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HIGH-ORDER MASS-LUMPED SCHEMES

FOR NONLINEAR DEGENERATE ELLIPTIC EQUATIONS

JÉRÔME DRONIOU AND ROBERT EYMARD

Abstract. We present and analyse a numerical framework for the approximation of nonlinear

degenerate elliptic equations of the Stefan or porous medium types. This framework is based on
piecewise constant approximations for the functions, which we show are essentially necessary to

obtain convergence and error estimates. Convergence is established without regularity assumption

on the solution. A detailed analysis is then performed to understand the design properties that
enable a scheme, despite these piecewise constant approximations and the degeneracy of the model,

to satisfy high-order error estimates if the solution is piecewise smooth. Numerical tests, based

on continuous and discontinuous approximation methods, are provided on a variety of 1D and 2D
problems, showing the influence on the convergence rate of the nature of the degeneracy and of the

design choices.

Key words: Stefan problem, porous medium equation, nonlinear degenerate elliptic equations,

numerical scheme, mass-lumping, gradient discretisation method, error estimate, Finite Elements,

Discontinuous Galerkin.
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1. Introduction

The goal of numerical methods for partial differential equations is to approximate, as accurately as
possible, the continuous solution. For mesh-based methods, it is well-known that when the problem
is linear and the solution has sufficient regularity properties, for a fixed number of degrees of free-
dom high-order methods provide more accurate solutions than low-order methods. This result must
however be questioned in the case of nonlinear problems for which, even if the solution is smooth
enough, stability and high-order estimates might not be achievable without the proper structure of
the chosen discretisation. We propose in this work to explore this question, considering the following
nonlinear degenerate elliptic equation as the basis of our discussion:

β(u)− div(Λ∇ζ(u)) = f + div(F ) in Ω,

ζ(u) = 0 on ∂Ω,
(1.1)

for which the corresponding weak formulation is

Find u ∈ L2(Ω) such that ζ(u) ∈ H1
0 (Ω) and∫

Ω

β(u)v +

∫
Ω

Λ∇ζ(u) · ∇v =

∫
Ω

fv −
∫

Ω

F · ∇v , ∀v ∈ H1
0 (Ω).

(1.2)

Throughout the paper, we denote by ‖·‖L2 the norms in L2(Ω) or L2(Ω)d, and we make the following
assumptions:

• Ω is an open bounded connected subset of Rd (d ∈ N?) and T > 0, (1.3a)

• ζ : R→ R is continuous and non-decreasing, ζ(0) = 0 and,

for some M0,M1 > 0, |ζ(s)| ≥M0|s| −M1 for all s ∈ R, (1.3b)

• β : R→ R is continuous and non-decreasing, β(0) = 0 and,

for some K0,K1 > 0, |β(s)| ≤ K0|s|+K1 for all s ∈ R, (1.3c)

• β + ζ : R→ R is strictly increasing, (1.3d)
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• Λ : Ω→Md(R) is measurable and there exists λ ≥ λ > 0 such that,

for a.e. x ∈ Ω, Λ(x) is symmetric with eigenvalues in [λ, λ]. (1.3e)

• f ∈ L2(Ω) and F ∈ L2(Ω)d. (1.3f)

Remark 1.1 (On assumptions). Given that ζ(u) only appears through its gradient in (1.11.1), assuming
ζ(0) = 0 is not restrictive. Likewise, upon changing f into f − β(0), the assumption β(0) = 0 is also
not restrictive.

The theoretical study of (1.11.1) is covered by the pioneering paper [55], extended in [33], on problems
also including a nonlinear convection term; using techniques necessiting to multiply the equation by
various functions of the unknown, existence and uniqueness of an entropy solution are obtained. An
existence and uniqueness result for the simpler problem considered here is given by Theorem A.1A.1 in
Appendix AA, without refering to entropy solutions.

The case ζ = Id fits into quasilinear second-order elliptic problems, the approximation of which
is covered by a rather large literature, see e.g. [2020, 66, 2323, 44]. The case ζ 6= Id, on which we
focus in this paper, raises severe issues and is less often considered in the literature, especially when
considering the question of high-order schemes. First, for such a problem, the solution can display
discontinuities when ζ has plateaux. Moreover, the nonlinearities challenge the design of numerical
methods that simultaneously (i) only require to compute integrals of polynomials (integrals that can
be exactly computed in general), (ii) are amenable to error estimates (or, at the very least, proven
to be convergent), and (iii) are of order higher than 1.

Extending the entropy method used in [55] to the notion of entropy process solutions, the con-
vergence of a Two-Point Flux Approximation (TPFA) finite volume method is proved in [1616] for a
time-dependent version of (1.11.1) with Λ = Id. The entropy method requires to consider φ(u) as test
functions for various nonlinear functions φ, a process that can only be reproduced at the discrete
level for the TPFA scheme, see [1111, Section 7] and [1414]. Unfortunately, the TFPA scheme is only
applicable on very specific grids, which usually forces Λ = Id, and only low-order error estimates can
be expected from the application of the doubling variable technique as in [1515].

In the general case of an anisotropic heterogeneous field Λ, we need to consider more versatile
schemes than the TPFA scheme, which will necessarily reduce the range of admissible test functions.
Nevertheless, an important feature to preserve, if one wants to ensure the stability of the discretisation,
is the capacity to choose appropriate test functions to simultaneously get diffusion estimates from
the gradient terms, and a positive sign from the reaction term.

Let us first consider the case of conforming Galerkin methods. Given a subspace Vh of H1
0 (Ω), a

conforming scheme for (1.21.2) is written

Find u ∈ Vh such that:

∫
Ω

β(u)v +

∫
Ω

Λ∇ζ(u) · ∇v =

∫
Ω

fv −
∫

Ω

F · ∇v , ∀v ∈ Vh. (1.4)

If u ∈ Vh we have ζ(u) ∈ H1
0 (Ω) and the key of the convergence analysis is that the chain rule

∇ζ(u) = ζ ′(u)∇u enables us to take v = u ∈ Vh as test function in the scheme. This choice creates
from the diffusion term the quantity of interest ζ ′(u)|∇u|2, while the reaction term is non-negative
since β(u)u ≥ 0. However, to deduce any sort of estimate from this choice of test function, we are
forced to set F = 0, since the term

∫
Ω
F · ∇u cannot in general be estimated using

∫
Ω
ζ ′(u)|∇u|2. A

better choice of test function to estimate the term resulting from the presence of F would be v = ζ(u)
since the diffusion term would provide the quantity

∫
Ω
|∇ζ(w)|2, which can be used to estimate∫

Ω
F · ∇ζ(w). However, v = ζ(w) is not a valid test function in the scheme since it does not belong

to Vh in general. Fixing F = 0, the convergence of (1.41.4) can nonetheless be proved, but no error
estimate can be derived – the reason for this being, again, the lack of freedom in choosing suitable
test functions in the scheme. The analysis of conforming approximations is sketched in Appendix BB
(in which (1.21.2) is first recast before applying the Galerkin method).
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Coming back to the general case of (1.21.2) with possibly F 6= 0, we consider numerical methods
for which the chain rule does not hold at the discrete level (as is the case for the majority of non-
conforming methods). The only reasonable test function to consider in order to get estimates is then
v = ζ(u), which formally provides |∇ζ(u)|2 from the diffusion term. More precisely, let us consider a
scheme where the discrete unknowns z = (zi)i∈I represent pointwise values of the solutions at certain
nodes, and functions zh are reconstructed from these values and used in the weak formulation (this
is the choice made in [1313, 11] in the case of the transient problem, through the use of “Lagrange
interpolation operators”). Then, for u = (ui)i∈I , one can easily define v = ζ(u) pointwise, setting
vi = ζ(ui) for all i ∈ I. The weak formulation then involves ∇(ζ(u))h · ∇vh and, taking v = ζ(u),
this diffusion term generates the quantity |∇(ζ(u))h|2.

With this choice of v, the reaction term creates the quantity β(uh)(ζ(u))h. This function is, at
the considered nodes, equal to β(ui)ζ(ui) ≥ 0 (see (1.3b1.3b)–(1.3c1.3c)). However, outside the nodes, no
particular sign can be ensured for β(uh)(ζ(u))h and it is not clear that this reaction term will indeed
lead to proper estimates on the solution to the scheme.

The way to solve this conundrum is, in the reaction term, to use a different reconstruction of
functions than the natural reconstruction (·)h used for the diffusion term. Utilising for example a
piecewise constant reconstruction, in which the only values taken by the reconstruction are nodal
values, ensures that the positivity of the reaction term – valid at these nodal values – extends to the
entire domain (this is again done for low-order methods in [1313, 11] to handle the accumulation terms
issued from the time derivative). For linear models, using piecewise constant reconstructions for
reaction/accumulation terms leads to what is called mass-lumped schemes. There is a large literature
on the mass-lumping of Finite Element methods for second order problems, see e.g. [88, 1717, 2121, 1919] and
references therein. In most of these references, though, the construction of mass-lumped versions of
high-order methods is justified by a need to reduce computational costs: for explicit discretisations of
time-dependent linear problems, a mass-lumped scheme ensures a diagonal mass matrix which, unlike
the standard mass matrix, is trivial to invert at each time step. This property of diagonal mass matrix
has also been heavily used in schemes for eigenvalues problems related to linear elliptic operators
(see for example [22] and references therein). On the contrary, for a nonlinear degenerate model as
(1.11.1), as explained above the mass-lumping is not just a way to improve the method’s efficiency, but
appears as an imperative to establish convergence and error estimates – and thus rigorously ensure
that the scheme has high-order approximation properties. Additionally, the usual interpretation of
mass-lumping as a specific choice of quadrature rules for the mass matrix is mostly meaningful in
the linear setting. For nonlinear models, the less standard interpretation based on piecewise constant
reconstructions is more appropriate (even though, as we will see, there is still some link to exploit with
local quadrature rules). Finally, let us notice that, to our best knowledge, mass-lumping techniques
seem to only be considered in the literature on Finite Element methods, not in the literature covering
other high-order polynomial-based methods such as Discontinuous Galerkin. This is understandable
when the goal is to simplify the inversion of the mass matrix; mass-lumping is then not much useful to
methods such as Discontinuous Galerkin schemes, for which the standard mass matrix is easy to invert
due to its block diagonal structure (which can also easily be made fully diagonal by a simple choice
of orthogonal local polynomial basis). However, when the primary objective of mass-lumping is to
enable convergence and error estimates for nonlinear models, the question of designing mass-lumped
Discontinuous Galerkin (or other methods based on local polynomials) is fully relevant.

Our goal in this paper is to design high-order mass-lumped schemes for the nonlinear degenerate
model (1.11.1). Our main contributions can be summarised as follows:

• design of a general analysis framework that treats in a unified way many different methods,
including Finite Elements and Discontinuous Galerkin methods (and others);

• proof of error estimates in this general framework;
• identification of conditions on the mass-lumping to ensure high-order convergences (when the

exact solution is piecewise smooth), despite the nonlinearities and degeneracy in the model;
• extensive numerical tests, using both Pk Finite Elements and Discontinuous Galerkin schemes, on

realistic test cases (porous, Stefan) to validate the theoretical analysis.

Let us describe the organisation of this paper. We first provide in Section 22 a general formulation
of numerical schemes, based on schemes written in fully discrete form: approximate functions and
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gradients are reconstructed without direct relation, and the approximate functions are piecewise
constant. This construction is performed in the gradient discretisation method [1212], a framework that
provides efficient notations and notions for the design and analysis of such schemes. After proving a
first convergence result (Theorem 2.82.8) in Section 2.12.1, we establish in Section 2.22.2 error estimates on
the approximation of ζ(u) when using mass-lumped schemes (Theorem 2.112.11 and Corollary 2.142.14). As
demonstrated in Section 2.32.3, this general error estimate yields a high-order convergence rate (Theorem
2.232.23) for piecewise smooth solutions to (1.21.2), provided the mass-lumping is performed in a way that
corresponds to sufficiently high-order local quadrature rules. These conditions on the local quadrature
rules are similar to those highlighted for Finite Elements in [77, 88] but, interestingly, they appear here
from the need of estimating quite different error terms than in the case of linear models as in these
references. Extensive numerical tests are presented in Section 33, both on porous medium equations
and on Stefan problems, using mass-lumped Finite Element and Discontinuous Galerkin schemes;
the results confirm that high-order approximations are obtained only if the aforementioned local
quadrature rules hold, even if the theoretical assumptions are not fully satisfied (e.g. the solution
is not piecewise smooth). The paper is completed with a short conclusion (Section 44) and two
appendices. In Appendix AA, the properties of the continuous problem are analysed, and Appendix
BB sketches the study of the conforming scheme (1.41.4) with F = 0, and highlights its limitations
compared to the method in Section 22: strong convergence of the gradients only under some regularity
assumption on the continuous solution, no error estimate, no uniqueness of the discrete solution.

2. Schemes with piecewise constant approximation

To present the discretisation of (1.11.1), we use the gradient discretisation method (GDM) [1212], a
generic numerical analysis framework for diffusion equations that encompasses many different dis-
cretisations: finite element, finite volumes, etc. Using this framework enables a unified treatment of
all these different schemes, and also gives efficient setting and tools to deal with them, including the
notion of mass-lumping that will be essential to design a scheme for which an error estimate can be
established.

The principle of the GDM is to introduce discrete elements – a finite dimensional space, an operator
that reconstructs functions, and an operator that reconstructs gradients – together called a gradient
discretisation (GD), and to replace the continuous counterparts in the weak formulation (1.21.2) with
these discrete elements, leading to a gradient scheme (GS) for (1.11.1).

Definition 2.1 (Gradient discretisation). A gradient discretisation is D = (XD ,0,ΠD ,∇D , QD ) such
that

• XD ,0 a finite-dimensional space.

• ΠD : XD ,0 → L2(Ω) and ∇D : XD ,0 → L2(Ω)d are linear operators reconstructing, respectively, a
function and a gradient; ∇D must be chosen such that ‖·‖D := ‖∇D ·‖L2 is a norm on XD ,0.

• QD : L2(Ω)→ L2(Ω) is a quadrature operator.

Remark 2.2 (Quadrature operator). Quadrature rules for source terms are usually not accounted for
in the definition and analysis of gradient schemes. In the context of mass-lumped schemes, however,
accounting for quadrature rules is essential to establishing optimal high-order error estimates.

Note that QD is not assumed to be linear, which enables different choices of quadrature rules
depending on the regularity subspace of the considered functions (for example, if f is continu-
ous/piecewise continuous functions, QDf could be defined using pointwise values of f , whereas for
more irregular f the quadrature function QDf could involve average values of f).

To deal with the nonlinearity in the derivatives in (1.11.1) we need the following notion.

Definition 2.3 (Piecewise constant reconstruction). Let D be a gradient discretisation such that,
for some finite sets I and I∂Ω ⊂ I, it holds

XD ,0 = {v = (vi)i∈I : vi ∈ R ∀i ∈ I , vi = 0 ∀i ∈ I∂Ω}.
We say that the reconstruction ΠD is piecewise constant if there exists a partition U = (Ui)i∈I of Ω
(some of the Ui can be empty) such that

∀v = (vi)i∈I ∈ XD ,0 , ΠDv =
∑
i∈I

vi1Ui
,
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where 1Ui
is the characteristic function of Ui. In other words, (ΠDv)|Ui

= vi for all i ∈ I.

In the setting of this definition, if g : R → R is a function satisfying g(0) = 0, we define (with an
abuse of notation) g : XD ,0 → XD ,0 by applying g coefficient by coefficient:

∀v = (vi)i∈I , g(v) = (g(vi))i∈I . (2.1)

We note that this definition actually depends on the choice of the basis of XD ,0. In practice, this
basis being canonical and chosen once and for all, we do not make explicit the dependency of g(v)
with respect to this basis. If ΠD is a piecewise constant reconstruction, then (2.12.1) leads to

∀v ∈ XD ,0 , ΠDg(v) = g(ΠDv). (2.2)

The accuracy properties of a GD are assessed through the following quantities. The first one
measures a discrete Poincaré constant of D, the second one is an interpolation error, whilst the last
one measures the conformity defect of the method (how well a discrete divergence formula holds).

CD := max
v∈XD,0\{0}

‖ΠDv‖L2

‖v‖D
, (2.3)

∀ϕ ∈ H1
0 (Ω) , SD (ϕ) = min

v∈XD,0

(
‖∇Dv −∇ϕ‖L2 + ‖ΠDv − ϕ‖L2

)
, (2.4)

∀ψ ∈ Hdiv(Ω) , WD (ψ) := max
v∈XD,0\{0}

1

‖v‖D

∣∣∣∣∫
Ω

∇Dv ·ψ + ΠDvdivψ

∣∣∣∣ . (2.5)

In the following, unless otherwise specified, the notation a . b means that a ≤ Cb with C > 0
depending only on the data in Assumption (1.31.3) and on an upper bound of CD .

Given a gradient discretisation D = (XD ,0,ΠD ,∇D , QD ) with piecewise constant reconstruction
as in Definition 2.32.3, the gradient scheme for (1.11.1) is (compare with the weak formulation (1.21.2)):

Find u ∈ XD ,0 such that∫
Ω

β(ΠDu)ΠDv +

∫
Ω

Λ∇Dζ(u) · ∇Dv =

∫
Ω

QDf ΠDv −
∫

Ω

F · ∇Dv , ∀v ∈ XD ,0.
(2.6)

Remark 2.4 (Quadrature for div(F )). A quadrature operator could also be introduced for F (for
example, considering QD component-wise, or selecting a different quadrature operator more appro-
priate to the structure of the gradient reconstruction). For simplicity of the presentation we decide
not to include it in the analysis.

2.1. Convergence analysis. We first prove an a priori estimate on the solution to the gradient
scheme. This estimate is used to prove the existence of this solution, its convergence, and the error
estimate (2.102.10).

Lemma 2.5 (Bounds on the solution to the GS). Let D be a GD with piecewise constant reconstruc-
tion as in Definition 2.32.3, and let u ∈ XD ,0 be a solution to the gradient scheme (2.62.6). Then

‖ΠDu‖L2 + ‖ΠDβ(u)‖L2 + ‖ζ(u)‖D . ‖QDf‖L2 + ‖F‖L2 . (2.7)

Proof. Letting v = ζ(u) in (2.62.6) we get∫
Ω

β(ΠDu)ζ(ΠDu) +

∫
Ω

Λ∇Dζ(u) · ∇Dζ(u) =

∫
Ω

QDf ΠDζ(u)−
∫

Ω

F · ∇Dζ(u),

where we have used (2.22.2) to write ΠDζ(u) = ζ(ΠDu) in the first integral term. By monotonicity of
β, ζ and β(0) = ζ(0) = 0, we have β(s)ζ(s) ≥ 0 and the equation above thus gives, by definition of
CD and Assumption (1.3e1.3e),

λ‖∇Dζ(u)‖2L2 ≤ ‖QDf‖L2‖ΠDζ(u)‖L2 + ‖F‖L2‖∇Dζ(u)‖L2

≤
(
CD‖QDf‖L2 + ‖F‖L2

)
‖∇Dζ(u)‖L2 .

Recalling that ‖ζ(u)‖D = ‖∇Dζ(u)‖L2 , this estimate yields the bound on ζ(u) in (2.72.7). Using again

the definition of CD , we infer that ‖ΠDζ(u)‖L2 . ‖QDf‖L2 + ‖F‖L2 . By (2.22.2) this gives an L2(Ω)-
estimate on ζ(ΠDu) and, using assumption (1.3b1.3b), translates into the bound on ΠDu in (2.72.7). The
estimate on β(ΠDu) follows from the sub-linearity of β stated in Assumption (1.3c1.3c). �
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Lemma 2.6 (Existence and uniqueness for the GS). Assume (1.31.3) and let D be a gradient discreti-
sation with a piecewise constant reconstruction as in Definition 2.32.3. Then there exists a solution to
the gradient scheme (2.62.6) and, if (u1, u2) are two solutions to this scheme, then ζ(u1) = ζ(u2) and
ΠDu1 = ΠDu2.

Remark 2.7 (Counter-example to u1 = u2). In general, we cannot claim that u1 = u2, as the following
counter-example shows. Consider β(s) = s and ζ : R → R such that ζ(s) = 0 for all s ∈ [0, 1]. Take
F = 0 and f ∈ L2(Ω) such that 0 ≤ f ≤ 1 almost everywhere, and consider an HMM gradient scheme
[1212, Chapter 13] on a polytopal mesh of Ω. Denoting byM and F , respectively, the sets of cells and
faces of this mesh, the corresponding gradient discretisation satisfies

XD ,0 = {v = ((vK)K∈M, (vσ)σ∈F ) : vK ∈ R , vσ ∈ R , vσ = 0 if σ ⊂ ∂Ω}

and (ΠDv)|K = vK for all K ∈M. We select QD = Id, and the precise expression of ∇Dv is irrelevant
to our counter-example. Then u = ((uK)K∈M, (uσ)σ∈F ) ∈ XD ,0 defined by

uK =
1

|K|

∫
K

f ∀K ∈M , uσ ∈ [0, 1] ∀σ ∈ F , uσ = 0 if σ ⊂ ∂Ω

is solution to the gradient scheme (2.62.6). Indeed, all the components of such a vector belong to [0, 1]
and thus ζ(u) = 0. The scheme equation on u thus reduces to∫

Ω

ΠDuΠDv =

∫
Ω

fΠDv , ∀v ∈ XD ,0,

which holds given the choice of the cell values (uK)K∈M.

Proof of Lemma 2.52.5. The existence is obtained via a topological degree argument; we refer the reader
to [99] for the definition and properties of this degree. Fix an arbitrary Euclidean structure, with inner
product 〈·, ·〉, on the finite dimensional space XD ,0. For a ∈ [0, 1] let ζa(s) = aζ(u) + (1−a)u. Define
F : [0, 1]×XD ,0 → XD ,0 the following way: for a ∈ [0, 1] and u ∈ XD ,0, F(a, u) is the unique element
of XD ,0 such that, for all v ∈ XD ,0,

〈F(a, u), v〉 =

∫
Ω

aβ(ΠDu)ΠDv +

∫
Ω

Λ∇Dζa(u) · ∇Dv −
∫

Ω

aQDf ΠDv −
∫

Ω

aF · ∇Dv.

We note that u is a solution to the gradient scheme (2.62.6) if and only if F(1, u) = 0.
By continuity of β and ζ, and the finite dimension of XD ,0, the mapping F is clearly continuous.

Assume that F(a, u) = 0 for some a ∈ [0, 1]. The arguments in the proof of Lemma 2.52.5, using
v = ζa(u) as a test function, show that ‖ζa(u)‖D ≤ C1 with C1 not depending on a; by equivalence of
norms on the finite dimensional space XD ,0, this shows that ‖ζa(u)‖∞ ≤ C2 with C2 still independent
on a and ‖·‖∞ the supremum norm in XD ,0 on an arbitrary basis. The mapping ζa satisfies (1.3b1.3b)
with M0,M1 independent of a. As a consequence, the bound on ‖ζa(u)‖∞ shows that ‖u‖∞ < R
with R independent of t.

Hence, any solution to F(a, u) = 0 lies in the open ball BR of XD ,0, centered at 0 and of radius
R in the ‖·‖∞ norm. This ball being independent of a, the topological degree theory ensures that
deg(F(1, ·), BR, 0) = deg(F(0, ·), BR, 0). The mapping F(0, ·) : XD ,0 → XD ,0 is linear and the estimate
obtained on the solutions to F(0, u) = 0 shows that F(0, ·) has a trivial kernel, and is therefore
invertible. This implies deg(F(0, ·), BR, 0) 6= 0 and thus deg(F(1, ·), BR, 0) 6= 0, which proves that the
equation F(1, u) = 0 has a solution u ∈ BR.

We now consider the uniqueness of the solution to the scheme. Subtracting the equations satisfied
by u1 and u2 and taking v = ζ(u1)− ζ(u2) ∈ XD ,0 as a test function, we have∫

Ω

(β(ΠDu1)− β(ΠDu2))ΠD (ζ(u1)− ζ(u2)) +

∫
Ω

Λ∇D (ζ(u1)− ζ(u2)) · ∇D (ζ(u1)− ζ(u2)) = 0.

Property (2.22.2) and the monotonicity of β and ζ show that

(β(ΠDu1)− β(ΠDu2))ΠD (ζ(u1)− ζ(u2)) = (β(ΠDu1)− β(ΠDu2))(ζ(ΠDu1)− ζ(ΠDu2)) ≥ 0.

Hence, ‖∇D (ζ(u1)− ζ(u2))‖L2 = 0 which, by property of ∇D , ensures that ζ(u1) = ζ(u2).
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We now come back to the equations satisfied by u1 and u2, subtract them and take v = β(u1) −
β(u2) ∈ XD ,0 as a test function to get∫

Ω

(β(ΠDu1)− β(ΠDu2))2 +

∫
Ω

∇D (ζ(u1)− ζ(u2)) · ∇D (β(u1)− β(u2)) = 0.

Since ζ(u1) = ζ(u2), we infer that β(ΠDu1)−β(ΠDu2) = 0. Owing to Hypothesis (1.3d1.3d), we conclude
that ΠDu1 = ΠDu2 from β(ΠDu1) + ζ(ΠDu1) = β(ΠDu2) + ζ(ΠDu2). �

The next theorem is our first main convergence result. It states the strong convergence of the
solution to the gradient scheme without assuming any regularity property on the continuous solution.

Theorem 2.8 (Convergence of the scheme). Let (Dm)m∈N be a sequence of GDs, with piecewise
constant reconstructions as in Definition 2.32.3, that satisfies the following properties:

• (Coercivity) The sequence (CDm
)m∈N is bounded, where CDm

is defined by (2.32.3) for D = Dm.
• (Consistency) Recalling the definition (2.42.4), there holds

∀ϕ ∈ H1
0 (Ω), lim

m→∞
SDm

(ϕ) = 0 and lim
m→∞

‖QDm
f − f‖L2 = 0. (2.8)

• (Limit-conformity) Recalling the definition (2.52.5), there holds

∀ψ ∈ Hdiv(Ω) , lim
m→∞

WDm
(ψ) = 0. (2.9)

• (Compactness) For any (vm)m∈N such that vm ∈ XDm,0
for all m ∈ N and (∇Dm

vm)m∈N is

bounded in L2(Ω)d, the set {ΠDm
vm : m ∈ N} is relatively compact in L2(Ω).

For any m ∈ N, let um be a solution of Scheme (2.62.6). Then there exists u solution to (1.21.2) such
that, as m → ∞, ΠDmζ(um) → ζ(u) strongly in L2(Ω), ∇Dmζ(um) → ∇ζ(u) strongly in L2(Ω)d,

and ΠDmβ(um)→ β(u) weakly in L2(Ω).

Proof. Using Estimate (2.72.7) and (2.82.8) (which shows that ‖QDm
f‖L2 is bounded), the compactness and

the limit-conformity of (Dm)m∈N, [1212, Lemma 2.15] gives Z ∈ H1
0 (Ω) and B ∈ L2(Ω) such that, up to

a subsequence (not made explicit in the following), ΠDm
ζ(um)→ Z strongly in L2(Ω), ∇Dm

ζ(um)→
∇Z weakly in L2(Ω)d and β(ΠDm

um) → B weakly in L2(Ω). By weak/strong convergence we infer
that

lim
m→∞

∫
Ω

ΠDm
β(um)ΠDm

ζ(um) =

∫
Ω

ZB.

The monotonicity properties β and ζ then enable us to apply [1212, Lemma D.10] (a Minty’s trick) to
get u ∈ L2(Ω) such that Z = ζ(u) and B = β(u).

We now show that u solves (1.21.2). Let ϕ ∈ H1
0 (Ω) and let vm ∈ XDm,0

be an element that realises

the minimum defining SDm
(ϕ). By (2.82.8) we have ΠDm

vm → ϕ in L2(Ω) and∇Dm
vm → ∇ϕ in L2(Ω)d.

Use vm as a test function in GS (2.62.6) satisfied by um. The convergence properties of β(ΠDm
um) and

∇Dm
ζ(um) towards B = β(u) and ∇Z = ∇ζ(u), together with the convergence QDm

f → f in L2(Ω)
stated in (2.82.8), enable us to take the limit m→∞ of the scheme to see that u is a solution to (1.21.2).
The uniqueness of u (see Theorem A.1A.1) shows that the convergence properties holds for the whole
sequence (um)m∈N instead of just along the subsequence previously extracted.

It remains to establish the strong convergence of ∇Dm
ζ(um). We now let m → +∞ in the GS

(2.62.6) with D = Dm and v = ζ(um), that is,∫
Ω

β(ΠDm
um)ΠDm

ζ(um) +

∫
Ω

Λ∇Dm
ζ(um) · ∇Dm

ζ(um) =

∫
Ω

QDm
f ΠDm

ζ(um)−
∫

Ω

F · ∇Dζ(um).

This yields

lim
m→∞

∫
Ω

Λ∇Dm
ζ(um) · ∇Dm

ζ(um) =

∫
Ω

(fζ(u)− F · ∇ζ(u)− β(u)ζ(u)) =

∫
Ω

Λ∇ζ(u) · ∇ζ(u),

where the conclusion follows using v = u in (1.21.2). Since (ξ, η) 7→
∫

Ω
Λξ · η is an inner product on

L2(Ω), this relation and the weak convergence of (∇Dm
ζ(um))m∈N imply the strong convergence of

∇Dm
ζ(um) to ∇ζ(u) in L2. �



8 JÉRÔME DRONIOU AND ROBERT EYMARD

2.2. Error estimate. The analysis above pinpoints the required structure on a numerical scheme to
ensure proper bounds and convergence of the solution – namely, the piecewise constant reconstruction
property. We now want to establish error estimates to better assess this convergence. In practice,
one usually starts from a given numerical method and would like to apply it to the model under
consideration. Following our discussion above, if the given method does not have a piecewise constant
function reconstruction, it has to be modified into a method that has such a reconstruction. This
process is called the mass-lumping of the original scheme. In the context of the GDM, this notion is
translated in the following definition.

Definition 2.9 (Mass-lumped GD). Let D∗ = (XD ,0,ΠD∗ ,∇D , QD ) be a gradient discretisation. A
gradient discretisation D is a mass-lumped version of D∗ if it only differs from D∗ through the function
reconstruction (that is, D = (XD ,0,ΠD ,∇D , QD )), and if ΠD is a piecewise constant reconstruction
in the sense of Definition 2.32.3.

Remark 2.10. Of course, if D∗ already has a piecewise constant reconstructions as in Definition 2.32.3,
one can take D = D∗.

The following theorem states a general error estimate on the gradient scheme (2.62.6).

Theorem 2.11 (Error estimate for the GS). Assume (1.31.3) and let D be a mass-lumped version of a
D∗ in the sense of Definition 2.92.9. Let u be a solution to the gradient scheme (2.62.6), and let u be the
solution to (1.21.2) (see Theorem A.1A.1). Then, for any IDζ(u) ∈ XD ,0, there holds

‖∇D [IDζ(u)− ζ(u)]‖L2

.WD∗(Λ∇ζ(u) + F ) + ‖∇DIDζ(u)−∇ζ(u)‖L2 +RD ,D∗(u, f) + TD (u, u), (2.10)

where

RD ,D∗(u, f) = max
v∈XD,0\{0}

1

‖∇Dv‖L2

∣∣∣∣∫
Ω

ΠDv[β(QDu)−QDf ]−ΠD∗v[β(u)− f ]

∣∣∣∣ , (2.11)

and

TD (u, u) =

(
max

{∫
Ω

[
β(QDu)− β(ΠDu)

] [
ΠDIDζ(u)− ζ(QDu)

]
; 0

})1/2

. (2.12)

Remark 2.12 (Choice of IDζ(u)). The element IDζ(u) can be any vector in XD ,0. However, the
estimate (2.102.10) is obviously useful only if ∇DIDζ(u) is close to ∇ζ(u). This is usually achieved
selecting for IDζ(u) a suitable interpolant of ζ(u), which is why we used this notation.

Remark 2.13 (Approximation of ζ(u)). Introducing ±∇D (IDζ(u)) and using a triangle inequality,
we have

‖∇Dζ(u)−∇ζ(u)‖L2 ≤ ‖∇D [ζ(u)− IDζ(u)]‖L2 + ‖∇DIDζ(u)−∇ζ(u)‖L2 .

Similarly, introducing ±ΠD∗IDζ(u), using the triangle inequality and the definition of CD∗ , we have

‖ΠD∗ζ(u)− ζ(u)‖L2 ≤ ‖ΠD∗ [ζ(u)− IDζ(u)]‖L2 + ‖ΠD∗IDζ(u)− ζ(u)‖L2

≤ CD∗‖∇D [ζ(u)− IDζ(u)]‖L2 + ‖ΠD∗IDζ(u)− ζ(u)‖L2 .

An estimate on ∇D [ζ(u)−IDζ(u)] as in Theorem 2.112.11 therefore also yields an estimate on ∇Dζ(u)−
∇ζ(u) and ΠD∗ζ(u) − ζ(u), modulo the additional interpolation errors ∇DIDζ(u) − ∇ζ(u) and
ΠD∗IDζ(u)− ζ(u). If D∗ has function and gradient reconstructions that are piecewise polynomial of
high-order, these interpolation errors can be expected to have a high rate of convergence with respect
to the mesh size.

The same argument also gives an error estimate on ΠDζ(u)− ζ(u), but the corresponding interpo-
lation error ΠDIDζ(u)− ζ(u) is limited to a first-order convergence since ΠD is a piecewise constant
reconstruction.
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Proof of Theorem 2.112.11. Since u is the solution to (1.21.2), we have div(Λ∇ζ(u)+F ) = β(u)−f ∈ L2(Ω).
Hence, by definition (2.52.5) of WD applied to D∗, for any v ∈ XD ,0,

‖v‖DWD∗(Λ∇ζ(u) + F ) ≥
∫

Ω

∇Dv · (Λ∇ζ(u) + F ) + ΠD∗vdiv(Λ∇ζ(u) + F )

=

∫
Ω

∇Dv · Λ∇ζ(u) + F · ∇Dv + ΠD∗v[β(u)− f ].

Substituting the term involving F using (2.62.6), we get∫
Ω

Λ∇Dv · (∇ζ(u)−∇Dζ(u)) + (QDf − β(ΠDu))ΠDv + ΠD∗v[β(u)− f ]

≤ ‖v‖DWD∗(Λ∇ζ(u) + F ). (2.13)

Introducing ±Λ∇Dv ·∇DIDζ(u) and ±β(QDu)ΠDv in the left-hand side, using the Cauchy–Schwarz
inequality and recalling that ‖v‖D = ‖∇Dv‖L2 , we infer∫

Ω

Λ∇Dv · (∇DIDζ(u)−∇Dζ(u)) + (β(QDu)− β(ΠDu))ΠDv

+

∫
Ω

ΠD∗v[β(u)− f ]−ΠDv[β(QDu)−QDf ]

. ‖∇Dv‖L2

[
WD∗(Λ∇ζ(u) + F ) + ‖∇DIDζ(u)−∇ζ(u)‖L2

]
. (2.14)

Choose v = IDζ(u) − ζ(u). Introducing ±ζ(QDu) and using the monotonicity of ζ and β (which
yields [β(b)− β(a)][ζ(b)− ζ(a)] ≥ 0 for all a, b ∈ R) together with (2.22.2), we have

(β(QDu)− β(ΠDu))ΠDv = [β(QDu)− β(ΠDu)] [ΠDIDζ(u)− ζ(QDu)]

+ [β(QDu)− β(ΠDu)] [ζ(QDu)− ζ(ΠDu)]

≥ [β(QDu)− β(ΠDu)] [ΠDIDζ(u)− ζ(QDu)].

Plugging this into (2.142.14) and using (1.3e1.3e) leads to

‖∇D [IDζ(u)− ζ(u)]‖2L2 . ‖∇Dv‖L2

[
WD∗(Λ∇ζ(u) + F ) + ‖∇DIDζ(u)−∇ζ(u)‖L2

]
+

∫
Ω

ΠDv[β(QDu)−QDf ]−ΠD∗v[β(u)− f ] +

∫
Ω

[β(QDu)− β(ΠDu)] [ΠDIDζ(u)− ζ(QDu)]

. ‖∇Dv‖L2

[
WD∗(Λ∇ζ(u) + F ) + ‖∇DIDζ(u)−∇ζ(u)‖L2 +RD ,D∗(u, f)

]
+ TD (u, u)2.

Using the Young inequality on the first term in the right-hand side and recalling that v = IDζ(u)−ζ(u)
leads to

‖∇D [IDζ(u)− ζ(u)]‖2L2

.
[
WD∗(Λ∇ζ(u) + F ) + ‖∇DIDζ(u)−∇ζ(u)‖L2 +RD ,D∗(u, f)

]2
+ TD (u, u)2.

The proof of (2.102.10) is complete taking the square root of this estimate and using
√
a2 + b2 ≤ a + b

for all a, b ≥ 0. �

From the general estimate (2.102.10) we deduce the following bound on the error, which is often leads
to (low order) rates of convergence as noted in Remark 2.152.15. This estimate will be improved, for
situations corresponding to classical mass-lumping versions of schemes with nodal interpolants, in
Section 2.32.3.

Corollary 2.14. Under the assumptions of Theorem 2.112.11, define

αD ,D∗ = max
v∈XD,0\{0}

‖ΠDv −ΠD∗v‖L2

‖∇Dv‖L2
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and let IDζ(u) be given by IDζ(u) = argminv∈XD,0

(
‖∇Dv −∇ζ(u)‖L2 + ‖ΠDv − ζ(u)‖L2

)
. Then,

‖∇D [IDζ(u)− ζ(u)]‖L2 .WD∗(Λ∇ζ(u) + F ) + SD (ζ(u))

+ αD ,D∗ + ‖β(QDu)− β(u)‖L2 + ‖QDf − f‖L2

+
(
SD (ζ(u)) + ‖ζ(u)− ζ(QDu)‖L2

) 1
2 ,

(2.15)

where the hidden multiplicative constant in . additionally depends on ‖β(QDu)‖L2 and ‖QDf‖L2 .

Remark 2.15 (Rate of convergence). For all classical mass-lumping of schemes based on a mesh
of size h, we have αD ,D∗ = O(h) (see, e.g., [1212, Eqs. (8.18) and (9.46)]). Likewise, any reasonable
quadrature rule is locally exact on piecewise constant functions and thus, if β, ζ are globally Lipschitz-
continuous and u, f are locally H1, we expect O(h) estimates on ‖β(QDu)− β(u)‖L2 , ‖QDf − f‖L2

and ‖ζ(u)− ζ(QDu)‖L2 . The estimate (2.152.15) can thus be expected, most of the time, to provide an

O(h
1
2 ) rate of convergence, the limiting factor in the right-hand side of (2.152.15) being the last one,

coming from TD (u, u). We will see in Section 2.32.3 that this estimate is however very pessimistic and,
in many cases, can be improved to higher powers of h (see Remark 2.262.26).

Proof. We estimate each term, except the first one, in the right-hand side of (2.102.10). By choice of
IDζ(u) and definition (2.42.4) of SD ,

‖∇DIDζ(u)−∇ζ(u)‖L2 + ‖ΠDIDζ(u)− ζ(u)‖L2 = SD (ζ(u)).

Hence the term ‖∇DIDζ(u)−∇ζ(u)‖L2 in (2.102.10) is bounded above by SD (ζ(u)).
Using the definition of αD ,D∗ and of CD , we have

RD ,D∗(u, f) ≤ αD ,D∗‖β(u)− f‖L2

+ max
v∈XD,0\{0}

1

‖∇Dv‖L2

∣∣∣∣∫
Ω

ΠDv[β(QDu)−QDf ]−ΠDv[β(u)− f ]

∣∣∣∣
. αD ,D∗ + CD‖[β(QDu)−QDf ]− [β(u)− f ]‖L2

. αD ,D∗ + ‖β(QDu)− β(u)‖L2 + ‖QDf − f‖L2 .

This gives the third, fourth and fifth terms in the right-hand side of (2.152.15).
For the last term in this estimate, we write, using the Cauchy–Schwarz inequality and the a priori

bound (2.72.7) on β(ΠDu),

TD (u, u)2 ≤ ‖β(QDu)− β(ΠDu)‖L2‖ΠDIDζ(u)− ζ(QDu)‖L2

. (‖β(QDu)‖L2 + ‖QDf‖L2 + ‖F‖L2)
(
‖ΠDIDζ(u)− ζ(u)‖L2 + ‖ζ(u)− ζ(QDu)‖L2

)
.

The proof is complete taking the square root and recalling that ‖ΠDIDζ(u)−ζ(u)‖L2 ≤ SD (ζ(u)). �

2.3. Suitable quadrature rules lead to high-order estimates. Let us first make the following
broken regularity assumption on the data and solution.

Assumption 2.16 (Data and exact solution). F = 0 and, u being the solution to (1.21.2) and s ≥ 1
being an integer, f and β(u) belong to the broken Sobolev space

W s,∞(M) :=
{
g ∈ L∞(Ω) : g|K ∈W s,∞(K) ∀K ∈M

}
.

This space is endowed with the norm ‖g‖W s,∞(M) := maxK∈M ‖g‖W s,∞(K).

Remark 2.17 (Piecewise continuity and local smoothness). W s,∞(M) is a subspace of

C(M) := {g ∈ L∞(Ω) : g|K ∈ C(K) ∀K ∈M}. (2.16)

Assumption 2.162.16 only imposes a local smoothness of f and β(u), which can in particular be discon-
tinuous across cell interfaces. It is also worthwhile noticing that, since F = 0, ζ(u) is continuous (see
Theorem A.1A.1). Hence, the values of u at one of its discontinuities must belong to a plateau of ζ; in
particular, if ζ does not have any plateau, then u is globally continuous.

Remark 2.18 (u is in C(M)). Theorem A.1A.1 and Assumption 2.162.16 show that ζ(u) ∈ C(Ω) and
β(u) ∈ C(M). By (1.3b1.3b)–(1.3d1.3d), β+ζ is an homeomorphism of R. Hence, u = (β+ζ)−1(β(u)+ζ(u))
and thus u ∈ C(M).
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In the rest of this section, we consider a slightly more precise setting than in Section 2.22.2. We assume
that D∗ has a piecewise polynomial function reconstruction (possibly of high-order) and unknowns
associated to nodes on the domain, and that specific local quadrature rules can be chosen. Typically,
Pk or Qk finite elements and Symmetric Interior Penalty discontinuous Galerkin (SIPG) schemes,
with mass-lumping constructed using dual meshes around the nodes, fit into this setting. In what
follows, hX denotes the diameter of a set X ⊂ Rd.

Assumption 2.19 (Structure of D∗, D and IDζ(u)).

(1) (Mesh) M be a polytopal mesh of Ω ⊂ Rd with d ≤ 3, in the sense of [1212, Definition 7.2] (this
definition actually represents the mesh as a quadruple of sets of cells, faces, points and vertices,
that will not be useful to our purpose; we therefore confuse the mesh with the set of cells). The
mesh size is h = maxK∈M hK .

(2) (Space) There is a finite set I, partitioned into IΩ and I∂Ω, such that

XD ,0 = {v = (vi)i∈I : vi ∈ R ,∀i ∈ I , vi = 0 ,∀i ∈ I∂Ω} .
(3) (Local polynomial reconstructions) There is a polynomial degree k ≥ 1 such that, for all K ∈M

and all v ∈ XD ,0, (ΠD∗v)|K ∈ Pk.
(4) (Broken gradient bound) There is C∇ ≥ 0 such that, for all v ∈ XD ,0, ‖∇h(ΠD∗v)‖L2 ≤

C∇‖∇Dv‖L2 , where ∇h is the usual broken gradient on M.

(5) (Nodes) There is a family (xi)i∈I of points in Ω, and subsets (IK)K∈M of I, such that I =
(∪K∈MIK) ∪ I∂Ω and, for all v = (vi)i∈I ∈ XD ,0, all K ∈ M and all i ∈ IK , we have xi ∈ K
and vi = (ΠD∗v)|K(xi). Additionally, xi ∈ ∂Ω whenever i ∈ I∂Ω.

(6) (Mass-lumping) D = (XD ,0,ΠD ,∇D , QD ) is a mass-lumped version of the gradient discretisation
D∗ = (XD ,0,ΠD∗ ,∇D , QD ) in the sense of Definition 2.92.9, which means that ΠD is piecewise
constant on a partition U = (Ui)i∈I in the sense of Definition 2.32.3. We further assume that
Ui ∩K 6= ∅ only if i ∈ IK .

(7) (Interpolant) IDζ(u) ∈ XD ,0 is given by the nodal values of ζ(u), that is, (IDζ(u))i = ζ(u)(xi)

for all i ∈ I. This is well-defined since ζ(u) ∈ C(Ω) (see Remark 2.172.17).
(8) (Quadrature rule) The quadrature QD is defined on C(M) (see (2.162.16)) by

∀g ∈ C(M) , ∀K ∈M , (QDg)|K =
∑
i∈IK

g|K(xi)1Ui∩K . (2.17)

(9) (Mesh regularity) There exists ρ > 0 such that:
? Any K ∈M is star-shaped with respect to all points in a ball of radius ρhK ,
? For all i ∈ I, ρhUi ≤ h.

A few remarks are of order.

Remark 2.20 (Local polynomial space). The space Pk in Item (33) could be replaced by any of its
subspace PK that contains P1; the analysis would not be hindered, and some assumptions could even
be weakened (see Remark 2.252.25). We chose to use Pk to simplify the presentation.

Remark 2.21 (Nodes). The same i can belong to several IK , as is the case for conforming finite
elements. Conversely, in the case of DG scheme for example, the following may occur (see the
numerical example in Section 3.33.3):

• one can have xi = xj for i 6= j,

• IK does not necessarily contain all the indices i ∈ I such that xi ∈ K,
• there can exist i ∈ I∂Ω \ (∪K∈MIK) – but, in that case, Ui = ∅.

Remark 2.22 (Quadrature rule). The gradient scheme (2.62.6) is usually implemented by assembling
cell contributions. When the source term f is continuous on each cell, and since ΠDv is constant
on each Ui, it is customary to use the simple – apparently low-order – quadrature rule defined by
(2.172.17). Since u ∈ C(M) by Remark 2.182.18, the formula (2.172.17) can thus be used to compute QDu. The
definition of QD outside C(M) is irrelevant to the analysis that follows, and could for example be
taken as the identity outside this space.

In the rest of this section, we write a . b as a shorthand for “a ≤ Cb with C not depending onM
or U , but possibly depending on ρ, k and C∇”.
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Theorem 2.23 (High-order error estimate). Under Assumption 2.192.19, let ` ≥ 0 be an integer and
suppose that we have the following exactness of local quadrature rules (where k is the degree in Item
(33) of Assumption 2.192.19):

∀K ∈M ,∀q ∈ Pk+` ,

∫
K

q =
∑
i∈IK

|Ui ∩K|q(xi). (2.18)

Let s ∈ {0, . . . , `+ 2} be such that Assumption 2.162.16 holds. Then, the solution u to (2.62.6) satisfies

‖∇D [IDζ(u)− ζ(u)]‖L2

.WD∗(Λ∇ζ(u)) + ‖∇DIDζ(u)−∇ζ(u)‖L2 + hs(1 + CD∗)‖β(u)− f‖W s,∞(M). (2.19)

Let us first make a few remarks before proving the theorem.

Remark 2.24 (Quadrature rule). The quadrature rule (2.182.18) bears similarities with the conditions on
quadrature rules highlighted for Finite Elements in [77, 88]. However, in the proof below, the exactness
condition (2.182.18) responds to a different need than the ones encountered in the analysis of mass-lumped
Finite Elements for linear equations.

Remark 2.25 (Local polynomial space). Following Remark 2.202.20, if Pk is replaced by PK in Item (33)
of Assumption 2.192.19, then an inspection of the proof below (see in particular the polynomial (2.242.24))
shows that (2.182.18) only has to be assumed on the smaller space PK × Pl. This is similar to what was
noticed in [1717], in a the context of mass-lumped Pk Finite Elements for linear equations.

Remark 2.26 (Rates of convergence). If D∗ is the gradient discretisation corresponding to conforming
Pk finite elements, we have WD∗ ≡ 0 and, if ζ(u) ∈ Hk+1(Ω), ‖∇DIDζ(u) − ∇ζ(u)‖L2 . hk; see

[1212, Proposition 8.11 and Remark 8.12]. In this case, (2.192.19) yields an O(hmin(s,k)) estimate on
‖∇D [IDζ(u)− ζ(u)]‖L2 , which is a drastic improvement over (2.152.15) (see Remark 2.152.15).

The same O(hmin(s,k)) bound on ‖∇D [IDζ(u) − ζ(u)]‖L2 holds for the gradient discretisation

corresponding to DG schemes of degree k, provided that Λ∇ζ(u) ∈ Hmin(s,k)(Ω)d (see [1212, Lemmas
11.14 and 11.15]).

Proof of Theorem 2.232.23. The inequality (2.192.19) follows from Theorem 2.112.11, estimating in the present
context the terms TD (u, u) and RD ,D∗(u, f).

(i) Term TD (u, u). For all K ∈ M, all i ∈ IK , and all x ∈ Ui ∩K, by Definition 2.32.3 of ΠD and
Item (77) in Assumption 2.192.19,

ΠDIDζ(u)(x) = (IDζ(u))i = ζ(u)(xi) = (ζ(u))|K(xi) = ζ(u|K(xi)) = ζ(QDu(x)).

Hence, ΠDIDζ(u) = ζ(QDu) and TD (u, u) = 0.
(ii) Term RD ,D∗(u, f). For the sake of brevity, set g = β(u) − f . By definition (2.172.17) of QD , we

have QDg = β(QDu) − QDf and thus, to bound RD ,D∗(u, f) above by the last term in (2.192.19), we
have to establish that, for all v ∈ XD ,0,∣∣∣∣∫

Ω

(QDgΠDv − gΠD∗v)

∣∣∣∣ . hs(1 + CD∗)‖g‖W s,∞(M)‖∇Dv‖L2 . (2.20)

Let AD ,D∗(g, v) be the integral in the left-hand side of (2.202.20). We have

AD ,D∗(g, v) :=
∑
K∈M

(∑
i∈IK

|Ui ∩K|g|K(xi)vi −
∫
K

gΠD∗v

)

=
∑
K∈M

(∑
i∈IK

|Ui ∩K|g|K(xi)(ΠD∗v)|K(xi)−
∫
K

gΠD∗v

)
=
∑
K∈M

EK(gΠD∗v), (2.21)

where, in the second line, we have used (ΠD∗v)|K(xi) = vi (see Item (55) in Assumption 2.192.19), and
we have defined the error in the local quadrature rule on K by

∀w ∈ C(K) , EK(w) :=
∑
i∈IK

|Ui ∩K|w|K(xi)−
∫
K

w.
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By (2.182.18) and a straightforward estimate,

∀q ∈ Pk+` , EK(q) = 0, and (2.22)

∀w ∈ C(K) , |EK(w)| ≤ 2|K|‖w‖L∞(K). (2.23)

For a polynomial degree r ≥ 0, let PrrK : L2(K)→ Pr(K) denote the L2(K)-orthogonal projector on
Pr and notice that, since (ΠD∗v)|K ∈ Pk (Item (33) in Assumption 2.192.19) and k ≥ 1,

q := (Pr`Kg)(ΠD∗v)|K + (Pr0
K(ΠD∗v)|K)(Pr`+1

K g − Pr`Kg) (2.24)

belongs to P`+k + P0+`+1 ⊂ Pk+`. Using (2.222.22) with this q yields

EK(gΠD∗v) = EK

(
gΠD∗v − (Pr`Kg)(ΠD∗v)|K − (Pr0

K(ΠD∗v)|K)(Pr`+1
K g − Pr`Kg)

)
= EK

(
[g − Pr`Kg][(ΠD∗v)|K − Pr0

K(ΠD∗v)|K ] + (Pr0
K(ΠD∗v)|K)[g − Pr`+1

K g]
)
.

Invoking then the bound (2.232.23) and the straightforward estimate ‖Pr0
K(ΠD∗v)|K‖L∞(K) ≤ ‖ΠD∗v‖L∞(K),

we infer
|EK(gΠD∗v)| ≤ 2‖g − Pr`Kg‖L∞(K)|K|‖(ΠD∗v)|K − Pr0

K(ΠD∗v)|K‖L∞(K)

+ 2|K|‖ΠD∗v‖L∞(K)‖g − Pr`+1
K g‖L∞(K).

(2.25)

Under item 99 of Assumption 2.192.19, [1010, Lemma 3.4] shows that, for any natural numbers a ≥ 0 and
b ∈ {0, . . . , a+ 1}, and any w ∈W b,∞(K),

‖w − PraKw‖L∞(K) . h
b
K‖w‖W b,∞(K).

Applying this estimate with (a, b, w) = (`,min(s, `+ 1), g), (a, b, w) = (0, 1, (ΠD∗v)|K) and (a, b, w) =
(`+ 1, s, g), (2.252.25) leads to

|EK(gΠD∗v)| . hmin(s,`+1)
K ‖g‖Wmin(s,`+1),∞(K)|K|hK‖∇(ΠD∗v)|K‖L∞(K)

+ |K|‖ΠD∗v‖L∞(K)h
s
K‖g‖W s,∞(K).

The discrete inverse Lebesgue embedding of [1010, Lemma 5.1] gives, if q ∈ Pk(K), |K|‖q‖L∞(K) .

|K| 12 ‖q‖L2(K). Applied to q = (ΠD∗v)|K and q = components of ∇(ΠD∗v)|K , and since min(s, ` +
1) + 1 = min(s+ 1, `+ 2) ≥ s, we obtain

|EK(gΠD∗v)| . hsK‖g‖W s,∞(K)|K|
1
2

(
‖∇(ΠD∗v)|K‖L2(K) + ‖ΠD∗v‖L2(K)

)
.

Plugging this estimate into (2.212.21), using a discrete Cauchy–Schwarz inequality on the sums, and
recalling Item (44) in Assumption 2.192.19, we obtain

|AD (g, v)| . hs‖g‖W s,∞(M)

(
‖∇Dv‖L2 + ‖ΠD∗v‖L2

)
.

The estimate (2.202.20) follows recalling the definition (2.32.3) of CD∗ . �

3. Numerical illustrations

The tests are performed within the framework of Assumption 2.192.19, using mass-lumped versions
of either conforming Pk finite elements, or SIPG method. Each mass-lumped gradient discretisation
D used in the tests share the same (XD ,0,∇D , ID , QD ) as the corresponding D∗ and thus, when
describing D we focus on the particular choices of nodes (xi)i∈I and partition (Ui)i∈I , as these
choices dictate the exactness of the local quadrature rule (2.182.18).

3.1. Setting for the tests. The convergences are assessed through the following quantities:

EΠ
β,ID = ‖β(QDu)−ΠDβ(u)‖L2(Ω), EΠ

ζ,ID = ‖ΠD (IDζ(u)− ζ(u))‖L2(Ω),

E∇ζ,ID = ‖∇D (IDζ(u)− ζ(u))‖L2(Ω), E∇ζ = ‖∇ζ(u)−∇Dζ(u)‖L2(Ω).

measuring approximation errors on β(QDu), the interpolation of ζ(u) (for both function and gradient
reconstruction), and on ∇ζ(u) using high-order quadrature rules. A first order polynomial fit is done
on the logarithms or these errors with respect to − 1

d log(Card(I)), which yields an approximation
under the form

E ' CCard(I)−α/d.
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Our outputs give the numerical values of C and α, the latter providing a numerical convergence order
with respect to an evaluation of the mesh size (the number of unknowns, Card(I), growing linearly
with the number of cells).

All the 1D or 2D tests refer to the following situations: β = Id, and ζ ∈ {Id, ζp, ζs}, where the
“porous media” ζp function is defined by

∀s ∈ R, ζp(s) = max(s, 0)2,

and the “Stefan” ζs function is defined by

∀s ∈ R, ζs(s) =


s if s < 0,

0 if 0 ≤ s ≤ 1,

s− 1 if 1 < s.

In all the numerical tests, the approximate solution remains numerically bounded. There is therefore
no need to re-define ζp on the negative axis in order to explicitly satisfy the super-linear bound in
Assumption (1.3b1.3b). Let us now give the complete continuous cases which are approximated below in
1D or in 2D.

Test case R: Regular problem, f 6= 0. This problem corresponds to ζ = Id (the model is therefore
linear, but we still apply the mass-lumping process) and, for x ∈ (0, 1), the source term and solution
are given by f(x) = 4xex and u(x) = x(1− x)ex.

Test case P-1: Porous media problem, homogeneous Dirichlet BC, f 6= 0. This test is on the porous
medium equation, with ζ = ζp. The source term and exact solutions are defined as follows: for
x ∈ (0, 1), setting yx = max(x− 0.2, 0) and zx = max(0.8− x, 0), we take

f(x) = (yxzx)3/2 − 6yxzx(z2
x − 3yxzx + y2

x) and u(x) = (yxzx)3/2.

Test case P-2: Porous media problem, non-homogeneous Dirichlet BC, f = 0. Still taking for ζ the
porous medium function ζ = ζp, this test takes u(x) = max(x− 1

5 , 0)2/12, which corresponds to the
source term f = 0, and non-homogeneous Dirichlet boundary conditions are imposed on ζ(u).

Test case S-1: Stefan problem, homogeneous Dirichlet BC, f 6= 0. In this test, the nonlinearity is
given by the Stefan-like function ζ = ζs. The source term is given by f(x) = 3( 1

2 − g(x)), where

g(x) = | 12 − x|. To describe u, we first let γ ∈ (0, 1
2 ) such that u(x) = f(x) for g(x) ∈ (γ, 1

2 ) and
u(x) ≥ 1 for g(x) ∈ (0, γ). The ODE in (1.11.1) can then be solved on each sub-interval and gives
ζ(u(x)) = 0 for g(x) ∈ (γ, 1

2 ) and, for some a, b ∈ R, ζ(u(x)) = aeg(x) + be−g(x) + 3( 1
2 − g(x)) − 1

for g(x) ∈ (0, γ). Hence, u(x) = aeg(x) + be−g(x) + 3( 1
2 − g(x)) for g(x) ∈ (0, γ). These values

a, b and γ are found by expressing the matching conditions ensuring that ζ(u) ∈ H2(0, 1) (since
(ζ(u))′′ = u − f ∈ L2(0, 1)), namely ζ( 1

2 ± γ) = 0 and ζ ′( 1
2 ± γ) = 0; the symmetry of the problem

also imposes ζ ′( 1
2 ) = 0. This leads to the following equations:

3

(
1

2
− γ
)
− 1 + aeγ + be−γ = 0, −3 + aeγ − be−γ = 0, and − 3 + a− b = 0.

Numerically solving this nonlinear system of equations gives γ ' 0.33036, a ' 1.2545 and b ' −1.7455.

Test case S-2: Stefan problem, non-homogeneous Dirichlet BC, f = 0.
As in the previous test, ζ = ζs. The source term is fixed at f = 0 and, for any γ ∈ [0, 1], a solution

is given by:

u(x) =

{
1
2 (ex−γ + e−(x−γ)) = cosh(x− γ) ∀x ∈ (γ, 1),
0 ∀x ∈ (0, γ).

Non-homogeneous Dirichlet conditions are imposed at x = 1 to match the value of u there, and the
tests are run with γ = 1

3 .

Test case S-3: Stefan problem, homogeneous Dirichlet BC, f 6= 0 and F 6= 0. We let ζ = ζs and

f(x) = 0 F (x) = 4 sinh(1/4)
cosh(1/4) u(x) = 0 ∀x ∈ (0, 1

4 ),

f(x) = 5 F (x) = 0 u(x) = 5− 4 cosh(x−1/2)
cosh(1/4) ∀x ∈ ( 1

4 ,
3
4 ),

f(x) = 0 F (x) = −4 sinh(1/4)
cosh(1/4) u(x) = 0 ∀x ∈ ( 3

4 , 1).

(3.1)
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3.2. Mass-lumped finite elements. For a conforming simplicial meshM and using the notations

in Assumption 2.192.19, the gradient discretisations D∗ = Dk,fe
∗ , for k ∈ {1, 2, 3}, corresponding to

conforming Pk finite elements is defined by the following elements.

• The points (xi)i∈I are:
? If k = 1: the mesh vertices (in dimension 1 or 2),
? If k = 2: the mesh vertices and one point in each cell (in dimension 1), or the mesh vertices

and the edge midpoints (in dimension 2),
? If k = 3: the mesh vertices and two points in each cell (in dimension 1), or the mesh vertices,

two additional points on each edge, and one point in each cell.
I∂Ω is the set of indices i ∈ I such that xi ∈ ∂Ω and, for K ∈M, IK := {i ∈ I : xi ∈ K}.

• For each simplex K ∈ M and v = (vi)i∈I ∈ XD ,0, (ΠD∗v)|K is the unique polynomial in Pk that
takes the values vi at xi for all i ∈ IK .

• The gradient reconstruction is given by (∇Dv)|K = ∇(ΠD∗v)|K for all v ∈ XD ,0 and K ∈M.

3.2.1. Numerical tests for mass-lumped finite elements in dimension 1. We consider two families of
meshes of Ω = (0, 1) with N cells each, for N ∈ {16, 32, 64, 512, 1024, 2048}. The first one is the
uniform mesh Mu

N with mesh step h = 1/N . The second one is a random mesh Mr
N such that each

cell has size hi = Hi/
∑
j Hj , where Hi = (3 + ρi) with ρi following a random uniform law on (0, 1).

As mentioned above, all the gradient discretisations are mass-lumped versions of the corresponding
Pk GD. We describe hereafter the remaining elements to fully define the GD, that is: the degree k,
the nodes (xi)i∈I , and the partition U = (Ui)i∈I . In each case, the elements of this partition are
intervals and satisfy Item (66) in Assumption 2.192.19.

• For k = 1: D1,fe
u (uniform mesh) and D1,fe

r (random mesh) are defined setting
? I = {0, . . . , N}, (xi)i∈I are the vertices of the mesh, so that (xi−1,xi)i=2,...,N are the cells of

the mesh.
? For each i ∈ I, if xi is an endpoint of K then |Ui ∩K| = 1

2 |K| (providing an exact quadrature
on K for polynomials of degree 1).

• For k = 2: D2,fe
u (uniform mesh) and D2,fe

r (random mesh) are defined setting
? I = {0, . . . , 2N} and the cells of the uniform or random mesh are (x2j−2,x2j) for j = 1, . . . , N .

The remaining nodes are located at the centers of the cells, that is, x2j−1 = 1
2 (x2j−2 +x2j) for

all j = 1, . . . , N .
? For all i ∈ I, if xi is an endpoint of K then |Ui ∩K| = 1

6 |K| and, if xi is the midpoint of K,

|Ui ∩K| = 2
3 |K| (providing an exact quadrature on K for polynomials of degree 3).

• For k = 3: D3,fe
u,a (uniform mesh) and D3,fe

r,a (random mesh) are defined setting
? I = {0, . . . , 3N} and the cells of the uniform or random mesh are (x3i−3,x3i) for i = 1, . . . , N .

The remaining nodes are located at 1/3 and 2/3 inside each cell, that is, x3i−2 = 2
3x3i−3 + 1

3x3i

and x3i−1 = 1
3x3i−3 + 2

3x3i for i = 1, . . . , N .

? For all i ∈ I, if xi is an endpoint of K then |Ui ∩ K| = 1
6 |K|, and if xi is inside K then

|Ui ∩K| = 1
3 |K| (providing an exact quadrature on K only for polynomials of degree 1).

• For k = 3: D3,fe
u,b (uniform mesh) and D3,fe

r,b (random mesh) are defined setting

? I and (xi)i∈I as for D3,fe
u,a and D3,fe

r,a ,

? For all i ∈ I, if xi is an enpoint of K then |Ui ∩ K| = 1
8 |K|, and if xi is inside K then

|Ui ∩K| = 3
8 |K| (providing an exact quadrature on K for polynomials of degree 3).

• For k = 3: D3,fe
u,c (uniform mesh) and D3,fe

r,c (random mesh) are defined using the Gauss–Lobatto
method, setting
? I = {0, . . . , 3N} and the cells of the uniform or random mesh are (x3i−3,x3i) for i = 1, . . . , N .

The remaining nodes are located at barycentric coordinates ( 5±
√

5
10 , 5∓

√
5

10 ) inside each cell, that

is, x3i−2 = 5+
√

5
10 x3i−3 + 5−

√
5

10 x3i and x3i−1 = 5−
√

5
10 x3i−3 + 5+

√
5

10 x3i for i = 1, . . . , N .

? For all i ∈ I, if xi is an endpoint of K then |Ui ∩ K| = 1
12 |K|, and if xi is inside K then

|Ui ∩K| = 5
12 |K| (providing an exact quadrature on K for polynomials of degree 5).

Remark 3.1 (Local quadratures). The exactness of the local quadratures mentioned in the presenta-
tions above show that (2.182.18) is satisfied with ` ≥ 0 by all the GDs above, except D3,fe

u,a and D3,fe
r,a . For

α = u, r, the local quadratures for D2,fe
α (resp. D3,fe

α,c ) even satisfy (2.182.18) with ` = 1 (resp. ` = 2).
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EΠ
β,ID EΠ

ζ,ID E∇ζ,ID E∇ζ
GD C α C α C α C α
D1,fe

u 4.6e-01 2.00 4.6e-01 2.00 4.4e-01 2.00 1.3e+00 1.00
D1,fe

r 2.5e-01 1.89 2.5e-01 1.89 3.1e-01 1.90 1.2e+00 0.99
D2,fe

u 8.8e-02 3.83 8.8e-02 3.83 1.4e-01 3.00 4.4e-01 2.00
D2,fe

r 7.4e-02 3.77 7.4e-02 3.77 1.3e-01 2.98 4.2e-01 1.98
D3,fe

u,a 1.8e-01 2.00 1.8e-01 2.00 1.5e-01 1.00 1.5e-01 1.00

D3,fe
r,a 2.0e-01 2.01 2.0e-01 2.01 1.5e-01 1.00 1.5e-01 1.00

D3,fe
u,b 9.4e-02 3.00 9.4e-02 3.00 2.0e-01 2.00 2.0e-01 2.00

D3,fe
r,b 9.6e-02 2.99 9.6e-02 2.99 2.0e-01 1.99 2.0e-01 1.99

D3,fe
u,c 6.4e-08 1.73 6.4e-08 1.73 2.0e-04 2.95 7.2e-02 3.00

D3,fe
r,c 9.0e-08 1.80 9.0e-08 1.80 2.4e-04 2.97 7.6e-02 3.00

Table 1. Constants and rates for Test Case R.

Test case R: Regular problem, f 6= 0
The results provided in Table 11 show a super-convergence, for k = 1, 2, of the function and gradient

reconstruction when quadrature or interpolation are accounted for in the measure of the error: the
errors EΠ

β,ID and EΠ
ζ,ID appear to be O(hk+2), and E∇ζ,ID decays as hk+1. The rate for E∇ζ falls to

hk as expected since this is the optimal rate, when using piecewise Pk polynomials, to approximate
a smooth non-polynomial function. These rates for the approximation of the gradient are actually
above those predicted by our analysis: by Remark 3.13.1, for all these methods we can take ` = 0 in
Theorem 2.232.23 and thus, following Remark 2.262.26, the expected decay of E∇ζ,ID is hmin(2,k) = hk.

Regarding k = 3, the schemes based on the D3,fe
α,c variant appear to have a worse rate than D3,fe

α,a or

D3,fe
α,b , but focusing on the constant C we notice that they are actually much better. They also clearly

outperform when considering the gradient reconstruction. Focusing on the latter, the convergence
rate O(h) for D3,fe

α,a can be explained recalling that this variant does not even satisfy (2.182.18); even
though TD (u, u) = 0 for this method (see the proof of Theorem 2.232.23), we do not have any better
estimate on RD ,D∗(u, f) than in the proof of Corollary 2.142.14, which was precisely expected to be O(h)
(see Remark 2.152.15).

On the contrary, referring again to Remark 3.13.1, D3,fe
α,b enables us to take ` = 0 in Theorem 2.232.23

and we recover the expected O(h2) estimate on E∇ζ,ID mentioned in Remark 2.262.26. For D3,fe
α,c we can

even take ` = 1 and Table 11 clearly shows that this leads to an improved and optimal O(h3) estimate
on the gradient (again, something predicted in Remark 2.262.26).

These results clearly demonstrate that the key factor in choosing a proper mass-lumped version for
a high-order scheme is the exactness property (2.182.18) – not satisfying this property leads to decreased
rates of convergence. They also indicate, at least for k = 3, the sharpness of the error estimate
established in Theorem 2.232.23.

Test Case P-11: Porous media problem, homogeneous Dirichlet BC, f 6= 0
The results are presented in Table 22. The functions f and u are only piecewise smooth, and

the discontinuity of their derivatives is not necessarily aligned with the mesh. As a consequence,
Assumption 2.162.16 does not hold. Compared to the smooth case studied in Test Case R, the convergence
is overall degraded. However, the rates mostly remain not far from the linear case (especially for
gradient approximations), and the main features discussed for the smooth case can also be found here:
there is a super-convergence of the function approximations (when using quadrature or interpolation
of the exact solution), and the rates of convergence drop drastically if the local quadrature rule (2.182.18)
do not hold with a high enough `.

Test Case P-22: Porous media problem, non-homogeneous Dirichlet BC, f = 0
Table 33 details the outcomes of this test. The source term is obviously smooth, but the solution

is only piecewise smooth. Despite this, the results show that, except for the very small constants
observed for D3,fe

α,c , the schemes behave here in a very similar way as for the completely smooth
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EΠ
β,ID EΠ

ζ,ID E∇ζ,ID E∇ζ
GD C α C α C α C α
D1,fe

u 2.3e+02 1.68 5.6e+00 2.01 1.2e+01 2.00 3.2e+00 1.00
D1,fe

r 3.4e+02 1.71 5.3e+00 2.00 1.2e+01 1.98 3.4e+00 1.01
D2,fe

u 1.9e+02 1.71 1.3e+00 2.69 4.3e+00 2.45 6.9e+00 2.01
D2,fe

r 9.5e+01 1.50 1.3e+01 3.16 1.6e+01 2.69 6.4e+00 1.99
D3,fe

u,a 8.0e+01 1.82 4.4e-01 2.01 4.1e-01 1.03 4.0e-01 1.02

D3,fe
r,a 9.2e+01 1.74 5.2e-01 2.03 4.2e-01 1.03 4.2e-01 1.03

D3,fe
u,b 8.6e+01 1.74 2.8e+00 2.90 2.7e+00 1.99 2.7e+00 1.99

D3,fe
r,b 3.0e+01 1.46 3.9e+00 3.01 2.3e+00 1.95 2.4e+00 1.96

D3,fe
u,c 1.7e+01 1.41 1.0e+00 2.92 1.2e+00 2.42 2.7e+00 2.41

D3,fe
r,c 3.5e+01 1.52 7.0e-02 2.17 2.2e-01 1.98 1.7e+00 2.28

Table 2. Constants and rates for Test Case P-11.

EΠ
β,ID EΠ

ζ,ID E∇ζ,ID E∇ζ
GD C α C α C α C α
D1,fe

u 1.2e+01 1.99 2.2e-01 2.00 1.9e-01 2.00 1.3e+00 1.00
D1,fe

r 1.5e+01 2.02 3.9e-01 2.09 3.8e-01 1.97 1.4e+00 1.01
D2,fe

u 2.9e+00 2.50 2.1e-01 3.97 1.7e-01 2.99 5.3e-01 2.00
D2,fe

r 2.0e+00 2.41 2.2e-01 3.94 1.8e-01 2.98 5.2e-01 1.99
D3,fe

u,a 3.9e+00 2.00 2.3e-01 2.00 1.4e-01 1.00 1.4e-01 1.00

D3,fe
r,a 4.1e+00 2.00 2.4e-01 2.00 1.5e-01 1.00 1.5e-01 1.00

D3,fe
u,b 3.9e+00 2.50 1.9e-01 3.00 2.4e-01 2.00 2.4e-01 2.00

D3,fe
r,b 3.5e+00 2.47 2.0e-01 2.99 2.4e-01 1.99 2.4e-01 1.99

D3,fe
u,c 2.7e-01 2.40 5.2e-07 2.33 2.7e-04 3.10 9.9e-02 3.00

D3,fe
r,c 1.4e+00 2.76 2.8e-06 2.64 1.4e-03 3.46 1.1e-01 3.00

Table 3. Constants and rates for Test Case P-22.

situation of Test Case R. Here again we notice the importance of choosing proper local quadrature
rules (2.182.18) when designing mass-lumped schemes from high-order methods.

Test Case S-11: Stefan problem, homogeneous Dirichlet BC, f 6= 0
The results for this test case are presented in Table 44. This test case is a much more severe one than

the porous medium case, since the solution u is discontinuous. This explains the poor convergence
of EΠ

β,ID for all considered methods. On the contrary, ζ(u) is continuous and EΠ
ζ,ID thus behaves

much better, with an order 2 decay for all schemes. The order of decay of E∇ζ,ID is also similar for

all methods (around 1.6), except for the GDs D3,fe
α,a for which it drops to 1; this reduction can be

explained, as in the previous case, by recalling that these GDs do not satisfy the local quadrature
rules (2.182.18) even for ` = 0.

Based on our previous discussion, we could expect the schemes corresponding to D3,fe
α,c to have a

higher rate of convergence than the other methods, but it should be noted that ζ(u) only belongs to
H2, not H3 since (ζ(u))′′ = u− f is discontinuous. This limits the application of Theorem (2.232.23) to
s = 2 (despite ` = 2 being a valid choice in this case), and leads to the h2 rate for the approximation
of the gradient.

We however notice that E∇ζ has a quite poor convergence (or does not seem to converge) on random

meshes. Given that the difference between this error and E∇ζ,ID solely lies in the interpolation error

‖∇DIDζ(u)−∇ζ(u)‖L2 , this apparently indicates that this interpolation error does not converge on
random meshes. It is actually not the case, but for these meshes the regularity factor and maximum
size oscillate a lot from one mesh to the other; combined with the low regularity of the solution
(which implies a slow expected rate of convergence), this explains that the regression performed on
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EΠ
β,ID EΠ

ζ,ID E∇ζ,ID E∇ζ
GD C α C α C α C α
D1,fe

u 1.8e+01 0.41 1.2e+01 1.97 1.2e+01 1.87 2.8e+00 1.00
D1,fe

r 3.7e+01 0.54 1.6e+01 2.15 3.2e+00 1.66 2.6e-01 -0.17
D2,fe

u 6.0e+01 0.76 1.1e+00 2.04 6.2e-01 1.54 2.5e+00 1.61
D2,fe

r 3.2e+01 0.50 1.2e+00 2.04 1.0e+00 1.65 3.3e-03 -0.16
D3,fe

u,a 7.9e+01 0.84 1.2e+00 2.03 3.7e-01 1.03 4.4e-01 1.06

D3,fe
r,a 1.0e+02 0.83 1.2e+00 2.15 3.8e-01 1.05 3.6e-02 0.28

D3,fe
u,b 8.6e+01 0.84 3.8e-01 1.95 7.2e-01 1.61 8.9e-01 1.53

D3,fe
r,b 5.1e+01 0.64 3.4e-01 1.84 2.8e-01 1.53 1.4e+03 2.77

D3,fe
u,c 5.4e+01 0.67 4.6e-01 2.08 3.6e-01 1.58 8.5e-01 1.56

D3,fe
r,c 5.1e+01 0.61 2.9e+00 2.41 3.9e-01 1.59 4.7e-01 0.37

Table 4. Constants and rates for Test Case S-11.

EΠ
β,ID EΠ

ζ,ID E∇ζ,ID E∇ζ
GD C α C α C α C α
D3

u,a 1.2e+00 2.03 1.2e+00 2.03 3.0e-01 1.04 3.0e-01 1.04

D3,fe
r,a 5.9e-01 2.03 5.9e-01 2.03 4.7e-02 0.71 1.6e+02 2.08

D3,fe
u,b 3.3e-01 1.96 3.3e-01 1.96 1.5e+00 2.00 1.2e+00 1.94

D3,fe
r,b 1.9e-01 1.71 1.9e-01 1.71 1.5e+00 2.03 3.7e-01 0.66

D3,fe
u,c 3.9e-01 2.09 3.9e-01 2.09 1.1e-02 2.10 7.1e-05 0.49

D3,fe
r,c 1.3e-01 1.79 1.3e-01 1.79 7.9e-02 1.71 7.7e-06 -0.82

Table 5. Constants and rates for Test Case S-11, with excluding the discontinuities.

the interpolation errors struggles to capture the correct convergence when considering a finite family
of meshes.

Figure 11 presents a loglog plot of the errors E∇ζ,ID vs. h, for k = 3 and when the errors are

calculated excluding two intervals of length 2/10 centred at the discontinuity points 1
2 ± γ of u. The

corresponding first order regression are given in Table 55 (which also includes EΠ
β,ID and EΠ

ζ,ID ). This

figure shows why the regression fails to capture proper orders, as the behaviour of the error with
respect to the mesh size is not monotonic enough. These results however show that selecting a high-
order method with a proper local quadrature rule (e.g. D3,fe

u,c or D3,fe
r,c ) give much more precise results

outside singularities than low-order methods or ill-chosen local quadrature rules.

Test Case S-22: Stefan problem, non-homogeneous Dirichlet BC, f = 0
The results presented in Table 66, are comparable to the results obtained with a non-zero source

term in Test Case S-11 (reduced convergence for D3,fe
α,a , limitation of the convergence for D3,fe

α,c dues
to the limited regularity of ζ(u)). In this case, however, the gradient ∇DIDζ(u) of the interpolant
seems to enjoy better convergence property even on random meshes, which preserve a reasonable
convergence of E∇ζ .

Test Case S-33: Stefan problem, homogeneous Dirichlet conditions, f 6= 0 and F 6= 0
The term −

∫
Ω
F · ∇Dv in the gradient scheme (2.62.6) is exactly computed, without numerical

quadrature, using the relation

−
∫

Ω

F · ∇Dv = −
∫ 1

0

F (s)(ΠD∗v)′(s)ds = −4
sinh(1/4)

cosh(1/4)

(
ΠD∗v

(
1

4

)
+ ΠD∗v

(
3

4

))
.

The outcome of the test can be seen in Table 77. We note that these data do not satisfy the assumptions
of Theorem 2.232.23, and no high-order rate can therefore be expected. Actually, the solution displays a
very low regularity since ζ(u) only belongs to H1, not even H2. This is represented in the results by
the fact that, for each given error, the rates of convergence for all schemes are in the same range. We
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Figure 1. Test Case S-11: log(E∇ζ,ID ) vs. log(h), excluding discontinuities.

EΠ
β,ID EΠ

ζ,ID E∇ζ,ID E∇ζ
GD C α C α C α C α
D1,fe

u 2.0e+00 0.50 2.6e-01 1.98 1.5e-01 1.48 7.7e-01 1.00
D1,fe

r 4.7e+00 0.67 5.2e-02 1.78 3.8e-02 1.32 7.6e-01 1.00
D2,fe

u 2.3e+00 0.49 1.2e-01 2.02 8.6e-02 1.50 2.0e-01 1.50
D2,fe

r 2.4e+00 0.53 1.6e-01 2.13 1.0e-01 1.61 2.1e-01 1.51
D3,fe

u,a 3.4e+00 0.50 9.3e-02 2.00 8.9e-02 1.01 9.2e-02 1.01

D3,fe
r,a 2.9e-02 -0.21 6.8e-02 1.94 8.5e-02 1.00 8.8e-02 1.00

D3,fe
u,b 4.1e+00 0.53 5.6e-02 2.03 8.0e-02 1.50 1.1e-01 1.50

D3,fe
r,b 1.7e+01 1.10 1.5e-01 2.28 1.8e-01 1.75 9.3e-02 1.51

D3,fe
u,c 3.1e+00 0.50 4.9e-02 2.01 5.3e-02 1.49 9.3e-02 1.50

D3,fe
r,c 3.1e+00 0.71 6.0e-02 2.16 7.8e-02 1.78 6.1e-02 1.52

Table 6. Constants and rates for Test Case S-22.

notice also that, across the board, the schemes perform better on regular grids rather than random
grids.

3.2.2. Numerical tests for mass-lumped finite elements in dimension 2. In the following 2D cases, we
consider the domain Ω = (0, 1) × (0, 1), the polynomial degrees k = 1, 2, and the following meshes
(see Figure 33):

• Triangular meshes which are as equilateral as possible, with edge length 1/N for N ∈ {25, 50, 100}.
The gradient discretisations on these meshes will have the subscript “e”, e.g., Dke .

• Rectangular triangular meshes obtained by splitting N2 squares in 2, for N ∈ {25, 50, 100}. We
use the subscript “s” for these GDs, e.g., Dks .

• Random meshes based on the three meshes mesh1 3, mesh1 4 and mesh1 5 from the FVCA5
benchmark [1818]. The randomness is obtained moving the internal nodes by a uniform random
factor, and we use the subscript “r” for these GDs, such as in Dkr .

Based on these meshes, we define the mass-lumped version of Dk∗ (k = 1, 2), for each α ∈ {e, s, r}:
• D1,fe

α : k = 1, (xi)i∈I are the vertices of the mesh and, for all i ∈ I, Ui is Donald dual cell around
xi.

• D2,fe
α : k = 2, (xi)i∈I are the vertices and midpoints of the edges of the mesh, and, for all i ∈ I,
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EΠ
β,ID EΠ

ζ,ID E∇ζ,ID E∇ζ
GD C α C α C α C α
D1,fe

u 3.8e+01 0.50 3.5e+01 2.01 7.7e+00 1.49 1.2e+00 0.71
D1,fe

r 2.3e+01 0.42 4.0e-01 0.81 5.8e-01 0.82 5.7e-01 0.34
D2,fe

u 2.2e+01 0.50 3.6e+00 2.00 1.6e+00 1.50 3.7e-01 0.51
D2,fe

r 1.2e+01 0.42 3.1e-03 -0.29 7.2e-02 0.26 6.6e-01 0.44
D3,fe

u,a 2.2e+01 0.50 3.3e+00 2.01 6.5e-01 1.18 3.6e-01 0.51

D3,fe
r,a 2.9e+00 0.17 4.7e-03 -0.03 6.3e-02 0.14 3.6e-01 0.35

D3,fe
u,b 1.8e+01 0.50 2.3e+00 2.00 1.0e+00 1.50 3.6e-01 0.50

D3,fe
r,b 5.4e+00 0.22 4.3e-01 0.95 2.2e-01 0.46 7.0e-01 0.50

D3,fe
u,c 1.5e+01 0.50 8.8e-01 2.00 5.7e-01 1.50 3.5e-01 0.50

D3,fe
r,c 5.5e+00 0.26 9.1e-03 -0.05 8.3e-02 0.33 6.4e-01 0.48

Table 7. Constants and rates for Test Case S-33.

Ui

xi

Figure 2. Left: mass-lumping region for P2 finite elements. Right: division of a
mesh triangle in four to construct D1,fe

α,1/4.

? if xi is a vertex of the mesh, Ui = ∅,
? if xi is the midpoint of and edge of the mesh, Ui is the union of one or two triangles obtained

joining the edge midpoints with each of the centers of mass of the cells around the edge (see
Figure 22, left)

• D1,fe
α,1/4: we divide each mesh triangle in four (see Figure 22, right), and apply the mass-lumped

P1 method on this sub-mesh. This gradient discretisation has the same unknowns as D2,fe
α ,

corresponding to k = 2 on the original mesh.
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Figure 3. The three types of 2D meshes: “e” mesh (left), “s” mesh (middle), “r”
mesh (right).

Remark 3.2 (Implementation for k = 2). If k = 2, the function reconstruction obtained by mass-
lumping does not see the vertex unknowns (Ui = ∅ if xi is a mesh vertex). The corresponding mass
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GD D1,fe
e D2,fe

e D1,fe
s D2,fe

s D1,fe
r D2,fe

r

C α C α C α C α C α C α
EΠ
β,ID 9.1e-03 2.06 2.9e-02 2.95 5.0e-03 2.03 3.0e-03 2.59 2.0e-02 2.02 8.1e-03 2.50

EΠ
ζ,ID 3.3e-04 2.07 2.8e-03 3.53 1.5e-04 2.04 2.0e-03 4.04 1.5e-03 2.03 1.2e-03 3.01

E∇ζ,ID 1.4e-03 1.51 7.7e-03 2.52 7.5e-04 2.04 6.9e-03 3.02 2.0e-03 1.02 2.8e-03 2.02

Table 8. Constants and rates for the 2D version of Test Case P-11.

matrix is therefore singular, which is of course an issue when considering explicit discretisations of
time-dependent (even linear) problems; solving this issue requires the usage of enriched P2 elements
[88]. However, in the context of implicit time stepping, or equivalently of stationary problems, this is
not an issue since the stiffness matrix is always non-singular.

The case of stationary nonlinear degenerate equations such as (1.11.1) requires nonetheless an imple-
mentation trick. Since the diffusion term acts on ζ(u), in the nonlinear iterations the stiffness matrix
is multiplied by ζ ′(u) which can vanish, and the diffusion term does not yield in itself a control of
all the unknowns ui. It does however enable a control of the unknowns ζ(u)i = ζ(ui). Even though
these unknowns, especially for the Stefan problem, do not determine u entirely, this gives a way to
implement the scheme in a non-singular way. Instead of writing an equation on (ui)i∈I , we write
an equation on ((ui)i∈Ie , (ζ(u)i)i∈Iv ), where Ie is the set of indices corresponding to edge midpoints,
and Iv the set of indices corresponding to the vertices. The unknowns (ui)i∈Ie are controlled by the
mass-lumped reaction term, and the unknowns (ζ(u)i)i∈Iv by the diffusion term. This implementa-
tion does not entirely determine a solution u to the scheme, only its values at the edge midpoints and
the values of ζ(u) at the vertices, but this is expected given Lemma 2.62.6 and Remark 2.72.7.

Remark 3.3 (The case k = 3). If k = 3, it is possible to satisfy the local quadrature rules (2.182.18) with
l = 0 (i.e. to have rules exact for third degree polynomials). This is done by fixing α ∈ (0, ( 3

44 )1/2)
and making as nodes xi and proportion |Ui ∩K|/|K| of the weights the following choices:

• the vertices of the mesh, each one associated with proportion 3−44α2

60(1−4α2) ;

• two points on each edge located at the barycentric coordinates ( 1
2±α,

1
2∓α) on the edge, associated

with proportion 1
15(1−4α2) ;

• the centers of mass of the triangles, associated with proportion 9/20.

To have local quadratures of degree four (that is, (2.182.18) with l = 1), one must set α2 = 1/12, which
leads to the negative weight proportion −1/60 at the vertices of the triangle, a situation which is
incompatible with the mass-lumping setting. To properly mass-lump the P3 finite elements while
preserving their high-order, an enriched version of these elements must be considered [88].

The data we consider in the following test case are the same as for the 1D case, using the diagonal
as 1D coordinate. For example, if g is a solution or source term for a 1D test case, the solution or
source term for the corresponding 2D case is computed by setting g̃(x, y) = f((x+ y)/

√
2). All these

2D test cases therefore have non-homogeneous Dirichlet boundary conditions.

Tests with Dkα, k = 1, 2
Tables 88–1111 present the results for the 2D versions of the Test Cases P-11, P-22, S-11 and S-22, that

is: porous medium with f 6= 0, porous medium with f = 0, Stefan problem with f 6= 0, and Stefan
problem with f = 0. Plots of solutions for the Stefan problems are given in Figure 44 (2D version of
Test Case S-11, f 6= 0) and Figure 55 (2D version of Test Case S-22, f = 0).

All the considered gradient discretisations satisfy the local quadrature rules (2.182.18) with ` = 0.
Accordingly, if the solution and source were smooth, rates of convergence for E∇ζ,ID should be O(hk)

for k = 1, 2 (see Remark 2.262.26). The results show that, for the porous medium case, we are above
these rates for all meshes, except for the random mesh –probably more representative of genuine
situations– where we are at these rates (or slightly above). As in the 1D case, the Stefan problem
is more challenging and, probably due to the loss of regularity of the solution, the rates are a little
bit worse. They do however remain at or above O(h) for k = 1, and only drop to around O(h1.5) for
k = 2.

Test with D1,fe
α,1/4 and D2,fe

α : comparison between degree 1 and degree 2
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GD D1,fe
e D2,fe

e D1,fe
s D2,fe

s D1,fe
r D2,fe

r

C α C α C α C α C α C α
EΠ
β,ID 1.4e-01 1.90 8.2e-02 1.69 4.8e-02 1.70 3.7e-03 1.02 3.1e-02 1.42 9.3e-02 1.63

EΠ
ζ,ID 1.8e-03 2.06 4.0e-02 3.48 9.5e-04 2.05 1.8e-02 3.22 1.7e-03 2.02 1.8e-03 2.56

E∇ζ,ID 2.5e-02 2.03 1.2e-01 2.52 1.3e-02 2.01 3.9e-02 2.38 2.6e-03 1.18 5.4e-02 2.29

Table 9. Constants and rates for the 2D version of Test Case P-22.

GD D1,fe
e D2,fe

e D1,fe
s D2,fe

s D1,fe
r D2,fe

r

C α C α C α C α C α C α
EΠ
β,ID 1.3e-01 0.45 1.9e-01 0.52 1.7e-01 0.57 7.6e-02 0.32 8.3e-02 0.38 6.0e-02 0.29

EΠ
ζ,ID 1.7e-02 2.04 4.5e-02 2.64 4.1e-03 1.88 4.6e-03 1.95 1.2e-02 1.96 2.7e-02 2.22

E∇ζ,ID 6.9e-02 1.66 6.0e-02 1.53 1.1e-02 1.33 4.8e-02 1.50 1.5e-02 1.07 1.0e-01 1.64

Table 10. Constants and rates for the 2D version of Test Case S-11.
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Figure 4. Approximate functions (top: u, bottom: ζ(u)) for the 2D version of Test
Case S-11. From left to right: D1,fe

e , D1,fe
s , D1,fe

r .

GD D1,fe
e D2,fe

e D1,fe
s D2,fe

s D1,fe
r D2,fe

r

C α C α C α C α C α C α
EΠ
β,ID 2.5e-01 0.48 4.0e-01 0.58 8.1e-02 0.35 5.0e-01 0.68 1.4e-01 0.37 7.7e-01 0.72

EΠ
ζ,ID 2.4e-02 2.10 1.6e-02 2.10 2.4e-02 2.24 3.2e-02 2.23 3.8e-02 2.06 1.5e-02 1.86

E∇ζ,ID 7.5e-02 1.57 9.5e-02 1.51 7.2e-02 1.71 9.5e-02 1.52 5.0e-02 1.02 9.8e-02 1.49

Table 11. Constants and rates for the 2D version of Test Case S-22.

To properly assess the interest of using a 2nd order scheme over a 1st order, we now look, on the
same triangular mesh, to the outputs of D2,fe

r and D1,fe
r,1/4. This makes for a fair comparison since
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Figure 5. Approximate functions u (left) and ζ(u) (right) for the 2D version of
Test Case S-22, using D1,fe

r .

Case Test Case P-11 Test Case P-22 Test Case S-11 Test Case S-22
C α C α C α C α

EΠ
β,ID 2/1 5.8e-02 1.63 1.3e+00 0.99 1.2e+00 0.37 1.5e+00 0.53

EΠ
ζ,ID 2/1 1.6e-02 2.00 1.4e-01 1.75 6.9e-01 1.27 7.2e-01 0.97

E∇ζ,ID 2/1 4.4e-02 1.83 4.2e-01 2.00 8.5e-01 1.26 4.6e-01 1.34

Table 12. Constants and rates for the comparison first/second order with the same
number of degrees of freedom.

these two schemes have the same number of unknowns. For each errors E = EΠ
β,ID , E = EΠ

ζ,ID and

E = E∇ζ,ID , letting Ek be the error corresponding to D1,fe
r,1/4 if k = 1, or to D2,fe

r if k = 2, we compute

the ratios r = E2/E1 for all the tests on the three random meshes based on mesh1 3, mesh1 4 and
mesh1 5. Assuming that the each error Ek is of the form Ck( hh0

)αk , where h0 is the size of the
reference mesh mesh1 3, the ratio between the two errors should be given by

r =
E2

E1
=
C2

C1

(
h

h0

)α2−α1

.

Table 1212 performs a C(h/h0)α regression of the ratio r. Hence, the C values in this table can be
considered as approximations of C2

C1
, and the α values as approximations of α2−α1. The results show

a clear advantage (smaller Ck, larger αk) of the second order method over the first order method,
and also that this advantage still holds, albeit reduced, for irregular (Stefan) test cases.

3.3. Numerical tests for mass-lumped DG schemes. The mesh M being a general polytopal
mesh as in [1212, Definition 7.2], still using the notations in Assumption 2.192.19 the gradient discretisation

D∗ = Dk,dg
∗ for the SIPG method of order k is defined as follows.

• For each cell K ∈M, points (xi)i∈IK are chosen such that for each choice of real numbers (wi)i∈IK
there is a unique q ∈ Pk such that q(xi) = wi for all i ∈ IK . Then I = (∪K∈MIK) ∪ I∂Ω is the
family that gathers the indices of all these points for all the cells, and of all the boundary points
where a jump is accounted for in the expression of ∇D .

• For each K ∈M and v = (vi)i∈I ∈ XD ,0, (ΠD∗v)|K is the unique polynomial in Pk that takes the
values vi at xi for all i ∈ IK .
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Test Case R Test Case P-11 Test Case P-22 Test Case S-22
GD C α C α C α C α
D3,dg

u,a 1.5e-01 1.01 4.2e-01 1.03 1.5e-01 1.01 9.0e-02 1.01

D3,dg
r,a 1.7e-01 1.02 4.2e-01 1.03 1.5e-01 1.01 8.5e-02 1.00

D3,dg
u,b 2.2e-01 2.00 2.9e+00 1.98 2.7e-01 2.00 8.2e-02 1.50

D3,dg
r,b 2.2e-01 1.99 2.9e+00 1.97 2.8e-01 2.00 7.4e-02 1.57

D3,dg
u,c 2.3e-02 3.25 1.4e+00 2.39 3.9e-02 3.42 5.4e-02 1.49

D3,dg
r,c 1.1e-02 3.01 1.0e+00 2.32 1.9e-02 3.08 5.8e-02 1.58

Table 13. Constants and rates for E∇ζ,ID with DG applied to some 1D test cases.

• The gradient reconstruction is given by (∇Dv)|K = ∇(ΠD∗v)|K + SK(v) for all v ∈ XD ,0 and
K ∈M, where SK(v) is an appropriate stabilisation term accounting for the jumps appearing in
the DG scheme (see [1212, Definition 11.1] for details).

We take k = 3 and consider the same families of uniform and random meshes of Ω = (0, 1) with N
cells each as in Section 3.2.13.2.1. We describe hereafter the remaining elements to fully define the GD,
that is: the nodes (xi)i∈I and the partition U = (Ui)i∈I . In each case, the elements of this partition
are intervals and satisfy Item (66) in Assumption 2.192.19. These elements follow closely the choices made
for the 1D finite element meshes in Section 3.2.13.2.1.

• D3,dg
u,a (uniform mesh) and D3,dg

r,a (random mesh) are defined setting
? I = {0, . . . , 4N + 1} with x0 = x1 = 0 < x2 < x3 < x4 = x5 < . . .x4i = x4i+1 < x4i+2 <
x4i+3 < . . .x4N = x4N+1 = 1. The cells of the uniform or random mesh are (x4i+1,x4i+4) for
i = 0, . . . , N − 1. The nodes x4i+2 and x4i+3 are located at 1/3 and 2/3 inside each cell.

? Each cell i = 0, . . . , N − 1 is partitioned into four intervals U4i+1, . . . U4i+4, associated to the
points x4i+1, . . .x4i+4, with respective lengths 1/6, 1/3, 1/3, 1/6 of that of the cell (providing
an exact quadrature (2.182.18) only for polynomials of degree 1), and U0 and U4N+1 are empty.

• D3,dg
u,b (uniform mesh) andD3,dg

r,b (random mesh) are similar to the previous one. The only difference

is that the respective lengths of the intervals are 1/8, 3/8, 3/8, 1/8 of that of the cell (providing
an exact quadrature (2.182.18) for polynomials of degree 3).

• D3,dg
u,c (uniform mesh) and D3,dg

r,c (random mesh) are defined using the Gauss–Lobatto method, the

differences with D3,dg
α,a are that the nodes x4i+2 and x4i+3 are located at 5−

√
5

10 and 5+
√

5
10 inside

each cell, and that the respective lengths are 1/12, 5/12, 5/12, 1/12 of that of the cell (providing
an exact quadrature (2.182.18) for polynomials of degree 5).

In all the tests, the penalisation parameter (denoted by β in [1212, Chapter 11]) is fixed at 0.6.

Remark 3.4 (Usage of the GDM). SIPG schemes are usually implemented by assembling consistent
and stabilisation terms. The design of a proper stabilisation term for a nonlinear problem as con-
sidered in this work is not straightforward, and requires ad-hoc choices. When embedding the SIPG
method into the GDM, the stabilisation term is already accounted for in the design of the gradient
reconstruction ∇D . No specific treatment of a separate stabilisation of the nonlinear second order
term is thus required.

The results in Table 1313 are in line with what we already observed for Finite Element methods. The
better local quadrature rule of D3,dg

α,c enable these schemes to outperform D3,dg
α,b and D3,dg

α,a (this latter

behind badly hindered by its very low-order local quadrature rule), and preserves the expected order
3 convergence for smooth data and solutions. This optimal convergence is even noticed in the fully
nonlinear test case P-22. As before, the Stefan problem is much more challenging due to its reduced
regularity, but even for this one we notice an interest in selecting a method with high enough local
quadrature rules.

Figure 66 shows the solutions u obtained with FE and DG schemes, for k = 1, 3, on Test Case S-11
and with a relatively coarse mesh (N = 16). As expected, the solutions obtained with k = 3 are much
more accurate. They however present oscillations (more severe for DG than for FE) in the viscinity
of the discontinuity of u. The solutions for Test Case S-22, corresponding to f = 0, do not present
such oscillations.
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Figure 6. Comparison of approximate u on Test Case S-11: k = 1 (left), k = 3
(right), Finite Element (blue), dG (green), exact (red), N = 16, uniform mesh.

4. Conclusion

We presented a generic analysis framework, covering a range of methods, for the numerical ap-
proximation of nonlinear degenerate elliptic equations, stationary version of the Stefan or porous
medium problems. We identified a particular structure of the method, the piecewise constant func-
tion reconstruction, which appears to be necessary to establish the robustness of the schemes, and
to obtain error estimates. We showed how to design mass-lumping versions of high-order numerical
methods in order to preserve, despite the usage of piecewise constant approximations in the scheme,
high-order approximations of the solution to this severely nonlinear model. Our numerical tests on
mass-lumped Finite Element and Discontinuous Galerking schemes corroborated the theoretical find-
ings, showing that even for non-smooth solutions an elevated rate of convergence is only obtained if
the mass-lumping is designed to satisfy proper local quadrature rules.

Appendix A. Existence and uniqueness of the weak solution

Theorem A.1 (Existence and uniqueness of the weak solution). Under Assumption (1.31.3), there is
a unique solution u to (1.21.2). This solution has the following regularity properties:

• Λ∇ζ(u) + F ∈ Hdiv(Ω);
• if d ≤ 3 and F ∈ Lp(Ω)d for some p > d, then ζ(u) ∈ Cθ(Ω) for some θ ∈ (0, 1) depending only

on Ω, Λ and p;
• if F = 0, Ω is convex and Λ is Lipschitz-continuous, then ζ(u) ∈ H2(Ω).

Proof. The existence of a solution is a consequence of Theorem 2.82.8, together with Lemma A.2A.2 that
establishes the existence of a proper sequence of gradient discretisations. To prove the uniqueness of
this solution, consider u1 and u2 two solutions to (1.21.2), subtract their respective equations, and take
v = ζ(u1)− ζ(u2) ∈ H1

0 (Ω) as a test function to get∫
Ω

(β(u1)− β(u2))(ζ(u1)− ζ(u2)) +

∫
Ω

Λ∇(ζ(u1)− ζ(u2)) · ∇(ζ(u1)− ζ(u2)) = 0.

The first term is non-negative since β and ζ are non-decreasing, and thus ∇(ζ(u1) − ζ(u2)) = 0.
This shows that that ζ(u1) = ζ(u2). The weak formulation (1.21.2) also shows that β(u1) −∆ζ(u1) =
f + div(F ) = β(u2) − ∆ζ(u2) in the sense of distributions on Ω; since ζ(u1) = ζ(u2), this yields
β(u1) = β(u2). Hence, β(u1) + ζ(u1) = β(u2) + ζ(u2) and Hypothesis (1.3d1.3d) shows that u1 = u2.

We finally consider the regularity properties of ζ(u). This function is a weak solution of

ζ(u) ∈ H1
0 (Ω) and − div(Λ∇ζ(u) + F ) = f − β(u) ∈ L2(Ω).

This readily shows that Λ∇ζ(u) + F ∈ Hdiv(Ω). If d ≤ 3, then L2 ⊂ W−1,q(Ω) for some q > d
and thus, assuming that F ∈ Lp(Ω)d for p > d, ζ(u) is a solution in H1

0 (Ω) of −div(Λ∇ζ(u)) =
f +div(F )−β(u) ∈W−1,min(q,p)(Ω); the results of [2222] then show that ζ(u) has the Hölder-regularity
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stated in the theorem. Finally, the H2 regularity property is a straightforward consequence of the
optimal elliptic regularity on convex domains for Lipschitz-continuous diffusion tensor. �

Lemma A.2 (Existence of suitable sequences of GDs). Under Assumption (1.3a1.3a), there exists a se-
quence (Dm)m∈N = (XDm,0

,ΠDm
,∇Dm

, QDm
)m∈N of gradient discretisations, with piecewise constant

reconstructions, that satisfy the coercivity, consistency, limit-conformity and compactness properties
stated in Theorem 2.82.8.

Proof. Let (M̃m) be a sequence of conformal simplicial meshes of Rd (see, e.g., [1212, Definition 7.4]),
such that max

T∈M̃m
diam(T )→ 0 and (Mm)m∈N is regular in the sense that the ratio of the diameter

of T ∈ M̃m over the largest ball inside T is bounded uniformly with respect to T and m. We let

Mm = {T ∈ M̃m : T ⊂ Ω} and define the polyhedral set Ωm ⊂ Ω as the interior of ∪T∈Mm
Tm.

The gradient discretiation Dm = (XDm,0
,ΠDm

,∇Dm
, QDm

) is defined as the mass-lumped con-

forming P1 gradient discretisation on the mesh Mm of Ωm [1212, Section 8.4], with extensions to Ω by
0 outside Ωm, and no quadrature rule. Letting Vm be the set of vertices of Mm, we therefore set

• XDm,0
= {v = (vi)i∈Vm : vi ∈ R , vi = 0 if i ∈ ∂Ωm};

• for v ∈ XDm,0
, (ΠDm

v)|Ωi
= vi for all i ∈ Vm, where (Ωi)i∈Vm is the dual (Donald) mesh of Mm,

and ΠDm
v = 0 on Ω\Ωm;

• for v ∈ XDm,0
, ∇Dm

v is on Ωm the gradient of the conforming P1 reconstruction from the vertex
values (vi)i∈Vm , and ∇Dm

v = 0 on Ω\Ωm;

• QDm
= Id : L2(Ω)→ L2(Ω).

Since the functions and gradient reconstructions are extended by 0 outside Ωm, CDm
and WDm

can

be computed using norms and integrals over Ωm. The properties of mass-lumped P1 GDs on Ωm (see
[1212, Theorem 8.17]) then show that (Dm)m∈N is coercive, limit-conforming and compact. It remains
to analyse the consistency of (Dm)m∈N.

As seen in [1212, Lemma 2.16], the consistency follows if we prove that SDm
(ϕ)→ 0 when ϕ ∈ C∞c (Ω).

In that case, for m large enough, ϕ ∈ C∞c (Ωm) and the norms in SDm
(ϕ) can be restricted to Ωm.

The estimate in [1212, Remark 8.18] then show that SDm
(ϕ) ≤ Cϕ maxT∈Mm

diam(T ) with Cϕ not
depending on m. This shows that SDm

(ϕ)→ 0 as m→∞, as required. �

Appendix B. Conforming scheme

Throughout this section, we assume that F = 0. Using Assumptions (1.3b1.3b), (1.3c1.3c) and (1.3d1.3d),
we see that β + ζ : R → R is bijective and we can therefore set µ(t) = ζ((β + ζ)−1(t)) and ρ(t) :=
t−µ(t) = β((β+ζ)−1(t). These functions are non-decreasing and 1-Lipschitz continuous and, setting
w = (β + ζ)(u), we see that (1.21.2) is equivalent to: find w ∈ L2(Ω) such that µ(w) ∈ H1

0 (Ω) and∫
Ω

ρ(w)v +

∫
Ω

Λ∇µ(w) · ∇v =

∫
Ω

fv , ∀v ∈ H1
0 (Ω). (B.1)

Given a family (Vm)m∈N of finite dimensional subspaces of H1
0 (Ω), conforming schemes for (B.1B.1) are

written: find wm ∈ Vm such that∫
Ω

ρ(wm)v +

∫
Ω

Λ∇µ(wm) · ∇v =

∫
Ω

fv , ∀v ∈ Vm. (B.2)

Introducing the function ν : R → R defined by ν(s) =
∫ s

0

√
µ′(r)dr, we can then state the following

convergence theorem.

Theorem B.1 (Convergence of the scheme). Assume that (1.31.3) holds and that, for all ϕ ∈ H1
0 (Ω),

limm→∞ infv∈Vm
‖ϕ − v‖H1

0 (Ω) = 0. Then, for any m ∈ N, there exists wm a solution to (B.2B.2) and,

if w is the solution to (B.1B.1), as m → ∞, we have µ(um) → µ(w) weakly in H1
0 (Ω) and strongly in

L2(Ω), ν(wm)→ ν(w) weakly in H1
0 (Ω) and strongly in L2(Ω), and ρ(wm)→ ρ(w) weakly in L2(Ω).

Moreover, if the following energy equality holds∫
Ω

ρ(w)w +

∫
Ω

Λ∇ν(w) · ∇ν(w) =

∫
Ω

fw, (B.3)

then ∇ν(wm)→ ∇ν(w) and wm → w strongly in L2(Ω).
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Remark B.2 (On condition (B.3B.3)). We observe that (B.3B.3) holds in the case where w ∈ H1
0 (Ω) since

it can then be taken as a test function in (B.1B.1). But it may also hold in some less regular situations.

Proof. We only sketch the proof. Assuming the existence of a solution wm to the scheme, we let v = vm
in (B.2B.2), use the monotonicity of µ and ρ, the relation µ′(wm)|∇w|2 = |∇ν(wm)|2, the coercivity of
Λ and the Poincaré inequality, we write (with a . b meaning a ≤ Cb with C independent of m):

λ‖∇ν(wm)‖2L2 ≤ ‖f‖L2‖wm‖L2 . ‖f‖L2(1 + ‖µ(wm)‖L2) . ‖f‖L2‖∇µ(wm)‖L2). (B.4)

We have |∇µ(wm)|2 = µ′(wm)|∇ν(wm)|2 ≤ |∇ν(wm)|2 and the estimate above therefore gives a
bound on ν(wm) in H1

0 (Ω), and thus also on µ(wm). Using a coercivity property of µ similar to that
of ζ we infer bounds in L2(Ω) on wm and ρ(wm). A topological degree argument, similar to the one
developed in the proof of Lemma 2.62.6 below, then ensures the existence of at least one solution wm
to (B.2B.2).

These bounds give v ∈ H1
0 (Ω) and w ∈ L2(Ω) such that, up to a subsequence, µ(wm) → v

strongly in L2(Ω), ∇µ(wm)→ ∇v weakly in L2(Ω)d and wm → w weakly in L2(Ω). By weak/strong
convergence we infer that

lim
m→∞

∫
Ω

wmµ(wm) =

∫
Ω

w v

and a Minty argument [1212, Lemma D.10] yields v = µ(w), and thus ρ(wm) → w − µ(w) = ρ(w)
weakly in L2(Ω). We have (ν(a)− ν(b))2 ≤ (b− a)(µ(b)−µ(a)) and the strong convergence of µ(wm)
in L2 therefore shows that ν(wm) → ν(w) in L2(Ω). Since (ν(wm))m∈N is bounded in H1

0 (Ω), this
convergence also holds weakly in this space.

Letting ϕ ∈ H1
0 (Ω) and taking vm := argminv∈Vm

‖ϕ − v‖H1
0 (Ω) in (B.2B.2), the above convergences

enable us to take the limit as m → ∞ to see that w is the solution to (B.1B.1). The uniqueness of w
shows that the convergence property holds for the whole sequence.

Assuming that (B.3B.3) holds, we apply (B.2B.2) with v = wm to get

lim
m→∞

(∫
Ω

ρ(wm)wm +

∫
Ω

Λ∇ν(wm) · ∇ν(wm)

)
=

∫
Ω

fw

=

∫
Ω

ρ(w)w +

∫
Ω

Λ∇ν(w) · ∇ν(w).

(B.5)

The weak convergence of ν(wm) in H1
0 (Ω) ensures that

lim inf
m→∞

∫
Ω

Λ∇ν(wm) · ∇ν(wm) ≥
∫

Ω

Λ∇ν(w) · ∇ν(w). (B.6)

Developing the relation
∫

Ω
(ρ(wm) − ρ(w))(wm − w) ≥ 0 and using the weak convergences wm → w

and ρ(wm)→ ρ(w) in L2(Ω) we have

lim inf
m→∞

∫
Ω

ρ(wm)wm ≥
∫

Ω

ρ(w)w. (B.7)

Using (B.6B.6) and (B.7B.7) together with (B.5B.5) yields∫
Ω

Λ∇ν(wm) · ∇ν(wm)→
∫

Ω

Λ∇ν(w) · ∇ν(w) and

∫
Ω

ρ(wm)wm →
∫

Ω

ρ(w)w.

The first relation classically shows that ∇ν(wm) → ∇ν(w) strongly in L2(Ω). Using the second
relation and a weak/strong convergence argument on µ(wm)wm we infer that∫

Ω

w2
m =

∫
Ω

ρ(wm)wm + µ(wm)wm →
∫

Ω

ρ(w)w + µ(w)w =

∫
Ω

w2,

which gives the strong convergence in L2(Ω) of w. �

Remark B.3 (About the assumption F = 0). If F 6= 0, then an additional term
∫

Ω
F ·∇wm appears in

the sequence (B.4B.4), which cannot be estimated since no a priori bound is expected on wm in H1
0 (Ω).
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[12] J. Droniou, R. Eymard, T. Gallouët, C. Guichard, and R. Herbin. The gradient discretisation method, volume 82

of Mathematics & Applications. Springer, 2018.
[13] C. M. Elliott. Error analysis of the enthalpy method for the Stefan problem. IMA J. Numer. Anal., 7(1):61–71,

1987.
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