M) ∼=

{
M s if n = 0

HLn−1(L,HomF(Rad(L),M
s)s) if n ≥ 1

of vector spaces.
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Proof. The given Levi decomposition L = s ⋉ Rad(L) yields for the spectral se-
quence in Theorem 3.2 the following E2-term:

E0,q
2 = HLq−1(L,HomF(Rad(L),M

s)s) ,

thanks to Theorem 4.2. The spectral sequence collapses, and we obtain

HLn(L|s,M) ∼= HLn(L,HomF(Rad(L),M
s)s) .

On the other hand, the long exact sequence of Proposition 3.1 splits, because the
extension given by the Levi decomposition splits. Hence we conclude that

HLn(L,M) ∼= HLn(s,M)⊕HLn−1(L|s,M)

∼= HLn(s,M)⊕HLn−1(L,HomF(Rad(L),M
s)s) ,

and thus the assertion follows from Theorem 4.2. �

Remark. There is also a theorem similar to Theorem 4.7, but applying the spectral
sequence of Corollary 3.6 to the Levi decomposition. In order to use Corollary 3.6,
one needs that the solvable radical Rad(L) is contained in the left center of L. It
seems that this condition is seldom satisfied.

In the case of the trivial bimodule Theorem 4.7 yields the following refinement
of Corollary 1.6.

Corollary 4.8. Let L be a finite-dimensional left Leibniz algebra over a field F of
characteristic zero. Then for every integer n ≥ 1 there are isomorphisms

HLn(L,F) ∼= HLn−1(L, [Rad(L)∗]s)

of vector spaces.

Finally, from Theorem 4.7 we obtain immediately the following partial general-
ization of Theorem 4.2 to not necessarily semi-simple left Leibniz algebras.

Corollary 4.9. Let L be a finite-dimensional left Leibniz algebra over a field of
characteristic zero with Levi decomposition L = s ⋉ Rad(L), and let M be a sym-
metric L-bimodule such that the radical Rad(L) acts trivially on M and M s = 0.
Then HLn(L,M) = 0.

5. Cohomology of solvable Leibniz algebras

The first result in this section is the Leibniz analogue of Dixmier’s vanishing
theorem for the Chevalley-Eilenberg cohomology of finite-dimensional nilpotent
Lie algebras (see [13, Théorème 1] for infinite ground fields and [3, Lemma 3 or
Theorem 1] for arbitrary ground fields). Its proof goes exactly as the proof of
Theorem 4.1 except that one replaces Whitehead’s vanishing theorem by Dixmier’s
vanishing theorem.

Theorem 5.1. Let L be a left Leibniz algebra such that the canonical Lie algebra
LLie associated to L is finite-dimensional and nilpotent. IfM is a finite-dimensional
L-bimodule such that ML = 0, then HLn(L,M) = 0 for every non-negative integer
n.

Recall that a left (or right) Leibniz algebra L is called nilpotent if Ln = 0 for some

positive integer n, where Ln is defined recursively by L1 := L and Ln :=
n−1∑
k=1

LkLn−k

for every integer n ≥ 2 (see [17, Section 5]).
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Theorem 5.2. Let L be a finite-dimensional nilpotent left Leibniz algebra, and let
M be a finite-dimensional non-trivial irreducible L-bimodule. Then HLn(L,M) = 0
for every positive integer n. Moreover, if M is symmetric, then HLn(L,M) = 0 for
every non-negative integer n.

Proof. If M is symmetric, then the assertion follows from Corollary 1.3 and Theo-
rem 5.1. According to [17, Theorem 3.14], we can suppose thatM is anti-symmetric.
We obtain from Lemma 1.5 (b) that

HLn(L,M) ∼= HLn−1(L,HomF(L,M)s) ∼= HLn−1(L, (L∗ ⊗M)s)

for every positive integer n. By refining the left descending central series of L (see
[17, Section 5]), one can construct a composition series

Lad,ℓ = Ln ⊃ Ln−1 ⊃ · · · ⊃ L1 ⊃ L0 = 0

of the left adjoint L-module such that Lj/Lj−1 is the trivial one-dimensional L-
module F for every integer 1 ≤ j ≤ n. From the short exact sequences 0 →
Lj−1 → Lj → F → 0, we obtain by dualizing, tensoring each term with M , and
symmetrizing the short exact sequences:

0 →Ms → (L∗
j ⊗M)s → (L∗

j−1 ⊗M)s → 0

for every integer 1 ≤ j ≤ n. Since M is a non-trivial irreducible left L-module,
we conclude that Ms is a non-trivial irreducible symmetric L-bimodule. Hence we
obtain inductively from the long exact cohomology sequence that HLn(L,M) ∼=
HLn−1(L, (L∗ ⊗M)s) = 0 for every positive integer n. �

Since the Leibniz cohomology of an abelian Lie algebra with trivial coefficients
is known, in Example C we compute this cohomology for the smallest non-abelian
nilpotent Lie algebra. Note that in [33, Example 1.4. iv)] the corresponding Leib-
niz homology has been computed. In fact, homology and cohomology of a finite-
dimensional Leibniz algebra L with trivial coefficients are isomorphic, as we have
the duality isomorphism CL•(L,F)

∗ ∼= CL•(L,F) already on the level of cochain
complexes. Therefore our results coincide with those of Pirashvili. We furthermore
compute in Example D the Leibniz cohomology of the smallest nilpotent non-Lie
Leibniz algebra with coefficients in the trivial bimodule.

Example C. Let F denote an arbitrary field of characteristic 6= 2, and let h :=
Fx⊕Fy⊕Fz be the three-dimensional Heisenberg algebra over F with multiplication
determined by xy = z = −yx. Then the Chevalley-Eilenberg cohomology of h with
coefficients in the trivial module F is well-known:

dimF H
n(h,F) =





1 if n = 0, 3
2 if n = 1, 2 .
0 if n ≥ 4

Hence it follows from [17, Corollary 4.2] that dimF HL
0(h,F) = 1 and from [17,

Corollary 4.4 (a)] that dimFHL
1(h,F) = 2.

As Hn(h,F) = 0 for every integer n ≥ 4, we obtain from Proposition 2.2 the
following six-term exact sequence:

0 → H2(h,F) → HL2(h,F) → H0
rel(h,F) → H3(h,F) → HL3(h,F) → H1

rel(h,F) → 0

and

HLn(h,F) ∼= Hn−2
rel (h,F)
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for every integer n ≥ 4.
Since we assume that char(F) 6= 2, it follows from the remark after Proposi-

tion 2.2 that we can identify H0
rel(h,F) with the space of invariant symmetric bilin-

ear forms on h and the map H0
rel(h,F) → H3(h,F) with the classical Cartan-Koszul

map. It is easy to see that the latter map is zero for the Heisenberg algebra, which
yields the surjectivity of the map HL2(h,F) → H0

rel(h,F) and the injectivity of the

map H3(h,F) → HL3(h,F). As a consequence, we obtain the following two short
exact sequences:

0 → H2(h,F) → HL2(h,F) → H0
rel(h,F) → 0 ,

0 → H3(h,F) → HL3(h,F) → H1
rel(h,F) → 0 .

In order to compute H0
rel(h,F) and H1

rel(h,F), we need the coadjoint Chevalley-
Eilenberg cohomology of h. We have that dimF H

0(h, h∗) = 2, dimF H
1(h, h∗) = 5,

dimFH
2(h, h∗) = 4, and H3(h, h∗) = 1. (This can be computed directly but for the

complex numbers as a ground field it also follows from the main result of [31] in
conjunction with [37, Theorem 3.4].)

Similar to the discussion of the consequences of Proposition 2.2 above, we obtain
from Proposition 2.1 the two short exact sequences

0 → H2(h,F) → H1(h, h∗) → HR0(h) → 0 ,

0 → H3(h,F) → H2(h, h∗) → HR1(h) → 0 ,

the isomorphism HR2(h) ∼= H3(h, h∗), and HRn(h) = 0 for every integer n ≥ 3.
From these two short exact sequences and the isomorphism we derive that

dimFHR
0(h) = dimFH

1(h, h∗)− dimFH
2(h,F) = 5− 2 = 3 ,

dimFHR
1(h) = dimFH

2(h, h∗)− dimFH
3(h,F) = 4− 1 = 3 ,

and

dimFHR
2(h) = dimFH

3(h, h∗) = 1 ,

respectively. Therefore we obtain from H0
rel(h,F)

∼= HR0(h) that

dimF HL
2(h,F) = dimFH

2(h,F) + dimF H
0
rel(h,F) = 2 + 3 = 5 .

Now we want to apply the spectral sequence of Theorem 2.5. For this let us
compute the differential

d0,12 : E0,1
2 = HR0(h) ⊗HL1(h,F) → E2,0

2 = HR2(h) ⊗HL0(h,F) .

In characteristic 6= 2, an element of HR0(h) is an invariant symmetric bilinear form
ω. It is considered as a 1-cochain with values in h∗ and, as it is a representative
of an element of a quotient cochain complex, it is zero in case it is skew-symmetric
in all entries. Take furthermore a cocycle c ∈ CL1(h,F) and compute for three
elements r, s, t ∈ h:

d1(ω ⊗ c)(r, s, t) = ω(rs,−)c(t) + ω(s,−)c(rt)− ω(r,−)c(st) +

+ ω(s, r−)c(t)− ω(r, s−)c(t) + ω(r, t−)c(s)

Now as c is a cocycle with trivial coefficients, c vanishes on products, thus the
second and third terms are zero. Furthermore, the first and fourth term cancel by
the invariance of the form and skew-symmetry of the Lie product. We are left with
the two last terms −ω(r, s−)c(t) + ω(r, t−)c(s), which are skew-symmetric in the
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three entries of the element in HR2(h) and vanish therefore as well. In conclusion,

the differential d0,12 is zero, and we have that

H1
rel(h) = HR0(h) ⊗HL1(h,F)⊕HR1(h)⊗HL0(h,F) .

This implies in turn

dimFHL
3(h,F) = dimF H

3(h,F) + dimF H
1
rel(h,F) = 1 + 9 = 10 .

It seems that all differentials d2 are zero and thus that this scheme persists
to yield the dimensions of the higher Hn

rel(h,F) and thus of HLn(h,F) (see the
dimension formula in [33, Example 1.4 iv)]).

Remark. As a by-product of the above computations we obtain that the space
[S2(h)∗]h of invariant symmetric bilinear forms on h is three-dimensional when
char(F) 6= 2.

Example D. Let F denote an arbitrary field, and let N := Fe ⊕ Ff be the two-
dimensional nilpotent left (and right) Leibniz algebra over F with multiplication
determined by ff = e (see [17, Example 2.4]). Then Leib(N) = Fe, and thus
NLie is a one-dimensional abelian Lie algebra. Hence HLn(NLie,F) ∼= F for every
non-negative integer n.

Then it follows from [17, Corollary 4.2] that dimF HL
0(N,F) = 1 and from [17,

Corollary 4.4 (a)] that dimFHL
1(N,F) = 1.

We compute the higher cohomology with the help of the spectral sequence of
Corollary 3.6. As observed in the remark after the proof of Theorem 3.5, all higher
differentials are zero in our case, because the differential of the abelian Lie algebra
with values in the trivial module vanishes. With the input data dimFHL

0(N,F) = 1
and dimF HL

1(N,F) = 1, we therefore get from the spectral sequence

dimF HL
0(N|NLie,F) = 1 and dimF HL

1(N|NLie,F) = 2.

In order to apply now the long exact sequence from Proposition 3.1 and deduce the
dimensions of the cohomology spaces from here, we want to argue that the sequence
is split. In fact, it is split, because the connecting homomorphism is surjective.
This comes from the fact that the complex CL•(NLie,F) is one-dimensional in each
degree and a generator can be hit via the connecting homomorphism which is easy
to see directly (take a cochain in CLn(N|NLie,F) represented by an element in
CLn+1(N,F) with exactly one slot in e∗ at the first place: the Leibniz product
in this slot gives the only non-zero contribution). The long exact sequence from
Proposition 3.1 splits into short exact sequences

0 → HLn(N,F) → HLn−1(N|NLie,F) → HLn+1(NLie,F) → 0 ,

starting from n = 2, where the right-hand term is one-dimensional. These short
exact sequences, together with the spectral sequence where all differentials are zero,
permit to determine all relative and absolute cohomology spaces. For example, we
obtain dimFHL

2(N,F) = 1, and then dimF HL
2(N|NLie,F) = 3, dimFHL

3(N,F) =
2, and then dimFHL

3(N|NLie,F) = 5, and so on. In general, we obtain by induction
that dimF HL

n(N,F) = 2n−2 for every integer n ≥ 2 and dimFHL
n(N|NLie,F) =

2n−1 + 1 for every integer n ≥ 1.

The next result is the Leibniz analogue of Barnes’ vanishing theorem for the
Chevalley-Eilenberg cohomology of supersolvable Lie algebras (see [3, Theorem 3]).
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We say that a (left or right) Leibniz algebra L is supersolvable if there exists a chain

L = Ln ⊃ Ln−1 ⊃ · · · ⊃ L1 ⊃ L0 = 0

of ideals of L such that dimF Lj/Lj−1 = 1 for every integer 1 ≤ j ≤ n. Note that
as usual finite-dimensional nilpotent Leibniz algebras are supersolvable and super-
solvable Leibniz algebras are solvable. Moreover, over algebraically closed fields of
characteristic zero, every finite-dimensional solvable Leibniz algebra is supersolv-
able (see [17, Corollary 6.7]). Finally, as for Lie algebras, it is not difficult to see
that subalgebras and homomorphic images of supersolvable Leibniz algebras are
again supersolvable.

Theorem 5.3. Let L be a finite-dimensional supersolvable left Leibniz algebra
over a field F, and let M be a finite-dimensional irreducible L-bimodule such that
dimFM 6= 1. Then HLn(L,M) = 0 for every positive integer n. Moreover, if M is
symmetric, then HLn(L,M) = 0 for every non-negative integer n.

Proof. First, suppose that M is symmetric. Since homomorphic images of su-
persolvable Leibniz algebras are supersolvable, it follows that LLie is supersolv-
able. Since M is a symmetric L-bimodule, we obtain from [17, Lemma 3.10] that

Leib(L) ⊆ AnnbiL (M). In particular, M is an irreducible symmetric LLie-bimodule
such that dimFM 6= 1. Then [3, Theorem 3] implies that Hn(LLie,M) = 0 for every
non-negative integer n. SinceM is a symmetric LLie-bimodule, we thus obtain from
Theorem 2.6 that HLn(LLie,M) = 0 for every non-negative integer n. Hence one
can proceed exactly as in the proof of Theorem 4.1 to conclude that HLn(L,M) = 0
for every integer n ≥ 0.

Now suppose that M is not symmetric. Then it follows from [17, Theorem 3.14]
that M is anti-symmetric. We obtain from Lemma 1.5 (b) that

HLn(L,M) ∼= HLn−1(L,HomF(L,M)s) ∼= HLn−1(L, (L∗ ⊗M)s)

for every positive integer n. By definition of supersolvability, the left adjoint L-
module has a composition series

Lad,ℓ = Ln ⊃ Ln−1 ⊃ · · · ⊃ L1 ⊃ L0 = 0

such that dimF Lj/Lj−1 = 1 for every integer 1 ≤ j ≤ n. From the short exact
sequences 0 → Lj−1 → Lj → Lj/Lj−1 → 0, we obtain by dualizing, tensoring each
term with M , and symmetrizing the short exact sequences:

0 → [(Lj/Lj−1)
∗ ⊗M ]s → (L∗

j ⊗M)s → (L∗
j−1 ⊗M)s → 0

for every integer 1 ≤ j ≤ n. Since M is irreducible and dimF Lj/Lj−1 = 1, we
conclude that [(Lj/Lj−1)

∗ ⊗M ]s is an irreducible symmetric L-bimodule. More-
over, we have that dimF[(Lj/Lj−1)

∗ ⊗ M ]s 6= 1 as dimFM 6= 1. Hence we
obtain inductively from the long exact cohomology sequence that HLn(L,M) ∼=
HLn−1(L, (L∗ ⊗M)s) = 0 for every positive integer n. �

Remark. It follows from Lie’s theorem for Leibniz algebras that every finite-
dimensional irreducible bimodule of a finite-dimensional solvable left Leibniz alge-
bra over an algebraically closed field of characteristic zero is one-dimensional (see
[17, Corollary 6.5 (a)]). Consequently, in this case the hypothesis of Theorem 5.3 is
never satisfied, and thus this result is only applicable over non-algebraically closed
fields of characteristic zero or over fields of prime characteristic.
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The following two examples give a first indication what to expect for the Leibniz
cohomology of supersolvable Leibniz algebras with coefficients in one-dimensional
bimodules, and thereby complementing Theorem 5.3. We begin by computing this
Leibniz cohomology for the smallest non-nilpotent Lie algebra. Note that for a
ground field of characteristic 2 the Leibniz cohomology of this Lie algebra is far
more complicated than for a field of characteristic 6= 2.

Example E. Let F denote an arbitrary field, and let a := Fh ⊕ Fe be the non-
abelian two-dimensional Lie algebra over F with multiplication determined by he =
e = −eh. For any scalar λ ∈ F one can define a one-dimensional left a-module
Fλ := F1λ with a-action defined by h · 1λ := λ1λ and e · 1λ := 0. Then the
Chevalley-Eilenberg cohomology of a with coefficients in Fλ is as follows:

Hn(a, Fλ) ∼=

{
F if λ = 0 and n = 0, 1 or λ = 1 and n = 1, 2
0 otherwise

In particular, if λ 6= 0, 1, then H•(a, Fλ) = 0.
First, let us consider Fλ as a symmetric a-bimodule (Fλ)s. Then it follows from

Theorem 2.6 that HL•(a, (Fλ)s) = 0 for λ 6= 0, 1.
In order to be able to compute the Leibniz cohomology for λ = 0, 1, and for the

anti-symmetric a-bimodules (Fλ)a, let M be an arbitrary left a-module considered
as a symmetric a-bimodule Ms. Since Hn(a,M) = 0 for every integer n ≥ 3, we
obtain from Proposition 2.2 the short exact sequence

(5.1) 0 → H2(a,M) → HL2(a,Ms) → H0
rel(a,M) → 0

and the isomorphisms

(5.2) HLn(a,Ms) ∼= Hn−2
rel (a,M)

for every integer n ≥ 3. Moreover, it follows from [17, Corollary 4.2 (a)] and [17,
Corollary 4.4 (a)], respectively, that HL0(a,Ms) ∼=Ma and HL1(a,Ms) ∼= H1(a,M).

For the computation of the relative cohomology spaces Hn
rel(a,M) we need the

coadjoint Chevalley-Eilenberg cohomology of a. It is easy to verify that

dimFH
0(a, a∗) = 1 ,

dimF H
1(a, a∗) =

{
2 if char(F) = 2
1 if char(F) 6= 2 ,

and

dimF H
2(a, a∗) =

{
1 if char(F) = 2
0 if char(F) 6= 2 .

Consequently, we have to consider the cases char(F) = 2 and char(F) 6= 2 differently.
Let us first assume that char(F) 6= 2. Then it follows from Proposition 2.1 that

HR0(a) ∼= H1(a, a∗) ∼= F and HRn(a) = 0 for every integer n ≥ 1. Hence the
spectral sequence of Theorem 2.5 implies that Hn

rel(a,M) ∼= HLn(a,Ms) for every
non-negative integer n. In conclusion, we obtain that

(5.3) HL2(a,Ms) ∼=Ma ⊕H2(a,M)

and

(5.4) HLn(a,Ms) ∼= HLn−2(a,Ms) for every integer n ≥ 3 .
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As an immediate consequence, we deduce when char(F) 6= 2 that dimFHL
n(a,F) =

1 for every non-negative integer n and

dimFHL
n(a, (F1)s) =

{
0 if n = 0
1 if n > 0

In summary, we have for the Leibniz cohomology of a over a field F of charac-
teristic 6= 2 with coefficients in a one-dimensional symmetric bimodule that

dimFHL
n(a, (Fλ)s) =

{
1 if λ = 0 and n is arbitrary or if λ = 1 and n > 0
0 otherwise

Next, let us assume that char(F) = 2. Then it follows from Proposition 2.1 that
HR0(a) ∼= H1(a, a∗) ∼= F2, HR1(a) ∼= H2(a, a∗) ∼= F, and HRn(a) = 0 for every
integer n ≥ 2. Hence in the spectral sequence of Theorem 2.5, we have only two
non-zero columns, namely the p = 0 and the p = 1 column. In the p = 0 column,
we have spaces F2 ⊗ HLq(a,Ms) ∼= HLq(a,Ms) ⊕ HLq(a,Ms), while in the p = 1
column, we have just HLq(a,Ms) for every integer q ≥ 0. Therefore, the spectral
sequence degenerates at the term E2, and for every integer n ≥ 1 we obtain that

(5.5) Hn
rel(a,M) ∼= HLn(a,Ms)⊕HLn(a,Ms)⊕HLn−1(a,Ms) ,

and

(5.6) H0
rel(a,M) ∼= E0,0

2
∼= HL0(a,Ms)⊕HL0(a,Ms) ∼=Ma ⊕Ma .

This, together with (5.1), (5.2), and induction yields the recursive relation

(5.7) HLn(a,Ms) ∼= HLn−1(a,Ms)⊕HLn−2(a,Ms)

for every integer n ≥ 2.
As a consequence, we obtain for the Leibniz cohomology of a over a field F of

characteristic 2 with coefficients in a one-dimensional symmetric bimodule that

dimFHL
n(a, (Fλ)s) =





fn+1 if λ = 0
fn if λ = 1
0 otherwise

for every non-negative integer n, where fn denotes the nth term of the standard
Fibonacci sequence given by f0 := 0, f1 := 1, and fn := fn−1 + fn−2 for every
integer n ≥ 2. In particular, we have that

HLn(a, (F1)s) ∼= HLn−1(a,F)

for every integer n ≥ 1.
Finally, let us consider Fλ as an anti-symmetric Leibniz a-bimodule (Fλ)a with

the same left a-action as above and with the trivial right a-action (see Section 1).
Then we conclude from [17, Corollary 4.2 (b)] that

dimF HL
0(a, (Fλ)a) = 1 for every λ ∈ F .

Let us now compute HLn(a, (Fλ)a) for any integer n ≥ 1. It follows from
Lemma 1.5 (b) that

(5.8) HLn(a, (Fλ)a) ∼= HLn−1(a,HomF(a, Fλ)s) ∼= HLn−1(a, (a∗ ⊗ Fλ)s) .

A straightforward computation shows that

0 → Fλ → a∗ ⊗ Fλ → Fλ−1 → 0
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is a short exact sequence of left a-modules. Then we obtain from the long exact
cohomology sequence and another straightforward computation in the case λ = 1:

dimF(a
∗ ⊗ Fλ)

a =

{
1 if λ = 0
0 otherwise ,

dimF H
1(a, a∗ ⊗ Fλ) =





2 if λ = 0 and char(F) = 2
1 if λ = 0, 2 and char(F) 6= 2 ,
0 otherwise

and

dimFH
2(a, a∗ ⊗ Fλ) =

{
1 if λ = 0 and char(F) = 2 or λ = 2 and char(F) 6= 2
0 otherwise .

If char(F) 6= 2, then we conclude by applying (5.3) in conjunction with [17,
Corollary 4.2 (a)], [17, Corollary 4.4 (a)], and (5.8), respectively, to the symmetric
a-bimodule Ms := (a∗ ⊗ Fλ)s that

dimFHL
1(a, (Fλ)a) =

{
1 if λ = 0
0 otherwise ,

and

dimF HL
3(a, (Fλ)a) = dimF HL

2(a, (Fλ)a) =

{
1 if λ = 0, 2
0 otherwise ,

Finally, we use (5.4) to deduce for every integer n ≥ 2:

dimFHL
n(a, (Fλ)a) =

{
1 if λ = 0, 2
0 otherwise .

In summary, we have for the Leibniz cohomology of a over a field F of charac-
teristic 6= 2 with coefficients in a one-dimensional anti-symmetric bimodule that

dimF HL
n(a, (Fλ)a) =





1 if λ = 0 and n is arbitrary or λ = 2 and n ≥ 2
or n = 0 and λ is arbitrary

0 otherwise .

If char(F) = 2, then we obtain by applying (5.7) in conjunction with [17, Corol-
lary 4.2 (a)], [17, Corollary 4.4 (a)], and (5.8), respectively:

dimFHL
n(a, (Fλ)a) =





1 if n = 0 and λ is arbitrary
fn+1 if λ = 0 and n is arbitrary
0 otherwise .

Remark. Since every invariant symmetric bilinear form on a is a multiple of the
Killing form, we have that [S2(a)∗]a ∼= F. On the other hand, from the computations
in Example E we obtain that

H0
rel(a,F)

∼= HR0(a) ∼= H1(a, a∗) ∼=

{
F2 if char(F) = 2
F if char(F) 6= 2 ,

This shows that, in general, HR0(a) 6∼= [S2(a)∗]a and H0
rel(a,F) 6∼= [S2(a)∗]a when

char(F) = 2.
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In the next example we compute the Leibniz cohomology of the smallest non-
nilpotent supersolvable non-Lie left Leibniz algebra with coefficients in one-dimen-
sional bimodules. Note that contrary to the semidirect product of two one-dimen-
sional Lie algebras in Example E the Leibniz algebra in Example F is the hemi-
semidirect product of two one-dimensional Lie algebras. It turns out that this
somewhat simplifies matters.

Example F. Let F denote an arbitrary field, and let A := Fh ⊕ Fe be the two-
dimensional supersolvable left Leibniz algebra over F with multiplication deter-
mined by he = e (see [17, Example 2.3]). For any scalar λ ∈ F one can define a
one-dimensional left A-module Fλ := F1λ with A-action defined by h · 1λ := λ1λ
and e ·1λ := 0. Note that Leib(A) = Fe, and thus ALie is a one-dimensional abelian
Lie algebra. Then we obtain from Theorem 5.2 and [17, Corollary 4.2 (b)] that

dimF HL
n(ALie, (Fλ)s) =

{
1 if λ = 0 and n is arbitrary
0 otherwise ,

and

dimFHL
n(ALie, (Fλ)a) =

{
1 if λ = 0 and n is arbitrary or if λ 6= 0 and n = 0
0 otherwise .

In order to be able to apply the spectral sequence of Theorem 3.5, we first
compute HL•(ALie, [Leib(A)

∗]s). Observe that the module Leib(A)∗ = Fe∗ ∼= F−1

is non-trivial irreducible and furthermore viewed as a symmetric ALie-bimodule.
Hence from the above it follows that HLn(ALie, [Leib(A)

∗]s) = 0 for every non-
negative integer n. This implies in turn that the spectral sequence of Theorem 3.5
collapses at the E2-term and that

HLn(A|ALie, (Fλ)a) = HLn(ALie,HomF(Leib(A),HL
0(A, (Fλ)a))s)

= HLn(ALie,HomF(Leib(A), Fλ)s)

for all non-negative integers n, while HLn(A|ALie, (Fλ)s) = 0 for all n ≥ 0 by
Corollary 3.6. Notice that as an A-bimodule HomF(Leib(A), Fλ)s ∼= [Fλ−1]s. We
have already remarked that the long exact sequence of Proposition 3.1 splits, and
therefore we conclude from Proposition 3.1 that

HLn(A, (Fλ)a) ∼= HLn(ALie, [Fλ]a)⊕HLn(ALie, [Fλ−1]s)

for all λ and all non-negative integers n. Consequently, we obtain that

dimF HL
n(A, (Fλ)s) =

{
1 if λ = 0 and n is arbitrary
0 otherwise ,

and

dimFHL
n(A, (Fλ)a) =

{
1 if λ = 0, 1 and n is arbitrary or if λ 6= 0, 1 and n = 0
0 otherwise .

Remark. In particular, we have that dimFHL
n(A,F) = 1 for every non-negative

integer n. Note that this follows as well from the scheme of proof of Proposition 4.3
in [33] (using also the isomorphism between Leibniz homology and cohomology with
trivial coefficients). Indeed, the characteristic element ch(A) ∈ HL2(ALie,Leib(A))
of A is zero as Leib(A) = Fe ∼= F1. Since also HL•(ALie, [Leib(A)

∗]s) is zero, we
can reason in the same way as Pirashvili does.
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The last general vanishing result is the Leibniz analogue of Barnes’ vanishing
theorem for the Chevalley-Eilenberg cohomology of finite-dimensional solvable Lie
algebras (see [3, Theorem 2]). Recall that a left (or right) Leibniz algebra L over a
field F is called solvable if L(n) = 0 for some non-negative integer n, where L(n) is
defined recursively by L(0) := L and L(n) := 〈xy | x, y ∈ L(n−1)〉F for every positive
integer n (see [17, Section 1]).

Proposition 5.4. Let L be a finite-dimensional solvable left Leibniz algebra, and
let M be a finite-dimensional faithful irreducible symmetric L-bimodule. Then
HLn(L,M) = 0 for every non-negative integer n.

Proof. It follows from [17, Proposition 1.1] (see also [17, Proposition 6.1]) that LLie

is solvable. Since by hypothesis M is a faithful symmetric L-bimodule, we obtain
from Lemma 1.4 that Annbi

L (M) = Leib(L). In particular,M is a faithful irreducible
symmetric LLie-bimodule. Then [3, Theorem 2] implies that Hn(LLie,M) = 0 for
every non-negative integer n. As M is a symmetric LLie-bimodule, we conclude
from Theorem 2.6 that HLn(LLie,M) = 0 for every non-negative integer n, and one
can proceed exactly as in the proof of Theorem 4.1. �

Remark. The proof of Proposition 5.4 shows that it is enough to assume that L
is a left Leibniz algebra such that the canonical Lie algebra LLie associated to L is
finite-dimensional and solvable.

At the moment we are not able to decide whether Proposition 5.4 generalizes
to faithful irreducible anti-symmetric bimodules. The above proof shows it would
be enough to show for a finite-dimensional faithful irreducible anti-symmetric g-
bimodule over a finite-dimensional solvable Lie algebra g that HLn(g,M) = 0 for
every positive integer n.

It is well known that the Chevalley-Eilenberg cohomology of the non-abelian two-
dimensional Lie algebra with coefficients in the adjoint module vanishes. According
to Theorem 2.6, this implies that the corresponding Leibniz cohomology vanishes as
well. Similarly, by applying Theorem 2.6 in conjunction with [26, Proposition 5.6]
one obtains the following more general result in characteristic zero. (Note that the
adjoint bimodule of a Lie algebra is symmetric.)

Proposition 5.5. Let b be the Borel subalgebra of a finite-dimensional semi-simple
Lie algebra over a field of characteristic zero. Then HLn(b, bad) = 0 for every non-
negative integer n. In particular, Borel subalgebras of a finite-dimensional semi-
simple Lie algebra over a field of characteristic zero are rigid as Leibniz algebras.

Remark. It follows from Theorem 2.6 in conjunction with [36, Theorem 1] (see
also [27, Section 1]) that the conclusion of Proposition 5.5 holds more generally for
every parabolic subalgebra of a finite-dimensional semi-simple Lie algebra over a
field of characteristic zero (cf. also [33, Proposition 2.3] for the rigidity of parabolic
subalgebras).
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