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Abstract. The present work concerns the study of pulsed laser systems containing a fiber amplifier for
boosting optical output power. In this paper, this fiber amplification device is included into a MOPFA
laser, a master oscillator coupled with fiber amplifier, usually a cladding-pumped high-power amplifier often
based on an ytterbium-doped fiber. An experimental study has established that the observed nonlinear
effects (such as Kerr effect, four waves mixing, Raman effect) could behave very differently depending
on the characteristics of the optical source emitted by the master laser. However, it has not yet been
possible to determine from the experimental data if the statistics of the photons is alone responsible for
the various nonlinear scenarios observed. Therefore, we have developed a numerical simulation software for
solving the generalized nonlinear Schrödinger equation with a stochastic source term in order to validate
the hypothesis that the coherence properties of the master laser are mainly liable for the behavior of the
observed nonlinear effects.

1 Introduction

The MOPFA laser system (Fig. 1) under study aims at the
generation of very high-power (10 kW) nanosecond pulses
at 532 nm with 50 to 500 kHz repetition rate. This high-
power pulsed source originates from successive amplifica-
tion of a master laser source (seeder) emitted at 1064 nm
that will be amplified through a pre-amplification stage
and an ytterbium-doped fiber amplifier pumped with a
high-power laser diode at 976 nm. Once amplification is
done, the high-power pulses cross the frequency doubling
stage to produce nanosecond pulses at 532 nm. However,
the frequency doubling stage efficiency can be drastically
reduced if the amplified pulses spectrum full width at half
maximum (FWHM) exceeds a critical value depending
on the physical properties of the doubling stage mater-
ial. Thus, it is necessary to identify which parameters re-
lated to the seeder and/or fiber properties mainly affect
the spectrum spreading.

An experimental technique presented in reference [1]
offered us the possibility to measure, throughout tempo-
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ral slices of the pulse, the spectral evolution of nonlinear
effects such as Kerr effect, four waves mixing, Raman ef-
fect, for three different pulsed fiber laser sources (100 ns
of temporal width) generated at 1064 nm with a repeti-
tion rate of 20 kHz and then amplified by an ytterbium-
doped fiber amplifier. Observation of pulse temporal slices
of 10 ns of duration at different temporal positions in
the pulse was carried out obtained thanks to an acousto-
optical modulator located after the amplifier. By using an
optical spectrum analyzer it has been possible to charac-
terize the evolution of the nonlinear effects occurring in
the fiber amplified pulse and to discriminate between the
nonlinear effects associated with each slice of the pulse.

Whatever the choice of the source, the initial profile
of the laser pulses were quasi-similar (100 ns of temporal
width).

The experimental results show that, for the same in-
tensity pulse temporal profile (same temporal width and
peak power), there exist very different nonlinear behaviors
depending on whether the source is partially coherent with
a narrow spectrum or incoherent with a larger spectrum,
that is to say from an experimental viewpoint, depend-
ing on the characteristics of the master laser oscillator.
However, these experimental observations do not allow
us to decide whether the statistics of photons is the only
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Fig. 1. Schematic of a MOPFA laser with a frequency doubling stage for the generation of high-power nanosecond green pulses
at few tens of kHz repetition frequency.

responsible factor for the various nonlinear scenarios. Hence
we have developed a numerical simulation software to study
the coherence properties of a fiber amplified pulsed laser
source in order to resolve the question.

Wave propagation into an optical fiber with group
index ng is governed by the generalized nonlinear
Schrödinger equation (GNLSE). This particular form of
the Schrödinger equation is obtained from the general set
of Maxwell equations taking advantage of a certain num-
ber of assumptions made possible from the very specific
characteristics of wave propagation in a medium such as a
fiber [2]. Among the assumptions that usually can be done
for wave propagation into an optical fiber, one is that the
optical wave is quasi-monochromatic. It means that the
pulse spectrum, centered at pulsation ω0, is assumed to
have a spectral width δω small compared to ω0. Another
approximation consists in assuming that the optical wave
propagates on a single transverse-electric fiber mode and
maintains its polarization along the fiber length so that
a scalar model (rather than a full vectorial one) is valid.
This is not really the case most of the time but however the
approximation works quite well in practice [2]. One of the
major assumptions, referred to as the slowly varying enve-
lope approximation, concerns the expression of the electric
field in the optical fiber. It assumes that the electric field E
is linearly polarized along a direction ex transverse to the
direction of propagation ez defined by the fiber axis and
can be represented as a function of time T and position
r = (x,y, z) as:

E(r, T ) = A(z, T )F (x, y)e−i(ω0T−kz)ex, (1)

where A(z, T ) represents the slowly varying pulse enve-
lope, F (x, y) is the electric wave transverse representation
also termed modal distribution and k is the wavenumber.
The expression of the modal distribution F can most of
the time be computed explicitly using the classical method
of separation of variables used for partial differential equa-
tions (PDE). For instance, for circular constant transverse
section fibers, it can be expressed in terms of Bessel func-
tions [3]. To compute the slowly varying pulse envelope A,
it is convenient to introduce a frame of reference, called
the retarded frame, moving with the pulse at the “group
velocity” vg = c/ng. The relation between the “local time”
t in the retarded frame and the absolute time T is given
as: t = T − z

vg
. If we introduce as new unknown function

A(z, t) = A(z, t + z
vg

) then in the situation considered in
this work, the evolution of A is governed by the following

form of the GNLSE [2]:

∂

∂z
A(z, t) = −α(z)

2
A(z, t) +

(
nmax∑
n=2

in+1 βn

n!
∂n

∂tn
A(z, t)

)

+ iγ
[
id +

i

ω0

∂

∂t

]
(A(z, t)((1 − fR) |A(z, t) |2

+fR

∫ ∞

0

hR(τ)|A(z, t − τ)|2dτ)), (2)

where id denotes the identity operator. The physical
effects for wave propagation in fiber taken into
account in equation (2) are the following. First, some lin-
ear effects are expressed through the linear attenuation/
gain coefficient α and the linear dispersion coeffi-
cients βn, 2 ≤ n ≤ nmax where, e.g., β2 expressed in
units (ps2 km−1) accounts for chromatic effects. Nonlinear
effects are involved in equation (2) through the nonlinear
parameter γ expressed in units (W−1 km−1) and defined
as γ = ω0n2(ω0)/(cAeff(ω0)), where n2 is the nonlinear re-
fractive index for the pulsation ω0 and Aeff known as the
effective mode area is defined from the modal distribution
F (x, y) as

Aeff =

(∫∫
R2 |F (x, y)|2 dxdy

)2

∫∫
R2 |F (x, y)|4 dxdy

. (3)

In equation (2) first-order partial derivation with respect
to time takes into account the dispersion of the nonlinear-
ity through the simplified optical shock parameter τshock =
1/ω0. Use of the simplified optical shock parameter is rel-
evant when the frequency dependence of the mode effec-
tive area Aeff defined in equation (3) can be neglected,
which is a valid assumption with the fibers used in our
study. Instantaneous Kerr effect manifests itself through
the term (1 − fR) |A|2. The delayed Raman contribution
in the time domain is taken into account through the con-
volution product between the instantaneous power
|A(z, t)|2 and the Raman time response function for silica-
core fibers hR. For silica fibers, an expression for hR is
proposed in reference [4]. The constant fR represents the
fractional contribution of the delayed Raman response to
nonlinear polarization. It is found to be about 0.2 [5]. As
a first step in this study, we have not taken into account
in our model physical phenomena such as amplified spon-
taneous emission and Raman spontaneous emission.
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In order to present our numerical method for solv-
ing the GNLSE (2), the following mathematical frame-
work is introduced. We denote by D the unbounded linear
operator:

D : A �→ −1
2
αA −

nmax∑
n=2

βn
in−1

n!
∂n

t A (4)

and we introduce the nonlinear operator:

N : A �−→ iγ Tt

[
(1 − fr)A|A|2 + frA (hR 	t |A|2)

]
, (5)

where 	t stands for the convolution operator with respect
to the time variable and Tt refers to the differential oper-
ator id + (1/ω0)(∂/∂t). We are then interested in solving
the following PDE problem set over the fiber length [0, L]:{

∂
∂z A(z, t) = DA(z, t) + N (A)(z, t) ∀t ∈ R

A(0, t) = a0(t) ∀t ∈ R,
(6)

where in the deterministic case the source term a0 is as-
sumed to belong to the Hilbert space L

2(R, C). This PDE
problem is not amenable to analytical solution and the use
of numerical approximation techniques is required. Classi-
cal numerical methods for solving (6) are based on a split-
step Fourier transform approach and among them the
symmetric split-step Fourier method (S3F method) is the
most widely used [2,6,7]. Recently a “fourth-order Runge-
Kutta method in the interaction picture method” (RK4-
IP method) has been proposed [8] as a very promising
alternative to split-step methods for solving the GNLSE.
Both methods (S3F and IP) exhibit a computational in-
ner structure very similar and therefore have a computa-
tional cost very comparable, although the IP method has
an order 4 convergence rate whereas the S3F method is
dependent on the second-order accuracy of Strang split-
ting formula and possesses a global quadratic convergence
rate [9].

In the present work, the incoherence of the master
laser source is modeled by the way of stochastic processes.
Namely, the source term a0 is assumed to be a complex
Gaussian process. As a statistical analysis over a large
number of samples is to be achieved once the pulse has
propagated along the fiber to determine the characteris-
tics of the pulse amplitude A at the fiber end, we have
chosen to implement the RK4-IP method rather than the
S3F one to solve the GNLSE in order to decrease the com-
putation time.

The paper is organized as follows. In Section 2 we
briefly present the interaction picture for solving the
GNLSE and focus on the way the various terms involved
in the GNLSE are computed. We present the algorithm of
the RK4-IP method used for the purposes of the numerical
study of the coherence properties of a fiber laser and we
detail the embedded Runge-Kutta method used for local
error estimation and adaptive step-size control. In Sec-
tion 3 we present the way the existence of an incoherent
optical source is taken into account in the simulation soft-
ware by introducing complex random processes and we
detail the numerical difficulties to overcome. In Section 4

we present numerical results obtained with our simulation
software and we propose a physical interpretation of the
results in the context of the study of coherence properties
of a fiber laser.

2 Solving the GNLSE by RK4-IP method

Recently a “fourth-order Runge-Kutta method in
the interaction picture method” (RK4-IP method) has
been presented in reference [8] together with an
experimental comparison of the RK4-IP method to other
split-step methods based on their numerical efficiency on
benchmark problems in optics. The numerical investiga-
tion undertaken in reference [8] indicates that the RK4-
IP method exhibits interesting convergence properties and
provides more accurate and efficient numerical results
than comparable split-step methods. In reference [9] we
have investigated the numerical properties of the RK4-IP
method from a mathematical point of view; we have exhib-
ited the inner computational structure of the IP method
and have compared it to the symmetric split-step method
to confirm the numerical comparison results given in ref-
erence [8]. We briefly present in this section the RK4-IP
method for solving the GNLSE and we emphasize on the
computational setting of the method.

2.1 Presentation of the RK4-IP method

2.1.1 A splitting behind the IP method

For numerical purposes, the interval [0, L] corresponding
to the fiber length is divided into K subintervals where
the spatial grid points are denoted by zk, k = {0, . . . , K}
such that ]0, L] = ∪K−1

k=0 ]zk, zk+1], where 0 = z0 < z1 <
· · · < zK−1 < zK = L. The step length between zk and
zk+1 is denoted hk and we have also set zk+ 1

2
= zk + hk

2 .
The interaction picture method for solving problem (6)

consists in solving over each sub-interval [zk, zk+1] the fol-
lowing three nested problems [9]:{

∂
∂z Ak(z, t) = DAk(z, t) ∀z ∈ [zk, zk + 1

2 ]∀t ∈ R

Ak(zk, t) = Ak−1(zk, t) ∀t ∈ R,

(7)
where for k ≥ 1 the mapping t ∈ R �→ Ak−1(zk, t) repre-
sents the solution at grid point zk computed at the previ-
ous step k − 1 and where for k = 0 we have
A−1(z0, t) = a0(t)∀t ∈ R,{

∂
∂z Aip

k (z, t) = Gk(z, t, Aip
k ) ∀z ∈ [zk, zk+1]∀t ∈ R

Aip
k (zk, t) = Ak(zk+ 1

2
, t) ∀t ∈ R,

(8)
where t ∈ R �→ Ak(zk+ 1

2
, t) represents the solution to prob-

lem (7) at point zk+ 1
2

and{
∂
∂z Ak(z, t) = DAk(z, t) ∀z ∈ [zk+ 1

2
, zk+1]∀t ∈ R

Ak(zk, t) = Aip
k (zk+1, t) ∀t ∈ R,

(9)
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where t �→ Aip
k (zk+1, t) represents the solution to prob-

lem (8) at grid point zk+1. In problem (8), we have set

Gk(z, t, ·) = exp(−(z − zk+ 1
2
)D) ◦ N ◦ exp((z − zk+ 1

2
)D),

where the exponential terms have to be understood in the
sense of the continuous group generated by the unbounded
linear operator D.

Solving the sequence of three nested problems (7)–(9)
over the interval [zk, zk+1] can be interpreted as doing a
change of unknown to solve problem (6) over [zk, zk+1]
taking as new unknown the mapping [9]:

Aip
k : (z, t) ∈ [zk, zk+1]×R �→ exp(−(z−zk+ 1

2
)D)×Ak(z, t).

This viewpoint has the advantage of showing why the
IP method has better convergence properties than split-
step based methods. Contrary to the latter methods where
the split-step scheme introduces an approximation corre-
sponding to a truncation in the Bakker-Hausdorf formula,
with the IP method the splitting being exact since it cor-
responds to a change of unknown.

The major interest in doing such a change of unknown
is that contrary to problem (6), problem (8) for the un-
known Aip

k does not involve explicitly partial derivation
with respect to the time variable t and therefore can be
numerically solved using standard quadrature schemes for
ordinary differential equations such as Runge-Kutta meth-
ods. Partial derivation with respect to time now occurs
through the operators exp(±(z − zk+ 1

2
)D) that can be

computed in a very efficient way by means of Fourier
transforms.

We now detail the way the three problems (7), (8)
and (9) are solved numerically.

2.1.2 Solving the nonlinear problem (8)

Problem (8) can be numerically solved by using a standard
quadrature scheme for ordinary differential equations such
as the fourth-order Runge-Kutta (RK4) scheme defined by
the Butcher tableau [10].

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

1
3

1
3

1
6

(10)

This Runge-Kutta method is known to have convergence
order 4. One step of the RK4 scheme is used to approach
the solution to problem (8) at grid point zk+1 as follows:

Aip
k (zk+1, t) ≈ Aip

k (zk, t) +
hk

6
(α1 + 2α2 + 2α3 + α4) ,

where

α1 = Gk

(
zk, t, Aip

k (zk, t)
)

= exp
(

hk

2
D

)
× N

(
exp

(
−hk

2
D

)
× Aip

k (zk, t)
)

α2 = Gk

(
zk +

hk

2
, t, Aip

k (zk, t) +
hk

2
α1

)

= N
(

Aip
k (zk, t) +

hk

2
α1

)

α3 = Gk

(
zk +

hk

2
, t, Aip

k (zk, t) +
hk

2
α2

)

= N
(

Aip
k (zk, t) +

hk

2
α2

)

α4 = Gk

(
zk + hk, t, Aip

k (zk, t) + hkα3

)
= exp

(
−hk

2
D

)
× N

(
exp

(
hk

2
D

)

×Aip
k (zk, t) + hkα3

)
.

It appears clearly in these formulae that the choice of the
point zk+1/2 in the initial condition of problem (7) re-
duces the number of computations of exponential opera-
tors, hence the number of Fourier transforms.

2.1.3 Solving the linear problems (7) and (9)

The solution to the linear PDE problem (7) in point zk+ 1
2

can formally be written as [9]:

∀t ∈ R Ak(zk+ 1
2
, t) = exp

(
hk

2
D

)
Ak(zk, t),

where the exponential term has to be understood in the
sense of the continuous group generated by the unbounded
linear operator D. The mapping tR �→ Ak(zk+ 1

2
, t) can be

computed very efficiently by means of Fourier transform
according to the formula:

exp
(

hk

2
D

)
× Ak(zk, t) = F−1

[
ν �→ Âk(zk, ν)ed̂ν

hk
2

]
(t),

where Âk(zk, ·) denotes the Fourier transform of Ak(zk, ·),
d̂ν = − 1

2α + i
∑nmax

n=2
βn

n! (2πν)n and F−1 denotes the
inverse Fourier transform operator. The solution to the
linear PDE problem (9) at grid point zk+1 can also be
obtained in a very similar way.

2.1.4 Computation of the nonlinear terms

In using the RK4 method for solving problem (8), one
needs to compute the nonlinear term (see Eq. (5)):

N (A)(z, t) = iγ
[
id +

1
ω0

∂

∂t

] (
(1 − fr)A(z, t)|A(z, t)|2

+frA(z, t) (hR(t) 	t |A(z, t)|2)
)
.

24506-p4



A. Fernandez et al.: Numerical simulation of incoherent optical wave propagation in nonlinear fibers

This can be achieved in a very efficient way by means
of the Fourier transform again since time derivation of
functions is then reduced to multiplying the Fourier trans-
form of the function by a factor −2iπν. To compute
hR(t) 	t |A(z, t)|2, we use as well the properties of the
Fourier transform with respect to convolution as follows:

hR(t) 	t |A(z, t)|2 = F−1[ν �→ ĥR(ν) × ̂|A(z, .)|2(ν)](t).

Finally, computation of N (A)(z, t) for all t ∈ R and z ∈ R
+

can be achieved through the following steps:

– Compute the Fourier transforms ĥR and ̂|A(z, .)|2 of
hR and t �→ |A(z, t)|2 respectively.

– Multiply these two mappings and compute the inverse
Fourier transform of the result to obtain the mapping
(z, t) �→ hR(t) 	t |A(z, t)|2.

– Compute the Fourier transform of the
mapping t �→ (1 − fr)A(z, t)|A(z, t)|2 + frA(z, t)
(hR 	t |A(z, t)|2).

– Multiply the result by the mapping ν �→ iγ
(
1 − 2iπν

ω0

)
– compute the inverse Fourier transform of this last

product.

2.1.5 Algorithm of the RK4-IP method

Putting altogether the computational elements given
above and after optimizing the whole computational pro-
cedure (in particular in order to reduce the number of
Fourier transforms to be achieved), we obtain the fol-
lowing algorithm for solving the PDE problem 6 by the
RK4-IP method.
RK4-IP algorithm

Input: Array u contains the sampling of the signal am-
plitude at step k
Array [νj ]j=1, ..., J contains the frequency sampling
points
Array [zk]k=0, ..., K contains the spatial grid points
Array ĥR contains the Fourier transform of the Raman
response function
{Initialisation}
for j = 1, . . . , J do

d̂[j] ← − 1
2α + i

∑nmax
n=2

βn

n! (2πνj)n

tfexpd[j] ← exp(h
2 d̂[j])

end for
û1 ← FFT(u, forward)
{Loop over the propagation sub-intervals}
for k = 1, . . . , K do
for j = 1, . . . , J do

ûip[j] ← tfexpd[j] × û1[j]
end for
α̂1 ← COMPUTE TFN(u)
for j = 1, . . . , J do

α̂1[j] ← tfexpd[j] × α̂1[j]
û2[j] ← ûip[j] + h

2 α̂1[j]
end for
u2 ← FFT(û2, backward)
α̂2 ← COMPUTE TFN(u2)

for j = 1, . . . , J do
û3[j] ← ûip[j] + h

2 α̂2[j]
end for
u3 ← FFT(û3, backward)
α̂3 ← COMPUTE TFN(u3)
for j = 1, . . . , J do

û4[j] ← tfexpd[j] × (ûip[j] + hα̂3[j])
end for
u4 ← FFT(û4, backward)
α̂4 ← COMPUTE TFN(u4)
for j = 1, . . . , J do

û1[j] ← tfexpd[j] × (ûip[j] + h
6 α̂1[j] + h

3 α̂2[j]
+ h

3 α̂3[j]) + h
6 α̂4[j]

end for
u ← FFT(û1, backward) {Array u contains the val-
ues [Ak(zk+1, tj)]j=1, ..., J the sampling of the signal
amplitude at step zk}

end for

FUNCTION ĝ = COMPUTE TFN(f)
{Compute the Fourier transform of g : t �→ N (f)(z, t)
for a given z}

Input: Array f contains the time sampling of function f
for the given z

Array ĥR contains the sampled Fourier transform of the
Raman response function
Array [νj ]j=1, ..., J contains the frequency sampling
points

Output: Array ĝ contains the sampled Fourier transform
of g
for j = 1, . . . , J do

op1[j] ← |f [j]|2
end for
ôp1 ← FFT(op1, forward)
for j = 1, . . . , J do

ôp2[j] ← ôp1[j] × ĥR[j]
end for
op2 ← FFT(ôp2, backward) {Array op2 contains the
convolution product hR 	t |f(t)|2}
for j = 1, . . . , J do

op3[j] ← f [j] ×
(
(1 − fR)op1[j] + fRop2[j]

)
end for
ôp3 ← FFT(op3, forward)
for j = 1, . . . , J do

ĝ[j] ← iγ(1 + ν[j]
ν0

)ht × ôp3[j]
end for

In this algorithm, the computational cost mainly lies in
the computation of the Fourier transforms. Over one spa-
tial step, the number of Fourier transforms to be com-
puted is 16. The C program we have developed to solve
the GNLSE (2) by the RK4-IP method according to the
above algorithm uses the FFTW library for computing
the Fourier transforms [11]. FFTW, for “Fastest Fourier
Transform in the West”, is a software library for com-
puting discrete Fourier transforms (DFTs) developed by
Matteo Frigo and Steven G. Johnson at the Massachusetts
Institute of Technology. It supports a variety of algorithms
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and it can choose the one it estimates or measures to
be preferable in the particular circumstances. FFTW is
known as the fastest free software implementation of the
Fast Fourier transform (FFT) algorithm at present time.
It can compute transforms of real-valued and complex-
valued arrays of arbitrary size n with a complexity in
O(n log(n)).

2.2 Embedded Runge-Kutta method for local
error estimation

Any numerical method for solving the GNLSE will per-
form poorly if the approximate solution is computed on
a mesh grid with a constant step h. Ideally the step-size
between two successive grid points should be selected au-
tomatically to maintain the error lower than a given value
in order to achieve both reliability and efficiency of the
computations. There are several ways to estimate the lo-
cal error done in each point of the mesh grid and to select
a value for the size of the next step. The most common
and general way to estimate the local error is by a process
known as “step doubling”. To estimate the local error,
this method requires for each step the computation of a
coarse solution and a fine solution obtained by dividing by
2 the step-size used for the coarse solution. This way to
estimate the local error is accountable for an over compu-
tational cost of around 50% more than the same method
without local error estimate for the same accuracy of the
computations. A cheaper adaptive step-size method dedi-
cated to the GNLSE is propounded in reference [12]. It is
based on the conservation of a physical quantity termed
“the optical photon number” during the propagation of
an electromagnetic field along a fiber when linear atten-
uation and Raman scattering in the fiber are neglected.
It is therefore possible to calculate the “photon number
error”, which is related to the local error, at each step of
the computation to retrieve information about the numer-
ical error over one computational step of the IP method
applied to GNLSE. The interest of this approach, specific
to GNLSE for lossless fibers, is that the computation of
the photon number error can be done at a very cheap
numerical cost. The interest of this approach is that the
computation of the photon number error can be done at a
very cheap numerical cost. However strictly speaking this
method is only valid for lossless fibers or for linear losses
fibers.

When using Runge-Kutta methods an alternative way
to compute the local error, well documented in the liter-
ature on RK methods where it is referred to as the “em-
bedded Runge-Kutta methods” exists, see, e.g., [10]. This
way of estimating the local error, inherent to the RK meth-
ods themselves, does not require any assumption on the
model and is not liable for extra computational cost. It
is this method we have chosen to implement in our sim-
ulation software. A detailed theoretical and experimental
comparison of the three above-mentioned approaches for
local error estimation has been achieved and is presented
in reference [13].

2.2.1 Principle of embedded Runge-Kutta methods

In this work we have chosen to estimate the local error
by using an embedded Runge-Kutta method [10]. Em-
bedded Runge-Kutta (ERK) methods are special Runge-
Kutta (RK) methods designed to deliver two approxima-
tions of the solution of the initial value problem under
consideration corresponding to two RK schemes of differ-
ent convergence orders. These two approximations of the
solution can be considered as an accurate approximate
solution (the one computed with the numerical scheme
of higher order) and a coarse approximate solution (the
one computed with the one of lower order). For efficiency,
the two RK schemes bear several computational stages in
common in order to reduce the computational cost of the
local error estimation. Here we have considered the ERK
method given in one hand by the fourth-order RK scheme
(RK4) defined by Butcher tableau (10) and on the other
hand by the third-order RK scheme (RK3) defined by the
following Butcher tableau:

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1 1

6
1
3

1
3

1
6

1
6

1
3

1
3

1
15

1
10

(11)

where the cells highlighted in gray are shared with Butcher
tableau (10) for the standard RK4 method. This embed-
ded RK4(3) method actually coincides with Dormand and
Prince Runge-Kutta 4(3) T method [14].

Assuming that the solution value at grid point zk is
regarded as exact (because we are concerned by an es-
timation of the local error), we denote by A

[3]
k+1 (resp.

A
[4]
k+1) the approximate solution computed at the current

grid point zk+1 by the third-order (resp. the fourth-order)
Runge-Kutta method. The local errors for each of the two
methods are respectively given by

A(zk+1, t) − A
[3]
k+1(t) = ψ3(t, zk, A

[3]
k )h4

k + O(h5
k),

A(zk+1, t) − A
[4]
k+1(t) = ψ4(t, zk, A

[4]
k )h5

k + O(h6
k),(12)

where ψ3 (resp. ψ4) is a function of the elementary differ-
entials of order 4 (resp. 5) [10] of the function Gk involved
in problem (7). Therefore by difference of these two rela-
tions we obtain:

A
[4]
k+1(t) − A

[3]
k+1(t) = ψ3(t, zk, A

[3]
k )h4

k + O(h5
k). (13)

Thus from (12) and (13) the local error for the RK3
method at grid point zk+1 can be approximated with an
error in O(h5

k) in the following way:


k+1(t) ≈ A
[4]
k+1(t) − A

[3]
k+1(t). (14)

The advantages of estimating the local error through the
ERK4(3) method defined by Butcher tableau (11) com-
pared to other embedded RK schemes are the following.
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The ERK4(3) method preserves all the nice features of
the RK4 scheme when used with the IP method as de-
scribed in Section 2.1.2. Moreover, the computation of
both terms A

[4]
k+1 and A

[3]
k+1 in the ERK4(3)-IP method

can be achieved at no extra cost compared to the RK4-IP
method without local error estimation (namely, the extra
cost for each step is negligible since it is limited to two ad-
ditions and three multiplications and the need to keep in
memory two intermediate results). The implementation of
the ERK4(3)-IP method requires little modification of the
RK4-IP algorithm presented in Section 2.1.5 and we refer
to [15] for a comprehensive presentation of the ERK4(3)-
IP algorithm.

Finally, the L
2-local error at grid point zk+1 is com-

puted as follows:

‖
k+1‖L2 ≈

⎛
⎝∫

R

∣∣∣A[4]
k+1(t) − A

[3]
k+1(t)

∣∣∣2 dt

⎞
⎠

1
2

≈

⎛
⎝ht

J−1∑
j=0

∣∣∣A[4]
k+1(tj) − A

[3]
k+1(tj)

∣∣∣2
⎞
⎠

1
2

,(15)

where (tj)j = 0, ..., J denotes a constant step-size sampling
ht of the observed time period and the last approxima-
tion results from the use of the left rectangle quadrature
rule. We want to mention that even though the local er-
ror estimation (14) strictly holds only for the third-order
method, in practice we use the value given by the fourth-
order method as the approximation of the solution at grid
point zk. In general, it slightly overestimates the actual
local error, which is safe but not fully optimal.

2.2.2 Step-size control

For step-size control, a tolerance is given as a bound for
the norm of the local error estimation. One step-size con-
trol strategy [10] consists in rejecting the current step-size
if it gives an estimated local error higher than the specified
tolerance and in accepting the solution computed with this
step-size otherwise. When the current step-size is rejected,
a new smaller step-size has to be chosen to recompute the
solution over the current step. Moreover when the current
step-size meets the tolerance requirement for the local er-
ror, it has to be scaled up for the next step computations.
In both cases, the new step-size has to be estimated using
the available information on the previous step computa-
tions.

For robustness purposes, the step-size control has to be
designed in order to respond as smoothly as possible with
real or apparent abrupt changes in behavior. This means
that the step-size should not vary from one step to the
other by an excessive ratio. In order to avoid situations
where the specified tolerance is ever exceeded resulting in
rejecting too many steps, a safety factor is introduced. If
h is the value of the step-size estimated to give a predicted
truncation error equal to the tolerance, then the smaller
value 0.9 h is used instead. Following these requirements,

the step-size control formula proposed in reference [10]
reads

hnew = max

(
0.5, min

(
2.0 , 0.9

(
tol
est

) 1
3
))

hold,

where “tol” denotes the tolerance value specified by the
user as a bound of the local error and “est” denotes the
estimation of the local error for the current step computed
from (15). The three constants with values 0.5, 2.0 and 0.9
are somewhat arbitrary and have to be regarded as design
parameters.

3 Simulation of incoherent laser sources
by random process

In this work we have chosen to model the incoherence be-
havior of the optical source by using random processes fol-
lowing in this a seminal work of Gross and Manassah [16].
Thus the electric field amplitude A is now considered as a
complex random process Az,t indexed by the space vari-
able z ∈ [0, L] and by the time variable t ∈ R.

3.1 Complex random processes

The electric field amplitude A is a complex random
process indexed by the set [0, L] × R over a probability
space (Ω,F , P); that is to say A is now considered as a
mapping from the sample space Ω into a set of functions
from [0, L] × R into C,

A : � ∈ Ω �→
(
A� : (z, t) ∈ [0, L] × R �→ A(z, t,�) ∈ C

)
.

The value of A at time t and position z for one observed
“experiment” is a complex number. When the experiment
is repeated, this value is assumed to vary randomly accord-
ing to the marginal probability distribution of the process.
The random process A involves two types of variables, one
“probabilistic” variable corresponding to an outcome �
in the sample space Ω and one “deterministic” variable
(z, t) ∈ [0, L] × R and

– for every fixed outcome �0 ∈ Ω, the function
A�0 : (z, t) ∈ [0, L] × R �→ A(z, t,�0) ∈ C is a “deter-
ministic” function in the usual sense;

– for every fixed value (z0, t0) ∈ [0, L] × R, the function
Az0,t0 : � ∈ Ω �→ A(z0, t0,�) ∈ C is a random
variable.

Moreover, for a fixed value zn ∈ [0, L], the mapping

A[zn] : � ∈ Ω �→
(
A[zn]

� : t ∈ R �→ A(zn, t,�) ∈ C
)
,

is itself a complex random process.
The mean function of the complex random process

A[zn] is defined as

mA[zn] : t ∈ R �→ E(Azn,t) ∈ C,
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where E denotes the expectation function. When it has a
sense, the variance of the complex random process A[zn]

is defined by

VarA[zn] : t ∈ R �→ E
(
|Azn,t − E(Azn,t)|2

)
∈ R

+.

The covariance function of A[zn] is the mapping

CovA[zn] : (t1, t2) ∈ R
2 �→

E
(
(Azn,t1 − E(Azn,t1)) (Azn,t2 − E(Azn,t2))

)
.

In this study we have assumed for all zn ∈ [0, L] the com-
plex random process A[zn] to be weak-sense (or wide-
sense) stationary that is to say its mean function is iden-
tically constant and its covariance function is translation
invariant, i.e., ∀τ ∈ R, ∀(t1, t2) ∈ R

2

CovA[zn](t1 + τ, t2 + τ) = CovA[zn](t1, t2).

For such random processes the covariance function actu-
ally only depends on the gap between the two variables
rather than on the values of these variables themselves
and it is usual to call covariance function of the process
the mapping CA[zn] : t ∈ R �→ CovA[zn](t, 0) instead of the
function CovA[zn] itself. The covariance function CA[zn] is
positive definite.

3.2 Distribution of the source random process

The source field amplitude A0,t is assumed to be a zero
mean stationary Gaussian complex random process de-
fined by its covariance function Γ = CA[z0] that is to say
we assume ∀n ∈ N

∗, ∀(t1, . . . , tn) ∈ R
n the n dimensional

complex random vector (A0,t1 , . . . , A0,tn
) has a zero mean

multivariate Gaussian distribution N (0, Σ) where the co-
variance matrix Σ has entries elements Σij = Γ (ti − tj).

3.2.1 Basic ideas of the simulation approach

From a mathematical point of view it is impossible to
predict the law of the random process Az,t at any position
z in the fiber due to the nonlinearities in the propagation
equation (2). We therefore have to restrict ourselves to the
computation of the mean and correlation functions of the
random process AL,t at the fiber end.

The basic idea of the simulation approach is to ran-
domly draw an outcome A0,t(�) for the source electric
field amplitude and to use the propagation equation (2)
to compute the electric field amplitude Az,t(�) at any po-
sition z along the optical fiber and at any time t. If a large
number of outcomes are considered simultaneously, then
by statistical averaging it is possible to compute an ap-
proximation of the mean and correlation functions of the
random process AL,t.

Once the time interval has been sampled with a
constant time step ht and discrete times tj = j ht,
j ∈ {0, . . . , J} have been introduced, the continuous zero
mean circular stationary Gaussian complex random

process A0,t is handled through a zero mean Gaussian
complex random vector X = (Xt0 , . . . , Xtj

) where the
random variable Xtj

is defined by Xtj
= A0,tj

. The ele-
ments of the covariance matrix Σ of the random vector X
are given by Σij = Γ (tj − ti) and the covariance matrix
is hermitian positive definite and Toeplitz. To simulate a
multivariate Gaussian distribution N (0, Σ), one can pro-
ceed as follows. Let Y = (Y0, . . . , YJ) be a random vector
where the vector components Yj , j ∈ {0, . . . , J} are in-
dependent normal random variables N (0, 1) and let L ∈
MJ+1(C) be the unique nonsingular lower triangular ma-
trix with positive diagonal entries such that Σ = L LH

(such a Cholesky factorization exists since the covariance
Σ is Hermitian positive definite and the matrix L is re-
ferred to as the square root of Σ and denoted Σ

1
2 ). Then

the random vector X = LY has a multivariate Gaussian
distribution with covariance matrix Σ and zero mean. Due
to the intrinsic dynamic of the propagation equation (2)
in the experimental situation considered here, it is nec-
essary to have a time discretization (or correspondingly a
frequency one) with a large number of grid points. Indeed,
the pulse-width of the studied laser is close to a nanosec-
ond with a spectral width covering few THz at fiber output
due to strong occurrence of nonlinearities (self-phase mod-
ulation, Raman scattering) through propagation. Hence,
for a spectral resolution allowing a spectral accuracy close
to the laser longitudinal modes spacing (≈10 MHz), the
number of grid points should be as high as 223.

3.2.2 Generation of the source Gaussian complex
random vector

In their work on modeling the propagation of incoherent
laser sources in nonlinear fibers [16], Gross and Manassah
used the “factorization method” for generating Gaussian
complex random vectors based on the Cholesky decompo-
sition of the covariance matrix presented above. The main
drawback of this numerical method is that the Cholesky
decomposition of the covariance matrix Σ may fail for
numerical reasons. Indeed although the covariance ma-
trix Σ is hermitian positive definite, and the Cholesky
decomposition exists, in practice for covariance matrices
of large size, their smallest eigenvalues decay very rapidly
toward 0 and the covariance matrix is almost singular.
From a numerical point of view, the covariance matrix Σ
is therefore hermitian positive but not definite and the
numerical implementation of the Cholesky method fails
to compute the Cholesky decomposition of the covariance
matrix Σ. This kind of behavior is observed, for instance,
for Gaussian correlation functions Γ (t) = a e−bt2 . More-
over, this method requires O(J2) numerical operations to
generate one outcome of a Gaussian vector of size J and
hence it is computationally expensive for large values of J.
In the 1990s alternative numerical methods to the “factor-
ization method” have been investigated for the simulation
of large samples according to a multivariate Gaussian dis-
tribution. A method of choice is the “circular embedding
method” (CEM) independently invented by Dietrich and
Newsam [17] and Wood and Chan [18]. The CEM is the
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fastest algorithm for unconditional simulation and it is
“exact in principle” which means that it is exact under
the assumptions that no error in the computer arithmetic
occurs and that truly independent random variables are
used.

The idea behind the CEM for simulating a zero mean
multivariate Gaussian random vector is the following. The
covariance matrix Σ which has the property of being a
Toeplitz matrix is embedded in a hermitian circulant ma-
trix C ∈ MK(C). Calculation of the square root C

1
2 of

a circulant nonnegative definite matrix may be performed
efficiently using the Fast Fourier Transform [17,18]. More-
over if Y = (Y1, . . . , YK) is a random vector where the
components Yk, k ∈ {1, . . . , K} are independent normal
random variables N (0, 1), then the circulant matrix can
be constructed in such a way that a selected sub-vector
X ∈ C

J+1 of Z = C
1
2 Y ∈ C

K has a multivariate Gaussian
distribution with covariance matrix Σ and zero
mean [17,18]. The algorithm of the CEM can be found
in reference [19]. In this work we use the adaptation of
the CEM for complex Gaussian random vector [20].

3.3 Statistical analysis of the final complex
random vector

As mentioned before, the distribution law of the random
process AL,t at the fiber end cannot be predicted by the
theory from the distribution law of the source random
process A0,t. We therefore restrict ourselves to statistical
estimation of its mean and correlation functions from a
large number M of outcomes AL,t(�). As the mean of
a stationary random process is time invariant, we may
estimate the mean of AL,t by the cumulative formula

mL ≈ 1
M

1
J + 1

J∑
j=0

M∑
m=1

AL,tj
(�m).

The covariance matrix ΣL of the complex random vector
(AL,tj

)j=0··· ,J is hermitian and has upper triangular en-
tries (j ≥ i) given by

Σij = E(AL,ti
AL,tj

) − m2
L = Γ (tj − ti) − m2

L

= Γ ((j − i)ht) − m2
L,

where for all k ∈ {0, . . . , J}

Γ (k ht) ≈ 1
M

1
J − k

J−k∑
j=0

M∑
m=1

AL,tj
(�m)AL,tj+k

(�m).

4 Numerical simulation results

The numerical simulation results presented in this section
have been not only obtained in a record time through the
choice of an efficient and fast method (RK4-IP) but also
thanks to the kind help of Project team CORDIAL from
IRISA (CNRS UMR 6074), it has been possible to run

our simulations on a multi-core processing unit with 64
physically separated processors and 132 Go RAM. Hence
it has been likely to optimize computation time by per-
forming multi-threaded FFT, a routine for shared-memory
parallel hardware handled by FFTW library [11]. This
option was useful to save computation time since RK4-
IP computations involved a time/frequency number of
sampling points exceeding 219. Moreover, as explained in
Section 3.3, generation and propagation of a large num-
ber of outcomes (≈2000) of the random process is re-
quired. Regarding this, an additive gain of time is pos-
sible through independent generation and simultaneous
propagation of multiple outcomes of the random process,
which appears as an alternative computation technique.
Its features help to drastically reduce computing time.
For instance, with a number of 219 time sampling points
the computing time for the generation and propagation of
2000 outcomes takes roughly 1 hour and a half through
the parallel computation of 50 parallel outcomes, includ-
ing an adaptive step-size control strategy with tolerance
tol = 10−7 but without FFT multi-threading.

Some valuable physical statements can be deduced
from numerical simulation experiments. Namely, impor-
tant information regarding the impact of fiber linearities
and nonlinearities on partially coherent (PC) laser source
can be obtained. As well, the design of a PC laser source
is made convenient since some of its physical features such
as spectrum width and shape can be adjusted through the
setting of the correlation function width and shape.

The simulation parameters used in this paper are re-
lated to the propagation and amplification of high-power
(hundreds of Watts) PC super Gaussian pulse width
Tp = 0.5 ns half-width into 3 m of Yb3+-doped active fiber
(booster) exhibiting an amplification gain ranging from 10
to 20 dB depending on the laser diode pump power. As
mentioned in the Introduction, we want to investigate the
impact of the PC source coherence time tcoh on its ampli-
fication.

Results depicted in Figure 2 show the outgoing mean
power spectrum density (PSD) [21] after 3 m of propa-
gation and 18.6 dB amplification (Ppump = 35 W) in the
booster for different values of the booster Kerr parameter
γ ranging from 0.2 to 0.8 W−1 km−1. The input mean
PSD shape is Lorentzian and it corresponds to a complex
Gaussian random process generated at a carrier frequency
λS = 1064 nm with an exponential covariance function
and a coherence time tcoh = 2.65 ps. As the Kerr effect is
increasing, PSD spreading and Raman shift tend to grow
bigger.

The input field’s covariance function is given by

CA[zn](τ) = exp(− |τ/tcoh|).

By virtue of the Wiener-Khinchin theorem in the very
special case of a wide-sense stationary complex random
process, the covariance function and the PSD form a
Fourier transform pair [21]. Hence, the input PSD (IN) is
Lorentzian with a full width at half maximum (FWHM)
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Fig. 2. fiber amplified PSD according to the fiber Kerr para-
meter γ ranging from 0.2 to 0.8 W−1 km−1. IN stands for the
Lorentzian input PSD.

ΔνIN depending on tcoh through the relationship:

ΔνIN =
1

πtcoh
.

With an initial FWHM ΔνIN = 120 GHz, we can appreci-
ate in Figure 2 a noticeable behavior through propagation
in active fiber. Our software allows not only to appreciate
and quantify the PSD broadening around λS due to self-
phase modulation (SPM), but also it allows the quantifi-
cation of the Raman induced frequency shift (RIFS) which
is made possible with the choice of a wide spectral win-
dow (200 nm) [2]. The RIFS is an inelastic phenomenon
which appears as a transfer of energy from high-frequency
components λS of a pulse to the lower-frequency com-
ponents of the same pulse. Regarding our experimental
setup (Fig. 1), Raman shift and SPM represent deleteri-
ous effects leading to spectrum broadening responsible for
a decreasing efficiency at the frequency doubling stage.
Thus, booster amplifiers and PC laser properties lead to
more or less emphasize those nonlinearities. Regarding the
Raman energy quantity, comparison with previous work [1]
shows a lower quantity of energy. We suspect that nu-
merical computation of Raman spontaneous energy added
to amplified spontaneous emission can drastically increase
the amount of spectral energy above 1100 nm.

A closer insight showed in Figure 3 completes the re-
sults presented in Figure 2 and certifies that the phenom-
enon of spectrum spreading is responsible for a poorer en-
ergy confinement as γ is increasing which is detrimental to
an optimum frequency doubling. We can notify that en-
ergy confinement decreases proportionally with γ. Indeed,
half of the output signal energy is confined into a 1 nm
spectral window for γ = 0.2 W−1 km−1, this same energy
is confined into a 4 nm spectral window when γ is four
times bigger.

Interesting behaviors can be quantified by modifying
the coherence time of input complex random process. In
Figure 4, as input PSD half-width is increased we have
measured the output PSD enlargement η = ΔνOUT/ΔνIN

and the fraction of Raman energy considered as the to-
tal energy located at λ > 1100 nm. Both values increase
in a monotonic way, however η does not increase linearly

Fig. 3. Corresponding integrated DSP energy contained in the
area centered at maximum spectrum power λS = 1064 nm for
different values of fiber Kerr parameter γ ranging from 0.2 to
0.8 W−1 km−1.

Fig. 4. Spectral spreading and corresponding integrated
Raman energy at fiber output for a Lorentzian input spectrum
shape with FWHM ranging from 30 to 150 GHz.

at the difference with the Raman energy fraction. As we
can see, Kerr nonlinearities and Raman induced frequency
shift have an appreciable impact on coherence proper-
ties through amplification and propagation. However, a
close comparison between the modeling and experimental
results shows a spectrum spreading and Raman energy
which is far more important in the experimental case [1].
We believe that adding Raman spontaneous emission in
our model should solve this mismatch.

Finally, Figure 5 shows the dependence of the PSD
spreading on the choice of covariance function CA[zn] . PSD
enlargement η has been measured for increasing values
of the laser diode pump power leading to a total linear
amplification ranging from 11.9 to 18.6 dB. As the
pump power increases, in both cases η is increasing too in
a same way, however η is two times bigger with an expo-
nential covariance function (Lorentzian spectrum). Hence,
accurate experimental measurement of CA[zn] is neces-
sary in order to quantify spectrum enlargement at booster
output.
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Gaussian
Lorentzian

Fig. 5. Spectral spreading at fiber output for a respec-
tively Gaussian and Lorentzian input spectrum shape with
same FWHM of 130 GHz. The spectral spreading has been
measured for an increasing pump power ranging from 10 to
35 W.

5 Conclusion

We have presented in this paper a numerical simulation
approach dedicated to the generation of partially coher-
ent laser source and its propagation into a fiber amplifier.
We have demonstrated an implementation of the RK4-IP
method for solving the generalized nonlinear Schrödinger
equation. The method exhibits a fourth-order convergence
and it is implemented together with an embedded Runge-
Kutta method for adaptive step-size control. Partially co-
herent laser source are modeled by means of complex
Gaussian random processes. The choice of the circular em-
bedding method for the generation of complex Gaussian
random processes allows the simulation of partially co-
herent laser sources over a sufficiently large number of
time sampling points (up to 223) to ensure high accuracy
and wide span investigation. Besides computing speed has
been optimized by the use of multi-threading technique for
FFT computing and by parallel running of independent
Gaussian random processes. Our numerical results show
the ability of our numerical simulation software to bring
physical statement to a pragmatic research topic such as
high-power nanosecond partially coherent pulse amplifica-
tion in a 3 m Yb3+-doped fiber. However, this numerical
simulation software is for sure multipurpose and is able to
carry out studies in different photonic areas such as super-
continuum generation, or to deal with telecommunication

concerns like data format transmission or optic functions
based on four wave mixing.

The authors would like to warmly thank Pr. O. Boëffard and
Dr. S. Le Maguer from IRISA (CNRS UMR 6074) Project team
CORDIAL for their illuminating conversations on computer
science, technical support and computing skills. This work is
supported by the Conseil Rgional de Bretagne in the frame-
work of the Green Laser project.
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