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Abstract: Determination of background velocity by Full Waveform Inversion is known to
be hampered by the local minima of the data misfit caused by the phase shifts associated to
background perturbations. We give in this paper an a priori study of the convergence basins
around any nominal velocity model, where the data misfit is guaranteed to have only one local -
and hence global - minimum, provided the data error is below a given tolerable error level. The
size of the attraction basin gives an upper bound to the error in the initial velocity model which
ensures that local optimization algorithm will converge to the global mimimum. We use geometry
in the data space in order to compute this size and the associated tolerable error without having
to solve any FWI least squares minimization problem. Application is made to the inverse problem
associated with wave equations in the time-frequency domain, using reflection data. We study first
how, when FWI is used, frequency and search direction geometry influence the size of attraction
basins, and how to foster it (e.g. complex frequency progression). Then, we compare the size of
attraction basins for background velocities for the classical FWI and the Data Space Reflectivity
MBTT formulation. We investigate the domain of validity of the MBTT reformulation, and show
that it can increase the size of the background attraction basins by a factor of four to fifteen.
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Estimations a priori de bassins d’attraction pour la
reconstruction de modèles de vitesse pour l’équation de
Hemholtz par inversion de forme d’onde (FWI) et par la

formulation stockant la réflectivité dans l’espace des données
(MBTT)

Résumé : La détermination des vitesses de background par inversion de forme d’onde (FWI
- Full Waveform Inversion) est perturbée par les minima locaux présents dans la fonction coût,
qui sont dus aux déphasages engendrés par les perturbations de ce background. Dans ce papier,
nous donnons une étude à priori des bassins de convergence autour d’un modèle de vitesse nominal,
pour lequel la fonction coût est garantie de n’avoir qu’un seul local - et donc global - minimum,
tant que l’erreur sur les données est inférieure a un certain niveau d’erreur tolérable. La taille du
bassin d’attraction donne une borne supérieure de l’erreur permise sur le modèle initial pour garantir
qu’un algorithme d’optimisation local converge vers un minimum global. Nous utilisons des outils
géométriques dans l’espace des données pour calculer la taille du bassin, et l’erreur tolérable associée,
sans avoir à résoudre un quelconque problème de minimisation. Nous appliquons la méthodologie au
problème inverse pour l’équation des ondes, dans le domaine fréquentiel, avec des données de réflexion.
Nous étudions d’abord comment, avec la FWI, la taille du bassin d’attraction est influencée par la
fréquence et la direction de recherche, ainsi que les améliorations que l’on peut y apporter (avec
des fréquences complexes par exemple). Ensuite, nous comparons la taille du bassin d’attraction
pour la reconstruction des vitesses de background entre l’approche FWI classique et sa reformulation
stockant la réflectivité dans l’espace des données (méthode MBTT - Migration Based Travel Time).
Nous étudions enfin le domaine de validité de la formulation MBTT, et montrons qu’elle peut mener
à un gain d’un facteur quatre à quinze sur la taille du bassin.

Mots-clés : Problème inverse, optimisation, analyse de convergence, géophysique, équation des
ondes, FWI, MBTT, algorithme de reconstruction.
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1 Introduction

The Full Waveform Inversion (FWI) approach to seismic inversion consists in minimizing the mis-
fit between the recorded and synthetic data with respect to the Earth parameters. It uses the full
waveform of the recorded waves as data, which makes it free of horizon picking, and hence a good can-
didate for automatic inversion. It was first introduced by Bamberger et al. [5, 6] for one-dimensional
model, and followed, in two dimensions, by Lailly [37] and Tarantola [61]. In particular, [37] made
the link between the gradient of the misfit functional, computed by the adjoint state method, and the
well-known migration imaging operator used by geophysicists. Early numerical experimentations in
[62, 32] already show the strength and the weakness of FWI: it can produce very clear and detailed
images of the sub-subsurface (strength), under the imperative condition that a good background
velocity model is available (weakness). In fact, the misfit functional with respect to background pa-
rameters shows local minima due to phase shift/cycle skipping, which hamper the reconstruction by
local algorithms, unless the minimization starts inside the attraction basin. FWI is extended to elastic
waves in [43], with implementation in [26], to resolve the short wavelengths of P- and S-impedance.
Initially carried out in the time-domain, FWI can also be used in the frequency domain, as promoted
by Pratt and collaborators in [51, 48, 50]. The use of complex frequencies was later introduced by
[53, 54], giving rise to the so-called Laplace and Laplace-Fourier domain FWI.

In the recent years, with the increase of the computational power, the solution of the FWI approach
to seismic imaging by local optimization algorithms has been extensively developed. However, this
approach does not solve the inherent problem of local minima: the determination of the full velocity
model, including the low spatial frequency background, requires data with very low frequency (as
unrealistic as 1 Hz), coupled with a resolution from low to high frequency to avoid ‘cycle-skipping’,
as for example in [16, 59] (similar behaviours are studied in electromagnetism in [7, 8]). One could
also resort to random optimization techniques e.g., [33], which have the ability to find the global
minimum even in presence of many parasitic local minima. But they require a very large number
of misfit evaluations for the determination of a relatively small number of parameters: they are not
adapted for large number of unknowns (in our experiments, we consider several hundred thousands
of parameters).

Different misfit functionals have been considered to alleviate the phase shift/cycle skipping prob-
lem, such as the logarithmic norm, explored by [62] and [57, 58]. [13] uses a criterion based on the
envelope of the signal; [41, 52, 70] are based upon an optimal transport distance. Then, Newton type
algorithms provide a natural framework to solve the nonlinear minimization problem in FWI, cf. [49].
However, they require the computation and inversion of the Hessian, which may be overwhelming due
to the numerical cost. Thus, some algorithms simply account for the diagonal of the Gauss-Newton
Hessian, e.g., [55]; multi-scale Newton methods are studied in [1] for the same reason. Conjugate
gradient method with Hessian-vector computation is implemented in [42]. The estimation of the step
length is another challenge for the iterative minimization problem and is often conducted using the
line search method (e.g., [44]). Alternatives for a more precise step exist, such as the trust region
method [29], the Maximum Projected Curvature method [19]. For Landweber iteration scheme, this
step is further given in [27]. The choice of search direction and line search method naturally influences
the performance of FWI algorithm, comparisons are given in [9] in the context of inverse scattering.
Yet, none of these local optimization methods can avoid local minima.

In order to overcome the presence of local minima when solving the FWI problem by local op-
timization algorithms, alternative parametrizations have been proposed early. They are based on a
decomposition of the Earth parameter into separate background and reflectivity parameters, and re-
sult in an increase of the computational complexity. The Differential Semblance Optimization (DSO)
of Symes [60] extends the depth reflectivity model to account for the various illuminations in the data,
defining a semblance criterion whose minimization produces the desired background model [60]; The
Migration Based Travel Time (MBTT) approach [21, 24, 22] parameterizes the depth reflectivity by
a data-space reflectivity, which is used to store the reflectivity during the update of the background.
Note that the so-called Reflection FWI [69] retains from MBTT the migration-demigration process,
but differs in that it does not use the data-space reflectivity concept, and uses as search direction the
gradient of the classical FWI data misfit.

In this paper, we investigate the optimizability of the FWI problem associated with the time-

Inria



A priori estimates of attraction basins for FWI and DSR 5

frequency domain wave equation, and compare it with that of the MBTT reformulation (in terms of
background and data-space reflectivity). The objective is to quantify the size of “attraction basins”
and “tolerable level errors” which ensure that a local algorithm with an initial guess inside the basin
will converge to the global minimum, provided the error on the data is less than the tolerable error.
By construction, these quantities depend solely on the (parameter-to-synthetic) forward map, but
not on the data, and can be computed without any minimization of the data misfit.

Section 2 presents the time-harmonic wave equation to be inverted, together with the FWI min-
imization problem and its MBTT reformulation employed for the model parameters reconstruction.
Section 3 presents the required geometrical tools of [19] for optimizability study. Sufficient and nec-
essary optimizability conditions are given, and estimates of the size of the attraction basin in the
parameter space, and of the tolerable error level in the data space are derived. Section 4 analyses the
influence of (complex) frequency and search geometry on the size of attraction basins and tolerable
error levels for the classical FWI formulation. In Section 5, we compare the optimizability of classical
FWI and its MBTT reformulation. We expect that the migration-demigration included in MBTT
eliminates phase shift/cycle skipping problems, leading to larger attraction basins for the minimum
with respect to background, and investigate the effectiveness of this approach. In Section 6 we ana-
lyze the optimizability of least squares minimization algorithm for other context (elasticity, boundary
conditions). In Appendix A, we review the gradient computation in the frequency domain, emphasiz-
ing the specificity of complex valued fields for the adjoint state method. The MBTT decomposition
is specified in Appendix B. Appendix C provides numerical experiments of acoustic FWI to validate
our estimates.

2 Time-harmonic inverse wave problem

We formulate the seismic inverse problem associated with the wave equation, for the recovery of
acoustic or elastic materials from reflection data. We consider a bounded domain Ω of R2 which
represents the region of interest in the subsurface (note that we restrict ourselves to two dimensions
for the numerical experiments but the analysis holds similarly in three dimensions). The boundaries
are denoted ∂Ω = Γ1 ∪ Γ2, where we distinguish the upper free surface (Γ1) from the numerical
boundary (Γ2). We assume that partial data are acquired on a portion Σ of the domain, which
possibly coincides with a part of the boundary. Figure 1 illustrates the configuration.

ΩΓx
ΩΓx

ΩΓz

area of interest

Ω

Free surface Γ1

Γ2

source

receivers positions Σ

(a) Computational domain using Perfectly Matched Layers
(PML) at the lateral and bottom boundaries.

area of interest

Ω

Free surface Γ1

Γ2

source

receivers positions Σ

(b) Computational domain using absorbing boundary
condition on Γ2.

Figure 1: Illustration of the two-dimensional area of interest. It characterizes a geophysical situation where
sources and receivers are located in the upper part. The boundary is decomposed into a free surface at the
top (Γ1); on the sides and bottom, conditions (Γ2) are implemented to avoid returning waves.

2.1 Time-harmonic wave equations

The propagation of waves is defined by the displacement field u, solution to the following partial
differential equation,

− ω2ρ(x)u(x)−∇ · σ(x) = g(x), in Ω. (1)

RR n° 9253



6 Barucq & Calandra & Chavent & Faucher

We have introduced the (possibly complex) angular frequency ω, the medium density ρ and the
(Cauchy) stress tensor of order two σ. The source is represented by g. We disregard boundary
conditions for now. The stress tensor encompasses the different material properties and reduces, for
example, when considering isotropy (see [64, 65]).

In the case of acoustic propagation (i.e. propagation in fluid), the wave equation is established for
the scalar pressure field p instead. It is based upon the Euler equations (see, for example, [25, 35]).
If we further assume a homogeneous density, then the wave equation coincides with the Helmholtz
equation (see, e.g., [31]), and the pressure field p is solution to

− ω2

c2(x)
p(x)−∆p(x) = h(x), in Ω, (2)

where c(x) is the velocity (wave speed) and h the scalar source. The upper part of the boundary,
Γ1 (see Figure 1), corresponds with a physical free surface, i.e. the interface between the air and the
medium, the field satisfies

p(x) = 0, on Γ1 (free surface condition). (3)

Due to the numerical truncation of the real domain (the Earth), appropriate conditions are imposed
on Γ2 (see Figure 1(b)). One possibility is the consideration of absorbing boundary condition (see
[30]) to ensure that waves that reach Γ2 are not reflected back to the domain, it is given by

∂νp(x)− iωc−1(x)p(x) = 0, on Γ2 (absorbing boundary condition), (4)

where ν indicates the normal direction. As an alternative, one can consider instead Perfectly Matched
Layers (PML, see [10]) on the sides and bottom boundary (see Figure 1(a)) where the derivatives
become

∂x →
(
1 + i

σ(x)

ω

)−1
∂x, in ΩΓx (Perfectly Matched Layer), (5)

and analogously for the other direction, on ΩΓz . In our implementation, the damping function σ is
defined following the work of [66, 68].

The inverse problem aims the recovery of the physical parameter c(x) in (2), using observations
of the wave phenomenon p(x) at some location. In the following, we mainly work with this acoustic
inverse problem but we also offer some analysis for the isotropic elastic situation in Subsection 6.1
and for other boundary conditions in Subsection 6.2. Note that the methodology developed below
is not restricted to inverse wave problem or geophysical setup, and can be applied in any context
involving least-squares minimization schemes.

2.2 Model and data spaces
We denote by m ∈M the subsurface model parameter to be recovered, here m = c−2 in (2), and by
M ⊂ E the admissible parameter set, which is a subset of the parameter space E. Here, E = Rn
where n indicates the number of unknowns in the representation of m. We assume thatM is a closed
convex subset of E equipped with the L2 norm ‖ . ‖E :

‖m‖E =
(∑n

i=1
m2
i

)1/2

, (6)

where mi is the ith component of m.

Remark 1 (Model representation). For the computational resolution of the inverse problem in the
discrete settings, it is natural to consider the parameter to be recovered with a piecewise constant
representation, such that

m(x) =

n∑
i=1

miχ(Di). (7)

Here, mi, for i = 1 to n, are scalar coefficients (which represent the model) and χ(Di) represents
the characteristic function on the domain region Di. The subdomains Di (for i = 1 to n) are non-
overlapping and verify

Ω = ∪ni=1Di, Di ∩Dj = ∅, ∀i 6= j. (8)

Inria
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Therefore the model is represented via n coefficients, and n is the number of unknowns in the FWI
inverse problem. Practically, the representation usually corresponds with the space discretization
employed for the resolution of the wave equation: one coefficient per cell for discretization based upon
mesh (e.g., Finite Element, Discontinuous Galerkin) or one value per node for Finite Differences
discretization. Moreover, the piecewise constant model representation (7) is also fundamental to show
properties of stability, see [3, 11] and Remark 4.

The data are recorded by the receivers on a portion Σ of the domain Ω, they contain both direct
and reflected energy. Because one aims to image the deep structures of the earth, the direct arrivals
need to be eliminated from the recorded data before they can be used in the inversion procedure.
This is automatically done when a ‘linearized’ model is used, but in general, for the full Helmholtz
problem (2), it requires subtracting the direct arrivals. So we shall denote by d the data deprived
from their first arrivals, and by D the associated data space. In the time-harmonic case, d is a vector
of q complex numbers and D = Cq, with q = nfrequency × nsource × nreceiver. The data space D is
equipped with the norm ‖ . ‖D,

‖d‖D =
(∑q

i=1
didi

)1/2

, (9)

where di is the ith component of d and denotes the complex conjugate.

2.3 Inversion via classical FWI
The essence of FWI ([61, 51, 67]) is to try to reconstruct the subsurface image by minimizing a misfit
functional defined as the difference between the observations and simulations, starting from an initial
model. In order to focus on reconstruction of deeper structures, we have to remove the direct arrivals
from the forward model. Let us denote by p(h)

ω and p
(h)
s,ω the solutions of (2) for m and ms, where

ms is a smooth version of m. For the source h at frequency ω, we can define the forward operator at
frequency ω for a source h by:

F (h)
ω (m) = p(h)

ω (x)|Σ − p (h)
s,ω (x)|Σ

= R
(
p(h)
ω (x)

)
−R

(
p (h)
s,ω (x)

)
,

(10)

where R denotes the restriction operator to the discrete receivers location. When computing deriva-
tives of F , it will be necessary to remember that ms depends also on m.

FWI amounts to solve the non linear least squares minimization problem:

min
m∈M

J (m) =
1

2

∑
ω

∑
h

‖F (h)
ω (m)− d(h)

ω ‖2D. (11)

where the data d(h)
ω are made of the observations at frequency ω for a source h, deprived from first

arrivals. For sake of conciseness, we use the vector notation

F(m) =
{
F (h)
ω (m), for all h, ω

}
and d =

{
d(h)
ω , for all h, ω

}
, (12)

and write the FWI minimization problem as:

min
m∈M

J (m) =
1

2
‖F(m)− d‖2D . (13)

As mentioned in the introduction, different norms can be used to build the objective function,
and the minimization is usually performed by a Quasi-Newton algorithm, which requires only the
gradient of the cost function:

∇J (m) = DF(m)∗ (F(m)− d), (14)

where DF stands for the Fréchet derivative of F and ∗ is the adjoint. This gradient can be efficiently
computed by the adjoint method, which does not require the formation of the Jacobian matrix. Ap-
pendix A describes a careful adaptation of this method to the case of complex variables (contrarily to
the time-domain formulation, the data and the wavefields are, in the harmonic formulation, complex).

RR n° 9253



8 Barucq & Calandra & Chavent & Faucher

It is well known that the determination of the background (low spatial frequencies) of m by (13)
is hampered by the many local minima of J , caused by phase shifts in the synthetics (see Figure 18).
This can be overcome only if the data contain extremely low frequencies. Appendix C shows a few
reconstructions of velocity models via FWI, which illustrate the difficulties inherent to this approach.
These difficulties are a motivation for alternative techniques such as the MBTT reformulation of FWI
below, and for the optimizability study developed in this paper.

2.4 Inversion via MBTT–FWI (background/data-space-reflectiv ity decom-
position)

In the MBTT (Migration-Based Traveltime) approach, see [24], the Earth model m is parameterized
by a smooth background p and a data-space reflectivity s using a migration operator:

m = m(p, s) = p + r = p +W DF(p)∗ s = p +
∑
ω

W(ω)DFω(p)∗s(ω), (15)

where r is the depth reflectivity associated to s and p;W is a scaling operator (which possibly depends
on the frequency) and ∗ denotes the adjoint. The weight W is meant to compensate for the lower
amplitude of deep migrated events, see [46]. In our experiments we use a simple scaling proportional
to the square root of the depth. where (x, y, z) are the 3D space coordinates with z the depth, and β
is a scalar coefficient. We refer to Appendix B for more details regarding the computational aspects
of the decomposition. Note that the solution of the linearized version (Born approximation) of the
FWI problem (13) is of the form (15), in which case parameterization (15) is not underparameterizing.
Hence, when the full model (2) is used, the parameterization by the data space reflectivity s will be
able to generate all primary events of the data, but maybe not all multiple events (i.e., it will miss the
events associated to multiple reflections involving at least one reflector which generates no primary
reflection), cf. [20].

When this decomposition is employed, the natural choice for the smooth version ms of m in (10)
(to account for the direct arrivals in the forward map F) is simply ms = p. With this change of
parameter, the forward map given by (10) (12) rewrites:

F(p, s)
def
= F(m) with F given by (10) and m by (15). (16)

By construction, F contains no direct arrivals, which implies that, for a smooth enough background
p, F satisfies:

F(p, 0)
def
= F(p) ≈ 0. (17)

The motivation for this parameterization is to eliminate phase shifts induced in the synthetics by
changes in the background p: the events in the synthetic section F(p, s) are obtained from the data-
space reflectivity s by migration followed by simulation with the same kinematic, and hence are
expected to have the same phase as those of s, as illustrated in Figure 18, Section 5.1. Besides
controlling the phase, this migration-demigration process has the additional property that the stack
involved in the migration turns, for a fixed data space reflectivity, the data misfit into a coherency
measure for the current background [20].

The MBTT–FWI minimization problem is then:

min
p∈Ms,s∈D

J(p, s) =
1

2
‖F(p, s)− d‖2D , (18)

whereMs ⊂M is the set of admissible smooth backgrounds and D is the data space.
The iterative reconstruction follows alternative updates of the two components of the model:

1. Start the reconstruction with the recovery of the reflectivity part s, from the lowest available
frequency.

2. Using the updated reflectivity, which we fix, we can iterate to reconstruct the background part
of the model, p.

Inria
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3. Continue to perform the alternative updates, in a succession of increasing frequency.

This approach has been shown successful in [22], for the inversion of synthetic Marmousi data
starting from a lower frequency of 5 Hz. Hence another motivation for the optimizability study of
this paper is to quantify how far the MBTT reformulation of FWI succeeds in overcoming in step 2
the local minima problem inherent to classical FWI.

3 Optimizability and Attraction Basins
In this section, optimizability conditions are defined for general least-squares minimization problems,
such as (13) and (18). By optimizability, we refer to the possibility for a local (deterministic) op-
timization algorithm to converge to a global minimum, i.e. there is no local minimum to hamper
the search of the solution. This analysis follows the work of [19]. In addition to the notations of
Subsection 2.2, we shall refer to F(M) as the attainable set of the least squares problem.

Definition 1 (Path). A curve P drawn on F(M) ⊂ D is a path of F(M) if it is of the form:

P : t ∈ [0, 1]→ F
(
(1− t)m1 + tm2

)
where m1,m2 are two models ofM. (19)

The following set of hypotheses is required to derive the optimizability conditions (cf. [19]):

– the forward map F :M→D is twice differentiable along segments ofM,

– there exists C ≥ 0 such that ∀m1,m2 ∈M, ∀t ∈ [0, 1], ‖DtF
(
(1−t)m1+tm2

)
‖D ≤ C‖m2−m1‖E ,

where Dt stands for the derivative with respect to t.

Note that F is indeed twice differentiable because our study is conducted in the finite (discrete)
dimensional setting.

Definition 2 (Velocity and acceleration). P is twice differentiable and we denote by V and A (velocity
and acceleration along P ) its two first derivatives:

V (t) = P ′(t), A(t) = P ′′(t). (20)

For simplicity, we shall consider only paths for which V (t) 6= 0 for all t, so we can define the unit
tangent velocity v, and the normal acceleration a by

v(t) =
V (t)

‖V (t)‖D
, a(t) =

A(t)− 〈A(t), v(t)〉 v(t)

‖V (t)‖2D
, (21)

where 〈·, ·〉 is the real inner product in D = Cq:

〈z1, z2〉 = Re{z1z̄2}. (22)

Let us point out that, due to the limited accuracy of the recording devices, model error and noise,
the observed data d do not belong in general to the attainable set F(M). Therefore, it is important
that the least squares misfit function does not have parasitic local minima for data d which are “not
too far” from the attainable set. This property is made precise by the following definition.

Definition 3 (Optimizability/Attraction Basin). The least squares problem (13) is optimizable on
M, or equivalently the parameter setM is an attraction basin for (13), if there exists a neighborhood
V of F(M) such that

– uniqueness: all data d ∈ V have a unique projection d† on F(M),

– unimodality: for any d ∈ V, the distance to d has no parasitic stationary point over F(M),

– convergence: if d ∈ V, any minimizing sequence dn ∈ F(M) of the distance to d is a Cauchy
sequence for both the norm ‖ · ‖D and the arc length distance `(P ) along the path P defined
by (19). Hence dn converges in F to the unique projection d† of d onto F(M).

Therefore, an optimizable least squares problem (13) exhibits rightful dispositions for its resolution
by a local gradient algorithm: uniqueness of the projection and absence of local minimum ensure that
the algorithm will converge to a global minimizer whatever the initial guess in its basin of attraction
M.
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3.1 Global Radius of Curvature and Deflection
Following [19, pp. 167–172 and 300-308], we define the global radius of curvature and the deflection
along a path P , and further give in Propositions 1 and 2 a characterization and a sufficient condition
of optimizability.

Definition 4 (Radius of curvature). The (possibly infinite) radius of curvature R(t) of a path P at
t is given by:

1

R(t)
= ‖a(t)‖D =

‖A(t)‖D
‖V (t)‖2D

sin(A(t), V (t)). (23)

The radius of curvature of the whole path P is then defined as:

1

R(P )

def
= sup

t∈[0,1]

1

R(t)
. (24)

It is straightforward to see that

1

R(t)
≤ ‖A(t)‖D
‖V (t)‖2D

, for a.e. t ∈ [0, 1]. (25)

Definition 5 (Global radius of curvature). The (possibly infinite) global radius of curvature RG(t, t′)
of a path P at t seen from t′, with t 6= t′, is given by:

RG(t, t′) =

{
N+/D if 〈v(t), v(t′)〉 ≥ 0 ,
N+ if 〈v(t), v(t′)〉 ≤ 0 ,

(26)

where v(t), v(t′) are the normalized velocities along P defined by (21), and{
N+ = max(N, 0) where N = sign(t′ − t)〈P (t′)− P (t), v(t′)〉,
D =

(
1− 〈v(t), v(t′)〉2

)1/2

.
(27)

The global radius of curvature of the path P is then defined as:

RG(P )
def
= inf

t,t′∈[0,1]
RG(t, t′) ≥ 0. (28)

The interest of global radius of curvature comes from the following proposition.

Proposition 1 (RG > 0 ⇐⇒ optimizability).
The least squares problem (13) is optimizable - or equivalently M is an attraction basin for (13) -
if and only if it exists RG > 0 such that RG(P ) ≥ RG > 0 for all path P of F(M). The associated
neighborhood V is defined by:

V =
{
d ∈ F | dist

(
d,F(M)

)
< RG

}
. (29)

The proofs can be found in [19]. The global radius of curvature can be computed numerically
using (26) and (27), as will be done in following numerical sections. It can also be estimated via the
usual radius of curvature depending on the value of the deflection, which we define now, and which
is illustrated Figure 2(a).

Definition 6 (Deflection). The deflection between two points t and t′ of the curve P is the angle
between the two velocities V (t) and V (t′) (see Figure 2(a)). It is given by:

Θ(t, t′) = arccos

( 〈V (t), V (t′) 〉
‖V (t)‖D‖V (t′)‖D

)
∈ [0, π[ . (30)

The deflection Θ(P ) of the curve P is defined as the largest angle Θ(t, t′) ∈ [0, π] between any two
tangent vectors V (t) and V (t′) for any two points t and t′ of [0, 1]. An infinitesimal variation of the
deflection dΘ satisfies

dΘ ≤ ‖A(t)‖D
‖V (t)‖D

dt. (31)
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Denoting t1 and t2 the values of t for which the deflection is maximum, the deflection Θ(P ) along the
curve P satisfies

Θ(P ) =

∫ t2

t1

dΘ ≤
∫ 1

0

‖A(t)‖D
‖V (t)‖D

dt. (32)

This majoration is sharp, but it is very conservative: equality holds only when P is an arc of circle
with constant velocity ‖V (t)‖: “when the path P turns always in the same direction with a constant
radius”. Therefore, the estimation of the deflection Θ(P ) of the path using its upper bound in (32) is
the worst case estimate.

The relation between global and local radii of curvature is then given by the following proposition.

Proposition 2 (Local and Global Radii of curvature). For any path P of F(M) one has

R(P ) ≥ RG(P ) ≥ 0 and R(P ) = RG(P ) as soon as Θ(P ) ≤ π/2, (33)

Definition 7 (Finite Curvature/Limited deflection (FC/LD) problem). The minimization Prob-
lem (13) is a FC/LD least-squares problem if:

there exists R > 0 such that: ‖A(t)‖D ≤
1

R
‖V (t)‖2D for a.e. t ∈ [0, 1] and all paths P , (34)

Θ(P ) ≤ π

2
for all paths P . (35)

From Definition 7, a FC/LD problem verifies that, using (33):

RG(P ) = R(P ) ≥ R > 0 for all paths P , (36)

which shows that FC/LD problems (also referred to as weakly nonlinear inverse problem in [23]) are
necessarily optimizable.

Notice that Proposition 1 gives a characterization of optimizable problems, whereas Definition 7
provides only a sufficient condition.

3.2 Directional Attraction Basins

Numerical application of previous section to check whether or not a given least squares problem is
optimizable becomes quickly intractable when the number of parameters n increases, as it is the case
in seismic inversion. So we limit ourselves to directional (or one-dimensional) parameter sets of the
form:

M(m0, u,∆) = [m0 −∆u,m0 + ∆u] with ‖u‖E = 1. (37)

Here, m0 is a nominal model, u a normalized perturbation direction, and ∆ gives the size of the
domain of investigation. The associated attainable set is constructed from the path P defined by:

P : t ∈ [0, 1] ; F
(
m0 + (2t− 1)∆u

)
. (38)

We refer to directional optimizability when the problem is optimizable for an interval such as (37),
and this interval is a directional attraction basin. Directional optimizability is only a necessary
condition for optimizability, but it will allow to analyze the behavior of seismic inverse problems and
to compare formulations: the size ∆ of a directional attraction basin in a descent direction tells us
how far one can move away in this direction without being stopped by parasitic local minima. Our
objective now is to determine (see illustration Figure 2):

1. the size ∆u
m0

of the directional attraction basin centered at m0. The larger ∆u
m0

is, the better
the least squares problem is amenable to minimization by local algorithm, because we allow a
larger area for investigation. In our numerical experiments, we shall scale the estimate with the
norm of the nominal model, ‖m0‖E , to provide relative (to the model) quantity.
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12 Barucq & Calandra & Chavent & Faucher

2. the associated tolerable error level Ru
G,m0

. It is the largest tolerable error on the data d which
ensures the absence of parasitic local minima for the least squares objective function

t ∈ [0, 1] ;
1

2
‖F(m0 + (2t− 1)∆u

m0
u)− d‖2D (39)

over [0, 1]. The larger Ru
G,m0

is, the better is the robustness of the minimization procedure to
noise in the data. In our numerical experiments, we divide the estimates with the norm of the
synthetic data d0 = F(m0) to provide relative (to the data) quantity.

t

t′

V (t)

t′
V (t′)

Θ(t, t′)

F(m0)

F(m0 −∆u)

F(m0 + ∆u)

(a)

F(m0)F(m0 −∆u)

F(m0 + ∆u)d

dist(d,F)

(b)

Figure 2: A one-dimensional setup for least squares problems. The figure lives in the data space, the
attainable set is the path P image of the interval M(m0, u,∆) of the model space. (a) Illustration of the
computation of the deflection Θ(t, t′) between two arbitrary points t and t′. (b) The path has a finite
curvature and the deflection is smaller than π/2, so the FC/LD Property 7 is satisfied, and RG = R > 0 by
Proposition 2. Hence the “distance to d” function cannot have local minimum over P provided the data d is
at a distance of the attainable set P = F(M(m0, u,∆)) smaller than R.

We shall use two types of estimate:

• Θ-estimates of ∆u
m0

, where the optimizability over M is obtained by satisfying the sufficient
condition Θ(P ) ≤ π/2 of Definition 7. In this case, RG(P ) = R(P ), so the tolerable error level
is given by the minimum over the [0, 1] interval of R(t) given by (23).

• RG-estimates of ∆u
m0

, where optimizability is obtained by satisfying the RG > 0 characterization
of optimizability of Proposition 1. In this case, the associated tolerable error level RG has to
be computed by evaluating numerically the infimum in (28) using (26) and (27).

Remark 2. The size of attraction basins depends only on the choice of the forward map to be inverted,
but not on the optimization algorithm used (e.g. Newton method, gradient descent, etc). The choice
of the method naturally affects the rate of convergence and the speed at which the final solution is
eventually reached, but it has no influence on the presence or absence of local minimum.

3.3 Local Θ-estimate for ∆u
m0

and associated tolerable error level Ru
m0

We provide here a local Θ-estimate ∆ of the attraction basin, in the sense that it is based only on the
velocity V and acceleration A at m0 in the direction u. In order to ensure that the deflection of the
path P defined by (38) is smaller than π/2, we use the upper bound (32) of Θ(P ), which, according to
the optimizability condition of definition 7, ensures in turn thatM(m0, u,∆) is an attraction basin.

With the notations of [17] for the directional derivative, the chain rule differentiation gives:
V (t) =

∂F
∂m

∂m

∂t
= 2∆DF(m)(u),

A(t) =
∂2F
∂m2

(
∂m

∂t

)2

+
∂F
∂m

∂2m

∂t2
= 4∆2D2F(m)(u, u),

(40)

where u acts as the direction of derivation. Then we use a rectangle approximation in equation (32),
which gives the approximate upper bound Θu

m0
to the deflection Θ(P ):

Θ(P ) ≤
∫ 1

0

‖A(t)‖D
‖V (t)‖D

dt ∼ ‖A(1/2)‖D
‖V (1/2)‖D

= 2∆
‖D2F(m0)(u, u)‖D
‖DF(m0)(u)‖D

def
= Θu

m0
. (41)
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This gives immediately a local Θ-estimate of the size ∆ of an attraction basin at m0 in the direction u:

∆u
m0

=
π

4

‖DF(m0)(u)‖D
‖D2F(m0)(u, u)‖D

, local Θ-estimate. (42)

This estimate is an approximate (because of the rectangle approximation of the integral) lower bound
(because it is based on the upper bound (32)) to the size of the largest attraction basins at m0 in
the direction u. It is computationally cheap, and we will use it in Section 4 to analyze the effect of
frequency and perturbation direction on the optimizability of the FWI least squares problem.

The associated tolerable error level Ru
m0

is then the minimum of the radius of curvature along
P = F(M(m0, u,∆)), which is approximated simply by its value at m0, that is R(t = 1/2) given
by (23):

Ru
m0

=

( ‖V (t)‖2D
‖A(t)‖D| sin

(
A(t), V (t)

)
|

)∣∣
t= 1

2

, tolerable error level, (43)

where V (t) and A(t) have been defined in (40).

Remark 3. One may use the directional attraction basins M(m0, u,∆
u
m0

) to construct an approxi-
mate multidimensional attraction basin M(m0,∆m0

) as follows: suppose that ∆u
m0
≥ ∆m0

≥ 0 for
all u for some ∆m0

, and define:

M(m0,∆m0
) = B(m0,∆m0

), (44)

where B denotes a ball in the model space. The size ∆m0
of an approximate multidimensional attrac-

tion basin M(m0,∆m0) follows immediately from the previous results by computing an upper bound
Θm0 to Θu

m0
using (41):

Θu
m0

= 2∆
‖D2F(m0)(u, u)‖
‖DF(m0)(u)‖ ≤ 2∆

‖D2F(m0)‖‖u‖2
λDFmin‖u‖

= 2∆
‖D2F(m0)‖

λDFmin

def
= Θm0 , (45)

where λDFmin denotes the lowest singular value of DF(m0), and we use the Frobenius norm for the
matrix norm of the numerator. Estimation of ∆m0

follows:

∆m0
=
π

4

‖λDFmin‖
‖D2F(m0)‖ . (46)

Note thatM(m0,∆m0
) is only an approximate attraction basin, because condition RG > 0 (Proposi-

tion 1) or Θ ≤ π/2 (Definition 7) holds only for segments passing through its center m0.
Then, (43) provides a lower bound Rm0

independent of u to the radius of curvature ofM(m0,∆):

Rm0
=

(
λ
DF(m0)
min

)2
‖D2F(m0)‖ . (47)

3.4 Exact Θ- and RG-estimates of ∆u
m0

and associated tolerable error levels
The determination of the exact Θ- and RG-estimates of the attraction basin centered at m0 in a
direction u inside an intervalM(m0, u,∆) of given size ∆ requires the numerical computation of the
deflection Θ(t, t′) and the global radius of curvature RG(t, t′) between any two points

F(m0 + tu) , −∆ ≤ t ≤ ∆ and F(m0 + t′u) , −∆ ≤ t′ ≤ ∆ (48)

of the path P , which is the image by F of the investigated intervalM(m0, u,∆).
For this purpose,deflection maps and global radius maps are computed, and they display the values

of Θ(t, t′) (Definition 6) and of RG(t, t′) (Definition 5) between the points of M(m0, u,∆). On the
diagonal of the maps, where t = t′, RG is not defined by (26) (27), and we indicate instead the values
of R(t) given by (21) (23), which represent the limits of RG(t, t′) when t′ → t. One can then read on
these maps the exact Θ-estimate (resp. the exact RG-estimate) of ∆u

m0
by searching for the largest

squares centered at (0,0) where Θ(t, t′) ≤ π/2 (resp. where RG(t, t′) > 0).
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14 Barucq & Calandra & Chavent & Faucher

During this process, when ∆ increases from 0 to its exact Θ-estimate, the associated exact tolerable
error Ru

m0
= inf−∆≤t≤∆R(t) decreases from its value R0 at m0 to the tolerable error Ru

m0
of the Θ-

attraction basin. When ∆ increases further to its exact RG-estimate, the tolerable error is RG =
inf−∆≤t,t′≤∆RG(t, t′), which continues to decrease, until it reaches the value 0 of the RG-attraction
basin.

These computationally intensive exact estimates will be used in Section 4 on the analysis of FWI,
for comparison purpose with the local Θ-estimates. They will also be used in Section 5 to compare
more precisely the optimizability properties of classical FWI and MBTT–FWI.

4 FWI: Numerical determination of convergence basins and
tolerable error levels

Our objective in this section is to give a comprehensive understanding of the behavior of the seismic
FWI problem (13) with respect to parameters such as the frequency, the geometry of the target,
the parametrization, etc. Therefore, we select a nominal model m0 and compute, according to
Subsection 3.2, the size ∆u

m0
of an attraction basin and the associated tolerable error level Ru

m0

for different (normalized) directions u. When m0 is smooth, the direction u can be seen as the
search direction, or the geometry of the unknown parameter to be reconstructed in the framework of
inversion.

4.1 Influence of frequency ω and search direction u

We consider the two-dimensional geophysical setup of Figure 1 for the acoustic Helmholtz equation (2),
and select the squared slowness m := c−2 as unknown parameter, which is expressed in s2 m−2. The
forward map Fω at frequency ω for parameter m is a vector of C(nrcv×nsrc) with nrcv the number of
receivers per source and nsrc the number of sources. In this experiment, we take 19 sources and 183
receivers associated with each source. Both are located near the surface (accordingly to Figure 1),
note that the receivers remain in the same position for all sources. Thus, we work with reflection
data obtained from a one side (the surface) illumination.

The nominal model m0 is the smooth 9.2× 3 km background velocity pictured in Figure 3, where
the velocity varies linearly with depth, according to the fact that no information is known on the
structures to reconstruct.

We investigate the behavior of attraction basins for different directions u, which are chosen to
be based on straight reflectors, or extracted from the Marmousi model (probably the most popular
velocity model in geophysics, synthetically designed by the Institut Français du Pétrole in 1988).
They are shown in Figure 4: u1 has a single, slim reflector (Figure 4(a)), u2 has two slim reflectors
(Figure 4(b)), u3 has a single large reflector (Figure 4(c)) and um is obtained by high-pass filtering
from the Marmousi model of Figure 4(d). The amplitude for the directions are selected such that uk
is normalized: ‖uk‖ = 1, for all k.

Given a perturbation size ∆, one can think ofm1 = m0+∆u as being the target velocity, which one
tries to retrieve starting from the smooth model m0 by minimization of the FWI objective function
in direction u by a local algorithm (it is analogous to the update formula in Newton-type algorithm).
The question is: how large can ∆ be while still guaranteeing that the algorithm will not stop before
the global minimum, provided that the error in the data is smaller than some R or RG?

Local Θ-estimates of ∆u
m0

and Ru
m0

The determination of ∆u
m0

with the local Θ-estimate, (42), and Ru
m0

with (43), requires the com-
putation of the first and second order directional derivatives in the direction u, and we refer to
Appendix A.3 for the computational details. Figure 5 shows the evolution of ∆u

m0
(top) and Ru

m0

(bottom) for frequencies between 0.5 to 15 Hz, for the four directions u of Figure 4.
We observe the following.

– In all cases, the size ∆u
m0

of the directional attraction basin decreases with increasing frequency,
meaning that the largest basin of attraction is obtained for the lowest frequencies. This is the
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Figure 3: Acoustic model c0 of size 9.2 × 3 km, the velocity is indicated in km s−1. The estimates are
calculated at the nominal model m0 = c−2
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(a) u1: single reflector.
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(b) u2: two reflectors.
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(c) u3: single large reflector.

0 2 4 6 8

x (km)

−4

−2

0·10−3

(d) um: reflectors following Marmousi structure.

Figure 4: Four different directions for the estimation of the quantities of interest (Ru
m0

and ∆u
m0

). The
amplitude is determined such that ‖uk‖ = 1. The values of uk are given in (m s−1)−2 = s2 m−2.

expected behaviour that indicates that lower frequencies give a better chance for the iterative
minimization to converge, especially when no prior information is known for the initial model.

– Concerning the effect of the perturbation direction on attraction basins, Figure 5(a) shows that
their size decreases in the order u1 → u2 → um → u3. This can be understood as follows:
Directions u1, u2 and um are essentially reflective, and contain no low frequency components.
Hence increasing ∆ will not change the phase of backscattered data, but because of multiple
reflections some nonlinearity will occur, which limits the size of the attraction basins. The
directions u1 and u2 with the less multiple reflections have the largest basins of attraction. Then
comes um which has many reflectors and hence many multiples. On the contrary, direction u3

has a strong low frequency component besides its reflectivity. Hence increasing ∆ will generate
a phase shift in the backscattered data, which is likely to create local minima more quickly, and
one expects the size ∆u

m0
of the attraction basin in the direction u3 to be much smaller than in

the three other directions.

– Concerning the largest tolerable error, Figure 5(b) shows that Ru
m0

increases with the frequency,
meaning that the low frequencies are more likely to be affected in the presence of noise. We
notice the exception of u3 for which the allowed error remains relatively similar (and worse than
the others) with frequency.

These results clearly show that it is harder to converge towards salt dome than it is to recover
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(a) Evolution of ∆u
m0

computed with local Θ-estimate.
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(b) Evolution of the maximal distance between the data and the attainable set, Ru
m0

.

Figure 5: Evolution of ∆u
m0

and Ru
m0

with frequency using m0 as a smooth velocity background of Figure 3,
and using different directions u. The blue squares ( ) employ one reflector (u1, Figure 4(a)), the green
circles ( ) two reflectors (u2, Figure 4(b)) the red stars ( ) one large reflector (u3, Figure 4(c)) and the
black squares ( ) the reflectors extracted from the Marmousi model (um, Figure 4(d)).

Marmousi-like structures. Because of its low spatial frequency component, the former reduces the
size of the attraction basin and is less tolerant to noise in the data. This situation is further illustrated
in the context of model reconstruction in Appendix C. Note that the order of magnitude in Figure 5
are around 10−1 of the norms of the model (top) and data (bottom).

Exact Θ- and RG-estimates of ∆u
m0

and Ru
m0

As an alternative to confirm these preliminary observations, we compute ∆u
m0

using the exact Θ-
estimate and RG-estimate. It requires the computation of deflection and global radius maps on the
investigated interval, from which the estimate is extracted, cf. Subsection 3.4. In Figures 6 and 7,
we show the resulting maps in the direction of the Marmousi reflectors um of Figure 4(d) and of
the single large reflector u3 of Figure 4(c), using frequencies 4 and 7 Hz. In Table 1, we show the
numerical values of the interval size centered around m0, depending on the estimation.

The maps confirm the results of the previous experiment: the exact Θ-estimates of ∆u
m0

(top
of the figures) are of the same order of magnitude, but slightly larger than the local Θ-estimates
of Figure 5, cf. Table 1. Similarly, the exact RG-estimates of ∆u

m0
( bottom of the figures), are

larger (Table 1), but at the price of a smaller tolerable error on the data. We also note a much more
consistent pattern in the deflection for um, compared to u3. Comparing the formulas, we observe that
the inexpensive local Θ-estimates already provide accurate values for classical FWI problems, close
to the more refined (and computationally more intensive) exact Θ- and RG-estimates. Therefore, we
should only use the local Θ-estimate in the following of this section.
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Figure 6: Maps of the deflection (30) and global radius (26) between two models ofM(m0, um,∆), see (48).
The selected direction um is Figure 4(d), m0 and Figure 3. The black lines indicate when the deflection
becomes higher than π/2, the white lines indicate when the global radius becomes 0.

direction um direction u3

∆um
m0

‖m0‖
Rum

G,m0

‖F(m0)‖
∆u3

m0

‖m0‖
R

u3
G,m0

‖F(m0)‖

4 Hz
Local Θ-estimates 0.018 0.10 0.012 0.03
Exact Θ-estimates 0.002 0.03 0.02 0.018
Exact RG-estimates 0.003 0 0.05 0

7 Hz
Local Θ-estimates 0.01 0.15 0.008 0.03
Exact Θ-estimates 0.01 0.05 0.01 0.016
Exact RG-estimates 0.03 0 0.03 0

Table 1: Size ∆ of attraction basins centered at m0 using directions um and u3 (see Figure 4) and corre-
sponding maximal tolerable error RG, at 4 and 7 Hz. By construction, the RG-estimates correspond to the
limit case of a zero tolerable error, the other values are extracted from Figures 5, 6 and 7.

4.2 Influence of the initial model

We now investigate the influence of the initial model m0 on the size of attraction basins. We consider
two initial models: the acoustic Marmousi medium mm and a model mc encompassing objects of high
contrasts, given in Figure 8. The local Θ-estimate of ∆u

mj
given by (42) is plotted in Figure 9, for

the two directions u1 (one reflector) and u3 (one large reflector). We see that ∆u
mj

is barely affected
by the choice of initial model for the computation. We still observe the decrease in the size of the
interval with increasing frequency, and the deterioration in the direction of the large reflector u3.
Clearly, when comparing amplitudes of our estimates, the direction u has much more influence than
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Figure 7: Maps of the deflection (30) and global radius (26) ofM(m0, u3,∆), see (48). The selected direction
u3 is Figure 4(c), m0 and Figure 3. The black lines indicate when the deflection becomes higher than π/2,
the white lines indicate when the global radius becomes 0.
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0 2 4 6 8

0

1

2

3

x (km)

d
ep
th

(k
m
)

2

3

4

5

(a) Marmousi velocity model cm.

0 2 4 6 8

x (km)

2

3

4

(b) Velocity including high contrast objects cc.

Figure 8: Acoustic models of size 9.2 × 3 km used as initial models for the estimation of ∆u
mj

, we take
mj = c−2

j , for j = {m, c}. The velocity is indicated in km s−1.

4.3 Approximate n-dimensional attraction basins

We compare the directional local Θ-estimates of Subsection 4.1, evaluated at the smooth model m0

of Figure 3 in the Marmousi direction um of Figure 4(d), with the approximate multidimensional
attraction basins centered in m0 introduced in Remark 3. The determination of the radius ∆m0

of
such a spherical attraction basin by (46) and of the associated level of tolerable error Rm0

by (47)
requires the computation of the lowest singular value of the Jacobian of F , and the computation of
its full second order derivative matrix. In order to reduce the computational burden associated with
this computation, we develop a simple model reduction process where the wave speed in adjacent
cells is averaged to generate a coarse representation. Note that this approach is also employed to
improve the stability of the inverse problem, cf. [11]. When applied to the smooth acoustic model of
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Figure 9: Evolution with frequency of ∆u
m from local Θ-estimate for two initial models mm (left) and mc

(right), in the direction of u1 and u3 (Figure 4).

Figure 3, this leads to the model of Figure 10(a), where the number of coefficients has been reduced
to 56. Using this reduced representation, we can compute all quantities to effectively obtain the lower
bounds ∆m0 and Rm0 (i.e., we compute the matrix D2F and the singular values of DF).

Figure 10(b) shows an important reduction of the size ∆m0
of the n-dimensional basin compared

to the directional estimates in the Marmousi direction um using the local Θ-estimate (six orders of
magnitude). Yet, it confirms the main property, which is the decrease of the attraction basin size
with increasing frequencies. A similar observation holds for the tolerable data error level Rm0

, see
Figure 10(c), which suffers an important reduction compared to the directional estimates. In addition,
we observe a different pattern between Rm0

, which decreases with frequency, and the directional
estimates Ru

m0
, which increases with frequency. As illustrated in Figure 5, Ru

m0
depends more on the

direction than ∆u
m0

, and it is reflected on the n-dimensional estimates, which takes the worst case.
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(a) Compression of the acoustic starting model of size
9.2 × 3 km, where only 56 coefficients are kept to repre-
sent the velocity, indicated in km s−1.
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Figure 10: Lower bounds and directional estimates of ∆u
m0

and Ru
m0

using a model with reduced dimensions.
The respective lower bounds are given with the blue squares ( ), the black squares ( ) show the
directional estimates using um (reflectors from the Marmousi model, see Figure 4(d)).

RR n° 9253



20 Barucq & Calandra & Chavent & Faucher

From this first set of experiments, we clearly see that the frequency should evolve from low to
high values in order to facilitate the convergence. When no prior information is known for the initial
model, one should take advantage of the larger interval size ∆u

m0
given by low frequencies. Here we

motivate the well-known frequency progression (e.g., [16, 59]) from quantitative estimates of the size
of the basin of attraction, which allows the quantification of the benefits. However, the low frequencies
require more accuracy regarding the data, as illustrated with the estimates of Ru

m0
. In addition, we

mention the fact that seismic data are particularly affected by noise at low frequencies, which are
sometimes unusable. This highlights where resides the difficulty: the low frequencies that are required
to converge may be unusable due to the noise, or the inaccuracy may violate the curvature condition.

4.4 Frequency bandwidth data
We have seen that the sequential progression in frequency must be conducted from low to high regime.
We now investigate the case of frequency bandwidth: when the forward problem encompasses not
only one, but several frequencies. This approach is particularly natural for the time domain inverse
problem where several frequencies are simultaneously contained in the data. The forward problem is
now a vector of C(nrcv×nsrc×nω), where nω is the number of frequencies taken in the subgroup.

We remain with the smooth background of Figure 3 for m0. We select groups of ten consecutive
frequencies. The initial group encompasses the frequencies from 0.1 to 1 Hz using 0.1 Hz increment.
Similarly, we design fifteen groups so that the last one is from 14.1 to 15 Hz, employing identical
increment. The local Θ-estimate of the attraction basin size is shown Figure 11, together with the
largest tolerable error Ru

m0
. We investigate two directions: the Marmousi one of Figure 4(d) and the

large reflector of Figure 4(c). We picture curves and histograms, that correspond to sequential or
group of frequencies respectively. Numerical values for the attraction basis are prescribed Table 2.
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(a) Evolution of ∆u
m0

using local Θ-estimate. The large
blue bars ( ) and the red dotted line ( ) employ the
direction um. The smaller orange bars ( ) and the black
dotted line ( ) employ direction u3.
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(b) Evolution of Ru
m0

, the large blue bars ( ) and the
red dotted line ( ) employ the direction um The
smaller orange bars ( ) and the black dotted line ( )
employ direction u3.

Figure 11: Evolution of ∆u
m0

and Ru
m0

with sequential or group of frequency. We use m0 as a smooth velocity
background of Figure 3. The histograms represent the estimations for groups of ten frequencies and cover the
respective interval of frequency. The lines represent the estimations using sequential frequency. The different
directions u are either extracted from the Marmousi model (um, Figure 4(d)) or from one large reflector (u3,
Figure 4(c)).

The comparison provided in Figures 11(a), 11(b) and Table 2 highlight that

– the size of the attraction basin when using group of frequencies is dictated by the largest
frequency in the group. Therefore, it is better to use the lowest frequency sequentially in order
to have the largest size possible. For instance, using the single frequency 0.1 Hz provides a size
of interval one order of magnitude larger than when including frequency up to 1 Hz.

– At a fixed frequency, taking into account lower frequencies does not affect the size of the interval.

This preference on sequential over multiple frequency is actually advocated in [15], motivated,
as the frequency progression in [16], by the intuition that it reduces the cycle-skipping effect. Here
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sequential frequency ∆um
m0
/‖m0‖ frequency group ∆um

m0
/‖m0‖

0.1 Hz 1.25 {0.1, 0.2, . . . , 1} Hz 0.10
1.0 Hz 8.2× 10−2 {1.1, 1.2, . . . , 2} Hz 5.3× 10−2

1.1 Hz 7.5× 10−2 {2.1, 2.2, . . . , 3} Hz 3.2× 10−2

2.0 Hz 4.5× 10−2 {3.1, 3.2, . . . , 4} Hz 2.5× 10−2

2.1 Hz 4.2× 10−2 {4.1, 4.2, . . . , 5} Hz 2.0× 10−2

Table 2: Evolution of ∆u
m0

, computed with local Θ-estimate, with frequency depending on the use of se-
quential or group of frequencies. Here u is chosen to be the Marmousi direction, u = um, according to the
Figure 4(d).

we justify this choice by a quantitative estimation of the size of the attraction basin. Moreover, we
show that once the lowest frequencies are taken individually, incorporating them in higher frequency
content does not modify the size of the attraction basin.

Regarding the largest tolerable error on data, Figure 11(b) shows that adding frequency increases
the robustness in the direction um, except for low frequency. Then, for the direction of the large
contrasting object, u3, we do not observe any improvement, and the allowed distance remains relatively
stable, as it was observed in Figure 5.

4.5 Selection of complex frequencies
The use of complex frequencies (also referred to as the “Laplace-Fourier” domain) has shown advan-
tageous behavior when used during reconstruction algorithm, as mentioned in the introduction. In
this case, the angular frequency ω in (2) writes as

− ω2 = (σ + 2iπf)2, iω = σ + 2iπf, (49)

where f is the ‘Fourier’ component of the frequency (in Hz) and σ a damping factor, representative
of the Laplace component. Here, we are interested in deciding how to select the progression of those
coefficients to obtain the best convergence properties. Applications have been carried out with a
progression that appears mostly intuitive in literature. In the case of zero-Fourier frequency (f = 0),
it is proposed from low to high damping coefficients, [53]. However, for the complex frequency
progression (f 6= 0 and σ 6= 0), the evolution of the damping parameter at fixed f is proposed to be
from high to low damping, see [56, 45].

We compute the estimation of ∆u
m0

(using local Θ-estimate) and Ru
m0

with complex frequencies
to see how it affects the basin of attraction and robustness to noise. We consider m0 the smooth
background velocity and the similar setup as employed in Subsection 4.1. The estimates are shown
in Figures 12, 13 and 14, where we compare the behaviours on a logarithmic scale for the two-
dimensional complex frequency plane. Here, both f and σ varies from 0 to 15 (excluding the case
where both f and σ are zero).

It is clear that the incorporation of a damping coefficient in the frequency is beneficial for the
convergence, because it increases the size of the attraction basin of several orders of magnitude. Then,
the process of frequency selection, for convergence, is the following:

– for a fixed f , the interval size increases with increasing damping, with the exception of the case
f = 0, cf. Figures 12(b) and 13(b).

– At fixed damping σ, the interval size decreases with increasing f .

– Following a large to small interval size gives,
1. initial iterations should use f = 0 (largest interval), and a damping coefficient progression

from low to high (see Figures 12(b) and 13(b)).

2. Fix f 6= 0 as small as possible, the damping coefficient should evolve from high to low (see
Figures 12(a) and 13(a)); then f increases progressively.

3. Finally, one can take σ = 0 and f evolves from low to high.
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Figure 12: Map of the local Θ-estimate of ∆u
m0

with complex frequencies using m0 as the smooth background
velocity of Figure 3 and the direction um of Figure 4(d). The angular frequency is defined by −ω2 =
(σ + 2iπf)2.
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Figure 13: Map of the local Θ-estimate of ∆u
m0

with complex frequencies using m0 as the smooth background
velocity of Figure 3 and the direction u3 of Figure 4(c). The angular frequency is defined by −ω2 = (σ+2iπf)2.

Regarding the largest tolerable data error Ru
m0

, we see that

– at fixed σ, increasing f allows an increase in the distance between the data and the attainable
set.

– The pattern depends strongly on the type of the search direction geometry, as it has already
been observed in the previous experiment (and contrary to ∆u

m0
). The distance is allowed to

increase with σ for the direction um, but decreases in the direction of the strong reflection, u3.
Also in the direction of the Marmousi reflectors, Figure 14(a), we observe a band where the
allowed distance decreases, around σ = 1. On the other hand, for both directions, the case
where σ = 0 appears the most robust (i.e. where the allowed distance between the data and
the attainable set is maximal).
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Figure 14: Evolution of the tolerable error level Ru
m0

with complex frequencies using m0 as the smooth
background velocity of Figure 3. The angular frequency is defined by −ω2 = (σ + 2iπf)2.

– Regarding the magnitude, we clearly see that the high contrast object has globally much less
allowance, except when the damping is close to zero.

It is important to notice that the use of complex frequency, especially when f = 0, improves
the convergence by increasing notably the size of the attraction basin. Therefore, it provides a
fundamental benefit for the reconstruction, in particular when no information is initially known.
Note that it basically acts as a very low frequency (note that the magnitude of the estimates for
complex frequencies eventually matches the very low frequency ones; we can see a continuation in the
magnitudes). On the other hand, such frequencies are more sensitive to noise, and require accuracy
in the data. We refer to [53, 56, 45, 31] for illustrations of reconstruction.

Remark 4 (Stability and frequency progression). We have shown that the reconstruction procedure
requires low frequencies to ensure a larger size for the basin of attraction, hence allowing the better
chance of convergence despite the possible lack of prior information. However, higher frequencies
are still required for reasons of stability, and justify the traditional progression in frequency along
with the minimization iterations. Stability of inverse problem has been studied in particular with the
Calderón problem, where the data are the Dirichlet-to-Neumann map. Assumptions are commonly
introduced to obtain a conditional Lipschitz-type stability results, see, e.g., [2, 40, 3, 12] and the
references therein. For instance, the piecewise constant model representation introduced Remark 1 is
a necessary ingredient, e.g., [3, 11]. Lipschitz-type stability is obtained when, for two models m0 and
m†, it holds that

‖m0 −m†‖ ≤ C‖F(m0)−F(m†)‖, (50)

where C represents the stability constant. The iterative procedure for the reconstruction minimizes the
difference between the forward map and the stability result ensures the accuracy of the reconstruction
(depending on the values of C).

In [11], numerical estimates of the stability constant are obtained in the context of the geophysical
inverse problem. It illustrates, for example, the influence of the number of coefficients n (in the
model representation (7)) for stability. When the stability constant C is small, it indicates that the
correspondence in the data guarantees the accuracy of the reconstruction. Here, we estimate the
stability constant (following the methodology of [11]) to see its dependency with complex frequency,
in order to compare with the convergence estimates of Figures 12 and 13. We use m0 the smooth
background of Figure 3 and select m† to be the Marmousi model of Figure 8(a). The resulting stability
constant estimates are pictured Figure 15. We observe that
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– the stability constant estimates decrease (i.e. the expected accuracy of the reconstruction is
improved) with increasing frequency f .

– Incorporating damping with frequency deteriorates the stability constant (the numerical estimates
increases). More precisely, low frequencies and damping (f and σ respectively) give the worst
result in terms of stability.
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Figure 15: Numerical estimates for the stability constant C in (50) with complex frequencies using m0 as
the smooth background velocity of Figure 3 and m† as the Marmousi model of Figure 8(a). The angular
frequency is defined by −ω2 = (σ + 2iπf)2.

Therefore, the estimates for convergence (Figures 12 and 13) and stability (Figure 15) behave
oppositely. The convergence improves at low frequency and with damping meanwhile the stability
deteriorates. Higher frequency reduces the convergence radius but ameliorates the stability (by reducing
the wavelength, such frequencies allow to capture more details). Both aspects of the problem have to
be taken into account during the reconstruction; it designs the well-known multi-frequency algorithm
for the computation, starting from low frequency (to foster the convergence) towards high frequency
(to foster stability) (see, e.g., Algorithm 1).

5 Optimizability: MBTT versus classical FWI

In this section, we apply the optimizability analysis tools of Section 3 to compare the MBTT formu-
lation of FWI (18) (where the unknown model is parametrized by a smooth background p and a data
space reflectivity s), with the original FWI problem (13) (where the unknown model is the squared
slownessm). The MBTT approach was originally designed to overcome the phase shift problem which
hampers classical FWI, so the optimizability study of this section is expected to quantify the gain -
if any - of the MBTT formulation over the classical FWI in this respect.

5.1 Choice of the model

For a fair comparison, the two approaches have to be applied to the same model, so we construct
a nominal model m0 whose MBTT decomposition, p0, s0, is known exactly, i.e. which satisfies
m0 = m(p0, s0) according to (15). We have decided to construct a model m0 inspired by the Marmousi
model mm of Figure 8(a). This is achieved by defining p0 and s0 by:

p0 = m0 , ∀ω : s0(ω) = Fω(mm)−Fω(m0), (51)
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where mm is the Marmousi model of Figure 8(a) and m0 is the smooth background of Figure 3. Then,
m0 is defined by:

m0
def
= p0 +

∑
ω

W(ω)DF∗ω(p0)s0(ω)︸ ︷︷ ︸
r0(ω)

= p0 +WDF∗(p0)s0︸ ︷︷ ︸
r0

= m(p0, s0), (52)

where r0(ω) (respectively r0) is the depth reflectivity associated to frequency ω1 (respectively to the
sum of all frequencies). Definition (52) guaranties that:

F(m0) = F(p0, s0). (53)

We choose the weight W proportional to the square root of depth, as proposed in Section 2, with
a proportionality coefficient such that the model reflectivity level β at frequency ω defined by

β(ω)
def
= ‖r0(ω)‖/‖p0‖ (54)

takes the value 1% at all frequencies. When β is small, the forward modeling part of the MBTT
approach becomes close to the Born approximation.

In Figure 16, we illustrate the resulting models r0(ω) for three frequencies: 2, 4 and 7 Hz. We
also show the model r0 where the frequency sum contains frequencies between 0.5 to 15 Hz, with
0.5 Hz increment. We observe that the reflectivity, defined from the difference between observations
and simulations using a smooth background, provides structures of size consistent with the selected
frequency. For the global model, shown Figure 16(d), we see the contributions of all wavelengths,
and we can distinguish some structures of the Marmousi medium given Figure 8(a).
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(a) Model r0 at 2 Hz frequency.
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(b) Model r0 at 4 Hz frequency.
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(c) Model r0 at 7 Hz frequency.
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(d) Model r0 using frequencies from 0.5 to 15 Hz with
0.5 Hz increment.

Figure 16: Reflectivity models r0 obtained from the MBTT representation defined by (52). The model s
is defined from (51) as the difference between the data obtained from the Marmousi model Figure 8(a) and
the smooth background Figure 3. The figures correspond with squared slowness and the values are given in
(m s−1)−2.

For simplicity, in the following, we restrict ourselves by studying only single frequency nominal
models, which means that we only work with models resulting from a single, fixed ω:

m0(ω) = p0 +W(ω)DF∗ω(p0)s0(ω) = p0 + r0(ω). (55)
1Note that with s0 given by (51), the resulting r0(ω) is the gradient of the (L2 norm) cost function at frequency ω

using the model p0, see Appendix A.
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It allows us to study the behaviour of both approaches (global velocity model reconstruction or MBTT
decomposition) with individual frequency, preventing artifacts that may appear due to the frequency
summation in the reflectivity.

5.2 Choice of perturbation directions

Background perturbation We consider a background perturbation in the direction of the one-
dimensional ramp u of Figure 17, and illustrate the effect of such a perturbation applied either to the
global model m, as in the case of FWI, or to the background unknown p in the case of MBTT.
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Figure 17: Perturbation u used for the background model p. The amplitude is determined such that ‖u‖ = 1
and the values are given in (m s−1)−2 = s2 m−2.

Figure 18 shows the corresponding unperturbed and perturbed synthetic data for a single, centrally
located source at frequency 4 Hz. It corresponds to the solution of the Helmholtz equation (2) recorded
at the receivers. Note that, from (10) the direct arrivals are removed from the forward operator. We
see that the modification of the background part p preserves the phase of the original signal, and
only the amplitudes are modified. On the other hand, when the perturbation is applied to the global
model m, both phase and amplitude of the signal are modified.
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Figure 18: Comparison of the synthetic data associated with a centrally located shot at 4 Hz using a model
perturbed by the direction u of Figure 17 applied onto the global model m or on the part p using the MBTT
model decomposition. The step for the perturbation is T = 5× 10−5.

Reflectivity perturbation The FWI objective function is known to be nearly quadratical with
respect to reflectivity, i.e. to the high spatial frequency part of m, and the same property holds
by construction for the dependance of the MBTT objective function with respect to the data space
reflectivity s. Hence one expects large basins of attraction with respect to s in the MBTT formulation.
We choose for us a random vector of the data space.
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5.3 Comparison of Local Θ-estimates

The formulas for local Θ-estimates have already been derived in Section 3.3 for classical FWI. Appli-
cation of these formulas to F(p, s) instead of F(m) gives immediately the local Θ-estimates of the sizes
∆u

p0
and ∆us

s0 of attraction basins for p and s at p0, s0 in directions u, us for the MBTT formulation
of FWI: 

∆u
p0

=
π

4

‖DpF(p0, s0)(u)‖
‖D2

pF(p0, s0)(u, u)‖ ,

∆us
s0 =

π

4

‖DsF(p0, s0)(us)‖
‖D2

sF(p0, s0)(us, us)‖
.

(56)

We have omitted the frequency index for clarity in the notation. Note that this is not misleading
because we have chosen to work with single frequency content here, i.e., the reflectivity r only contains
one selected frequency.

Figure 19 shows the evolution of the local Θ-estimates with frequency. The size of the correspond-
ing attraction basins decreases with frequency, when the perturbation is applied on m, p and s. The
left part of the figure shows a slightly larger attraction basin in the direction of the background per-
turbation u when it is applied to the propagator part p0 of the MBTT parameterization rather than
when applied directly to m0. But its not up to the expectations raised by the claim that the MBTT
parameterization allows to overcome the phase shift problem [20, 21]. Regarding s, the estimated
size appears surprisingly small compared to the large attraction basin expected, see Section 5.2. But
one has to remember that these are local Θ-estimate, which can be very pessimistic, as explained
in Section 3.3, and postpone more definitive comments to the end of Subsection 5.4, where exact
Θ-estimates are calculated.
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(a) Perturbation of the background model p.
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Figure 19: Evolution with frequency of the local Θ-estimates of the size of the attraction basins in the
context of FWI or MBTT model space parametrization, see (42) and (56). Here p0 is the smooth velocity
background of Figure 3, the direction u for p is given Figure 17, and the direction us for s is a random vector.
In the MBTT representation, the reflectivity uses only the selected frequency.

5.4 Comparison of exact Θ- and RG-estimates

We apply the method described in Section 3.4 for the case of classical FWI, which translates imme-
diately to the case of MBTT by replacing the FWI forward map m ; F(m) by the MBTT forward
map p, s ; F(p, s). This leads to the computation of deflection and global radius of curvature maps
between the following points:

FWI (attraction basin for m) : F(m0 + tu) and F(m0 + t′u);
MBTT (attraction basin for p) : F(p0 + tu, s0) and F(p0 + t′u, s0);
MBTT (attraction basin for s) : F(p0, s0 + tus) and F(p0, s0 + t′us);

for all −∆ ≤ t, t′ ≤ ∆.
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We first compute the deflection and global radius of curvature maps for m and p, using values of
t and t′ in an interval [−∆,∆] which is chosen to represent in each case about ±20% of the norm of
m0 or p0 defined in (52). Figures 20 and 21 show these maps at two selected frequencies: 4 and 7 Hz,
and Table 3 summarizes the extracted exact estimates of ∆u

m0
, ∆u

p0
, together with the local estimates

extracted from Figure 19(a).
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Figure 20: Maps of the deflection (30) and global radius (26) between two perturbed velocity or background
models at frequency 4 Hz. The perturbation direction is the ramp of Figure 17, it is either applied to the
global model m or to the background parameter p. The black lines indicate when the deflection becomes
higher than π/2, the white lines indicate when the global radius becomes 0.

model m model p model s
∆u

m0

‖m0‖
Ru

G,m0

‖F(m0)‖
∆u

p0

‖p0‖
Ru

G,p0

‖F(m0)‖
∆u

s0

‖s0‖
Ru

G,s0

‖F(m0)‖

4 Hz
Local Θ-estimates 0.02 1.6 0.022 0.8 2× 10−3 6.5
Exact Θ-estimates 0.02 0.6 0.2 0.05 54 6.5
Exact RG-estimates 0.05 0.0 0.23 0 60 0

7 Hz
Local Θ-estimates 0.01 1.6 0.014 0.7 1× 10−3 4.9
Exact Θ-estimates 0.01 0.6 0.11 0.06 23 4.9
Exact RG-estimates 0.025 0.0 0.20 0 >35 0

Table 3: Size ∆ of attraction basins centered at m0 and corresponding maximal tolerable error RG for the
different estimations, at 4 and 7 Hz. By construction, the RG-estimates correspond to the limit case of a zero
tolerable error, the other values are extracted from Figures 19, 20, 21 and 22.

– The first observation is that lower values of deflection are achieved when the background per-
turbation u is applied to p (MBTT) rather than to m (FWI): at 4 Hz, Figures 20(b), it never
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Figure 21: Maps of the deflection (30) and global radius (26) between two perturbed velocity or background
models at frequency 7 Hz. The perturbation direction is the ramp of Figure 17, it is either applied to the
global model m or to the background parameter p. The black lines indicate when the deflection becomes
higher than π/2, the white lines indicate when the global radius becomes 0.

reaches π/2, and at 7 Hz, Figure 21(b), only a few portions attain this value. On the contrary,
for FWI, Figures 20(a) and 21(a), the deflection rapidly reaches π/2 at both frequencies. This
indicates that the MBTT formulation produces larger Θ-attraction basins than the standard
FWI formulation, roughly by a factor ten (Table 3). Notice that the size of the Θ-attraction
basin is divided by two for both FWI and MBTT when the frequency increases from 4 to 7 Hz.

– The second observation concerns the strict positivity of the global radius of curvature RG,
bottom of Figures 20 and 21, which determines the RG-attraction basin characterized by a zero
tolerable error (see Section 3.4). For the MBTT formulation, Figures 20(b) and 21(b), RG
remains strictly positive all over the map, which shows that the RG-basin is larger than the
investigated interval. Its size is of approximately 20% at both 4 and 7 Hz (Table 3). On the
contrary, for the usual FWI formulation, Figures 20(a) and 21(a), RG decreases very rapidly to
zero when one moves away of the diagonal, producing smaller RG-attraction basins, with size
of 5% at 4 Hz and 2.5% at 7 Hz, smaller by a factor four to eight to the corresponding MBTT
attraction basins.

– Concerning the magnitude of RG, whose minimum over the attraction basin gives the tolerable
error level, one sees that it takes larger values for FWI near the main diagonal, i.e. for small
attraction basins, than for MBTT over the whole map, i.e. for large attraction basins, which is
confirmed by the values of RG in Table 3, which give the tolerable error level associated with
the Θ-attraction basins (this level is zero by definition for the RG attraction basins).

To summarize, MBTT extends significantly the size of attraction basins with respect to background
perturbations, at the price of a reduction in the admissible error level. This explains the success of
MBTT’s alternate minimization algorithm, as reported in [22].

We compare now the above exact Θ-estimates with the local Θ-estimates of Subsection 5.3.
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– For the FWI approach, Figures 19(a), 20(a) and 21(a) and Table 3, it shows that both local
and exact Θ-estimates of ∆u

m are of the same size. In sight of the upper bound estimate (32)
on which the local Θ-estimate is based, one can think that the FWI formulation corresponds to
the worst situation, where the image of a segment in the background space is a curve close to
an arc of circle in the data space.

– The situation is completely different for the MBTT formulation: Figures 19(a), 20(b) and 21(b)
and Table 3, we see that the exact Θ-estimate ∆u

p is about ten times larger than its local
Θ-estimate.

We can also determine the exact attraction basins in the MBTT formulation for the data space
reflectivity s at s0 in the direction us, which we expect to be large because the forward map F is
nearly linear with respect to s. Figure 22 shows the corresponding deflection and global radius of
curvatures maps for values of t and t′ in an interval [−∆,∆] which is chosen to represent in each
case about ±35 times the norm of s0 defined in (52). As expected, the exact Θ-attraction basin is
large (23 to 54 times the norm of s0 depending on frequency), and is 105 times larger than its local
estimate, which, together with the previous results on the estimation of ∆u

p, confirms the necessity of
exact estimates for accuracy.
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Figure 22: Maps of the deflection (30) (left) and global radius (26) (right) at frequency 7 Hz between
two perturbed data-space reflectivities, for the perturbation direction us chosen in section 5.2 The black
lines indicate when the deflection becomes higher than π/2, the white lines indicate when the global radius
becomes 0.

5.5 Influence of reflectivity level

The previous comparisons at 4 Hz and 7 Hz have been performed on the nominal model which has
a reflectivity level β of 1% (see (54)). We repeat the same computations, at 7 Hz, changing only
the reflectivity of the model, which is fixed to a low level, 0.2% in Figure 23 (close to the Born
approximation) and to a stronger value, 5% (close to Marmousi reflectivity) in Figure 24. Table 4
summarizes the sizes of and tolerable error for the corresponding attraction basins.

Increasing the reflectivity increases the relative importance of multiple reflections - whose phase
are not controlled by the migration/demigration included in the MBTT approach - with respect to
primary reflections, whose phase are controlled. It is then expected that the performance of MBTT,
when applied to a full wave model as it is the case here, will deteriorate when the reflectivity level
increases. This is confirmed by Table 4: the MBTT attraction basin for a reflectivity level of 5 %
is three times smaller than at 1 %, which itself is two times smaller than at 0,2 %. On the other
hand, the FWI attraction basin remains essentially unaffected by the reflectivity level, and the MBTT
basins remain always larger, with a factor four to fifteen (with respect to the Θ-estimates, eight with
the RG-estimates).
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Figure 23: Maps of the deflection (30) and global radius (26) between two perturbed velocity or background
models at frequency 7 Hz. Compared to Figure 21, the reflectivity β defined by (54) has been divided by
five. The perturbation direction is the ramp of Figure 17, it is either applied to the global model m or to the
background parameter p. The black lines indicate when the deflection becomes higher than π/2, the white
lines indicate when the global radius becomes 0.

7 Hz
model m model p

∆u
m0

‖m0‖
Ru

G,m0

‖F(m0)‖
∆u

p0

‖p0‖
Ru

G,p0

‖F(m0)‖

low reflectivity β = 2× 10−3

Exact Θ-estimates 0.011 0.648 0.155 0.060
Exact RG-estimates 0.025 0 0.214 0

medium reflectivity β = 1× 10−2

Exact Θ-estimates 0.011 0.645 0.107 0.060
Exact RG-estimates 0.025 0 0.202 0

strong reflectivity β = 5× 10−2

Exact Θ-estimates 0.008 0.580 0.037 0.124
Exact RG-estimates 0.028 0 0.042 0

Table 4: Comparison of the size ∆ of attraction basins centered at m0 and corresponding maximal tolerable
error RG for the different levels of reflectivity at 7 Hz. By construction, the RG-estimates correspond to the
limit case of a zero tolerable error, the values are extracted from Figures 21, 23 and 24.

5.6 Influence of background smoothness

Here we illustrate an important condition which has to be satisfied for the MBTT decomposition
to work. When a background perturbation is applied to p0 while s0 is maintained fixed, the phase
shifts of the reflections are controlled, provided these reflections are generated only by s0. Any
backscattered energy generated by the updated background p0 + tu - or worse, by p0 itself - will lead
to reflections whose phase is not controlled by the migration-demigration process included in MBTT,
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(a) FWI: perturbation of the global model m.
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Figure 24: Maps of the deflection (30) and global radius (26) between two perturbed velocity or background
models at frequency 7 Hz. Compared to Figure 21, the reflectivity β defined by (54) has been multiplied by
five. The perturbation direction is the ramp of Figure 17, it is either applied to the global model m or to the
background parameter p. The black lines indicate when the deflection becomes higher than π/2, the white
lines indicate when the global radius becomes 0.

thus annihilating its benefits. This appears already in Figure 21(b), where one sees that the deflection
reaches π/2 (resp. the global radius of curvature equates zero) much closer to the diagonal at the
top right corner than at the bottom left one. Indeed, the large positive t, t′ correspond to strongly
increasing backgrounds, which backscatter energy. At the opposite corner of the diagrams (bottom
left), which corresponds to mildly increasing velocities, the amount of scattered energy is smaller,
and the limiting values are further apart from the diagonal. We have considered for simplicity only
attraction basins which are centered at the nominal model m0, but on most of the deflection and
curvature maps, the attraction basin could, in fact, be extended on the side of negative t (where
backgrounds are less steep).

Then, if the unperturbed background itself scatters back some energy, as the one illustrated
Figure 25, the situation is even worse, as illustrated in the corresponding deflection and curvature
maps of Figure 26, at 4 Hz. These maps show no enlargement of the attraction basin in favor
of MBTT, in fact, it is even smaller than for FWI. That is why it is fundamental to ensure the
smoothness of the background in the MBTT decomposition by using an adapted parametrization,
e.g., spline functions are employed in [22] to represent p.

5.7 Behavior of the data misfit

We illustrate in this section the behavior of the FWI and MBTT misfit functions in the model space
direction u at the nominal model m0 = m(p0, s0) for some seismic data d. The cost functions are
respectively J (m0 + tu) and J(p0 + tu, s0) for FWI and MBTT, according to (13) and (18). This will
allow to verify the theoretical results of Section 3: if the minimum of the misfit function is smaller
than the tolerable error Ru

G associated to an attraction basin, the misfit should not have any local
minimum over the basin. However, when the data exhibit an error larger than the tolerable error,
local minima may appear, but they do not have to.
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Figure 25: Acoustic smooth Marmousi model c0 where the velocity is indicated in km s−1. The estimates
are calculated using p0 = c−2
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Figure 26: Maps of the deflection (30) and global radius (26) between two models at frequency 4 Hz. The
model p0 is shown Figure 25 and is the only difference in the computation compared to the maps shown
Figure 20. The perturbation direction is the ramp of Figure 17, and is either applied to the global model
m or to the background p. The black lines indicate when the deflection becomes higher than π/2, the white
lines indicate when the global radius becomes 0.

In order to define a seismic data d to build the misfit, we first denote by d0 = F(m0) = F(p0, s0)
the synthetic data associated to the nominal model. Note that, due to the choices made in the
construction of the nominal model in Subsection 5.1, d0 is nothing but a migrated-demigrated version
of the Marmousi data deprived of the direct arrivals. We define a scaled Marmousi data dm by scaling
the synthetic Marmousi data dM = F(mm) (where mm is given Figure 8(a)) in such a way that
‖dm‖ = ‖d0‖. Then, the data that enter in the FWI and MBTT misfit functionals are defined by:

d = (1− η)d0 + ηdm, η ∈ [0, 1]. (57)

When η increases from 0 to 1, the distance of d to the attainable set increases from 0 to ‖dm − d0‖,
which is larger than the tolerable error associated to the attraction basin of interest (FWI or MBTT).

The computations are done for the nominal model with 1% reflectivity level (the results for models
with 0.2% and 5% reflectivity are similar). As in the previous sections, the nominal model follows
Subsection 5.1, and the background perturbation direction u is that of Figure 17. Figure 27 shows the
cost functions for FWI and MBTT at 7 Hz for different values of η. We also show by vertical lines the
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exact RG-attraction basin associated to zero tolerable error, and by horizontal lines the levels 1/2R2
G

corresponding to the tolerable error level associated to the exact Θ-attraction basin (cf. Table 4).

– The FWI and MBTT attraction basins are essentially independent of the error level η in the
data. The size of the FWI RG-attraction basins is slightly larger than the one anticipated by
∆u

m0
. When η = 0, d = d0 is attainable, with a zero error level, and one sees that the first

local minimum is just after the right limit of the exact RG-attraction basin, hence consistent
with the analysis of Section 3. The tolerable error level Ru

G,p0
on d for the Θ-attraction basin

is attained at η = 0.1.

– The local minima appear much earlier with FWI than with MBTT and the sizes of intervals
where there is no local minimum is well anticipated by the estimates ∆u.

– In the numerical setting considered here, the MBTT approach appears to be robust with respect
to data error levels much larger than the tolerable level, as we do not see local minimum
appearing inside the attraction basin.
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Figure 27: Comparison of misfit functional J (m0 + tu) (blue) and J(p0 + tu, s0) (green) at 7 Hz, for different
data d as defined in (57) for a nominal model with a reflectivity level β = 1%. We also indicate by vertical
dotted lines the size of the exact RG-attraction basins, and by horizontal dotted lines the maximal tolerable
errors Ru

G,m0
associated to the exact Θ-attraction basins, taken from Table 4.

5.8 Strategy for MBTT waveform inversion

The numerical experiments made in this section lead to the following recommendations, for the
implementation of the MBTT reformulation of FWI with a full wave equation, in order to obtain
large attraction basins for the background reconstruction:
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– the background space for p has to be chosen smooth enough and the reflectivity level β = ‖r‖/‖p‖
large enough so that the energy backscattered by p is negligible compared to that backscattered
by r;

– the reflectivity level β has to be chosen small enough for the importance of multiples to remain
small compared to primary reflections in the synthetics.

This can be achieved by using an adapted parametrization for the background p, e.g. spline functions
as employed in [22], and by tuning the reflectivity level β by adjusting the migration weightW in (52).
We remind that the relevance of the chosen settings can be checked before performing any iterative
optimization algorithm, by computing the size of the Θ and RG-attraction basins, and the associated
tolerable error.

– The attraction basins tend to be larger in the direction of slowly increasing (with depth) back-
grounds, which suggests it is better to underestimate the initial slope of the background velocity
with respect to depth.

The dependency of the size of attraction basins with the reflectivity level suggests the following
organization for MBTT waveform inversion:

1. scale down the given seismic data so that they can be resimulated by a reflectivity level β of
circa 0.2-1%, which amounts to bring the forward model close to the Born approximation.

2. Perform alternative minimization with respect to s and p, starting with s first.

3. Rescale (up) the processed seismic data in order to get closer to the original given data, and
return to step 2.

4. Continue until processed and given original data coincide.

Note that all the difficulties related to the choice of the background and the reflectivity level disappear
if one uses a linearized model (Born approximation) as forward modeling.

6 Extension for other applications of least squares minimiza-
tion

The quantities that we have defined above only depend on the least-squares minimization problem
we are considering. In particular, we have used it to compare the performance of methods in the
context of the acoustic inverse wave problem in seismic. In addition, it is straightforward to apply the
computational estimates towards different situations, which do not involve the Helmholtz equation,
or the geophysical discrete setup. In this section, other situations are experimented: the inverse
problem associated with elastic medium reconstruction, and problems with different kind of domain
boundary conditions.

6.1 Elastic medium reconstruction
In the case of isotropic elastic propagation, the medium is characterized by three physical models: the
Lamé parameters λ and µ, and the density ρ. The propagation of waves in such media is expressed
in terms of the vectorial displacement field u, see (1). More precisely, for elastic isotropic media, the
equation of wave propagation writes as (where we omit the space dependency for clarity)

−ρω2u−∇
(
λ∇ · u

)
−∇ ·

(
µ
(
∇u +

(
∇u
)T))

= g, in Ω. (58)

In this context the unknown m is composed of the three parameters, m = {λ, µ, ρ} (which are space
dependent). The forward problem is accordingly adapted and we write

Felastic(m) = u(x)|Σ, (59)
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where we omit the source and frequency dependencies for clarity. Hence, we have considered that the
forward problem is given by the measurements of displacement in all directions2.

We consider the models m0 to be smooth backgrounds, similarly to the previous acoustic case.
They are illustrated in Figure 28 and represent a subsurface of size 17× 3.5 km.
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Figure 28: Elastic smooth model of size 17 × 3.5 km used for m0 in the estimates. The relations between
the velocities and Lamé parameters are cp =

√
(λ+ 2µ)/ρ and cs =

√
µ/ρ.

The geophysical acquisition is composed of 19 sources and 168 receivers for each source, both being
located at the surface. In this case, the derivatives have to be computed with respect to the three
parameters. For the directions, we consider the elastic Marmousi2 medium and extract the different
reflectors. The directions for the Lamé parameters and the density are presented in Figure 29 where
the amplitude has been chosen such that ‖um‖ = 1. Because of the difference of magnitude between
the different quantities, we actually employ a scaling parameter to obtain dimensionless coefficients
such that the parameters of interest are (λ/λ0, µ/µ0, ρ/ρ0), where λ0, µ0 and ρ0 are scalar coefficients
given by the maximal values of the respective quantities. In Figure 30, we show the evolution of the
estimates ∆u

m0
and Ru

m0
with frequency.

We see that the estimates for the size of the interval associated with the elastic wave equation,
Figure 30(a) behave similarly to the acoustic case: the size of the attraction basin decreases with fre-
quency. However, the maximal distance between the data and the attainable set, given Figure 30(b)
appears now to be decreasing with frequency, contrary to the acoustic situation. It would be in-
teresting to pursue the analysis in the elastic framework, in particular to identify how the different
parameters are intertwined and how they should be taken.

6.2 Extension to different boundary conditions

The estimates we have derived can also be employed for other situations than the inverse wave problem
affiliated with a geophysical setup. Let us briefly illustrate the consideration of alternative boundary
conditions for the domain of interest. We acknowledge two situations, sketched in Figure 31:

1. completely absorbing medium where the upper free surface is replaced by a perfectly matched
layer,

2We have also tried experiments restricting the available data to the vertical direction (i.e., uz), which may be more
relevant in seismic, and the results are the same. Hence, we only present the multi-direction data for simplicity.
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Figure 29: The elastic directions extracted from the Marmousi model. The amplitude is accordingly selected
to give ‖u‖ = 1 for all coefficients (λ, µ and ρ).
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Figure 30: Evolution of ∆u
m0

and Ru
m0

with frequency for elastic isotropic medium. The initial modelsm0 are
represented with smooth elastic background of Figure 28, the direction is given by the Marmousi structures
of Figure 29. The computation of the directional derivatives uses scaled quantities: (λ/λ0, µ/µ0, ρ/ρ0).

2. Dirichlet boundary condition set to zeros for all boundaries, generating reflection from all sides.
This situation is particularly appropriate in the context of medical imaging and Electrical
Impedance Tomography (EIT).

We compute the estimates according to the new situations and show the evolution of ∆u
m0

(ob-
tained with local Θ-estimate) and Ru

m0
in Figures 32 and 33 respectively. The initial model is given

by the smooth velocity background of Figure 3 and the directions are those introduced in Figure 4.
Namely, we follow the setup of Subsection 4.1, and only the boundary conditions are changed.

The size of the attraction basin, Figure 32, decreases with increasing frequencies independently
of the situation. However, in the case of Dirichlet boundaries on all sides, the behavior is much
more distorted and reveals a much higher magnitude in the evolution. Namely it has four order of
magnitude while only two for the other situation. Also in this case (Dirichlet boundary conditions),
there does not seem to be any difference between the two directions, and the large obstacle direction,
u3, behaves similarly as the Marmousi ones um. Regarding the maximal distance to the attainable set
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Figure 31: Illustration of different boundary conditions for the computational domain used to estimate the
quantity ∆u

m0
.
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Figure 32: Evolution of ∆u
m0

computed with the local Θ-estimate with frequency for different kinds of
boundary condition problems. We use m0 as the smooth background model of Figure 3; the directions are
given Figure 4.
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Figure 33: Evolution of the maximal distance between the data and the attainable set, quantity Ru
m0

, with
frequency for different kinds of boundary condition problems. We use m0 as the smooth background model
of Figure 3; the directions are given Figure 4.

(largest tolerable eroor on data), Figure 33, we observe a decrease of the distance for low frequencies
and then stabilization for the absorbing medium. This medium (fully absorbing) is strongly influenced
by the geometry of the direction and the medium with Dirichlet boundary condition renders a totally
unsettled evolution. We can intuit that the patterns obtained with the Dirichlet boundary conditions
are due to the multiple reflections introduced at the boundaries, which strongly affect the problem in
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terms of convergence and sensitivity to noise.

7 Conclusion
We have presented a theoretical and numerical toolbox for the apriori analysis of the optimizability of
nonlinear least-squares minimization problems by local algorithms. Such problems arise in seismic Full
Waveform Inversion (FWI), where the misfit function tends to exhibit local minima in the directions
associated with low spatial frequencies perturbation of the background velocity. But the methodology
is totally applicable for other least squares minimization problems.

We have defined attraction basins around a nominal model and the associated tolerable error level
such that for any data below tolerable error, one is sure that the data misfit has a single local - and
hence global - minimum over the basin. These quantities depend only on the forward map to be
inverted, so one can obtain apriori information on the absence of local minima without having to
experiment with the misfit function for different data. We have characterized attraction basins by
the notion of global radius of curvature in the data space, and given formulas and algorithms for their
numerical approximate and exact determination.

We have first applied this tool to the classical FWI problem for a wave equation in the time-
frequency domain, and computed directional attraction basins which give quantitative insight into
optimizability of FWI:

1. unsurprisingly, the size of attraction basins becomes smaller when frequency increases. In our
tests, it is only of ±2% of the norm of the background at 4 Hz, and ±1% at 7 Hz,

2. the use of complex frequencies including damping enlarges the attraction basin,

3. the largest attraction basins obtained for low (or complex) frequency usually go with smaller
tolerable error levels. Therefore, low and complex frequencies suffer more from noise.

4. solving the problem for a sequence of increasing single frequency data is better in terms of
attraction basin than using an increasing sequence of frequency-bandwidth data,

5. salt domes produce smaller attraction basins, and are harder to recover.

These findings confirm the difficulty inherent to FWI, which requires unrealistically low frequency
data for the determination of the full velocity model (Appendix C)

In order to see if these limitations could be overcome, we have then applied our tool to the MBTT
approach, which uses a background/data space reflectivity reparameterization of the velocity model.
Our findings are:

6. in a direction of background perturbation, the largest attraction basin for MBTT shows an
increase in size by a factor four to fifteen compared to FWI, and is only barely reduced when
frequency increases.

7. Correlatively, the tolerable error for MBTT is divided approximately by 10 compared to FWI.
Nonetheless, the comparison of misfit functions has shown that local minimum does not appear
when the tolerable error is exceeded.

8. In the direction of data-space reflectivity perturbations, where the forward map is linear up to
the multiple reflections, the attraction basin is very large, more than ±20 times the norm of
the nominal data-space reflectivity.

9. Critical parameters for an efficient implementation of MBTT are the background smoothness
and the reflectivity level.

This provides a strong incentive for the use of the MBTT decomposition to alleviate the low frequency
requirement of FWI, despite a larger computational burden. For future work, we plan to implement
the MBTT method with these settings to investigate further the efficiency in the context of iterative
minimization with velocity model reconstruction.
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A Adjoint state using complex variables
The Full Waveform Inversion (FWI) method aims the reconstruction of the subsurface medium param-
eters by an iterative minimization of the cost function defined as the difference between simulation and
observations. We follow the standard least squares formulation of (13), and consider the Helmholtz
equation (2) to write

J (m) =
1

2

∑
ω

∑
s

‖F (s)
ω (m)− d(s)‖22 =

1

2

∑
ω

∑
s

‖Rp(s)
ω − d(s)

ω ‖22, (60)

where the forward problem is written with the restriction operator R, and we use the index (s) for the
sources. For the minimization, one needs to obtain the gradient of the cost function, which is usually
obtained using adjoint state method, see [47] for a review of the method in geophysical application.
We specify now the computations for complex-valued fields, omitting the source and frequency sums
for clarity, and write

J (m) =
1

2
‖F(m)− d‖22 =

1

2
‖Rp− d‖22. (61)

In the frequency domain, p is complex, which requires some precaution for the application of the
adjoint state method. In particular, the functional

J(m, p) =
1

2
‖Rp(m)− d‖22 (62)

is not analytic (holomorphic) with respect to the field p. A workaround is relatively standard, see for
example [14, 38, 36], with elements of complex calculus based on Wirtinger calculus. We believe it is
important to mention this aspect which is too often disregarded in seismic applications and hereby
present the steps involved.

A.1 Complex derivation
The derivation of complex functional is conducted by taking independently the complex variable and
its conjugate, respectively z and z, with z = x+ iy.

Theorem 1. [14, Theorem 1] Let g : C × C → C be a function of a complex number z and
its conjugate z and let g be analytic with respect to each variable (z and z) independently. Let
h : R × R → C be the function of the real variables x and y such that g(z, z) = h(x, y) where
z = x + iy. Then the partial derivative ∂zg (treating z as a constant) gives the same result as
(∂xh− i∂yh)/2. Similarly, ∂zg is equivalent to (∂xh+ i∂yh)/2.

Corollary 1. Following the statement of Theorem 1, we have

∂g

∂z
=
∂g

∂z
. (63)

Proof. By direct application of Theorem 1,

∂g

∂z
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
=

1

2

(
∂f

∂x
− i

∂f

∂y

)
=
∂g

∂z
. (64)

We straightforwardly apply the theorem to the misfit function where we consider p := z = x+ iy.

J : (x, y) → 1

2
‖R(x+ iy)− d‖2, (65)

where x, y and d can be assimilated with vectors in the discrete setting. Then by deriving indepen-
dently with respect to x and y we obtain

∂J

∂x
=

1

2

[
R∗(R(p)− d )

]T
+

1

2
(R(p)− d )∗R,

∂J

∂y
= − i

2

[
R∗(R(p)− d )

]T
+

i

2
(R(p)− d )∗R.

(66)
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We can further deduce the derivative of J with respect to p and p, where they are considered inde-
pendent such that J = J(p, p),

∂J

∂p
=

1

2

[
R∗(R(p)− d )

]T
=

1

2
(R(p)− d )TR,

∂J

∂p
=

1

2
(R(p)− d )∗R =

1

2
(R(p)− d )TR

(67)

The following theorems give the framework of what can be seen as the chain rule for complex
derivation.

Theorem 2. Consider the complex-valued function f of a real parameter m and the real-valued
functions g1 and g2 such that f(m) = g1(z(m), z(m)) + ig2(z(m), z(m)). The derivative with respect
to the real parameter m is defined by

∂f

∂m
=
∂g

∂z

∂z

∂m
+
∂g

∂z

∂z

∂m
. (68)

Proof. From the definition of f we have
∂f

∂m
=
∂g1(z(m), z(m))

∂m
+ i

∂g2(z(m), z(m))

∂m

=
∂g1

∂z

∂z

∂m
+
∂g1

∂z

∂z

∂m
+ i

∂g2

∂z

∂z

∂m
+ i

∂g2

∂z

∂z

∂m

=
∂(g1 + ig2)

∂z

∂z

∂m
+
∂(g1 + ig2)

∂z

∂z

∂m

=
∂g

∂z

∂z

∂m
+
∂g

∂z

∂z

∂m

(69)

Theorem 3. Consider the real-valued functions f and g defined by f(m) = g(z(m), z(m)). From
Theorem 2 we have

∂f

∂m
= 2 Re

(
∂g

∂z

∂z

∂m

)
= 2 Re

(
∂g

∂z

∂z

∂m

)
. (70)

Proof. Direct application of Theorem 2 gives
∂f

∂m
= Re

(
∂g

∂z

∂z

∂m
+
∂g

∂z

∂z

∂m

)
. (71)

We use Theorem 1 and Corollary 1, and take z(m) = x(m) + iy(m) to have

Re

(
∂g

∂z

∂z

∂m

)
= Re

(
∂g

∂z

∂z

∂m

)
= Re

(
∂g

∂z

∂z

∂m

)
= Re

(
∂g

∂z

∂z

∂m

)
, (72)

where
∂z

∂m
=
∂(x− iy)

∂m
=

(
∂x

∂m
− i

∂y

∂m

)
=

∂x

∂m
+ i

∂y

∂m
=

∂z

∂m
. (73)

We inject in (71) to obtain

∂f

∂m
= Re

(
∂g

∂z

∂z

∂m

)
+ Re

(
∂g

∂z

∂z

∂m

)
= 2 Re

(
∂g

∂z

∂z

∂m

)
. (74)

The alternative expression is obtained similarly but by replacing ∂zg in (71), instead of ∂zg.

Application of Theorem 3 gives the gradient of the cost function with respect to m,

∇mJ =
∂

∂m

(
J(m, p)

)T
= 2 Re

(
∂J

∂p

∂p

∂m

)T
= Re

(
(R(p)− d )∗R ∂p

∂m

)T
= Re

((
∂p

∂m

)∗
R∗(R(p)− d )

)
,

(75)

where T stands for the transposed.
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A.2 Adjoint state method

In order to avoid the computation of the Jacobian, the gradient is computed with the first order
adjoint state method. It has been introduced in the work of [39], and implemented by [18] for the
computation of a functional gradient. The formulation for the elastic wave problem has been carried
out by [62, 63]. It is a relatively standard techniques nowadays, e.g. [34], see [47] for a review in
geophysical situations. Yet, the complex variable specification is less common in seismic literature.
In order to compute the derivative ∇J , we formulate the minimization problem (omitting the space
dependency)

min
m∈M

J (m) = J(m, p) subject to Ap = h, (76)

where we introduce the wave operator A, which corresponds to the Helmholtz equation in the acoustic
case,

A :=
(
− ω2c−2 −∆

)
=
(
− ω2m−∆

)
. (77)

We consider one single source for now, to clarify the indexes, we shall later reintroduce the sum over
the sources by linearity, cf. (85). The problem is recast into a formulation with Lagrangian to define

L(m, p̂, γ̂) = J(m, p̂) +
〈
Ap̂− h, γ̂

〉
, (78)

where 〈·, ·〉 stands for the complex inner product in L2 such that 〈v, w〉 = v∗w, with v∗ the adjoint.
By taking p solution of Ap = h, we have that ∇mL(m, p, γ̂) = ∇mJ (m). Furthermore by application
of complex derivation Theorem 2, we have

∂

∂m

(
L(m, p, γ̂)

)
= Re

(
∂L
∂m

+
∂L
∂p

∂p

∂m
+
∂L
∂p

∂p

∂m

)
. (79)

By making use of the Corollary 1, we have

∂

∂m

(
L(m, p, γ̂)

)
= Re

(
∂L
∂m

+
(∂L
∂p

+
∂L
∂p

) ∂p
∂m

)
. (80)

The adjoint state γ is now selected such that

Re

(
∂L
∂p

+
∂L
∂p

)
= 0, (81)

which gives,

Re

(
∂J

∂p
+
∂J

∂p
+A∗γ

)
= 0. (82)

We now incorporate (67), and the adjoint state γ solves the problem

A∗γ = −R∗
(
R(p)− d

)
. (83)

Using this formulation for γ, the gradient reduces to

∇mJ = Re

(
〈∂mAp, γ〉

)T
. (84)

We can reintroduce the sum over the sources, which gives

∇mJ =
∑
s

Re

(
〈(∂mA)p(s), γ(s)〉

)T
, where γ(s) solves A∗γ(s) = −R∗

(
R(p(s))− d(s)

)
. (85)
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A.3 Directional derivative computation
For the computation of the directional Fréchet derivative, required for our estimates, the technique
is quite different. Note that from the forward operator definition, the Fréchet derivative consists in
computing the derivative of the pressure field and to apply the linear restriction R. Thus we focus
on the following in the computation of the directional derivative of the pressure field. Here we apply
a model perturbation onto the wave equation, in a similar approach as the one prescribed in [28].
Let us consider a model perturbation u for the Helmholtz equation (2), where the parameter m is
identified with c−2,

− ω2
(
m(x) + u(x)

)
p(x)−∆p(x) = h(x). (86)

The wave field solution is decomposed into

p := p(m+ u) = p(m) + pu = p0 + pu, (87)

where p0 is solution to the original (non-perturbed) equation (2) and the space dependency is omitted
for clarity. Developing (86) gives (

− ω2m−∆
)
p− ω2up = h

h+
(
− ω2m−∆

)
pu − ω2up = h(

− ω2m−∆
)
pu = ω2up.

(88)

Hence, pu is solution to the Helmholtz equation with some right-hand side depending on the total
solution p. Assuming ω is not an eigenfrequency of the Helmholtz equation, we write

pu =
(
− ω2m−∆

)−1(
ω2up

)
. (89)

Consequently, using the definition p = p0 + pu, we have(
I −

(
− ω2m−∆

)−1
uω2

)
p = p0,(

I −
(
− ω2m−∆

)−1
uω2

)−1

p0 = p,
(90)

where I denotes the identity. Direct application of Neumann series provides(
I −

(
− ω2m−∆

)−1
uω2

)−1

p0 = p0 +

∞∑
k=1

((
− ω2m−∆

)−1
uω2

)k
p0

= p0 +

∞∑
k=1

pk.

(91)

Using the linearity of the wave equation, we have that p1 is solution to(
− ω2m−∆

)
p1 = uω2p0, (92)

and repeatedly, (
− ω2m−∆

)
pj = uω2pj−1. (93)

By assuming the perturbation u of the model to be small, the Taylor expansion allows us to
express (with the notation of [17]),

p(m+ u) = p(m) +
∂p(m)

∂m
(u) +

1

2

∂2p(m)

∂m2
(u, u) + . . .

= p0 +
∂p(m)

∂m
(u) +

1

2

∂2p(m)

∂m2
(u, u) + . . .

(94)

We can finally identify the directional derivative in terms of Neumann series and the directional
derivative is expressed as solution to a forward problem, i.e. ∂mp(u) = p1; ∂2

mp(u, u) = 2p2; etc. Note
that obtaining the derivative from a forward problem can also be found in the context of elastic-fluid
interaction in [4], where the derivation is conducted with respect to the Lamé parameters.
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B MBTT (Data Space) model parameterization
In this appendix, we explicit how the computations are conducted in the case of MBTT model
decomposition.

B.1 Expression of the reflectivity with MBTT
The reflectivity part in the MBTT model representation is given by, cf. (15),

r =WDF∗0 s. (95)

The technique developed with the adjoint state method allows to compute of r without explicitly
using DF0. Indeed, the adjoint state method provides (identification from (75) and (85))∑

s

(
〈(∂mA)p(s), γ(s)〉

)T
=
∑
s

(
∂p(s)

∂m

)∗
R∗(R(p(s))− d(s))

⇒
∑
s

((
∂mA)p(s)

)∗
γ(s)

)T
= DF (s)(m)∗(R(p(s))− d(s)),

(96)

where DF (s) stands for the forward operator associated with source s. The fields p(s) and γ(s) solve
respectively the forward and ajoint problems, see (2) and (85). Proceeding by analogy with the
reasoning of Appendix A, it is straightforward to see that r can be express as

r =W
∑
s

((
(∂pA0)p

(s)
0

)∗
γ

(s)
0

)T
, (97)

where A0 is the Helmholtz operator with zero reflectivity (i.e., m = p),

A0 :=
(
− ω2p−∆

)
; (98)

p
(s)
0 solves the forward problem with A0 for the source s, and γ0 solves for the source s,

A∗0γ(s)
0 = −R∗s(s), (99)

where s writes as s = {s(1) . . . s(nsrc)}. The model representation (15) becomes

m(p, s) = p +W
∑
s

((
(∂pA0)p

(s)
0

)∗
γ

(s)
0

)T
, (100)

Process summary In order to express the model and the gradient of the cost function in this case,
the workflow is as follows

1. start from prescribed representation p and s,

2. solve the Helmhotz equation with zero-reflectivity for all sources s, A0p
(s)
0 = h(s),

3. solve the adjoint problem to retrieve γ(s)
0 : A∗0γ(s)

0 = −R∗s(s),

4. compute the model m with (100),

5. solve the Helmholtz equation for p(s): Ap(s) = h(s),

6. solve the adjoint problem for γ(s): A∗γ(s) = −R∗
(
R(p(s))− d(s)

)
.

Finally, the gradient of the cost function, with respect to p or s is expressed from the adjoint state
method, 

∇pJ =
∑
s

Re

(
〈(∂pA)p(s), γ(s)〉

)T
,

∇sJ =
∑
s

Re

(
〈(∂sA)p(s), γ(s)〉

)T
.

(101)
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B.2 Directional derivative computation
For the estimation of the size of the basin of attraction and of the radius of curvature, we need the
directional derivative of the forward operator. Using Neumann series and Taylor expansion, we have
given in Subsection A.3 their expression using the traditional model formulation. When the model is
decomposed using MBTT, one can process similarly, it simply requires a few more steps. For clarity
we only focus on the parameter p, we start with the chain rule,

∂F

∂p
(up) =

∂F

∂m

∂m

∂p
(up). (102)

We derive from (100),(
∂m

∂p
(up)

)T
= up +W

∑
s

(
(∂pA0)∂pp

(s)
0 + (∂2

p2A0)p
(s)
0

)∗
(up)γ

(s)
0 +

(
(∂pA0)p

(s)
0

)∗
∂pγ

(s)
0 (up). (103)

The terms (∂pp0)(up) and (∂pγ0)(up) are computed using the same method as presented in Sub-
section A.3 (thus, each requires the resolution of the wave equation with specific right-hand side).
After we have computed um̂ = (∂pm)(up), we again use Subsection A.3 to compute the final ∂mF(um̂).

Eventually, one can process similarly for s, adapting the chain rule. Regarding the second order
derivatives, it is analogous with one degree more of derivation in the chain rule. Computationally
speaking, it only requires the resolution of additional forward problems.

C Influence of the geometry and frequency on FWI
We illustrate the influence of the subsurface geometry with an acoustic FWI experiment, where we
demonstrate the effect we have depicted in Section 4, Figure 5:

1. a high contrast object complicates the process of reconstruction compared to a Marmousi-like
subsurface, by reducing the size of the basin of attraction,

2. the low frequencies, by increasing the size of the basin of attraction, provide benefits on the
reconstruction.

We design an experiment for a two-dimensional area of size 12.3× 3 km, considering an acoustic
medium with constant density set to 1000 kg m−2. The wave propagation is governed by the Helmholtz
equation (2), one parameter has to be recovered: the velocity c. The forward operator, see (10),
provides pressure measurement at the receivers location. For the seismic acquisition, we take 135
sources and 306 receivers per source. We take synthetic data, avoiding noise, simply to illustrate our
analysis.

C.1 Comparison between salt and Marmousi geometries
We compare the subsurface reconstruction using FWI depending on the geometry of the subsurface.
We consider a medium involving a high contrasting object, and the Marmousi model. The iterative
minimization is conducted following a nonlinear conjugate gradient algorithm (see [44]) and using
frequencies from 1 to 10 Hz, with 1 Hz increment. We perform 20 iterations per frequencies, which
are taken sequentially. The corresponding FWI algorithm is shown in Algorithm 1.

For the experiment related to the Marmousi medium, the ‘true’ model has been given in Figure 8(a)
and the initial guess in Figure 3. Here we artificially modify the dimension so that the models are
now of size 12.3× 3 km. For the model encompassing a salt dome, the initial and target models are
given in Figures 34(a) and 34(b) respectively.

In Figures 34(c) and 35, we compare the reconstructions from FWI regarding the contrasting
object or the Marmousi model. Both situations use media of same size, with the same frequency
progression (sequential from 1 to 10 Hz), and start from initial models where no information is
known (one dimensional wave speed variation, with depth only). However, only the Marmousi case
is able to accurately capture the subsurface structures. It demonstrates the results of Section 4 that,
namely, high contrast objects, by reducing the size of the basin of attraction, are more complicated
to reconstruct.
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Initial parameters: initial model c1 and the frequency list of ωi, for i = 1, . . . , nω.
The frequencies are ordered such that ω1 < ω2 < . . . < ωnω , see Remark 4.
Frequency loop for i ∈ {1, . . . , nω} do

Optimization loop for j ∈ {1, . . . , niter} do
set k := (i− 1)niter + j

– solve the wave equation at frequency ωi with wave speed ck;
– compute the cost function by comparing the simulation and observation data;
– compute the gradient of the cost function, using the adjoint-state method of Appendix A;
– compute the search direction, sk with the nonlinear conjugate gradient method (see [44]);
– compute the step length α with line search method (see [44]);
– update the wave speed ck+1 = ck − αsk;

end
end

Algorithm 1: FWI iterative minimization algorithm for the wave speed reconstruction.
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(c) FWI wave speed reconstruction using frequencies from 1 to
10 Hz.

Figure 34: 2D reconstruction of wave speed including salt domes with data covering frequencies from 1 to
10 Hz. The model is of size 12.3× 3 km.

C.2 Low frequencies compensation

It has been shown in Figure 5 that low frequencies enlarge the size of the radius. To illustrate this
effect, we reproduce the previous experiment but incorporating nine frequencies from 0.1 to 0.9 Hz
(sequentially using 0.1 Hz increment). Then, we employ the set of frequencies from 1 to 10 Hz
(sequentially using 1 Hz increment). In Figure 36, we show the reconstruction starting from these
very low (unrealistic) frequencies.

The FWI algorithm benefits from this incorporation of low frequencies, and is now able to ac-
curately retrieve the contrasting objects, as expected. Here we have used synthetic experiment to
demonstrate the basin of attraction dependency on the geometry and frequency. Note that we could
as well have used complex frequencies to increase the basin of attraction in early stages, cf. Subsec-
tion 4.5. However, for realistic application, low frequencies are usually unavailable (due to the noise)
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Figure 35: 2D reconstruction of the Marmousi wave speed with synthetic data covering frequencies from 1
to 10 Hz. The dimensions are artificially increased to the size 12.3× 3 km compared to the true and starting
media, given Figures 8(a) and 3 respectively.

and it is then impossible to reduce arbitrarily the initial frequency. As an alternative, techniques
based on shape reconstruction could be very efficient in this context but, because the nature of the
target is unknown at the beginning, it is hard to justify apriori.
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Figure 36: 2D reconstruction of wave speed including salt domes with data covering frequencies from 0.1 to
10 Hz. The initial model used for the algorithm is given in Figure 34(a), and the true model Figure 34(b). The
algorithm takes full benefits of the low frequency content in the data because we use synthetic measurements
without noise.
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