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Abstract. The development of infrared observational facilities has revealed a number of massive
stars in obscured environments throughout the Milky Way and beyond. The determination of
their stellar and wind properties from infrared diagnostics is thus required to take full advantage
of the wealth of observations available in the near and mid infrared. However, the task is chal-
lenging. This session addressed some of the problems encountered and showed the limitations
and successes of infrared studies of massive stars.

Keywords. infrared: stars, stars: early-type, stars: late-type, stars: fundamental parameters,
stars: mass loss, stars: abundances

1. Introduction

The use of IR for deriving stellar and wind parameters has become a necessity, as
many stars are obscured. Many diagnostics are available in this range, however, so that
using IR does not necessarily imply restrictions of the output quality. Line EWs and the
appearance of the spectra can be used to derive temperature or spectral types, though
morphological spectral types so inferred are less precise. This range is also helpful for
mass-loss diagnostics, especially for low-mass loss rates. Two caveats, however, must be
noted: the NIR lines form in the wind acceleration zone and they are very sensitive to
NLTE and 3D effects - they are thus extremely sensitive to modelling details. For most of
the cases, observing K-band is sufficient, but diagnostics improve with J and H spectra,
or - even better - if IR is complemented by optical and UV data (terminal velocities,
are not constrained by IR, for example). Forbidden lines observed in the IR may arise
from outer wind regions, so that also constitute sensitive problems of these poorly known
zones.

In this context, an improved knowledge of the atomic and molecule parameters is
needed. In addition, 3D wind modelling may become necessary, to take into account

420

Downloaded from https://www.cambridge.org/core. BIU MONTPELLIER, on 24 Jan 2019 at 16:22:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/51743921314011788


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1743921314011788
https://www.cambridge.org/core

Stellar and wind parameters 421

both small-scale structures (clumps) and large-scale features (magnetically-compressed
winds, wind collisions, corotating regions...). Convection in red supergiants also requires
the use of 3D atmosphere models.

2. Stellar analysis from the infrared wavelength range

Infrared analysis of massive stars is mandatory as long as there is a substantial amount
of foreground extinction. In that case, the optical and UV flux are much lower than the
infrared ones, despite the fact that hot massive stars emit most of their radiation at short
wavelength. But infrared photometry and spectroscopy are also useful even if optical/UV
data can be obtained, especially for luminosity and extinction determination. This is usu-
ally done by fitting the spectral energy distribution of synthetic models to flux-calibrated
spectra and/or photometry (e.g., Barniske et al. (2008), Crowther et al. (2006)). When
infrared spectrophotometry is available, a much better accuracy in the luminosity de-
termination can be obtained. The drawback is that uncertainties in photometry lead to
larger errors on the luminosity in the infrared than in the optical (Bestenlehner et al.,
2011 and this session). For red supergiants, infrared spectroscopy is extremely useful
since these stars have their emission peak at those wavelengths.

Obtaining quantitative information on the stellar and wind parameters of obscured
objects requires the use of quantitative analysis of infrared spectra. Historically, it is the
near—infrared range (especially the H and K bands) which is favoured, since the contribu-
tion from thermal emission of the surrounding medium is weak at those wavelengths and
increases at longer wavelengths. N. Przybilla presented a detailed view of the difficulties
of modelling infrared spectra.

The first problem is related to non-LTE effects. Given the form of the source function,
its variation with changes in the departure coeflicients can be expressed as follows:

A (21)
b;/bj — e T
We see that at long wavelengths, the ratio hv/kT becomes low. In that case, it can
be shown that the source function is much more sensitive to changes in the departure
coefficients than at optical or UV wavelengths. This implies that model atmosphere
must account for non-LTE effects in great detail to correctly reproduce line profiles. Fig.
1 illustrates how different model atoms impact on the departure coefficients of a model
with fixed stellar parameters. A simple change of the detailed input atomic data in the
models has a significant effect on the departure coefficients, and thus on the line profiles.
In Fig. 2, the profiles of Brackett lines are shown. First, the non-LTE effects are clearly
seen: the LTE model produces much less absorption that the non-LTE models. But there
is also a significant degree of variation among the non-LTE models depending on the
type of collisional excitation formalism used. This stresses the need for accurate atomic
data, even for hydrogen, to correctly model infrared spectra. For red supergiants, M.
Bergemann showed that non-LTE effects are at least as important as for hot massive
stars. A correct treatment of the radiative transfer leads to significant variations of the
line profilest.

Given the sensitivity of infrared lines to non-LTE effects and model atoms, it is not
surprising to see that line-blanketing effects are also extremely important. N. Przybilla

[A(S)] =

1 Related to this topic, J. Freimanis presented a poster dedicated to polarized continuum
radiative transfer in various nontrivial astrophysical coordinate systems, especially relevant for
circumstellar gas envelopes.
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Figure 1. Effect of model atoms on departure coefficients of levels 1-5, 7 and 10 of hydrogen.
The levels are indicated by their principal quantum number and are marked by circles. The line
formation depth of several transition are indicated by the horizontal solid lines. From Przybilla
& Butler (2004).
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Figure 2. Brackett line profiles computed under LTE (dot-dashed lines) and non-LTE conditions
with different collisional excitation prescriptions (dashed: approximate, according to Johnson
1972; dotted: data from new ab-initio computations). From Przybilla & Butler (2004).

illustrated the effect of line-blocking on the shape of the Hel 1.083 pm line. The emission
is reduced by almost a factor of two when line-blocking is included, due to the different
level populations and consequently different line source function. Najarro et al. (2006)
showed that even the very detail of atomic physics of minor FelV lines in the extreme
UV could affect the shape of the Hel triplet lines, in particular Hel 2.058 pm. This is
illustrated in Fig. 3. When reducing the oscillator strength of FeIV 584 A, the absorption
of Hel 2.058 pm decreases. This is caused by the higher and higher population of the
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Figure 3. Effect of FeIV 584 A on Hel 2.058 ym. The solid line is the initial model. The dashed
(dot-dashed, dotted) line corresponds to the same model in which the oscillator strength of FeIV
584 A has been reduced by a factor 2 (5, 10). From Najarro et al. (2006).

upper level of Hel 2.058 pm from which photons emitted in the Hel 584 A line are not
stolen by the FeIV 584 A transition.

3. Key diagnostics

The use of infrared spectrophotometry is helpful to constrain the spectral energy dis-
tribution, and thus the luminosity and extinction. But it is the analysis of medium—high
resolution spectroscopy that provides information on the other stellar and wind param-
eters.

Effective temperature: as at other wavelength ranges, the ionization balance is the
most widely used method to constrain Teff. The Hel/Hell ratio is used when possible.
W.R. Hamann pointed out in this session that the K-band is usually sufficient due to
the presence of several Hel lines as well as Hell 2.189 um. But below about 30000 K, the
latter line disappears, and Hell lines present in the H and J bands need to be used. They
also disappear rapidly when Teff decreases. N. Przybilla showed that for early B stars,
the CII/CIII ionization ratio could be used, taking advantage of CII 0.9903 pm and CIII
1.1981-1.1987 pum (see also Fig. 5). Several examples of temperature determinations have
been shown by J. Bestenlehner, N. Przybilla, W.R. Hamann, P. Crowther. N. Przybilla
highlighted that comparison of parameters derived purely from infrared diagnostics are
usually in agreement with those resulting from optical studies, a conclusion also reached
by Repolust et al. (2005). N. Przybilla also indicated that for B stars, hydrogen lines can
serve as secondary temperature indicators. M. Bergemann discussed different methods to
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determine Tog for red supergiants, demonstrating that TiO bands severely underestimate
temperatures when modeled in 1D LTE compared to more accurate full SED fits (Davies
et al. in prep.).

Gravity: hydrogen lines of the Brackett and Pfund series are the preferred diagnostics.
In general not only their wings (as Balmer lines) but also their line core vary with log g.

Surface abundances: H and He lines present in the JHK bands provide constraints on
the He/H ratio. This is true for OB stars, but more importantly for Wolf-Rayet stars
which shows significant He enrichment. W.R. Hamann and N. Przybilla illustrated how
synthetic spectra could be used to derive the helium content. N. Przybilla also highlighted
that for A supergiants, abundances for C, N, O, Mg, Si and Fe could be derived from
high-resolution spectroscopy. For O stars, nitrogen and in some cases carbon and oxygen
abundances can be obtained. In Wolf-Rayet stars, several CIII, CIV, NIII lines give
access to carbon and nitrogen abundances (as shown by F. Martins in session 1). P.
Crowther presented determination of oxygen and neon abundances in WC stars using
mid-infrared data (Dessart et al. (2000), Crowther et al., in prep). The Ne content seems
consistent with prediction of stellar evolution, while there might be a problem with
oxygen. Abundances of Mg, Ti, Si, and Fe can be obtained from the J-band spectra of
red supergiants. The lines of neutral atoms of these elements are very strong, and can
be reliably studied even in low-resolution spectra. However, the non-LTE effects in these
lines, especially Si I and Ti I, are very large (from —0.4 to 4+0.3 dex), requiring that
non-LTE is properly taken into account (Bergemann et al. (2012)). The relatively strong
emission lines of Mg, Si, Na and Fe in cool LBV stars are also used to derive metallicities
(N. Przybilla, F. Najarro).

Mass loss rate: H and He emission lines of Wolf—Rayet stars are good diagnostics of the
wind density and thus of mass loss rate (J. Bestenlehner, W.R. Hamann, P. Crowther).
For OB stars, F. Najarro introduced Bra as the best mass loss rate indicator (Najarro
et al. (2011)). Other Brackett lines have been used (especially Bry) but Bra reacts to
density changes even for very low mass loss rates (in the so-called “weak wind” regime).
The line core getting stronger in emission when mass loss rate decreases, while the line
wings are weakening. This peculiar behaviour is illustrated in Fig. 4.

Clumping: F. Najarro showed that the Bracket and Pfund hydrogen lines could be used
to constrain the clumping distribution. In particular, the combination of Pfy formed in
the inner wind and Brvy emitted at intermediate depth is a powerful tool to constrain
the clumping law in dense wind O stars. P. Crowther presented similar conclusions for
Wolf-Rayet stars.

Several diagnostics of the stellar and winds properties of all types of massive stars are
thus available. They are used for pioneering and systematic studies of massive stars in
obscured environments.

4. Analysis of various types of massive stars

During session 2, several examples of analysis of massive stars from infrared data have
been presented. They are listed below.

A Supergiants: N. Przybilla showed pioneering studies of A supergiants using high res-
olution spectroscopy obtained with CRIRES on the ESO/VLT. The results are presented
in Przybilla et al. (2009) and Przybilla et al. (in prep). He first introduced the results
of an analysis based on optical spectra to get a set of stellar parameters for Galactic A
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Figure 4. Sensitivity of Bra to mass loss rate. The dashed line is a model with M=10x10""
Mg yr~! while the solid line is a model with M = 5.0 x 107!° Mg yr~!. Other lines corresponds
to models with intermediate mass loss rates. From Najarro et al. (2011).

supergiantst. He then presented the results of the near-infrared analysis based on CRIRES
spectra, highlighting that similar sets of parameters are found. This pilot study shows
that future analysis of A supergiants in external galaxies, accessible with the new gener-
ation extremely large telescopes, will be feasible. This will provide information not only
on the stars themselves, but also on galactochemical evolution and distance scales.

OB stars: M.F. Nieva also presented analysis of CRIRES spectra of a few B stars, again
pointing that results consistent with the optical are found (Nieva et al. (2011)). Fig. 5
shows an example of the fit of carbon lines in the early B star 7 Sco. Good agreement
between model and observation is found if the LTE assumption is dropped. F. Najarro
used Brackett and Pfund lines in several weak and dense wind O stars to constrain the
clumping distribution and the mass loss rates. He confirmed previous results that late
O dwarfs have mass loss rates as low as a few 1071 Mg, yr~!. For the dense wind star
Cyg OB2 # 7, he concluded that the clumping law was probably constant throughout
most of the wind. Ellerbroek & Kaper presented VLT /X-shooter spectroscopy of young
massive stars.

Wolf-Rayet stars: J. Bestenlehner presented the analysis of Of/WN transition objects
from a combined UV /optical/near-IR approach. Object VFTS 682 is very luminous but
appears to be in isolation, questioning its formation process. Preliminary results on the
analysis of O, Of/WN and WN stars indicate that Of/WN stars have wind proper-
ties in between those of O and WN stars. They also show a mass loss dependency on
the Eddington factor, which indicate a larger L/M ratio for WN stars (Bestenlehner
et al. in prep.) W.R. Hamann presented studies of several WN and WC stars from

1 Hou et al. presented a poster on the optical analysis of A stars.
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Figure 5. Near-infrared carbon lines of the early B star 7 Sco (black and green) together with
a LTE synthetic spectrum (blue dots) and a non-LTE synthetic model (red solid). The use of
non-LTE models is mandatory. The ratio of CII to CIII can be used to constrain the effective
temperature. From Nieva et al. (2011).

multiwavelength and pure IR analysis. Of special interest is the so-called “Peony” star in
the Galactic Center since its high luminosity makes it possibly the most massive Galactic
star (Barniske et al. (2008)). Fig. 6 shows the fit of the K-band spectrum of that star.
A WN star in the Scutum-Crux arm was also presented, highlighting the need for the
J and H bands to correctly constrain the effective temperature (Burgemeister et al., in
prep.). P. Crowther focused on mid-infrared data of WC and WO stars obtained with
Spitzer and Herschel. He highlighted the interest of forbidden lines to constrain stel-
lar evolution. Such lines being formed very far away from the photosphere (at heights
from 10000 to 500000 stellar radius), they trace the outter wind. Ne abundances are
derived in WC stars from Spitzer spectra. A mass fraction of about 1% is determined,
in reasonable agreement with theoretical yields. In WO/WC stars, [OIII] 88.0 um is
used to constrain the oxygen content. From preliminary results on the binary ~ Vel
(WC8+0), the O/C ratio seems to be a factor of two lower than the predictions of
Meynet & Maeder (2003).

Red supergiants: KM (red) supergiants: M. Bergemann presented analysis of red su-
pergiants from pure near-infrared spectroscopy (Bergemann et al. (2012)). She raised the
importance of non-LTE effects for the abundance determination of Fe, Ti, and Si and
cautioned against using the TiO molecular fits for determination of effective temperature
of RSG’s, also because severe non-LTE effects in Ti ionization equilibrium will have an
impact on the TiO formation. Corrections to LTE calculations have been quantified. Red
supergiants are especially important for future telescopes/instruments since they are the
brightest objects at infrared wavelengths.
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Figure 6. Observed K-band spectrum of the Galactic Center star WR102ka (blue) and best
fit model (red). The main lines are indicated. From Barniske et al. (2008).

Luminous Blue Variables: N. Przybilla presented the results of Najarro et al. (2009)
on the surface chemical abundances of LBVs in the Quintuplet cluster. Najarro et al.
were able to derive a solar Fe content, and an abundance in Mg, Si and Na about twice
the solar abundance. LBVs are well suited for such analysis in the infrared since they
display a number of metallic emission lines. This is illustrated in Fig. 7.

5. Conclusion

Infrared phototemetry and spectroscopy can be used to determine stellar and wind
properties of massive stars (hot and cool). The modelling of infrared spectra is more
difficult than shorter wavelength spectra because the non-LTE effects are amplified. Ac-
curate atomic data are necessary to correctly reproduce the observed line profile. Line-
blanketing effects are also important. In spite of these difficulties, analysis based on pure
infrared diagnostics usually give results consistent with optical studies. All types of mas-
sive stars can be studied. In addition to temperature, luminosity, gravity and mass loss
rate, abundances of He, C, N, O, Mg, Si, Ne are feasible in cool stars and strong wind
objects. Infrared studies are crucial to study stellar population in external galaxies with
future extremely large telescopes.
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Figure 7. Determination of Fe, Mg, Si, Na abundances in the LBV star Pistol. The black solid
line is the observed spectrum, the red dashed line is th ebest fit model. From Najarro et al.
(2009).
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