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Abstract. We develop a quantitative model of mechanical repolarization in

a contraction-driven gel layer mimicking a crawling cell. We show that

the force-velocity relations for such active crawlers exhibit multi-valuedness

and hysteresis under both force and velocity control. The model predicts

steady oscillations of cells attached to an elastic environment and offers a self-

consistent mechanical explanation for all experimentally observed outcomes of

cell collision tests.

Introduction

To perform individual tasks, for instance, chase an intruder, or to act collectively, as

in morphogenetic flows, crawling cells are able to switch their direction of motion in

response to external stimuli. They do so by reorganizing their cytoskeleton [1], an

internal meshwork of biopolymers held together by passive crosslinkers and actively

contracted by molecular motors. Among the various physical cues that can induce the

implied repolarization [2, 3], mechanical contact forces are particularily important when

cells operate in crowded environments.

Building reliable links between repolarization mechanisms and measurable

biophysical parameters is fundamental for the control of development, integrity and
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regeneration of living organisms [4–13]. A broadly accepted mechanism of force-induced

repolarization relies on reaction-diffusion instability involving several biochemical

agents, in particular, Rho-GTPase, which controls the motor activity in the cytoskeleton

[14–16]. In this paper we propose an alternative mechanism by showing that the

application of an external force can lead directly to mechanical repolarization involving

relocation of molecular motors, without invoking any biochemical signal transduction.

We build our theoretical construction upon the recent advances in the modeling

of individual cell migration [17–22]. As a proof of principle, we use an analytically

transparent one-dimensional model of an active gel representing the cytoskeleton as a

contraction driven viscous layer [23–26]. Such prototypical model is appropriate for the

case of a cell crawling on a 1D track [27] or inside a capillary [28]. Interestingly, it has

been recently argued that motility confined to such 1D objects may be closer to the

physiological 3D motility along fibers of the extra-cellular matrix than 2D motility on

a flat substrate [29, 30].

To make quantitative predictions, we consider two basic problems: the oscillatory

behavior of an elastically tethered cell and the head-on collision of two initially polarized

self propelling cells. Our results highlight two important qualitative features of the

proposed model. First of all, at a fixed value of the external force the model supports

two coexisting steady regimes: dissipative, when the active object is dragged by the

force, and anti-dissipative, when it is pulling cargo. The fact that the cytoskeleton

can spontaneously self-organize from one of these steady states to another through a

hysteresis loop offers a purely mechanical explanation for cell repolarization. However,

this would not be enough, for instance, in dealing with cell collision. Here we use another

important feature of the model, that a steady regime with a given velocity can take place

under applied forces of opposite signs, corresponding to either an attached cargo or an

external engine. In particular, our active segment can be stalled by two forces that are

equal in magnitude but have different directions.

The importance of the study of spontaneous activity-induced mechanical

oscillations stems from their ubiquitous presence in living systems at various length-

scales [31, 32]. Contractility due to the presence of molecular motors has been identified

as one of the main mechanisms behind this phenomenon [33, 34]. In particular,

contractility-driven center of mass oscillations have been recently reported for cells

constrained to move along one-dimensional fibers [35]. Here we show that our simple

model predicts such steady state oscillations in the case of tethered cells when both the

contractility and the stiffness of the effective spring are within a physiological range. We

construct a phase diagram in the space of measurable parameters which distinguishes

the oscillatory regimes from the regimes when the cell is either static, unable to polarize,

or fully polarized but stalled by the contact force.

Another important test of any theory of cell motility is its ability to capture

adequately the repolarization caused by the mechanical interaction between colliding

cells. Experiments show that collision of two cells can result in four basic

outcomes [36, 37]: velocity reversal, representing a quasi-elastic collision with symmetric



Force-induced repolarization of an active crawler 3

repolarization, two quasi-inelastic pairing scenarios with the formation of a cell doublet

that can be motile (train) or static (stall) and finally, a bypass regime, when cells

advance over each other [16]. The reversal and pairing regimes can be linked to with

the phenomenon of contact inhibition of locomotion (CIL) [38]. Being a driver of cell

dispersion and collective motility, CIL is crucial within biological tissues and its loss

is usually associated with pathological processes, including cancer [38]. Motivated by

experimental observations which suggest that a fundamental building block of CIL is

motor-induced contractility [39], we simulated cell collision tests using our active layer

model. It is quite remarkable that all four known cell collision scenarios could be accessed

in this purely mechanical setting by tuning a single nondimensional parameter describing

cell contractility. The obtained phase diagram reveals the physical conditions ensuring

the failure of CIL, which have so far remained largely unknown.

To emphasize the importance of the force-induced repolarization in problems

involving multiple cell collisions, we developed a reduced model of our active segments

viewing them as active particles with polarity serving as an internal parameter. Despite

the extreme simplicity of such a scaled-down model, which reduces to a system of two

ODE (instead of the original system of PDE), we show that it captures all the steady

and non-steady regimes which we have identified in the original active layer model.

Model of a crawling segment

We represent a cell crawling on a straight track by a segment of viscous contractile gel

of length L, see the inset in Fig. 1.

To make the problem analytically tractable, we assume that the length of such

active segment L is fixed. The associated size-control mechanisms are discussed in [40].

While length changes are known to be involved in oscillatory motion of cells [41] and

may play some role during the initiation of motility [42], we have chosen to neglect these

effects in the present paper in order to study the mechanical repolarization phenomenon

in its most pure form. We also note that in the special case of fish keratocytes, the cell

length is tightly controlled during the motion and the stiffness of an effective “spring”,

ensuring such a control, is much larger than the stresses involved in the rearrangements

of the cytoskeleton [40, 43].

The time dependent free boundaries of the cell are then xf (t) for the front and

xr(t) = xf (t)−L for the rear. Using the position of the geometric center of the segment

S(t) = (xr(t) + xf (t))/2 as a reference, we can introduce the co-moving coordinate

y(x, t) = x− S(t) ∈ [−L/2, L/2]. Given that the segment boundaries are impermeable,

we can write

V (t) = ∂tS = ∂txr,f = w(±L/2, t), (1)

where V is the macroscopic velocity of the segment and w(y, t) is the microscopic velocity

of the cytoskeleton in the co-moving frame of reference.
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Linear momentum balance for the cytoskeleton requires that

∂yσ = ξw, (2)

where σ(y, t) is the axial stress field and ξ is the external friction coefficient. The

constitutive model of the active gel reduces in this 1D setting to a relation

σ = η∂yw + χc, (3)

where η is the bulk viscosity, χ is the contractility and c(y, t) is the concentration of

motors generating the active stress.

Following [44], we assume that the symmetry is broken by the applied force F (t)

which enters the model through the boundary condition

σ(L/2, t)− σ(−L/2, t) = F. (4)

Note that condition (4) does not depend on the exact configuration/partition of the

external loading at the two boundaries of the segment. Indeed, if we denote q± the

applied tractions at the ±L/2 and introduce q0 the (kinematic) residual stress associated

with the length constraint, we obtain two conditions σ(±L/2, t) = q±+q0 at the expense

of introducing an additional unknown function. If we eliminate q0 we obtain (4) with

F = q+ − q−.

Following [26, 45], we further assume that the organization of the molecular motors

in the segment is governed by the drift-diffusion equation

∂tc+ ∂y[c(w − V )] = D∂yyc,

which is equipped with no flux boundary conditions ∂yc(±L/2, t) = 0, ensuring that the

total amount of motors M =
∫ L/2

−L/2 cdy remains a constant.

To non-dimensionalize the problem we introduce the characteristic length l̄ =√
η/ξ, time t̄ = l̄ 2/D, concentration c̄ = M/L, stress σ̄ = ξD and velocity v̄ = l̄/t̄.

The ensuing problem depends on three dimensionless parameters, L := L/l̄, F := F/σ̄

and P = Mχ/(l̄σ̄), representing, respectively, the normalized, length of the segment,

traction force applied to the system and contractility of the motors. In the context of

fish keratocytes, available data lead to the following basic estimates [40]: P ∼ 10 and

L ∼ 2 but these numbers can vary depending on experimental conditions [45].

In the obtained model the flow velocity w at point y is induced by the presence

in another point z of an active force dipole, represented by a motor concentration-

dependent active stress [23, 24, 46]. It is also affected by the external force F . If we

combine the momentum balance with the constitutive relation we can combine these

two effects in a single relation

w(y, t) = Pφ ∗ c(y, t) + F (t)∂yφ(y − L/2). (5)

Here we introduced the convolution operator

φ ∗ c(y, t) = L−1
∫ L/2
−L/2

φ(y − z)c(z, t)dz.
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The kernel

φ(y) = sinh (y + L/2) / [2 sinh(L/2)]−H(y) cosh (y) ,

where H(y) is the Heaviside function, is an odd function which ensures that an even

distribution of force dipoles does not generate a directional flow [47].

Velocity-Force relation

Under the action of a constant external force F , the active layer reaches a steady velocity

V which can be found by solving the stationary drift-diffusion equation (∂tc = 0)

with the nonlocal closure relation (5). The ensuing velocity-force (V-F) relations are

illustrated in Fig. 1. The L dependence of the critical thresholds is shown in Fig. 2.

Figure 1. Four basic types of V-F relations for a crawling active segment. The dashed

parts of the V-F curves correspond to unstable regimes. Parameter L = 2 is fixed,

producing the critical thresholds Pc ' 5.3, Pm ' 6.9 and Ps ' 7.8. The V-F curves

are plotted for P = 5 ≤ Pc (black), Pc ≤ P = 6 ≤ Pm (green), Pm ≤ P = 7 ≤ Ps

(red) and Ps ≤ P = 8, 9 (blue, gray). The darker background indicates the region

where the V-F curve is anti-dissipative.

When P is smaller than Pc(L), the V-F relations are single-valued and dissipative, in

the sense that V F > 0. In these regimes, when the velocity V is large and P � F , the

effective drag coefficient (tangential viscosity) is always positive and P independent

µ∞ = ∂V F |V=∞ = 2 tanh(L/2) > 0.

When V is small, such drag coefficient depends on P , in particular,

µ0 = ∂V F |V=0 = (L/ω)3 (2 tanh (ω/2)− (P/L)ω) ,
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Figure 2. Dependence of the three thresholds Pc, Pm and Ps on the parameter L.

where ω2 = L2 (1− P/L). Overall, the increase of contractility reduces the effective

drag until µ0 vanishes at P = Pc. Similar effect of activity on friction has been reported

for several other systems as well [48, 49].

When P > Pc, the V-F relation develops a domain of bi-stability which spreads

over the range F ∈ [−Ft, Ft]. Within this range, the stationary velocity can take three

values, V ∗0 < V0 < V ∗∗0 ; the metastable branches V ∗0 (F ) and V ∗∗0 (F ) are connected

through an unstable branch V0(F ).

Note that between the two turning points F = ±Ft one of the metastable dynamic

regimes is necessarily anti-dissipative in the sense that V F ≤ 0. In such regimes

molecular motors overcome the passive frictional and viscous dissipation.

To clarify this point, consider the energy balance relation :

FV

L
=

∫ L/2
−L/2

[w2 + (∂yw)2]dy +
P
L

∫ L/2
−L/2

c∂ywdy. (6)

which can be obtained by multiplying (2) by (3) and integrating over the domain. In

(6) the last term, representing the active power exerted by motors on cytoskeleton

filaments, is always negative. Indeed, differentiating the steady state equation for

motors distribution (w − V ) = ∂yc/c and multiplying it by c, we have
∫ L/2
−L/2 c∂ywdy =∫ L/2

−L/2 c∂y (∂yc/c) dy. The desired result follows from the integration by parts of this

relation
∫ L/2
−L/2 c∂ywdy = −

∫ L/2
−L/2(∂yc)

2/cdy < 0. Therefore, the positivity of FV

indicates that the energy dissipation (friction, viscosity) dominates the anti-dissipative

power supply by the molecular motors, see [26, 44] for further details.

We remark that similar bi-directionality was also observed for other active systems

[50–52]. The striking new feature of the present model is the existence of two other

thresholds Pm(L) and Ps(L). For Pm < P , µ0 becomes positive again so that the V-F

curves start to display stalled states and are hysteretic under both velocity and force

control. Note that for Pm < P < Ps the stall states are unstable but for P > Ps they
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stabilize. Interestingly, this type of V-F relations have been also obtained in the context

of Taylor-Couettte flows of active polar fluids where the free boundaries were absent,

the role of V was played by the angular velocity of the flow and the applied torque

served as the analog of our F [53].

The importance of the revealed complexity of the V-F relations is demonstrated

below through the solution of the two prototypical problems: active oscillations and

active collision.

Active oscillations

Consider first an active segment connected to a fixed support by a spring of stiffness kp
such that

F (t) = −kpxf (t).

Figure 3. Numerically constructed phase diagram for the active layer tethered to a

spring. Parameter L = 2. Inset shows the phase diagram obtained with the active

particle model (8) with parameters α = 12, kS = 0.65 and kC = 0.15.

When P ≤ Pc such segment remains static at its equilibrium position xf = 0. If,

however, Pc ≤ P ≤ Pm and the stiffness of the spring is below a critical value kcp(L,P),

the active segment starts to oscillate spontaneously, see Fig. 3. Behind this instability

is a classical supercritical Hopf bifurcation [54]. The oscillations involve repolarization:

a periodic force-induced relocation of the molecular motors from the rear to the front

and back, see Fig. 4. The typical timescale of such oscillations is t̄ ∼ 103 s (see [40])

which is realistic in view of the experimental data reported in [35].
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Figure 4. Three typical regimes of motion for the tethered active gel crawler,

interpreted in Fig. 3 as Static, Oscillatory and Stall phases. The intensity of the

coloring between the front lines is proportional to the concentration of molecular

motors. Parameters: L = 2 and kp = 0.6.

The phase diagram, shown in Fig. 4 , reveals that the transition from static to

oscillatory state is controlled not only by the contractility level, as it has been known

experimentally [35], but also by environmental stiffness. In sufficiently stiff environments

the increase of contractility can at most put the system in a stall state. In soft

environments, oscillations become possible at elevated contractility with a subsequent

discontinuous transition from oscillatory to stall state at even larger levels of contractility

(between Pm and Ps). We note that all three dynamic phases shown in Fig. 4 are

accessible in soft environments by tuning contractility only, which suggests that cells in

these conditions can potentially actively vary their dynamic state.

Active collision

As a second illustration, consider two identical but differently polarized active segments

moving towards each other. We use the subscripts ∓ to differentiate the segment coming

from the left (minus sign) at t = 0 from the segment coming from the right (plus sign),

see Fig. 5. Following [10, 13], we assume that the colliding cells interact through the

force F representing a repulsion potential which penalizes the overlap of the two cells:

F±(D) = ±Fc exp(−D/Dc). (7)

The force F+ is applied at the xr+ boundary and F− is symmetrically applied at

the xf− boundary. The magnitude of the force depends on the degree of separation:

D(t) = |xr+(t) − xf−(t)|, see Fig. 5. In (7) we introduced a characteristic size of a

cell-cell contact Dc � L and defined Fc as the scale of the repulsive force.

Note that we did not impose an infinite penalization (Fc is finite) to allow the

segments to pass each other. We imply that the the adhesive clusters between the two

cells are only transient and that the effective spring, which engages upon the contact

(i.e. when D � Dc), is always under compression and cannot bear any significant tensile

load [38]. As cells pass each other, this spring is stretched until it disengages making

the interaction force negligible at D � Dc. While the account of an attractive part

of the interaction potential would increase the possibility of forming cell doublets and,
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for many cells, would be necessary to capture the formation of a stable tissue, we leave

these issues for a separate study.

Figure 5. Scheme of the two colliding segments initially advancing towards each other

and the structure of the interaction forces experienced by each of the segment.

In our numerical experiments we explored the whole range of contractility levels

above the motility initiation threshold P > Pc. Similar to what was observed in

experiment [36, 37], our simple mechanical model also predicts four possible outcomes

of a collision test: reversal, pairing, which can be motile (train) or static (stall), and

bypass. Our quantitative results are summarized in Fig. 6 showing the regimes diagram

on the (P , Fc) plane. The typical trajectories of the colliding active agents for each of the

four regimes and the corresponding configurations of molecular motors are illustrated

in Fig. 7. Similar behavior was also obtained using a much more detailed biochemical

model in [16].

We emphasize that in the reversal regimes, our active segments repolarize during

collision as a result of being exposed to large contact forces. The result of such “quasi-

elastic” collision is that the colliding agents change the sign of their polarities but not

the magnitude of their velocities.

In the bypass regimes, the agents go past each other as our model allows for mutual

overlap when the repulsion contact force is not sufficient to impede the propulsive

machinery. While such non-one-dimensional outcomes would have to be confirmed

in detailed 3D simulations, we anticipate that our prototypical model captures them

adequately when the cell-cell friction is negligible compared to the cell-substrate friction.

Finally, in the pairing regimes the two initially mobile agents first get immobilized

and push against each other as both of them reach transiently stall conditions. Such

regimes can be stable (forming a robust stall phase) only for P > Ps when there exists

a steady stall state. For P < Ps, in the train regimes, one of the two active agents

eventually sweeps along the other one by forcefully repolarizing its internal configuration

and afterwards they continue traveling together as a cell doublet. One can show that

in such regimes, stall configurations also exist but are unstable and are destroyed by

infinitesimal perturbations.
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Figure 6. Phase diagram showing the four outcomes of the collision test: Reversal,

Train and Pairing of cells which splits into a motile phase (Train) and a static one

(Stall). Parameters are L = 2 and Dc = 0.1. Inset shows the phase diagram obtained

within the active particle model (8) with parameters α = 12, kS = 0.65 and kC = 0.15.

Figure 7. Typical responses and corresponding internal configurations of two colliding

cells. The intensity of the coloring between the front lines is proportional to the

concentration of molecular motors. Parameters: L = 2, Dc = 0.1 and Fc = 4.5.

Active particle model

To highlight the idea that the applied force affects not only the spatial location but

also the polarity of a moving cell, we now construct a reduced, coarse grained model by
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interpreting our active segment as an active particle. In addition to its spatial location

S(t) such particle should also have an internal degree of freedom C(t) representing

polarity. A simple reduced model can be formulated in terms of two ordinary differential

equations:

Ṡ = PC + kSF, Ċ = −∂CW, (8)

where C(t) = (φ ∗ c(L/2, t) + φ ∗ c(−L/2, t))/2 is an arbitrary polarity measure and

W (C) = −kCFC + αC4/4 − (P − Pc)C
2/2 is a Landau type potential. The first

equation in (8) can be derived by summing the values of velocity (5) computed at the

two boundaries ±L/2 and using relations (1). The relation between c(y, t) and C(t) then

follows from the averaging over the boundaries. This equation shows the competition

between the external force and the active force PC who compete in determining the

direction of the motion. The second equation in (8) is obtained phenomenologically as

a way to describe spontaneous polarization at zero applied force when P = Pc and to

capture the simplest linear biasing of the polarity by the applied force.

It is remarkable that by adjusting the parameters kS, kC and α of this almost naive

model, one can not only quantitatively mimic the hysteretic V-F relations presented in

Fig. 1 but also reproduce all non-stationary regimes shown in Fig. 3 and Fig. 6 (see

insets). The ability of the active particle model to capture the mechanical response

of the active segment model points to the idea that the coupling between the polarity

variable and the applied force should be an essential element of any model seeking to

describe mechanical interaction of active particles with external objects.

Conclusion

We showed that a contraction-driven active gel segment exhibits fundamental bi-stability

with two dynamic regimes representing opposite polarities. The associated (V-F)

relations are generically doubly hysteretic, allowing for both force and velocity induced

repolarization of an active object. Dynamic bi-stability was shown to play a crucial role

in self-induced oscillations of a tethered active objects and to be essential for capturing

the experimentally observed outcomes of the cell collision tests. Our study suggests

that even the reduced model of an active particle with self-adjusting polarity is capable

of describing complex mechanical cell-cell interactions. Due to its ultimate simplicity,

it should prove useful for the development of the kinetic theory of tissues driven by

internal cellular motion.

A major prediction of our model is that cell contractility can serve as an purely

mechanical regulator of CIL without the need to involve complex biochemical mechano-

transduction pathways. This rather unexpected result would have to be of course

checked experimentally through drug treatments [55] and optogenetics [56].
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J L, Gorre-Talini L and Prost J 1998 European biophysics journal 27 403–408

[53] Fürthauer S, Neef M, Grill S W, Kruse K and Jülicher F 2012 New Journal of Physics 14 023001
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[56] Valon L, Maŕın-Llauradó A, Wyatt T, Charras G and Trepat X 2017 Nature communications 8

14396


