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Abstract: Assessment of the performance degradation caused by the mid-spatial frequency
(MSF) structure on optical surfaces often relies on a perturbation method that dovetails with the
familiar sequence of models based on geometrical and physical optics. In the case of imaging
systems, the perturbative step yields estimates of wavefronts in the exit pupil which are, in turn,
used to extract performance measures such as MTF, PSF, and Strehl ratio. To date, the validity of
that perturbation appears to be poorly understood. We present methods to estimate the errors of
this approach and thereby arrive at a rule of thumb for its accuracy: the error is approximately
equal to the RMS of the MSF structure at its source multiplied by the square of the ratio between
a particular Fresnel zone size and a characteristic length of the MSF structure.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Mid-spatial frequency (MSF) structure is inescapable in most aspheric and freeform optical
systems due to the subaperture tools involved in manufacturing the optical components. Their
characteristic frequencies lie between those of low-order aberrations and high-order scattering,
and they affect optical performance in ways that continue to present challenges [1–4]. In particular,
the tolerancing of parts is complicated by MSF structure and a perturbative model is often
employed to simplify this process [5]. A similar approach was initially used to account for
perturbations like misalignment [6–12]. This model is an approximation where perturbations,
such as the MSF phase structure, are effectively dragged along the nominal rays of the system. In
this way, it becomes straightforward to approximate the MSF phase impact in the exit pupil of the
system for assessing system performance. An important advantage offered by the perturbation
model is that, while the low-order aberrations are inherent to the system’s design, the MSF
structure varies from part to part within a lot. The fact that perturbation employs the nominal
rays removes the need to perform new ray tracing for each realization of the MSF structures. The
validity of this perturbation model is not well understood, however.

In what follows, we derive simple estimates for the error associated with this perturbation. To
do so, we first present an asymptotic approach for modeling the propagation of a monochromatic
field in free space. This approach is based on using the rays determined by an initial nominal
phase distribution, and modeling how these rays can carry the impact of an extra phase deviation
that is taken to be at a lower asymptotic order (namely the MSF). Our goal is not to treat the details
of how MSF surface structures become imprinted into the phase at the interfaces, but to focus on
the propagation of that phase structure in homogeneous media. This asymptotic approach is then
used to derive rules of thumb for understanding the limitation of the perturbation model when
applied to imaging systems. For simplicity, the derivation is given for two dimensions; the results
for three dimensions will be presented separately and augmented with practical design examples.
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2. Asymptotic propagation estimate based on nominal rays

In two dimensions, a monochromatic scalar field Re[U(x, z)e−iωt ] in a homogeneous transparent
medium is governed by the Helmholtz equation

∇2U(x, z) + k2U(x, z) = 0, (1)

where k = ω/c = 2π/λ, with λ being the wavelength in the medium. This field is taken to be
propagating towards larger values of z and at some reference plane, say z = zM, it is nominally
given by U(x, zM) = U0 A(x) exp[ikW(x)], where U0 is a constant with field units. Here, W(x)
accounts for the nominal wavefront shape and A(x) is the nominal field amplitude, both assumed
to vary slowly within the scale of the wavelength. Importantly, we now consider the case where,
at this plane, the field also carries an additional MSF phase of the form exp[iφ(x)], where φ(x) is
measured in radians and is typically smaller than π. Without loss of generality, we take φ to have
a mean of zero. The goal in this section is to derive a simple estimate of how this MSF phase
impacts the field under propagation in z.
We begin by writing the field as U(x, z) = U0 exp[ikΦ(x, z)], where the complex function
Φ(x, z) accounts for spatial variations in both the phase and amplitude. With this, Eq. (1) becomes

|∇Φ|2 − 1 = − 1
ik
∇2
Φ. (2)

Equation (2) can be solved upon expressing Φ as an asymptotic series with parameter (ik)−1:

Φ(x, z) =
∞∑
n=0

Φn(x, z)
(ik)n . (3)

By using Eq. (3) with Eq. (2) and separating terms of equal power of the asymptotic parameter k,
we arrive at

|∇Φ0 |2 − 1 = 0, (4)

∇Φ0 · ∇ΦN = −
1
2

(
∇2
ΦN−1 +

N−1∑
n=1
∇Φn · ∇ΦN−n

)
, N ≥ 1. (5)

The initial conditions discussed above can now be stated as Φ0(x, zM) = W(x), Φ1(x, zM) =
ln[A(x)] + iφ(x), and ΦN (x, zM) = 0 for N ≥ 2. It is now possible to work to progressively
higher orders by integrating in z at each order from these initial conditions.

This sequence starts with Eq. (4), the well-known Hamilton-Jacobi or Eikonal equation, which
can be solved in terms of the nominal rays by using the following parametrization:

x(ξ, s) = ξ + sW ′(ξ), z(ξ, s) = zM + sχ(ξ), (6)

where ξ is the x coordinate at the reference plane (z = zM) and s is the arclength along the ray.
The direction of each ray is given by the unit vector [W ′(ξ), χ(ξ)], where χ(ξ) ,

√
1 −W ′(ξ)2,

with , denoting a definition. It is shown in Appendix A that the solution to the Eikonal equation
is simply given by its initial value at z = zM, namely W(ξ), plus the length of the ray:

Φ0(ξ, s) = W(ξ) + s, (7)

where an overline on any function f (x, z) indicates that it is being expressed in terms of the
ray parameters (ξ, s) by using Eq. (6). That is, f (ξ, s) , f [x(ξ, s), z(ξ, s)]. Notice that, as a
consequence of placing φ one asymptotic order below W , the rays used in this analysis are the
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nominal rays, not affected by the MSF structure. It is subsequently shown in Appendix A that
Eq. (5) can also be solved in terms of this ray parametrization. For N = 1, the parametrized
solution is

Φ1(ξ, s) = ln

[
A(ξ)

√
χ(ξ)
∆(ξ, s)

]
+ iφ(ξ), (8)

where ∆(ξ, s) is the Jacobian determinant of the coordinate transformation:

∆(ξ, s) , ∂(x, z)
∂(ξ, s) = χ(ξ) + s W ′′(ξ)

χ(ξ) . (9)

The first term of Eq. (8) accounts for the change in the amplitude due to the bunching or spreading
of the rays under propagation; the second term indicates that, asymptotically, the effect of the
MSF phase structure can be modeled by simply dragging this phase along the rays. This is
precisely the perturbation model.
The leading contribution to the error incurred by using the perturbation model follows upon

considering the next term in the asymptotic series. It is shown in Appendix A that this contribution
is given by

Φ2(ξ, s) = Ω2(ξ, s) +
1
2

[
φ′2

χ3 −
i

A2

(
A2φ′

χ3

) ′]
ζ +

iφ′

2χ3

(
W ′′

χ3

) ′
ζ2, (10)

where Ω2 is independent of φ, and

ζ ,
χ2(ξ) s
∆(ξ, s) =

z − zM

1 + (z − zM)W ′′(ξ)/χ3(ξ)
. (11)

That is, all the dependence on z of this φ-dependent correction is as a quadratic in ζ . As is
evident from Eqs. (10) and (11) and will become clearer in Sec. 4, the character of diffractive
solutions means that the error of the perturbation model can remain finite in the limit of large
propagation distances. It turns out that −χ3/W ′′ is the displacement between zM and the plane at
which the ray in question crosses its neighbors, forming a caustic, i.e., the z-coordinate of this
caustic point is zM − χ3(ξ)/W ′′(ξ). This follows from Eq. (9) or the observation that

dx =
∂x
∂ξ

dξ =
[
1 + (z − zM)W ′′(ξ)/χ3(ξ)

]
dξ, (12)

with ∂x/∂ξ being calculated for fixed z.
In summary, the perturbation model can be expressed as follows:

UP(ξ, s) = U(ξ, s)
���
φ(ξ)=0

exp[iφ(ξ)]

= A(ξ)

√
χ(ξ)
∆(ξ, s) exp

{
ik[W(ξ) + s] − i

Ω2(ξ, s)
k

}
exp [iφ(ξ)] , (13)

where the first factor on the right-hand side of the first line is simply the underlying field in
the absence of MSF phase structure. That is, the only φ-dependent component in UP is that
contained in Φ1. The leading correction to this approximation results from also considering the
φ-dependent terms in Φ2 given in Eq. (10):

U(ξ, s) ≈ UP(ξ, s) exp
{
− 1

2k

[
i
φ′2

χ3 +
1
A2

(
A2φ′

χ3

) ′]
ζ +

φ′

2k χ3

(
W ′′

χ3

) ′
ζ2

}
. (14)

                                                                                                    Vol. 27, No. 3 | 4 Feb 2019 | OPTICS EXPRESS 3392 



3. Simple field error estimates in a homogeneous medium

The relative root-mean-squared error (RMSE) of the perturbation model, ε , can be estimated as a
function of propagation distance by integrating over the transverse plane the squared modulus
of the difference between UP and the corrected field estimate in Eq. (14). This is achieved
by substituting s = (z − zM)/χ(ξ) in the parametrized estimates, and changing the variable of
integration from x to ξ by using Eq. (12). Furthermore, we keep only the term linear in ζ of the
exponential in Eq. (14) since it is initially dominant for small z − zM and, as seen in what follows,
it gives an adequate estimate in the domains of interest here. The squared RMSE is then

ε2(z, zM; φ) ,

∫
a

���UP[ξ, (z − zM)/χ(ξ)] −U[ξ, (z − zM)/χ(ξ)]
���2 [1 + (z − zM)W ′′(ξ)/χ3(ξ)] dξ∫

a

���U[ξ, (z − zM)/χ(ξ)]
���2 [1 + (z − zM)W ′′(ξ)/χ3(ξ)] dξ

=

∫
a A2

���1 − exp
{
− 1

2k

[
iφ
′2

χ3 +
1
A2

(
A2φ′

χ3

) ′]
ζ(z, ξ) + O

(
ζ2)}���2 dξ∫

a A2 dξ
, (15)

where a is the aperture in the initial reference plane. In the second line of Eq. (15) we used Eqs. (6),
(9), and (13), along with the fact thatΩ2 is real-valued, to see that [1+ (z− zM)W ′′/χ3]|UP[x, (z−
zM)/χ]|2 = A2. Note that the integral in the denominator is independent of z, due to the fact that,
when evanescent waves are not included, free propagation is a unitary operation. Upon defining
the weighted average

〈Q〉A ,
∫
a QA2 dξ∫
a A2 dξ

, (16)

and expanding the exponential in Eq. (15), one can write a simple approximation for ε2:

ε2(z, zM; φ) ≈ 1
4k2

〈{[
1
A2

(
A2φ′

χ3

) ′]2

+

(
φ′2

χ3

)2}
ζ2

〉
A

. (17)

Further, both A and χ typically have a significantly slower dependence on ξ than φ. In this case,
when their behavior is more or less homogeneous over the stop, an even simpler approximation is
given by

ε2(z, zM; φ) ≈ 1
4k2

〈
χ−6ζ2〉

A

〈
φ′′2 + φ′4

〉
A
. (18)

The range of validity of the perturbation approximation can now be estimated by using Eq. (18).
In particular, this approximation is useful when ε(z, zM; φ) is small compared to the intrinsic
impact of the MSF structure on the wavefield, referred to here as ϕ and defined according to

ϕ2 ,

∫ ���U(x, z)��φ=0 −U(x, z)
���2 dx∫ ���U(x, z)��φ=0

���2 dx
=

∫ ���U(x, zM)
��
φ=0 −U(x, zM)

���2 dx∫ ���U(x, zM)
��
φ=0

���2 dx

= 〈|1 − exp(iφ)|2〉A = 4〈sin2(φ/2)〉A ≈ 〈φ2〉A, (19)

where we used the field’s initial conditions and the linearity of the Helmholtz equation as well as
the unitarity of free propagation to see that ϕ is independent of z, and in the last step we assumed
|φ| � π. Clearly, if ε is comparable to ϕ, the error of the perturbation model is then comparable
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to that of just ignoring the MSF structure. We can therefore regard the perturbation model as valid
whenever ε is sufficiently smaller than ϕ. For the sake of discussion, we can require ε < ϕ/3.

As a first simple test to the RMSE estimate, consider a nominally uniform collimated beam
[W(ξ) = 0, A(ξ) = 1, χ(ξ) = 1] incident on a surface at zM that imparts on it a MSF phase φ. In
this case, Eq. (11) becomes ζ = z − zM and Eq. (18) reduces to

ε(z, zM; φ) ≈ |z − zM |
2k

√〈
φ′′2 + φ′4

〉
1. (20)

When the MSF phase structure is given by a simple sinusoid of the form

φ(ξ) = h sin (2πκξ) , (21)

where h is the amplitude measured in radians and κ is its spatial frequency, this RMSE estimate
is then given by

ε(z, zM; φ) ≈ |z − zM |πλhκ2

√
1
2
+

3h2

8
≈ |z − zM |πλhκ2

√
2

, (22)

where in the last step we assumed h � π, which is justified by the fact that typical MSF phase
structures have amplitudes that are much smaller than a wave,
It is convenient in what follows to normalize the RMSE by using ϕ of Eq. (19). Notice that

in this case, ϕ = 〈|1 − exp(iφ)|2〉1 =
√

2[1 − J0(h)] ≈ h/
√

2, where J0 is the zeroth order Bessel
function of the first kind. Figure 1 shows plots of this normalized RMSE (NRMSE), defined as
ε/ϕ, for λ = 632.8 nm and several values of κ, as a function of |z − zM |/Z, where

Z , 1
πλκ2

ϕ

h
√

1
2 +

3h2

8

≈ 1
πλκ2 , (23)

with the assumption of small h being used in the last step. In these plots, the approximation of
small h for both ϕ and Z is used for the normalization of the axes. To place these results in
the same terms as those used later (corresponding to imaging systems), the results in Fig. 1 use
κ = C/L, where L is the length of the aperture (set to 2 cm) and C is the number of cycles of
the sinusoidal MSF phase across this aperture. Evidently, the NRMSE of the examples where
h ≤ π/8 are well approximated by Eq. (22), for values of z for which ε(z, zM; φ) is below ϕ, as
the corresponding curves in Fig. 1 are nearly indistinguishable. In fact, the maximum deviation
is less than 12% for h < π/4. That is, the error estimate in Eq. (22) is accurate for propagation
by distances smaller than the characteristic distanceZ, which is the value of z at which the error
estimate reaches an NRMSE of 1. Notice also that, in this weak MSF phase regime, this upper
boundZ is independent of the magnitude of the MSF and, given the periodicity of the MSF, it
happens to be the Talbot distance divided by 2π.
Keep in mind that the MSF impact is roughly proportional to h. However, our analysis is

aimed at analyzing the validity of the perturbation model and, for small h, validity is found to be
asymptotically independent of h.

4. Application to imaging systems

The ideas presented above are now used to derive rules of thumb applicable to imaging systems
for which it is convenient to work solely in image space. In such cases, to a good approximation,
the wave field generated by an object point now converges onto a point on the image plane. Akin
to the standard practice for the stop and pupil, it is effective to assume that the frequency band of
interest in the MSF phases generated by each optical surface in the system is faithfully resolved
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Fig. 1. NRMSE plots for a sinusoidal MSF phase structure on a collimated beam, as a
function of (z − zM)/Z, for various values of h and C, with L = 2 cm. The lines indicated in
the legend are the NRMSE between the perturbation model and numerically calculated exact
fields. These NRMSE are compared with Eq. (22), which is shown as a thick black line.

at its associated conjugate plane. Those conjugate planes can sit before or after either the image
plane and/or the exit pupil. Given this assumed fidelity in those images, the dominant error of
the perturbation model is then generated by dragging these MSF phases along the nominal rays
from their respective conjugate planes to the exit pupil. (It is shown in Appendix B that working
in image space is equivalent to working in any other conjugate space, e.g. at the stop.) By using
the results derived above, we are now in a position to estimate the accuracy of that step. In this
way, the effects of the MSF phase as well as of the nominal aberrations and diffraction from the
aperture stop can all ultimately be estimated by using a single wave propagation integral from the
exit pupil to the image plane.

Consider first theMSF introduced by a single optical surface within the systemwhose conjugate
is at z = zM and where the exit pupil plane is at z = zP with coordinates chosen such that the
system’s image plane is at z = 0, as shown in Fig. 2. To simplify the treatment, we consider the
on-axis object point, whose ideal image is at the origin, and assume that the nominal wavefronts
are perfectly circular and the field amplitude across each wavefront is uniform. (In reality, for
precision optics where MSF is critical, the nominal aberrations are sufficiently small that the error
estimates found in what follows are expected to remain useful.) The equation for the nominal
rays is then simply x = ξ z/zM. The initial conditions for the nominal phase and amplitude are

W(ξ) = zM

√
1 +

ξ2

z2
M
, A(ξ) = |zP |1/2

(z2
M + ξ

2)1/4
, (24)

from which the solutions for Φ0 and Φ1 follow from Eqs. (7)-(9):

Φ0(x, zP) = zP

√
1 +

x2

z2
P
, (25a)

Φ1(x, zP) = ln

√���� zP
Φ0(x, zP)

���� + i
π

4
[sgn(zP) − sgn(zM)] + iφ

(
x

zM
zP

)
, (25b)

where sgn(·) is the signum function. Note that, following the considerations in Appendix C which
dictate the correct choice for the Gouy-Maslov phase shift, these expressions are asymptotically
valid at either side of the image plane z = 0 (although they break in the vicinity of this plane).

The perturbation model amounts to multiplying the nominal field estimate at the exit pupil
plane by the exponential of the term at the end of Eq. (25b). The estimate for the error involved
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Fig. 2. The image space of an imaging system where the origin is placed at the image plane
(blue). The image of the MSF phase (green) and the exit pupil (red) are located at zM and
zP, respectively. Here, zM < zP < 0 but either or both could be positive. (a) We assume in
this work that the lion’s share of the error in the perturbation model can be accounted for by
just the step of carrying the MSF phase structure along the nominal rays (gray lines) from
zM to zP. Note that ξ is the value of the x intercept at zM. The size of the exit pupil is L,
and that of the beam footprint at zM is LM. (b) Definition of r1 as the half-width of the first
Fresnel zone at zM, that is, as the height at which two circles, centered at the center of the
exit pupil and the image point, respectively, and touching the axis at zM, have a separation of
λ/2 in the Fresnel approximation.

in this approximation, given in Eq. (18), simplifies in this case because the ray caustic reduces to
a point and it follows from Eq. (11) that ζ is independent of ξ for a nominally perfect converging
wave: ���ζ ��z=zP ��� = ���� zP − zM

zP/zM

���� = r2
1 (zP, zM)

λ
, (26)

where this quantity is expressed in terms of the radius r1 of the first Fresnel zone [see illustration
in Fig. 2(b)], defined as

r1(zP, zM) ,

√
λ

���� (zM − zP)zM
zP

����. (27)

Equation (18) then becomes

ε(zP, zM; φ) ≈
r2
1 (zP, zM)

4π

√
〈χ−6〉A

√〈
φ′′2 + φ′4

〉
A
≈

r2
1 (zP, zM)

4π

√
〈χ−6〉A

√〈
φ′′2

〉
A
, (28)

where in the last step we used the fact that φ′′2 � φ′4 for small MSF, as discussed after Eq. (22).
For moderate numerical apertures, we can drop the obliquity factor of

√
〈χ−6〉A in Eq. (28)

since it is of the order of unity (e.g. this factor makes a change of the order of 3% and 10% when
the NA reaches 0.25 and 0.4, respectively). With this, is useful to rewrite Eq. (28) in the form

ε(zP, zM; φ) ≈
r2
1 (zP, zM)
R2 ϕ, (29)

where R is a measure of the characteristic feature size of the MSF structure at zM, defined as

R , 2
√
π

(
〈φ2〉A
〈φ′′2〉A

)1/4
. (30)
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Fig. 3. (a) Cmax as a function of η and zM/zP given by Eq. (32) for L = 20 mm and
λ = 632.8 nm. Note that the horizontal axis is scaled such that it is proportional to
tan−1(2zM/zP − 1). (b) NRMSE for η = 0.05 as a function of r2

1 /R
2, for various values of

C and h. The black line is the estimate from Eq. (29), and is seen to agree well with the
numerically calculated values, shown as colored dots, particularly for small values of h.

The rule of thumb in Eq. (29) is the main result of this work. It states that the error of the
perturbation model scales with (r1/R)2, and that, as discussed after Eq. (19), once this factor is
comparable to unity (say, greater than 1/3), the perturbation model loses its usefulness. While
r1 is a familiar and intuitive entrant here, the explicit definition and role of the characteristic
length of the MSF, namely R, is our key result. Note that for exit-telecentric systems where
propagation across large distances may be expected to be problematic we simply have zP →∞
and therefore r2

1 → λ |zM |. Similarly, the limit of large zM can be handled by dividing both R and
r1 by zM to convert those entities to the tangents of angles subtended at the origin (see Fig. 2)
while effectively leaving Eq. (29) intact.

To illustrate these ideas, consider the simple sinusoidal MSF phase structure given in Eq. (21)
with κ = C/LM, where LM , L |zM/zP | is the size of the beam footprint in the part’s conjugate
plane and C is the number of MSF cycles across this footprint. Because A varies significantly
more slowly than φ and its derivatives, its value within the integral of Eq. (16) can be approximated
by a constant, and it follows that R is approximately equal to the MSF’s period divided by

√
π,

i.e. R ≈ 1/(
√
πκ). Figure 3(a) shows a contour plot that illustrates the validity of Eq. (28) for

sinusoidal MSF structures, which includes the average of the obliquity factor, namely,√
〈χ−6〉A =

√
35 − 70η2 + 56η4 − 16η6

35(1 − η2)3
, (31)

where η is the numerical aperture in image space. The contours are the values of C such that
ε = ϕ/3, and the square of this value is written

C2
max ,

2ηL(1 − η2)
3πλ

���� zM/zP
zM/zP − 1

����√ 35
35 − 70η2 + 56η4 − 16η6 . (32)

It is worth noting that these contours are symmetric about both zM/zP = 0 and zM/zP = 1, and
that if this plot is wrapped onto a cylinder, the contours are smoothly continuous at the join
corresponding to zM/zP = ±∞. Also note that ε of Eq. (29) is proportional to C2 (because R is
inversely proportional to C) so the perturbation model is useful whenever C < Cmax. It follows
that Fig. 3(a) can be interpreted as defining the frequency passband in which the perturbation
model is valid as well as providing an accuracy estimate. Note too that modifying the value of L
or λ simply rescales the numbers of the rainbow-like contour legend; the plot itself is unchanged.
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Fig. 4. Plots for an imaging system with η = 0.2, L = 20 mm, and a sinusoidal MSF structure.
(a) NRMSE as a function of zM/zP for h = π/8 and various values of C given by the legend.
The solid curves are the estimate from Eq. (29) and the dots are numerically calculated actual
values. The green region indicates ε ≤ ϕ/3. (b) The same information, plotted against
r2
1 /R

2, where the single black line is the estimate. (c/d) show similar information to (a/b),
but with a fixed value of C = 20 cycles and various values of h given by the legend. Note
that in (c), unlike (a), the estimate is represented by a single black curve for all examples
since they all have the same value of C.

As an example, for a system with η = 0.4, it follows upon inspection of the associated
horizontal dotted gray line in Fig. 3(a) that the perturbation model is valid for frequencies up to
20 cycles except within the interval zM/zP ∈ [−0.17, 0.13] (indicated by the red line segment).
That is, the perturbation model is unhelpful when the conjugate plane approaches the image plane.
Unsurprisingly, higher frequencies can be resolved when the conjugate plane is nearer the pupil
plane. Again with η = 0.4 as an example, it is possible to handle more than 160 cycles when
zM/zP ∈ [0.9, 1.1] (indicated by the blue line segment). Also note that smaller η values have
larger exclusions. For example, for η = 0.05 and frequencies beyond 20 cycles, the perturbation
model is invalid for all zM/zP < 0.6 (indicated by the orange line segment). This includes all
cases where the conjugate plane is closer to the image than to the exit pupil (hence, for the
perturbation model to be of value for this number of cycles, the conjugate plane cannot sit on the
far side of the image plane). Figure 3(b) shows the NRMSE as a function of r2

1/R
2 for η = 0.05,

and this is generated by varying zM. The estimate in Eq. (29) is seen to be accurate within the
region of interest provided the amplitude h is sufficiently small. This plot is strikingly similar to
that in Fig. 1. A different perspective is presented in Fig. 4 which, for η = 0.2, shows NRMSE
plots for various values of h and C. Figures 4(a) and 4(c) are essentially squared cross-sections
of Fig. 3(a) at η = 0.2, and the regions of validity of Eq. (29) can be seen to correspond to those
indicated by Fig. 3(a). The NRMSE plots as a function of r2

1/R
2 are shown in Figs. 4(b) and 4(d).

Again it is clear that the small h approximation gives accurate estimates for h ≤ π/8. In fact, the
maximum deviation between the numerically calculated NRMSE and the simple estimate from
Eq. (29) is less than 12% provided that h ≤ π/4.

At this point it is important to make a distinction between two situations. As mentioned earlier,
it is possible for zM, the axial position of the image of the optical surface introducing the MSF,
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to be to the left or right of the exit pupil, zP, and for either of these to be to the left or right of
the system’s image plane at z = 0. However, for an optical system in which there are internal
images, this order does not necessarily reflect the order in which the corresponding actual optical
elements are encountered in the system. The order in the system between the surface introducing
the MSF phase and the aperture stop is important when more rigorously simulating the field at
the image plane. Even when working in image space, this order can be used to determine whether
diffraction at the exit pupil takes place before or after the MSF phase is applied, regardless of the
order of zP and zM. A theoretical argument of why the RMSE estimate is valid for these two
situations is provided in Appendix D. The validity of the RMSE for both orderings was also
verified numerically.

It is possible to gain added intuition about Eq. (28) upon expressing the MSF phase in terms of
some type of frequency spectrum. Although orthogonal polynomials also represent an attractive
option [4], the essential result is perhaps simplest to appreciate by contemplating a band-limited
Fourier series containing only MSF frequencies of interest, say

φ(ξ) =
∑
m

am exp (2πiκmξ) , (33)

where κm = m/LM. If the field amplitude is roughly constant, it now follows thatR = 1√
π

(
κ4

)−1/4
,

where κ4 is a normalized fourth moment of the spatial frequency spectrum, i.e.

κ4 ,

∑
m |am |2 κ4

m∑
m |am |2

. (34)

Note that, while the spectrum discussed here uses the exit pupil as its domain, i.e. the projected
beam footprint rather than the entire aperture of each surface of interest, the entire apertures are
included within the analysis upon averaging over the field to extract an overall measure of the
MSF’s impact.

Figure 5 presents plots of the NRMSE for five nonsinusoidal MSF phase structures, shown in
the inset in Fig. 5(a), with equal RMS value and whose power spectral densities decay according
to a power law. Again, these error plots are generated by varying zM while keeping constant
the projection of the MSF phase structure (in keeping with the perturbation model) across the
exit pupil. The wavelength, exit pupil size and NA are the same as in the previous example.
Notably, the error estimate in Eq. (29) approximates well all these errors within the regime in
which the perturbation model is useful, namely when r2

1/R
2 is less than about a third. (Appendix

D provides a description of this error for larger values of r2
1/R

2).
Finally, we discuss the generalization of these results to the case of M optical surfaces, each

introducing an MSF phase structure φm, for m = 1, 2, . . . , M . Let the conjugates of these surfaces
in image space sit at z = zm. The perturbation approximation then involves multiplying the
nominal field at the exit pupil by exp

[
i
∑M

m=1 φm(xzm/zP)
]
. The generalization of the dominant

part of Eq. (14) results from simply introducing a summation over these contributions:

U(x, zP) ≈ UP(x, zP) exp

[
− 1

2k

M∑
m=1

φ′′m(xzm/zP)
χ3(xzm/zP)

ζm

]
, (35)

where, in keeping with Eq. (26), ζm = (zP − zm)zm/zP. By assuming that the MSF phases of the
different surfaces are statistically uncorrelated, the total relative RMSE, εT, can be estimated as
the sum of the squares of the RMSEs for each surface as

ε2
T ≈

M∑
m=1

ε2(zP, zm; φm). (36)
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Fig. 5. The normalized RMSE plot, as a function of zM/zP, is shown in (a) for randomly
generated MSF structures that possess a power-decay spectra, whose extent over the aperture
is L = 2 cm. The solid curves are generated from Eq. (29), and the numerically calculated
values are shown as dots whose color corresponds to the corresponding structure, shown in
the subplot. Part (b) shows the same information but plotted against r2

1 /R
2, where the single

black line is the estimate. The green region indicates ε ≤ ϕ/3.

Note that ε(zP, zm; φm) < ϕm/3 should be checked individually, where ϕm is given by Eq. (19)
for the corresponding φm.

5. Concluding remarks

By investigating the propagation in a homogeneous medium of a general nominal wavefield that
is perturbed by an MSF phase structure, we have constructed an asymptotic framework that can
be used to assess the validity and accuracy of the perturbation model. For this framework to be
consistent with the perturbation model, the effects of the MSF structure are placed one asymptotic
order lower than the nominal wavefront. This leads to a solution that employs the nominal rays
but modifies the phase and amplitude of their contributions. This framework allows not only the
derivation of the perturbation model itself but also of a series of corrections, the leading term of
which is used to find a simple RMS error estimate. Notice that, while not the goal of the current
work, these corrections can be used not only to estimate the error of the perturbation model but
to actually provide a better approximation of the field if desired. Importantly, our results give
explicit estimates of both when the perturbation model retains validity (i.e. leads to errors that
are less than some agreed fraction, say a third, of the impact caused by the MSF structure) as
well as of the model’s accuracy within its domain of validity.

As a specific demonstration of these ideas we showed that, under an additional assumption,
significant progress can be made for optical imaging systems. Our process for considering
the impact of MSF on a particular interface does not require knowledge of all the system
details, but involves only three locations of interest in image space: the system’s image plane
and exit pupil plane as well as the plane that is conjugate to the interface itself. Just as the
imagery from stop to pupil is generally taken for granted, we assumed that the frequency band
of interest in the interface’s MSF is resolved at its associated conjugate plane with higher
fidelity than in the free-space propagation to the exit pupil. While it would be straightforward to
investigate this assumption for a variety of standard system types (perhaps using nothing more
than resolution estimates based on geometrical optics), that falls outside the scope of this more
general contribution. Our asymptotic treatment led to the intuitive rule of thumb in Eq. (29) for
the RMS error caused by the perturbation model in terms of the size of the first Fresnel zone
when propagating to the exit pupil from the image of the surface introducing the MSF phase
structure: the RMS error is simply proportional to the inherent impact of the MSF phase, times a
scaling factor given by the square of the ratio between the first Fresnel zone’s half-width and
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a specific characteristic length of the MSF phase. (This characteristic length can be expressed
either in terms of an average second derivative or a fourth spectral moment.) That is, whenever
the central Fresnel zone is sufficiently smaller than this characteristic length, the perturbation
model remains valid. Finally, these relations are extended to multiple surfaces and are shown to
be equally valid regardless of the ordering between the aperture stop and the surface introducing
the MSF structure, as well as of the order of their images in image space.

A. MSF-independent rays derivation

The method of characteristics leads to the solution to Eq. (4) in terms of the parametrization in
Eq. (6). When changing variables according to Eq. (6), it is convenient to introduce the transpose
of the Jacobian matrix:

J ,
∂r
∂ξ
=


∂x
∂ξ

∂z
∂ξ

∂x
∂s

∂z
∂s

 =

1 + sW ′′(ξ) −sW

′(ξ)W ′′(ξ)
χ(ξ)

W ′(ξ) χ(ξ)

 =

1 + sW ′′(ξ) sχ′(ξ)

W ′(ξ) χ(ξ)

 . (37)

With this, derivatives in the Cartesian coordinates r = (x, z) can be written in terms of derivatives
in the ray parameters ξ = (ξ, s) according to the chain rule,

∇F[x(ξ), z(ξ)] = ∇F(ξ, s) = J−1 · ∇ξF(ξ, s), (38)

where ∇ξ = (∂/∂ξ, ∂/∂s).
We start by showing that Eq. (7) is a solution to the Eikonal equation in Eq. (4). By using

Eq. (38), the parametrized gradient of Eq. (7) gives, after some simplification,

∇Φ0 = (0 1) · J = (W ′, χ). (39)

It is then straightforward to show that the dot product of Eq. (39) with itself gives unity, hence
satisfying Eq. (4). Notice also that Eq. (39) combined with Eq. (38) allow turning the left-hand
side of Eq. (5) into a simple derivative in s:

∇Φ0 · ∇ΦN = (0 1) · ∇ξΦN =
∂

∂s
ΦN . (40)

For N = 1, Eq. (5) reduces to

∇Φ0 · ∇Φ1 = −
1
2
∇2
Φ0. (41)

By changing variables to ξ and using Eq. (40), the left-hand side of Eq. (41) transforms into
∂Φ1/∂s. The corresponding parametrization of the right-hand side gives

∇2
rΦ0 = (J−1 · ∇ξ) · ∇Φ0 = (J−1 · ∇ξ) · [(0 1) · J] = Tr(J−1 · ∂

∂s
J) = ∂

∂s
ln(∆), (42)

with ∆ = Det(J) = (χ2 + sW ′′)/χ. With these results, Eq. (41) now becomes

∂

∂s
Φ1 = −

1
2
∂

∂s
ln(∆), (43)

which has a simple solution that satisfies Φ1(ξ, 0) = ln[A(ξ)] + iφ(ξ):

Φ1(ξ, s) = ln
(
A
√
χ

∆

)
+ iφ(ξ). (44)
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The logarithmic portion of Eq. (44) leads to an overall amplitude factor that accounts for the
bunching of the rays under propagation. This factor diverges at the caustics of these nominal rays.
The N = 2 case of Eq. (5) can be written as

∇Φ0 · ∇Φ2 = −
1
2
∇2 exp(Φ1)

exp(Φ1)
. (45)

By parametrizing in terms of ξ and using Eq. (40) to simplify the left-hand side we get

∂Φ2
∂s
= −1

2
exp(−Φ1)∇2 exp(Φ1)

= −1
2

1
A exp(iφ)

√
∆

χ
J−1
il

∂

∂ξl

{
J−1
i j

∂

∂ξj

[
A
√
χ

∆
exp(iφ)

]}
, (46)

where in the last part we use the convention of implicit summation over repeated subindices. By
using the product rule and some simplification, this expression can be separated into three types
of contribution, depending on how many of the two derivatives act on the exponential:

∂Φ2
∂s
= a − i φ′

2A2 χ
(1,−W ′) · ∇ξ

(
A2 χ

∆2

)
+
φ′2 − iφ′′

2∆2

= a − i
2A2 χ

(
A2 χφ′

∆2

) ′
+

iχ′φ′

∆3 +
φ′2

2∆2 , (47)

where a is the contribution that is independent of the MSF perturbation φ, and is given by

a = − 1
2A

√
∆

χ

(
J−1 · ∇ξ

)
·
[
J−1 · ∇ξ

(
A
√
χ

∆

)]
. (48)

Since this contribution is unrelated to the MSF structure, we will not write explicitly its integral
in s and will just refer to the resulting expression as Ω2. To integrate the rest, we use the simple
results ∫ s

0

ds
∆2 =

s
χ∆

,

∫ s

0

ds
∆3 =

(χ + ∆)s
2χ2∆2 . (49)

Because derivatives in ξ and integration in s commute, we can integrate Eq. (47) to find

Φ2(ξ, s) = Ω2(ξ, s) −
i

2A2 χ

(
A2φ′s
∆

) ′
+

iχ′φ′(χ + ∆)s
2χ2∆2 +

φ′2s
2χ∆

= Ω2(ξ, s) −
i

2A2

(
A2φ′

χ

) ′ s
∆
+

iφ′(χ′ + ∆′)s
2χ∆2 +

φ′2

2χ
s
∆

= Ω2(ξ, s) +
1
2

[
φ′2

χ
− i

A2

(
A2φ′

χ

) ′] s
∆
+

iχ′φ′

χ

s
∆2

(
∆

χ
− W ′′s

χ2

)
+

iφ′

2χ

(
W ′′

χ

) ′ s2

∆2

= Ω2(ξ, s) +
1
2

[
φ′2

χ
− i

A2

(
A2φ′

χ

) ′
+ 2

iχ′φ′

χ2

]
s
∆
+

iφ′

2χ

[(
W ′′

χ

) ′
− 2

χ′W ′′

χ2

]
s2

∆2

= Ω2(ξ, s) +
1
2

[
φ′2

χ3 −
i

A2

(
A2φ′

χ3

) ′]
ζ +

iφ′

2χ3

(
W ′′

χ3

) ′
ζ2, (50)

where ζ = χ2s/∆ = (z − zM)/[1 + (z − zM)W ′′(ξ)/χ3(ξ)]. Notice that a factor of 1 =
∆/χ − sW ′′/χ2 was introduced in the third line, which allowed simplifying the expression.
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B. Invariance of the error estimate in conjugate spaces

For any optical system (or subsystem) with non-zero focal power, the angle characteristic [13]
can be written to second order as

T(p, p′) = f pp′ +
δ

2n
p2 − δ′

2n′
(p′)2, (51)

where f is an effective focal length, primes distinguish entities in exit space, n is the refractive
index, p is an optical direction cosine (i.e. refractive index times transverse direction cosine),
and δ is a displacement from the focal point. The front and rear focal lengths are n f and n′ f ,
respectively. From the basic equations of Hamiltonian optics [13], namely y = −∂T/∂p and
y′ = ∂T/∂p′, it follows that the displaced reference planes are conjugate when δδ′ = −nn′ f 2,
and the magnification is then δ′/(n′ f ). Now, suppose we know three locations in exit space
(or conjugates to these locations), namely δ′i , δ

′
m, and δ′p for the image, MSF-bearing, and pupil

planes respectively. The unprimed entities are their respective conjugates in entrance space
with δ = −nn′ f 2/δ′. Our estimate of error in the perturbation model involves the ratio of a
characteristic length in the MSF-bearing plane, say L ′m, and the radius of the first Fresnel zone
when propagating a nominally spherical wave centered at a point δ′i from δ′m to δ′p. The square of
this ratio is given by

n′

λ

(
1

δ′m − δ′i
+

1
δ′p − δ′m

)
(L ′m)

2
=

n′

λ

δ′p − δ′i(
δ′m − δ′i

) (
δ′p − δ′m

) (L ′m)2 (52)

This can be expressed in terms of the locations in entrance space by using δ′ = −nn′ f 2/δ to find

n′

λ

δ′p − δ′i(
δ′m − δ′i

) (
δ′p − δ′m

) (L ′m)2 = − 1
λn f 2

1/δp − 1/δi
(1/δm − 1/δi)(1/δp − 1/δm)

(L ′m)
2

=
n
λ

δp − δi
(δm − δi)(δp − δm)

(
δm
n f
L ′m

)2
=

n
λ

δp − δi
(δm − δi)(δp − δm)

L2
m, (53)

where the inverse of the magnification between the MSF-bearing planes, namely n′ f /δ′m =
δm/(n f ), was used to convert the characteristic length. The fact that the final expression of
Eq. (53) matches the original expression on the left-hand side, except it now has no primes, means
that our ratio is invariant under propagation through any part, or all of, an optical system. That is,
for example, we’ll get the same estimate of the error in accounting for the MSF on a given surface
whether we first propagate it to the stop and image that result to the exit pupil or instead begin by
imaging it to its conjugate plane in image space and then propagate from there to the exit pupil.

C. Perturbation model in angular spectrum domain

The asymptotic series in Eq. (3) provides a relatively simple method to approximate solutions to
the Helmholtz equation. By using these solutions, we obtained RMSE results that give insight
into the validity of the perturbation model. However, these results are limited because of their
failure at nominal caustics. Here we present an alternative approach, based on the angular
spectrum and two applications of the stationary phase method. This approach leads to the same
algebraic results for the field approximations, but includes an unambiguous Maslov-Gouy phase
shift factor associated with the passage through caustics and therefore gives a result of extended
validity.

A monochromatic 2D field, U, is related to its angular spectrum, Ũ, by

U(x, zP) =
1
λ

∫
Ũ(α) exp{ik[αx +

√
1 − α2 (zP − zM)]} dα, (54)
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where Ũ is related to the initial field U(ξ, zM) by

Ũ(α) =
∫

U(ξ, zM) exp(−ikαξ) dξ. (55)

For the specific case of a converging wave that is perturbed by a MSF structure, U(ξ, zM) =
U0 A(ξ) exp[iφ(ξ)] exp[ikW(ξ)], where A and W are given in Eq. (24). Like the process in Sec. 2,
the stationary phase approximation relies on the assumption that k is a “large” asymptotic
parameter, i.e. that λ is much smaller than any characteristic length of the field at the plane in
question. To perform this approximation, Eq. (55) is written as

Ũ(α) =
∫

a(ξ) exp[ikγ(ξ)] dξ

= exp[ikγ(ξ0)]
∫ (

a(ξ0 + τ) exp
{
ik

[
γ(ξ + τ) − γ(ξ0) − γ′′(ξ0)

τ2

2

]})
× exp

[
ikγ′′(ξ0)

τ2

2

]
dτ, (56)

where a(ξ) = U0 A(ξ) exp[iφ(ξ)] is a slowly-varying complex amplitude, kγ(ξ) = k[W(ξ) − αξ]
is the phase associated with the rapid oscillations, and in the second line we changed variables to
ξ = ξ0 + τ, where ξ0 is the stationary point of γ, i.e. γ′(ξ0) = 0. (For the focused wave we are
considering, there is only one such stationary point.) The factor in large parentheses within the
second line of Eq. (56) is expanded about τ = 0. Each of the resulting terms can be integrated
analytically by using∫

τ2n exp
(
i
k
2
τ2β

)
dτ = k−(n+1/2)

√
2π
|β|
(2n − 1)!!
|β|n exp

[
i
π

4
sgn(β)

]
, (57)

with β = γ′′(x0). Hence, from Eq. (24), sgn(β) = sgn(zM). For the current purposes it is
sufficient to keep only the two leading terms, proportional to k−1/2 and k−3/4, respectively. The
resulting approximate expression is then substituted into Eq. (54), and the integral is again
evaluated by using the method of stationary phase, keeping the two leading terms according
to the powers of k they contain. After a long but straightforward calculation, it is found that
U(x, zP) ≈ U0 exp[ikΦ0(x, zP)+Φ1(x, zP)], with Φ0 and Φ1 given in Eqs. (25a) and (25b), which
includes the correct Maslov-Gouy phase terms.

D. Equivalence of error estimate regardless of order between stop and MSF

We now give a justification of why the RMSE derived in the main body is valid whether the
surface introducing the MSF is before or after the aperture stop. For brevity we use operator/Dirac
notation. The operators used in this proof are: K̂z , which denotes free propagation by a distance z;
M̂M, which denotes the MSF phase factor at zM, the image plane for the surface in question; M̂P,
which denotes the MSF written at the pupil plane zP according to the perturbation approximation;
and âP, which denotes the transmission function of the aperture image at the exit pupil, normalized
by the extent of the pupil. The ideal field at any plane z focused towards an image point x ′

(ignoring the aperture or MSF) can be approximated, to within an unimportant constant amplitude,
as U(x, z; x ′) = 〈x |K̂z |x ′〉. This field is a converging wave if z < 0 and a diverging one if z > 0.
Note that 〈x |K̂z |x ′〉 also corresponds to the Rayleigh-Sommerfeld propagation kernel.
Let us study first the simpler case of a field focused at the image point x ′ that aquires a MSF

phase at zM and then travels to the exit pupil, where it is diffracted. After propagating to the
image plane z = 0 this field given by

U(x, 0; x ′) = 〈x |K̂−zP âPK̂zP−zM M̂MK̂zM |x ′〉, (58)
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where the argument following the semicolon indicates the point at which the wave is focused.
The perturbation approximation to this result, on the other hand, is given by

UP(x, 0; x ′) = 〈x |K̂−zP âPM̂PK̂zP |x ′〉 = 〈x |K̂−zP âPM̂PK̂zP−zM K̂zM |x ′〉. (59)

Notice that since both M̂P and âP are multiplicative, they commute. The square of the RMSE for
this first case is then

ε2
I (x ′) = N−1

∫
|UP(x, 0; x ′) −U(x, 0, x ′)|2 dx = N−1〈x ′ |K̂−zMT̂†I â2

PT̂IK̂zM |x ′〉, (60)

with N(x ′) =
∫
|U(x, 0; x ′)|2dx, T̂I = K̂zP−zM M̂M − M̂PK̂zP−zM , and where we used the fact that

â†P = âP, K̂†z = K̂−z , and
∫
|x〉〈x |dx = 1̂. Note also that for a binary aperture, â2

P ∝ âP, but we do
not make this simplification so that the result applies also to apodized apertures.

Now consider the case in which the field is first diffracted by the stop and then acquires a MSF
phase. After propagating to the image plane this field is given by

U(x, 0; x ′) = 〈x |K̂−zM M̂MK̂zM−zP âPK̂zP |x ′〉, (61)

and its corresponding perturbation approximation is given by

UP(x, 0; x ′) = 〈x |K̂−zP M̂PâPK̂zP |x ′〉 = 〈x |K̂−zM K̂zM−zP M̂PâPK̂zP |x ′〉, (62)

so that, by using T̂II = K̂zP−zM M̂†M − M̂†P K̂zP−zM , the square of the RMSE can be written as

ε2
II(x ′) = N−1〈x ′ |K̂−zP âPT̂IIT̂

†
II âPK̂zP |x ′〉, (63)

It is worth noting that Eqs. (60) and (63) have very different forms, the latter having the two
aperture operators separated. The symmetry between these two expressions can be restored
by averaging over all object points, that is, by integrating in x ′ over a sufficiently large range,
replacing the x ′-dependent normalization factor N byM =

∬
|U(x, 0; x ′)|2dxdx ′. Assuming

that the range of integration is sufficiently large to approximate
∫
|x ′〉〈x ′ |dx ′ ≈ 1̂, we arrive at

ε2
I =M

−1
∫
Nε2

I dx ′ ≈ M−1Tr
(
K̂−zMT̂†I â2

PT̂IK̂zM

)
=M−1Tr

(
â2

PT̂IT̂
†
I

)
, (64)

ε2
II =M

−1
∫
Nε2

IIdx ′ ≈ M−1Tr
(
K̂−zP âPT̂IIT̂

†
II âPK̂zP

)
=M−1Tr

(
â2

PT̂IIT̂
†
II

)
, (65)

where we used the property Tr(ÂB̂) = Tr(B̂ Â). The error estimates in Eqs. (64) and (65) coincide
if the MSF phase structure of the first equals the negative of that of the second, since the only
difference between T̂I and T̂II is that M̂M in the former is replaced by M̂†M in the latter. Since in
each situation the error measures ε2

I,II(≥ 0) are probably not strongly dependent on the image
points x ′, we then can expect that the asymptotic behavior of the error is the same independently
of the order within the system between the aperture stop and the surface introducing the MSF.
To appreciate why the order of diffraction by the stop and MSF does not affect significantly

the error estimate, even for a single object/image point, consider a simple case that allows a
closed-form approximate expression: a sinusoidal MSF phase of the form in Eq. (21) for h � π/2,
and under the paraxial approximation. It is convenient to evaluate the errors at the exit pupil
plane, zP. Let us begin by considering some nominal initial field Ui(x, zP), and propagating it to
the plane conjugate to the MSF structure according to the Fresnel propagation formula:

Ui(ξ, zM) =
1√

iλ(zM − zP)

∫ ∞

−∞
Ui(x, zP) exp

[
iπ(ξ − x)2
λ(zM − zP)

]
dx. (66)
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The effect of the MSF is accounted for by multiplying this field by the MSF phase structure,
Uii(ξ, zM) = Ui(ξ, zM) exp[iφ(ξ)], where we use the approximation exp[iφ(ξ)] ≈ 1 + iφ(ξ) =
1 + ih sin(2πκξ). We can now back-propagate this field to the pupil plane through an (inverse)
Fresnel propagation integral:

Uii(x, zP) ≈
1√

−iλ(zM − zP)

∫ ∞

−∞
Ui(ξ, zM) [1 + ih sin (2πκξ)] exp

[
− iπ(x − ξ)2
λ(zM − zP)

]
dξ

= Ui(x, zP) +
h
2

exp(iπκxκ) [Ui (x + xκ, zP) exp(i2πκx) −Ui (x − xκ, zP) exp(−i2πκx)] , (67)

where xκ , κλ(zM − zP). For the case in which the MSF phase is acquired before diffraction at
the stop, the initial field is a perfect paraxial converging wave, Ui(x, zP) = U0 exp[iπx2/(λzP)],
and the back-propagated field Uii(x, zP) must be multiplied by a pupil function rect(x/L) prior
to comparison with the perturbation model. On the other hand, for the case in which the MSF
phase follows diffraction by the stop, the initial field already includes the aperture function, i.e.,
Ui(x, zP) = U0 exp[iπx2/(λzP)] rect(x/L). In both cases, the resulting back-propagated fields at
the pupil must be compared with the perturbation model given by

UP(x, zP) ≈ U0 exp
(
iπx2

λzP

)
rect

( x
L

) [
1 + ih sin

(
2πκ

zM
zP

x
)]
. (68)

The subtraction of UP from either back-propagated field leads to the cancellation of the leading
terms, such that the resulting difference is proportional to h. The integral of the modulus squared
of this difference, normalized by L |U0 |2, gives the square of the RMSE. After some simplification,
this normalized integral can be written as

ε2
j ≈

h2

4L

∫ �����∑
σ=±

σ exp
(
σi2π

C
L

x
) [

rσ, j(x) exp
(
iπ

C
L

xκ

)
− rect

( x
L

)] �����2 dx, (69)

for j = I,II (representing the two cases, namely the MSF phase being acquired before or after
diffraction at the stop), with r±,I(x) , rect(x/L) and r±,II(x) , rect[(x ± xκ)/L], and where we
used the fact that κ |zM/zP | = C/L. That is, the only difference between both cases is a slight
shift by ±xκ of the regions in which some of the terms contribute. For L � |xκ |, this shift has
little effect on the result. In either case, the integral can be carried out analytically, leading to

ε2
I
ϕ2 ≈ 4 [1 − sinc (2πC)] sin2

(
πκ2r2

1
2

)
, (70)

ε2
II
ϕ2 ≈2

{
1+

κ2r2
1 − C

C
cos(πκ2r2

1 ) +
1 + 2 cos

(
πκ2r2

1
)

πC
sin2

(
πκ2r2

1
2

)
sin

[
2π

(
C−κ2r2

1

)]}
, (71)

where we used ϕ2 ≈ h2/2. Notice that these expressions depend on only two dimensionless
parameters: the number of cycles C, which is significantly greater than unity, and the product
κ2r2

1 , which is smaller than unity for cases in which εI,II < ϕ according to Eq. (29). It can be
easily shown that the relative difference between these two quantities is small as long as the
following condition is satisfied:

C � Max

[
1,
πκ2r2

1
2

sin−2

(
πκ2r2

1
2

)]
. (72)

Note that in deriving Eqs. (70) and (71) we assumed that the sinusoidal MSF in Eq. (21)
is exactly antisymmetric around the axis. If this sinusoidal were shifted by some distance ξ0,
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Eqs. (70) and (71) would change. This change is particularly simple for Eq. (71), where the only
modification is that the contribution proportional to sinc (2πC) woud be multiplied by a factor of
cos(4πκξ0). When considering the level of error of a generic sinusoidal MSF structure, perhaps
what is more meaningful is the average of the error over all possible shifts ξ0 of the sinusoidals,
especially because this has a similar effect to the averaging over different object points mentioned
earlier. These averages for both ε2

I and ε2
II give the simpler (and more representative) results

ε2
I /ϕ

2 ≈ 4 sin2
(
πκ2r2

1/2
)
, (73)

ε2
II/ϕ

2 ≈ 4 sin2
(
πκ2r2

1/2
)
+ 2

κ2r2
1

C
cos

(
πκ2r2

1

)
. (74)

Note that, again, the relative difference between these two errors is negligible if Eq. (72) is met.
Finally, consider MSF structure containing many spatial frequencies. For simplicity, we

consider explicitly only the case where diffraction at the stop follows the acquisition of the MSF
phase. We again use the approximation exp(iφ) ≈ 1 + iφ, with φ now being the multi-frequency
phase in Eq. (33) instead of the sinusoidal in Eq. (21). Due to the linear independence of the
different frequencies, the result is just a weighted sum of contributions:

ε2
I ≈

∑
m

|am |24 sin2

(
πκ2

mr2
1

2

)
≈ ϕ2

∑
m |am |2 4 sin2 (

πκ2
mr2

1/2
)∑

m |am |2
, (75)

where we used ϕ2 ≈ ∑
m |am |2. If κ2

mr2
1 � 1 for all meaningful MSF spatial frequencies, the sine

function can be approximated by its argument, leading to the result in Eq. (29). The departure of
the plots in Fig. 5 from this linear approximation is explained by the nonlinearity of Eq. (75).
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