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Résumé  
Ce rapport s’inscrit dans le cadre du projet de recherche EVOLMOB qui associe le LET, le GAEL (UPMF 
Grenoble) et l’Ecole Polytechnique de Montréal sur les évolutions récentes de mobilité.  
Le but est de déterminer les facteurs les plus influents ainsi que leur évolution dans le temps grâce à 
l'exploitation des résultats de plusieurs enquêtes successives sur la même ville à 10 ans d'intervalle. Les 
données sont extraites des enquêtes ménages déplacements de Grenoble, effectuées en 2002 et 2010. 
L’analyse statistique du choix modal des individus est fondée sur la méthode économétrique des choix 
discrets, plus spécifiquement l’estimation d’un modèle logit multinomial. Son fondement dans la théorie 
de l’utilité aléatoire (Random Utility Theory, McFadden, 2000) permet l’estimation d’indicateurs 
économiques d’aide à la décision, comme les élasticités des demandes pour les modes de transport et les 
consentements à payer pour les attributs des modes. Les variables socio-économiques, les caractéristiques 
des trajets et des zones urbaines parcourues sont intégrées dans les estimations. La méthode permet 
d’évaluer simultanément les effets respectifs de ces variables. L’étude aborde aussi la transférabilité des 
résultats d’estimation entre les deux périodes d’observation des mobilités grenobloises. 
Les résultats identifiés sont cohérents avec les effets attendus et identifiés dans la littérature (DeWitte et al 
2013). La voiture domine les parts modales à Grenoble, mais une légère baisse est identifiée entre 2002 et 
2010. Certains facteurs du choix automobile, comme le taux de motorisation ou la localisation résidentielle 
en zone péri-urbaine semblent voir leur effet se réduire entre les deux périodes. 
Enfin, les résultats illustrent la très grande hétérogénéité des indicateurs économiques déduits des 
estimations, telles que les élasticités du choix modal au temps de transport ou les équivalents en temps des 
attributs des modes. 
 

Avant-propos  
Ce rapport est issu en très grande partie du mémoire de master 2 Sustainable Industrial Engineering réalisé 
par Minh-Phuoc DOAN au sein du Laboratoire d’Economie Appliquée de Grenoble dans le cadre du 
projet EvolMob - Analyse des facteurs explicatifs de l’évolution de la mobilité urbaine, financé par le PREDIT 
sous la convention de subvention 13-MT-GO6-1-CVS-001-2013. 
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Introduction: 

After a continuous increase of car use in most of the metropolitans of the OECD (Organization for 
Economic Co-operation and Development), we witness a reversal trend in many countries with the 
decrease of the car use according to measured indicators and the cities. However, due to the 
economic crisis, the public authority doesn’t have enough financial resources to ensure the 
development of all the sectors of the transport network. Therefore, it’s essential to clearly 
understand the determinant factors of mobility behaviors and their evolution to concentrate 
interventions on. 

Many factors have been used to explain this evolution such as population age, petrol price, 
congestion, travel policy, alternative modes and environmental concern.  

However, which factors are the most important ones for single trips of an individual? Are their 
contributions to mode choice the same among different trip motives, and over time? And if we 
consider trips of each individual as a trip chain instead of independent single trips, will making a 
working trip, catching up or dropping off someone during the chain increase the probability of 
using car? 

In order to answer these questions, we focus on two types of trips: single trips where we consider 
only one trip for each individual, and four-trip loops, a type of trip chains consisting of four trips 
in a chain and the first trip is leaving from home and the last trip is going back home. For single 
trips, we analyze the three common motives: home-work, home-shopping and home-leisure. For 
four-trip loops, we focus on three levels of complexity of trip chains (low-complexity, moderate-
complexity, and high-complexity) 

The studied data is based on two local household-trip surveys (realized in 2002 and 2010) in 
Grenoble, a medium city in France – an OECD country. Each survey is a part of the French national 
household-trip surveys (EMD) that have been carried out regularly in many French cities since 
1976. 

The most usual discrete choice model, multinomial Logit, will be used to give estimations based 
on commonly studied socio-economic variables: socio-demographic (gender, age, occupation, 
education, car availability, household size, number of women, number of men, number of cars of 
household) and trip characteristics (trip motive, travel time, departure time, origin zone and 
destination zone of trips).  

From the obtained results, we hope to be able to identify and quantify the contribution of each 
explanatory factor to the evolution of the mode choice behaviors in Grenoble between 2002 and 
2010. Thus, propose authorities of the city solutions to change the mobility behaviors that can help 
decrease the car use and promote the use of other eco-friendly modes like public transport, bike 
and walking. 
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In the first section, we review the literature of travel mode choice to see common approaches to 
this problem. In the second section, we introduce the research methods that allow to give 
estimations and to calculate the indicators of the evolution, and then the studied data used for 
estimations. The results will be presented in the third section divided into three sub-sections: 
variable definitions, results for single trips, and results for four-trip loops. Finally, the conclusion, 
recommendation, and future directions will be proposed in the last section. 

1. Economical literature of travel mode choice 

 Introduction to travel mode choice problem 

1.1.1 Travel mode choice definition 

Every day, people spend a lot of time moving from one place to another place with many different 
trip motives such as working, studying and shopping. There are many transport modes serving this 
mobility demand like the car, the public transport, and the bicycle. 

Choosing one of available travel modes (also called travel mode choice) is a very complex process, 
depending on objective and subjective, conscious and unconscious factors. The below figure 
describes the current view of the theory of choice (McFadden, D., 2000) that has been commonly 
applied to travel mode choice.  

 

Fig. 1: The choice process (McFadden, D., 2000) 

The model shows that the choice process is a decision-making process based on perceptions and 
beliefs built by available information and memory from past experiences, influenced by 
motivation, affect, attitudes and preferences. 
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Perception is the state of being or process of becoming aware of something through the senses. 
Motivation is related to the willingness to do something toward the perceived goals. Affect refers 
to the emotional state of the decision-maker. Attitude is a way of thinking or feeling about entities 
with favor or disfavor. Preference is a comparative judgment between entities. 

In fig.1, the context of the current decision is based on available information, experience, and 
memory in the past. As a loop, the result of this choice will influence the decision-making in the 
future. The heavy arrows of the model correspond to the economists’ classic model (rational 
model) where individuals collect information on alternatives, then convert this information into 
quantitative perceived attributes and aggregate them into a one-dimensional utility function, which 
is then maximized. The light arrows coincide with the psychological factors that influence the 
decision-making process. Both economist’s model and psychologist’s models use the same 
concepts: perception, process, and preferences but have different views on how they are linked 
together.  

Based on the model of the choice process, many different approaches to travel mode choice have 
been considered. De Witte, A. et al., 2013, summarized current approaches of the travel mode 
choice problem consisting of rational, socio-geographical, socio-psychological and multi-
disciplinary approaches. 

• The rational approach assumes that travelers make their decision in mode choice based 
on the utility maximization (minimizing travel cost and travel time). This microeconomic 
approach deals with all type of available information of alternatives, individuals behave 
perfectly rational, they just make a decision based on the objective and rational 
components. 

• Socio-geographical approach: in comparison to the first approach, this approach adds 
spatial factors into the decision-making process with the assumption that people travel 
not only for the sake of it but also to do activities distributed in space. So, the activity 
schedule of individual or household plays an important role in this approach. 

• The socio-psychological approach focuses on the subjective components, especially 
individuals’ attitudes. Thence, intentions and habits are key elements of this approach. 

• The multi-disciplinary approach is most used nowadays giving the researchers a multi-
discipline view to deal with the travel mode choice problem. This approach is the 
combination of all previous approaches, considering four different factor groups: socio-
demographic (age, gender, education, income etc.), socio-geographical (density, diversity, 
parking, frequency of public transport etc.), journey characteristics (travel motive, distance, 
travel time, travel cost etc.) and social-psychological (experiences, familiarity, lifestyle, 
habit etc.). 
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Quantitative studies based on these variables been developed through many stages since the first 
model of Warner, S., 1962. Researchers try to use mathematical formulas to model the travelers’ 
behaviors from the data of surveys, thence, use these models to predict their future behaviors. 

1.1.2 Travel mode choice determinants 

A mathematical model of travel mode choice problem usually consists of one or several explained 
variables (also called dependent variables) and many explanatory variables (also called 
independent variables). Each independent variable has different influencing proportion on the 
dependent variables. The aim of the modeling is to quantify the contribution of each independent 
variable on the dependent one. The most important explanatory variables are usually called 
determinants. The determinants are different from each city, each country and each research’s 
objective De Witte, A. et al., 2013, using meta-analysis method, based on 76 published papers, 
presented the most commonly studied determinants in travel mode choice and then explained the 
importance of each determinant through the statistics of the percentage of papers in which the 
determinant was studied out of the number of reviewed papers and the percentage of papers in 
which the determinant is found to be significant out of total number of papers studying about this 
determinant (see Fig. 2). 

 

Fig. 2: Statistics of frequently studied determinants in travel mode choice  
(De Witte, A. et al., 2013) 
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In her research, De Witte categorized the determinants into 4 groups according to the multi-
disciplinary approach (socio-demographic, spatial, journey characteristic and socio-psychological 
determinants) that we presented above, and then, she summarized the studies for each determinant. 

Below is our summary of her article: 

SOCIO-DEMOGRAPHIC  

Socio-demographic determinants consist of age, gender, education, employment, income, 
household composition and car availability. 

Age   

Two different conclusions were found in De Witte’s paper: First, the physical ability to travel 
decreases when people become older and so, the older people are, the more public transport they 
use. Second, based on several other papers, he found that car use increases together with age. 

Gender 

In term of gender, De Witte found two different views: The first one showed that men are more 
likely to use the car while women are likely to use the public transport. The second one revealed 
that women are more likely to use cars that are convenient for them with the home-work trips. 

Education 

Education is found to be correlated with employment and income. High educated people have 
higher incomes than low educated people. Therefore, they are more likely to use cars. However, 
several other papers showed the opposite that higher educated people use public transport means 
more than cars. 

Employment 

Employment has a direct connection with income and car ownership. Full-time workers tend to 
use more public transport while part-time workers are likely to use cars for traveling. Besides, 
employed people are more likely to use cars while unemployed people are likely to use the public 
transport. 

Income 

Income has a positive influence in car use and negative influence in public transport use. People 
with high income tend to travel by car instead of public transport while people with low income 
are highly influenced by the transport cost. However, in several studies, income was found not to 
influence on professional trips. 

Household composition 
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The household composition has very big impact on a number of cars per household. Increasing the 
number of members in a household especially number of children is likely corresponding to an 
increase of car use and a decrease of public transport use. 

Car availability 

Increasing the motorization rate (number of cars per household) reduces the competition for car 
use among household members and therefore, increases the car use, decreases the use of shared-
ride and public transport means. Households without car likely depend on public transport and 
non-motorized means. Besides, the odds of train use in comparison to car use decreases 52% 
corresponding to one unit increase in a number of cars, and decreases 96% if the household can 
use the company’s car. 

SPATIAL  

Spatial determinants characterize transportation networks and services consisting of density, 
diversity, proximity to infrastructures and services, the frequency of public transport and parking. 

Density 

Density is the ratio between a number of inhabitants and living area. It has a very strong negative 
influence in the average trip distance, thence, stimulates the public transport, bike and walking. 
Besides, public transport has been found to have higher service quality urban areas (high density) 
than in rural areas (low density) which impact directly travel time and travel cost and as a result 
promotes the use of public transport. 

Diversity 

Diversity is related to the land-use mix such as residence, institution, industry, commerce etc. 
Land-use mixtures tend to reduce the car use and increase public transport use. 

Proximity to transport infrastructures and services 

Proximity to transport infrastructures and services is related to the accessibility to road networks 
and public transport infrastructure. This determinant has direct connections to density and diversity 
at both the origin and destination. Accessibility to the public transport station increases its use, 
especially at the destination. Besides, car use increases together with the increase of road 
availability. 

Frequency of public transport 

High frequency of public transport creates a comparative advantage with regard to other modes. 
As a result promotes public transport use. In contrary, poor public transport services lead to lower 
public transport use. 

Parking  
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Parking is a quite important determinant. In most of the case, people tend to use cars when they 
are assured to have a parking space, especially free one. Decreasing the number of parking lots in 
the city is likely to decrease the car use and increase the public transport use. 

TRIP CHARACTERISTIC:  

Trip characteristic determinants consist of travel motive, travel distance, travel time, travel cost, 
departure time, trip chaining, weather condition, information and interchange. 

Travel motive 

Travel motives can be divided into three main types: commuting, professional and leisure. 
Commuting trips, especially school trips, share higher use of public transport than other motives 
while professional trips have the highest share of car use. With the leisure motives, the picking-
up/ dropping-off, shopping, and long trips are likely to be made by car more than the others. 

Travel distance 

People tend to choose faster transport means for longer distance trips. In Brussels, the car is the 
most used mode for the short trip (less than 30 km). For longer distance, public transport is likely 
to be used for commuting trips. For access mode of multimodal trips, walking was dominant for 
distances up to 1.2 km, biking for distances between 1.2 and 3.7 km and public transport for 
distances being longer than 3.7 km. With exit mode, walking for distances up to 2.2 km and public 
transport for longer distances. 

Travel time 

Travel time depends on the travel motive (working, studying, leisure etc.).  People tend to use 
public transport for longer travel time trips and car for shorter travel time trips. Increasing the 
travel time of public transport will decrease its demand. Besides, people don’t consider only in-
vehicle travel time but also out-of-vehicle travel time including walking time, waiting time and 
parking time. 

Travel cost  

Consumers are quite sensitive to changes in price, especially with public transport. If a public 
transport pass is owned, its use will increase. The increase in public transport fare in relation to 
car use expenses will decrease its use and increase car use. However, a small number of car drivers 
hope to switch to transport public when its fare goes down. 

Departure time 

During the off-peak hours, due to low congestion, cars are more attractive than public transport. 
Besides, departure time is related to travel motive. For working or studying trips, people must 
travel during peak hours. Therefore, they are more likely to choose public transport. 
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Trip chaining 

Model choice is determined by all trips in the chain between the origin and the destination. The 
trip chaining is only significant for multiple-chain trips. Public transport chains are found to be 
more complex than car chains and so, for multiple-chain trips, they appeared to be less attractive 
than cars’. For trip chaining with intermediate activities between origin and destination, people 
tend to choose the travel means that are the most convenient for these activities. Public transports 
appeared to be negative in this point of view. 

Weather condition 

Weather rarely appeared in papers about travel mode choice. Trips made by bicycles are more 
likely to be shifted to other modes in winter or in bad weather. Besides, 20% of the main employees 
change their mode of travel in summer. 

Information 

Easy-access information is found to be important for public transport mode. Information about 
congestion and delays can help to reduce users’ stress and therefore, increases the transport mode 
use. 

Interchange 

Interchange is related to how transport networks are designed to complement each other. Bad 
transport public connections will increase the car use. 

SOCIO-PSYCHOLOGICAL: 

Socio-psychological determinants are composed of experiences, familiarity, lifestyle, habits and 
perception 

Experiences 

Past experiences evidently determine present travel mode choices. People with high experiences 
of road network tend to use private transport mode to go to work.  

Familiarity 

Familiarity is related to experiencing to different modes of transport. It appeared that using public 
transport in the past gives people skills and confidence to use it again in the future. Higher 
familiarity to a transport system reduces the barriers to switch to alternative modes. Besides, 
familiarity is related to occupation, students were highly influenced by familiarity with public 
transport system. 

Lifestyle 
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Lifestyle is the way of living of a person. It’s directly related to education and occupation. 
Individual lifestyle is a very important factor in travel mode choice. 

Habit  

People with a strong habit of a transport mean tend to be passive in exploring other alternatives 
than people with a weak habit. 

Perception 

Preferences are based on attitudes and perceptions. The slowness of public transport is not just 
about travel time but also about how people experience it. The cost of car use is often 
underestimated compared to the price of public transport. 

De Witte’s article gave an introduction to the most commonly studied determinants in the world 
based on 76 international articles. However, travel mode choice in each geographical area is not 
the same. In order to have a better view about determinants of travel mode choice in Grenoble, our 
studied city, we will take a look at several studies about this problem in France, especially in the 
two biggest French cities (Paris and Lyon) and then we look at previous studies in Grenoble. 

 Research about travel mode choice in France 

The car is one of the most important transport modes in France. According to Roux, S. et al, 2010, 
based on the French National Travel Survey, car ownership of household increased significantly 
from 50% in 1966 to 80% in 2007. The average number of cars per household has increased 
strongly with the rate of 0.6 for a one-person household and 1.7 for households with 3 people or 
more. 

 

Fig. 3: Average number of cars per household by household size at different period  
(source: Roux, S. et al, 2010) 
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The increase of car use over year has caused many problems for French cities, especially 
congestion and pollution. According to the INRIX France Traffic Scorecard, the congestion has 
caused major impacts on the French economy and environment. Besides, through 25 worst 
bottlenecks of the country, drivers spend on average 70 hours a week. Paris is the most congested 
city in Europe, followed by London, UK. The top congested cities in France are Paris, Lyon, Lille, 
Limoges, Marseille, and Grenoble. 

1.2.1 Paris 

Paris is the largest and also the most congested city in France. Between 1998 and 2020, Paris 
population is forecasted to increase 16%. Many studies to quantify the contribution of factors in 
the increase of car use have been carried out. 

Papon, F., 2002 carried out a research about the forecast of travel by car and public transport in 
Paris by 2020. The research based on the trend observed since 1980 taking into account termed 
structure factors (age, residential zone, car ownership), explanatory variables (income, transport 
price, transport supply) and traffic variables (network congestion, trip frequency, travel time, 
aggregate quality indicators). The result indicated that there will have totally an increase of 25% 
in public transport use and 50% in car use in 2020 compared to 1998. The structural variables 
cause 8% increase for public transport use and 40% for car use. The influence of economic 
variables (income, transport supply, transport price) is 16% increase in public transport use and 
7% increase for car use. 

De Lapparent, M., 2003, used the discrete choice model to analyze traveler’s demand for transport 
alternatives. In his research, he considered wide range of variables: individual characteristics, 
tastes and psychologies, transport market attributes and income effect. The research showed that 
travel cost and travel time are significant in any considered model, driving license, private 
mobility, and transport network structure are decisive in transport mode choice. The presence of 
income effect impacts on travel mode choice indirectly through the increase of the average value 
of time. 

Another article of De Lapparent, M., 2005, studied about travel mode choice of home-work trips 
in the Ile-de-France region. The research considered influences of socio-demographic variables 
(age, sex, income, residential zone) and trip characteristic variables (travel time, travel cost, 
departure time) on the choice of two alternatives (private motorized vehicle and public transport). 
The conditional Logit model revealed the importance of travel time, travel cost, departure time 
and income with the travel mode choice. 

De Palma, A., and C. Fontan, 2001 studied travel choice and value of time based on the data of the 
travel survey of Ile de France region, 1997. The research studied the influence of variables (age, 
sex, income, residential place and working place) to the value of time over two travel modes 
(public transport and private car) by using Logit model with income effect. The final results 
showed the influence of considered variables on the value of time of two transport modes. 
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1.2.2 Lyon 

Although Lyon is the second biggest city in France, there are currently not a lot of published studies 
about travel mode choice in this city. 

Bonnel, P., 2000, studied trends in public transport and car use in Lyon, showed that there was an 
evolution in public transport use of the city with an increase of 35% (double of metro use) in 1995 
compared to 1986. However, the market share of public transport (profit) has decreased from 
23.5% to 20.6% while car’s increased 25% in the same period. This trend is forecasted to continue 
in next ten years with the decrease of 10% of public transport. 

Pronello, C., and V. Rappazzo, 2014, aiming to test the traveler behaviors to the congestion pricing 
policy, showed that people who use cars for daily working trips have a higher willingness to pay 
than ones who use cars for leisure trips. Researcher divided participants into 6 groups 
corresponding to the acceptance level from most positive to most negative: supporter, positive 
attitude, open-minded taking into account pros and con, negative attitude, strong opponents, and 
fierce opponents. Each type of participant have a different point of view about congestion charging 
but have a common view that a high rate of charging will definitely reduce the number of car use.  

1.2.3 Grenoble 

Grenoble is the second largest urban in the Rhone-Alpes region, 11th largest by population in 
France (INSEE French national statistical office, 2013). However, the number of studies about the 
travel mode choice in this city are quite limited. 

Bonnel, P., 1995, considered the changes in behaviors of residents through activity-based travel 
analysis. The research was carried out in 1987 when the first tram line was opened and a year later 
(1988), based on the surveys of 478 people (416 people agreed to be surveyed again in 1988) who 
live within half a mile from tram stops or on a bus route that take them directly to the tram line. 
The research focused on three modes of transport: foot, car and public transport (other modes 
share: less than 5%), three variables: sex (man or woman), professional activity (working or non-
working) and car availability (available or not). The results showed that there were not a lot of 
differences between activity-based travel in 1987 and in 1988 except for the non-working woman 
with cars (up to 17.5% in 1988 from 7.5% in 1987). He explained that the reason for this difference 
is not due to the establishment of new tram line but the evolution of the social and economic 
environment. 
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The research carried out by Gandit, M., 2009, analyzed the influence of socio-demographic, 
structural and psychological factors on the choice of three travel modes: mass transit, mixed mode 
or private car. Researched revealed that socio-demographic factors like gender, age, the number 
of children, income had no effect on travel mode choice, structural and psychological factors like 
attitude, norms, facilitating conditions, habit had significant impacts on mode choice, especially 
habit ( major determinant). The research also considered the change in residents’ behaviors when 
a new tram line was built in Grenoble. The result indicated that building alternative means created 
positive views on non-car vehicles and if this image was promoted to impact on residents’ 
perception, public transport use would be likely to increase. Besides, the monetary policy (fare 
reduction) is also a good tool to stimulate public transport use and demote car use. 

A recent research implemented by Hansen, R., 2008, analyzes the daily mobility in the Grenoble 
metropolitan region. The research based on data from 39 completed travel diaries from 22 
households, considered the influence of three factors (gender, the day of week and work status) on 
travel mode choice. The results showed that work status was a significant explanatory variable 
while the others can’t be used to explain the behavior changes. 

1.2.4 Conclusion 

Through recent studies about travel mode choice in France, we find out that: 

Age, sex, occupation, car ownership, driving license, income, number of children, residential zone, 
working zone are the most often studied socio-demographic variables. Among them, car 
ownership, income, occupation, driving license and residential zones are found to be significant in 
most of the cases. 

For trip-characteristic variables, travel time, travel cost, departure time, a number of connections, 
trip frequency and the day of week appeared quite often. Among these variables, travel time, travel 
cost, departure time and trip frequency are found to be very important. 

Spatial and socio-psychological variables are not studied regularly. However, socio-psychological 
variables (attitudes, norms, habits) appeared to be quite important each time they were studied. 

The results of studies in France are quite similar to De Witte’s research. However, we found new 
variables that didn’t appear in De Witte’s research, consisting of driving license, residential zone 
and working zone. We will also consider these variables in our research. 

 Literature conclusion 

In our research, we focus on two types of variables:  

First, the most important variables according to De Witte, A. et al., 2013 and to the articles about 
travel mode choice in France, that are: income, occupation, car ownership, car availability, driving 
license, travel time, travel cost, departure time, trip frequency and residential zone.  
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Second, classical variables that are commonly studied in the literature of travel mode choice: age, 
sex, education, the number of children, household size, travel motive, distance, proximity to 
infrastructure, working zone, origin zone, destination zone, and trip chaining. 

However, depending on availability and quality of surveyed data and the interdependency of 
variables, proper variables will be then selected for our analysis. 

In the next section, we will discuss methods used to give the estimations of travel mode choice 
based on these variables and then, the real databases obtaining from the local surveys in Grenoble 
in 2002 and in 2010. Both of them will allow us to select the good-quality variables for our models. 

2. Method and data 

 Method 

2.1.1 Discrete choice models 

Choosing one of available travel means is a type of discrete choice where alternatives are a car, 
public transport, non-motorized and other modes. 

 Depending on a number of possible alternatives and their type of data, we obtain different models: 
binomial model (two alternatives), ordinal model (ordinal alternatives) and multinomial model (at 
least three alternatives). For the travel mode choice problem, the alternatives are unordered, so 
only the two first models (binomial and multinomial models) are considered. 

The discrete choice is usually built on the platform of decision maker's preferences (assumption 
of utility maximization): 

A decision-maker labeled n, has to choose one among J alternatives. The utility function of the 
decision-maker n obtained from the information of alternative j, labeled Unj, j=1..J 

The utility function can be divided into two parts: observed utility Vnj (depending on attributes of 
the decision-maker n and the alternative j) and unobserved utility εnj (also called random utility):  
Unj= Vnj+ εnj , for each n, j 

Depending on the distribution of unobserved utility, we obtain different discrete choice models. 
Most common used models are Probit and Logit. The Probit model uses the normal distribution 
function while the Logit model uses the Gumbel distribution function (also called Type I extreme 
value). 
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There is not much difference between these two models, each model has its advantages and 
disadvantages. However, in scientific papers about travel mode choice, Logit is the most widely 
used model, the share of Probit is quite small. The reason is not about the accuracy of the model 
but about its economical aspect. McFadden, who obtained the Nobel Prize for his contribution to 
consumer choice behavior analysis, developed the Logit model theory with a direct connection to 
the consumer theory. It permits to link unobserved preference heterogeneity to a fully consistent 
description of the distribution of demands (McFadden, D., 1974). 

The Logit model is obtained by the assumption that each εnj is independently distributed, with the 
cumulative distribution function and the density distribution function as follows: 

 

Fig. 4: Cumulative (above) and density (below) distribution functions of Logit model 

The Logit model can be divided into multinomial Logit model, generalized extreme value (GEV) 
model and mixed Logit model (also called random parameters Logit model). 

The multinomial Logit model (also called conditional Logit model) is the standard Logit model 
that can be derived as follows: 

The probability that the decision-maker n choose the alternative i: 

Pr ( , ) Pr ( , )ni ni nj ni ni nj njP ob U U i j ob V V i jε ε= > ∀ ≠ = + > + ∀ ≠
 

Combining with the assumption that εnj respects to the Gumbel distribution:

( ) njnj e
njf e e

εεε
−− −= , we obtain the Logit choice probability: 
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The observed utility is usually used under the linear form: njnj xV β= , where njx is the vector 

of observed variables. So, the Logit choice probability becomes:  

xni

xnjni

j

eP
e

β

β=
∑  

In this model, the odds ratio of any set of two alternatives doesn’t depend on the choice of other 
alternatives. This independent property of the multinomial Logit model comes from the initial 
assumption that the disturbances are independent and homoscedastic (IIA assumption).  

This IIA assumption gives many advantages if it truly reflects the reality: 

It permits to estimate model parameters consistently on a subset of alternatives. Exclusion of 
alternatives in estimation does not affect the consistency of the estimator. Therefore, it is very 
attractive for researchers being interested in examining choices among a subset of alternatives and 
not among all alternatives (Train, K., 2003). 

Although this property is very useful for the estimation, it is not so attractive for studies about 
consumer behaviors (Greene H., 2012). If the IIA assumption is not realistic and the unobserved 
utility is correlated over alternatives, keeping using these models can cause significant errors on 
forecasting substitution patterns.  

Therefore, testing this assumption has an important role in selecting which Logit model to use. 
The first developed test is the test on subsets of alternatives that aims to check if the ratio of 
probabilities between any two alternatives is the same or not when other alternatives are available 
in the model. The test is based on chi-squared distribution with K degrees of freedom (Hausmann, 
J., and D. McFadden, 1984): 

2 1( ) '[ ] ( )s s sf f fV Vχ β β β β−= − − −  

Where, s: estimators based on the restricted subset, f: estimators based on full set of choices 
Vs, Vf : respective estimates of asymptotic covariance matrices. 

Negative test statistics ( 2 0χ < ) are very common, Hausmann, J., and D. McFadden, 1984 
concluded that a negative result is an evidence that IIA has not been violated. 

In case of failure of IIA assumption, it appears that the best advice is to go back to an early 
statement by McFadden, D., 1974, that the multinomial Logit models should only be used in cases 
where the outcome categories ‘‘can plausibly be assumed to be distinct and weighed independently 
in the eyes of each decision maker.’’ Similarly, Amemiya, T., 1981, suggests that the multinomial 
Logit model works well when the alternatives are dissimilar.  

Generalized extreme value (GEV) models and mixed Logit models show great promise for models 
violating this IIA assumption.  
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In GEV model, the unobserved portions of utility for all alternatives are jointly distributed as a 
generalized extreme value. This distribution allows the correlations of alternatives. However, if all 
the correlations are zero, these GEV models become standard Logit models. 

The most commonly used members of this GEV family are Nested Logit and Heteroskedastic 
Logit models. 

The nested Logit model is used when the set of alternatives can be divided into subsets (nests).  

For example, a nested Logit model with 2 branches (Branch1, Branch2) and 5 choices (c1|1, c2|1, 
c1|2, c2|2, c3|2) might be as follows: 

 

Fig. 5: A nested model with two branches and five choices (Greene, H., 2008) 

For any two alternatives in the same nests (for example c1|1, c2|1), the odds ratio is independent of 
other alternatives. But not for two alternatives in different nests (for example c1|1, c1|2), the odds 
ratio can be dependent on other alternatives. This means IIA assumption is held within each nest 
and not held between different nests. 

Although the complexity of the nested model depends significantly on the number of levels, the 
model has been extended to three levels or higher. The reason is that it is a very flexible model 
and suitable to consumer choice in econometric studies. 

There are problematic aspects of the nested Logit model that the estimation results depend on the 
way of branching. Bhat, Allenby and Ginter, developed an extension for conditional Logit model 
to solve this problem called heteroscedastic extreme value model (Greene, H., 2008). The model 
comes out with the idea that instead of capturing the correlations of alternatives, we can allow the 
variances of unobserved utility to be different between alternatives.  

The mixed Logit model, also called random parameters Logit, is a random coefficients 
formulation. Allowing the coefficients to vary randomly across individuals and the correlations 
between constant terms can help to create a general flexible model that can approximate any 
random utility model. Train, K., 2003 and McFadden, D. and K. Train, 2000, showed the 
comparative advantages of mixed Logit model and other Logit models, also between mixed Logit 
model and Probit model: 
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"It [Mixed Logit] obviates the three limitations of standard Logit by allowing for random taste 
variation, unrestricted substitution patterns, and correlation in unobserved factors over time." 

“Mixed Logit can also utilize any distribution for the random coefficients, unlike Probit which is 
limited to the normal distribution. It has been shown that a mixed Logit model can approximate to 
any degree of accuracy any true random utility model of discrete choice, given an appropriate 
specification of variables and distribution of coefficients." 

The unconditional choice probability of mixed Logit model ( in case the utility is linear) is as 

follows: 
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: the Logit probability evaluated at parametersβ  

Based on its formula, we can see that mixed Logit probabilities are the integral of standard Logit 
probabilities over a density of parameters. 

The table below summarizes the advantage and disadvantage of different Logit models we 
presented above: 

Table 13 
Comparison between common Logit models 
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Model Advantage Disadvantage 

Multinomial 
Logit  

- is standard and simple 
- can represents systematic taste 
variation  
- implies proportional substitution 
across alternatives 
specification of representative 
utility 

- can capture the dynamics of 
repeated choice if unobserved 
factors are independent over time 

- can be solved quickly by 
computational software 

- does not represent random taste 
variation 
- is not enough flexible to capture 
different forms of substitution 

- can’t deal with unobserved 
factors being correlated over time 

- should respect IIA assumption 

Nested Logit 

 

- allows to relax IIA assumption 
=> more flexible substitution 
pattern (proportional in the same 
nest) 

- used when alternatives can be 
partitioned into subsets 

- is more complex than 
Multinomial Logit => researchers 
need to help the routines by 
different algorithms 

- does not represent random taste 
variation 

- can’t deal with unobserved 
factors being correlated over time 

Heteroskedastic 
Logit 

- allows different variances 
between alternatives => accepts 
many different substitution 
patterns 

- does not represent random taste 
variation 

- can’t deal with unobserved 
factors are correlated over time 

Multinomial 
Probit 

- can handle random taste variation 

- allows any pattern of substitution 

- can handle problems that 
unobserved factors are correlated 
over time 

- requires normal distributions for 
all unobserved components of 
utility => inappropriate in some 
situations 

Mixed Logit - is very flexible, can approximate 
any random utility model 

- can solve three limitations of 
standard Logit 

- is more difficult to be solved, 
requires very strong computational 
tools 
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Although Logit models have been developed for a long time, their application has only become 
widely popular with the appearance of strong computational sorts of software in last several 
decades. 

Nowadays, the conditional Logit model can be solved instantly by computation tool even with a 
large number of alternatives and observations or non-linear elements. However, achieving and 
verifying the convergence of the models is still a hard issue, for example, multinomial Probit model 
with an unrestricted covariance structure continue to resist conventional computation (McFadden, 
D., 2000). 

Therefore, the simulation tool is becoming practical presentation. A model where simulation 
methods are usually needed is the mixed Logit model that was developed by Mc Fadden in 1989, 
Bolduc in 1992 and Brownstone and Train, 1998 (McFadden, D., 2000). 

2.1.2 Model selection criteria 

Multinomial Logit model selection criteria are based on maximum likelihood method:  

The probability density function for a random variable x conditioned on a set of parameters β, 

labeled ( | )f x β . The joint density function of n observations of variable x is the product of 
individual density functions, also called likelihood function: 

1 2
1

, ,..., ( )( | ) ( | ) |
n

n i
i

x L xf x x f x ββ β
=

==∏  , where ( )|L xβ : Logit probability evaluated at β 

or likelihood function 

This function is a function of an unknown set of parameters β and collected data sample x. 

The principle of maximum likelihood is that the model parameters will be estimated in the way 
that likelihood function (model probability) obtains the maximum value. This means that obtained 
set of parameters will make this collected data sample most probable. 

Besides, a multinomial Logit model can be also selected based on indicators of the goodness of fit 
such as Akaike information criterion (AIC) and Bayesian information criterion (BIC) 

Akaike information criterion (AIC) and Bayesian information criterion (BIC) are two model 
selection methods allowing us to penalize the loss of degrees of freedom when new variables are 
added to the models:  

2 2 lnAIC k L= −  

ln 2 lnBIC k n L= −
 

Where k: number of parameters, n: number of observations, L: maximum value of the likelihood 
function
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In these criterions, the models with smaller values of AIC or BIC are preferred.  

The BIC model has a higher penalty for the loss of degrees of freedom than the AIC model. 
However, each model has advantages over the other one. 

2.1.3 Marginal effect and elasticity 

Marginal effect 

Direct marginal effect is defined as the change of the probability Pni of choosing alternative i of 
individual n given by a change of an observed variable, Xni , entering the observed utility of that 
alternative while keeping the observed utilities of other alternatives as constants (Train, K., 2003) 
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If the observed utility is linear in xni with coefficient βx, we obtain: 
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This marginal effect is biggest when Pni=0.5 and becomes smaller when Pni approaches one or zero 

Similarly, we can obtain cross marginal effect that is a change of the probability Pni of choosing 
alternative i of individual n given by a change of an observed variable, Xnj ,of another alternative 
j, entering the observed utility of the alternative while keeping the observed utilities of other 
alternatives as constants (Train, K., 2003) 
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Elasticity 

The direct elasticity of Pni
 with respect to Xni is the percent change in the probability of choosing 

alternative i of the individual n that is associated with the percent change of variable Xni 
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So, (1 )
ni

ni
ix ni ni

ni

VE x P
x

∂
= −
∂  

If the observed utility is linear in Xni with coefficient βx,  

(1 )
niix x ni niE x Pβ= −  

Similarly, the cross-elasticity of Pni with respect to a variable entering alternative j: 

(1 )
njix x nj njE x Pβ= − −  

2.1.4 Willingness to pay and willingness to wait 

Willingness to pay (WLP) expresses how much consumers value the attributes of the choices. 
There are two ways to estimate the willingness to pay for one attribute: using the marginal utility 
of income or marginal utility of cost. 

WTP = Marginal Utility of Income / Marginal Utility of Attribute 

Or WTP = - Marginal Utility of Cost / Marginal Utility of Attribute  

The formulas of WTP can be derived as follows: 

We consider the influence of the change of attribute Xni to the change of income INni while the 
other attributes are kept as constants: 

0ni IN ni X niU IN Xβ β∂ = ∂ + ∂ =  

So, we obtain: ni X

ni IN

INWTP
X

β
β

∂
= = −
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Or ni X
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TCWTP
X

β
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∂
= = −

∂
 

The change of utility of cost is opposite to the change of utility of income, so we obtain the negative 
sign for the formula of WTP if we use Marginal Utility of Cost. 

Similarly, Willingness to wait (WLW) expresses how much consumers value the attributes of the 
choices through the time they will be willing to wait if the attributes of choices are improved. The 
willingness to wait can be calculated using the marginal utility of travel time. 

WTW = - Marginal Utility of Attribute / Marginal Utility of Travel time 
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2.1.5 Multicollinearity 

Multicollinearity is a data problem where the explanatory variables are too highly inter-correlated 
to allow precise analysis of their individual effects. If the two variables are perfectly correlated, 
the variance will be infinite. This causes a failure of the linear regression assumption. 

However, this problem doesn’t appear so often. The most common case is when attributes are 
highly but not perfectly correlated. The assumptions are held but there will be severe statistical 
problems like small changes in the data produce wide swings in the parameter estimates, 
Coefficients may have very high standard errors and low significance levels even though they are 
jointly significant and the R2 for the regression is quite high or coefficients may have the “wrong” 
sign or implausible magnitudes (Greene, H., 2008). 

The most common methods used to diagnostic the Multicollinearity are based on variance 
measurements like correlation matrix, condition number and variance inflation factors (VIF and 
GVIF) 

The correlation matrix used to evaluate the independence between multiple variables at the same 
time. Most common correlation matrices are Pearson (used for continuous variables) and 
Spearman (used for ordinal variables). A value in the correlation matrix (off-diagonal elements) 
exceeding 0.9 is sometimes considered as a potential problem (Hair, F. et al., 1998). 

The condition number of a matrix is the square root of the ratio of the largest to the smallest 
characteristic root:  

max

min

λγ
λ

= , where λ is the characteristic root of the moment matrix X’X (X: data matrix) 

This method is suggested by Belsley, D. et al., 1980. Belsley showed that a value of condition 
number in excess of 20 can be a potential problem. 

The Variance inflation factors quantify how much the variance is inflated. The variance inflation 

factor for the kth factor: 
2

1
1k

k

VIF
R

=
−

where
2
kR   is the R2-value obtained by regressing 

the kth predictor on the remaining predictors 

Values of VIFs exceeding 4 warrant further investigations, while values exceeding 10 are signs of 
serious multicollinearity. 



  
 

26  

The GVIF was introduced in Monette G. et al., 1992. The GVIF is important to diagnostic the 
multicollinearity of factors and polynomial variables where a variable require more than one 
coefficient. For single variables, GVIF equals to VIF. GVIF^(1/2df) where df is a degree of 
freedom or number of coefficients of a variable, is used to make GVIF comparable across 
dimensions. A value of GVIF^(1/2df) in excess of two can be a potential problem. 

The multinomial appears to be a quite good choice for our estimations. Firstly, it’s a standard and 
most simple Logit model that can give a quite efficient estimation. Secondly, it’s well supported 
by computational tools allowing us to calculate marginal effect and elasticity that other Logit 
models can’t obtain easily. Finally, multinomial Logit selection based on maximum likelihood 
allows high multicollinearity among variables, thus, allow to build a large model with many 
variables that are limited in other Logit models.  

However, we have to be caution in case of failure of IIA test. If this happens, we can keep using 
this model but the confidence of substitution patterns between modes can be at risk. 

 Data 

2.2.1 Introduction to the French national household-trip survey 

The data is based on the Household-Trip Survey in the whole French territory that has been carried 
out since 1976, with around 70 surveys in more than 40 French metropolitans. 

Each survey is a photography of the trips made by the inhabitants of a region during a particular 
day of week and by all the transport modes (public transport, private car, bicycle, etc.). 

The survey allows us to measure the mobility evolutions to estimate the impact of implemented 
actions and to adapt new travel policies. The results of the survey will support the authority to 
make a decision in travel policies. 
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Fig. 6: Maps of household-trip surveys (EMD) in France from 1976 to 2007 

The survey has used a standard method defined by CERTU (Centre d’Étude et de Recherche sur 
les Transports et l’Urbanisme) respecting following principles: 

Carried out: 

- On all the trips made by people who live in the studied area on the day before the survey. 

- At home, face to face (during about 1h30’) by trained interviewers, from Tuesday to 
Saturday 

- Over a long period between 15 October and 30 April, excluding public holidays and school 
vacations 

- On people being more than 5 years old and having a housing 

- On a representative sample of households, randomly selected based on resident zone and 
housing file 

The database consists of five subfiles:  

- Household (Ménage): contains household characteristics like location, housing, the 
number of members and motorization. 
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- Person (Personnes Du Ménage): contains individual socio-demographics like age, gender, 
occupation, education, driving license and car availability. 

- Trip (Déplacements): contains trip characteristics like travel time, departure time, travel 
motive and travel distance. 

- Path (Trajets): contains information related to path characteristics like walking time, the 
number of occupants, parking place, and highway toll. 

- Opinion (Opinions): made by a member of each household being more than sixteen years 
old, containing opinions about transport system: criteria in choosing transport modes, 
speed qualification of transport modes etc. 

EMD Grenoble 2002 and 2010: 

Our Grenoble 2002 database was taken from l’Enquête Ménages-Déplacements Grande Region 
Grenobloise 2002 (EMD Grenoble 2001-2002), carried out in an area of 254 villages with 712 000 
inhabitants where 17254 individuals of 6963 households were interviewed (SMTC, “Résultats 
EMD 2002: Grande Région Grenobloise”). 

Our Grenoble 2010 database was taken from EMD Grenoble 2009-2010 that was carried out 
during 18 weeks between 2009 and 2010 by 240 investigators, on 7600 households, in a large area 
of 354 villages with more than 800000 inhabitants. (SMTC, “Résultats EMD 2010: Grande Région 
Grenobloise”) 

  

Fig. 7: Surveyed area of EMD Grenoble in 2002 (left) and in 2010 (right) 

Here are some characteristics of the data from the two surveys (source: SMTC, “Résultats EMD 
2002: Grande Région Grenobloise”, SMTC, “Résultats EMD 2010: Grande Région Grenobloise” 
and Licaj, I. et al, 2015): 
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Table 14 
Data summary of EMD Grenoble 2002 and 2010 

Variable/ Year Grenoble 2002 Grenoble 2010 

SOCIO-DEMOGRAPHIC  

Population age 25% less than 18 years old, 
13% greater than 65 years old 

Old population, 23% less than 
18 years old, 17% greater than 
65 years old 

Profession 53% is workers and 
employees 

43% is active (full-time or 
part-time), most of jobs are in 
service sector 

Education 25% (of > 5 years old) has 
education lever higher than 
BAC, 27% is studying at 
school 

5% is student, 28% (of > 5 
years old) has education lever 
higher than BAC 

Driving license In general: 85% 

Men: 93% 
Women: 78% 

In general: 86% 

Men: 92% 
Women: 81% 

Household composition 2.41 person/household 2.25 person/household 
1/3 is single 

Car ownership 1.26 cars per household, 0.51 
car per individual 

0.58 car per individual 

TRIP 
CHARACTERISTICS 

  

Mode share 62% by cars  

10% by Public transport 

24% on foot 

59% by cars (46% driving, 
13% accompanied) 

11% by Public transport 

25% on foot 

Trip purpose (motive) Working: 14% 

Shopping: 12% 

Leisure: 16% 

Accompanying: 13% 

School and university: 12% 

Working: 23% 

Shopping: 18% 

Accompanying: 16% 

School and university: 12% 

Average number of trips per 
individual per day 

3.91 /inhabitant/day 3.6/inhabitant/day 
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2.2.2 Data treatment 

Our research is based on two household-trip databases of Grenoble in 2002 and 2010.  

The objective of the data treatments is to build a reliable, clean, and similarly-structure data frame, 
that is commonly implemented by R, a free and high-performing statistical analysis tool. In order 
to do this, we face with two different choices: First, Treating the original database by the available 
SAS code built by previous research groups to get the intermediate database, then building new R 
code to convert this database to the final one for analysis. Second, ignoring the available SAS code 
and building new R code to treat the original database. Using the first solution, we can take 
advantage of very large available SAS program and save up a lot of time. The only problem is that 
we have to work with both programming languages that are completely different. Luckily, the SAS 
programming language is quite similar to other language taught at most of the schools, 
understanding how it works doesn’t take us too much time. So, we decided to follow this direction. 

Fig.8 shows the diagram of the data treatment 

Each original household-trip database consists of four sub-database files: Household file, 
individual file, trip file and path file. This data will be treated by two programs: SAS and R. 
Firstly, the SAS program imports the four files of the original database to its environment. In order 
to obtain an aggregated database that trip is the lowest level, the SAS module “Integrate path data 
into trip level” helps to integrate the data of all the paths of each trip with one another. In this 
process, the trip traveling mode is defined by combining traveling mode of each path of the 
corresponding trip.  

Secondly, the integrated path data will be aggregated with the three remaining database files to 
create aggregated database. The database then goes through three processing steps: unit 
standardization, data errors detection and deletion, variables definition. The process of unit 
standardization converts the data units to the standard types, especially converts all the units of 
timing data to minute. The process of data errors detecting helps to detect common data errors 
(departure time is later than arrival time, travel time is negative, lack of departure time or arrival 
time etc.) These wrong data will be modified or deleted. After that, explanatory variables will be 
defined to create the intermediate database that will be treated later by R program. 
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Fig. 8: Data treatment diagram 
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The R program then imports the intermediate data into its environment. Based on research scope, 
inappropriate data is removed from the database:  

- Individuals who didn’t make any trip during the surveyed day 

- Individuals with unclear resident place or at least one unclear origin or destination zone of 
any trip 

- Individuals who lived, worked or had at least one trip origin or destination in the external 
zones 

Treated database allow us to remove poor-quality data or data that is not related to our scopes. 
From now on, the database can be used to define proper variables for our study. In the next 
section, final variables will be defined and then, our two models (single trip and four-trip loop) 
will be built to allow analysis of the evolution of travel mode choice. 

3. Results 

 Variable definition 

Our analysis focuses only on three motives of single trips (home-work, home-shopping and home-
leisure) and three complexity levels of trip chains of 4-trip loops where their first trips are leaving 
from home and their last trips are going back home. Other motives of single trips and other trip 
chains of four-trip loops either occupying a very small proportion of a total number of trips/loops 
or appearing to be too complicated to study will be removed. 

 

Fig. 9: Research scope 
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Fig. 10: Histogram of number of trips made per day in 2002 and 2010 

Above figure show that individuals making 4 trips per day have the highest share among all of the 
individuals (around 20% in 2002 and 25% in 2010). 

Among single trips, home-work, home-shopping and home-leisure appear to be the most important 
ones that occupy more than 50% of total number of single trips 

 

Fig. 11: Histogram of different motives of single trips in 2002 and 2010 

Variables for above models are basically selected based on the literature of travel mode choice 
determinants of De Witte, A. et al., 2013 and travel mode choice studies in France (see section 1.1 
and 1.2). Besides, For 4-trip loops, we consider two more variables that link to two questions 
appearing so often in the literature of travel mode choice: First, if an individual has to make a 
working trip during their 4-trip loops, will they be more likely to use cars? Second, if an individual 
has to catch up or drop off someone during their 4-trip loops, will it increase their probability to 
choose cars? 

However, due to data availability and data quality of variables, several variables are removed, 
consisting of income, working zone, residing near infrastructures, the number of connections, trip 
frequency, and distance. 
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We consider only remaining variables:  

Table 15 
List of studied variables after considering data availability and data quality 

 

Socio-demographic Spatial and trip 
characteristic 

Loop variable 

- Gender 

- Age 

- Driving license 

- Car availability 

- Occupation 

- PCS group 

- Education 

- Household size  

- Number of children 
above 6 years old 

- Number of women 

- Number of men 

- Number of cars of HH 

- Travel time 

- Departure time 

- Origin zones 

- Destination zones 

 

- At least one 
working trip 

- At least one 
accompanying 
trip 

One of the common causes of the failure of regression model building is Multicollinearity between 
variables (see section 2.1.5). Determining and removing highly-correlated variables is a very 
important task to prepare proper data for model building. Below, the correlation matrices and 
variance inflation factors (VIFs and GVIF) are two common methods used to evaluate the 
independence between multiple variables for single-trip models. Values of GVIF exceeding 4 
warrant further investigations, exceeding 10 are signs of serious multicollinearity while a value in 
correlation matrix (off-diagonal elements)) exceeding 0.9 is sometimes considered as a potential 
problem (Hair et al., 1998) 
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Table 16 
Variance inflation factors of different motives in 2002 and 2010 (GVIF): 

 

Variables/GVIF G10_HW G10_HS G10_HL G02_HW G02_HS G02_HL 

SEXE           1.407   1.335   1.271 1.426 1.371 1.319 

AGE            1.210   2.766   3.714 1.163 2.378 3.280 

PERMISOK       1.566   1.549   1.998 1.510 1.489 1.845 

OCCU1          1.116   2.549   3.640 1.158 2.588 4.040 

PCSGROUP       1.677   2.105   3.090 1.690 1.916 3.181 

EDU            1.637   1.763   2.315 1.531 1.507 2.062 

VPDISPOOK      1.760   1.587   1.537 1.482 1.549 1.558 

SIZE           6.476   8.416  10.393 4.707 5.815 6.119 

NBENF6         3.794   4.354   5.933 2.830 3.159 4.100 

NBHOMME        2.568   3.012   3.269 2.099 2.238 1.938 

NBFEMME        2.378   2.340   2.557 2.061 1.931 1.892 

MOTORISATION   1.955   1.792   1.714 1.828 1.758 1.829 

TPS_TRP        1.076   1.110   1.077 1.057 1.118 1.081 

HEUREDEP       1.058   1.154   1.232 1.051 1.161 1.173 

ZONERES_3    971.539 127.994 227.861 Infinite  Infinite Infinite 

ZONEORIG_3   970.732 128.226 228.399 Infinite  Infinite Infinite 
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Fig. 12: Correlation matrice for databases of different motives in 2002 and 2010 

G10_HW G02_HW 

G10_HS G02_HS 

G10_HL G02_HL 
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The correlation matrices and variance inflation factors (GVIF) show the high correlations between 
size and number of children above 6 years old, driving license and car availability, origin zone and 
residence zone, PCS group and education. 

In studies about travel mode choice, a number of children above 6 years old, driving license, 
residence zone and PCS group appears to be less important than size, car availability, origin zone 
and education. So, we remove these variables from the database to avoid unwanted influence on 
our regression models. 

Below is the table of final variable selection and variable definition of our research: 

Table 17 
Variable definition for model estimations 
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Name  Symbol  Unit  Description  

Mode – single trips 

MODE 

 =1, if car 
=2, if public transport 
=0, others 

Mode – four-trip 
loops 

MODEB4 

 =1, if car 
=2, if public transport 
=3, if multimodal 
=0, others 

Gender 
SEXE         

 =1, if female 
=0, otherwise 

Age AGE          Years  Age of individuals 

Principal occupation 

OCCU1        

 =1, if full-time worker 
=2, if part-time worker 
=3, if pupil or student 
=0, otherwise 

Education level 

EDU          

 =1, if maternal or primary school 
=2, if secondary school 
=3, if high school 
=4, if university or higher 
=0, if not educated 

Car availability 
VPDISPOOK    

 =1, if own at least one car 
=0, otherwise 

HH size SIZE         Person  Number of people a household has 

Number of men NBHOMME      Person  Number of men a household has 

Number of women NBFEMME      Person  Number of women a household has 

Number of cars of HH MOTORISATION Car  Number of cars a household owns 

Travel time 
TPS_TRP      

Minute  Duration of time which individuals 
spend during their trips 

Departure time 
HEUREDEP     

Hour  Hour of the time when individuals 
start their trips 

Origin zone of trip 

ZONEORIG_3   

 Zone where individuals leave from 
=1, city-center 
=2, sub-urban 
=3, peri-urban 
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Destination zone of 
trip 

ZONEDEST_3   

 Zone where individuals go to 
=1, city-center 
=2, sub-urban 
=3, peri-urban 

The multinomial Logit estimations and the evolutions between 2002 and 2010 are then built based 
on these variables, using the mLogit package (Croissant, Y., 2015). First, we consider the 
estimations and the evolutions of single trips with three motives (home-work, home-shopping and 
home-leisure) and then, estimations and the evolutions of four-trip loops with three level of 
complexity (low, moderate and high). However, a number of observations of the low-complexity 
level is very small (41 for Grenoble 2002 and 59 for Grenoble 2010), so, we eliminate this level 
in our results for four-trip loops. 

 Single trips 

3.2.1 Model estimation 

For each motive of single trips, we estimate two models: the first one uses only socio-demographic 
variables (household and individual characteristics) while the second one uses both socio-
demographic and trip characteristic variables. However, we should be careful when adding trip 
characteristic variables to socio-demographic variables to create the second model. Added trip 
variables can change the significant level of available socio-demographic variables. We propose 
to add them one by one to the model and observe the change of significant level of available socio-
demographic variables, thus, we can find interdependency of variables in the model and then 
decide whether one variable should be used or not. 

Grenoble 2010: 

The results of the multinomial logit model estimation (Table 1) show that: 

Based on maximum log-likelihood, AIC and BIC criterions, the models with household, 
individual, and trip variables are found to be better than models with household and individual 
variables only. Therefore, these models will be used to analyze the evolutions in Grenoble between 
2002 and 2010. 

Number of cars of household, number of women, number of men, origin zones: sub-urban and 
peri-urban and destination zone: sub-urban are found to be significant in all the three models 

Car availability and travel time are revealed to be important in home-work and home-shopping 
trips while departure time is significant in home-shopping and home-leisure trips. 

Education is found to be characteristic variables for home-work trips, household size is 
characteristic variable for home-shopping trips while occupation: pupil & student is characteristic 
variable for home-leisure trips 
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The IIA tests (Table 2) show that the substitutions between car and PT are not the same in the 
model with other modes and models without other modes for all the three motives. The 
substitutions between the car and other modes are the same for home-shopping and home-leisure 
but different for home-work trips. The substitutions between PT and other modes are the same for 
all the three motives. 

This revealed many risks for forecasting the substitutions between car and PT for the three motives 
and between the car and other modes for home-work trips. 

Grenoble 2002: 

The results of the multinomial logit model estimation (Table 3) show that: 

Both the three model selection criterions (maximum log-likelihood, AIC, and BIC) reveal that the 
models with household, individual and trip variables are better than models with household and 
individual variables only. Therefore, we will use these models to analyze the evolutions in 
Grenoble between 2002 and 2010. 

Age, car availability, number of cars of household, travel time, origin zones (sub-urban, peri-
urban) are found to be determinants in all the three models 

Destination zone: sub-urban is found to be important in home-work and home-shopping trips, 
destination zone: peri-urban is significant in home-work and home-leisure trips while occupation: 
pupil & student and departure time are significant in home-shopping and home-leisure trips 

Number of women and number of men are found to be characteristic variables for home-work 
trips, Education is characteristic variable for home-shopping trips while household size and 
occupation: full-time are characteristic variables for home-leisure trips 

Similar as in 2010, The IIA tests (Table 4) show that the substitutions between car and PT are not 
the same in the models with other modes and models without other modes for all the three motives. 
Conversely, the substitutions between the car and other modes are the same for all the three 
motives. The substitutions between PT and other modes are the same for home-shopping and 
home-leisure but different for home-work trips. 

This revealed many risks for forecasting the substitutions between car and PT for all the three 
motives, between PT and other modes for home-work trips. 

3.2.2 Mode choice evolution 

In order to see the evolutions in Grenoble between 2002 and 2010, we consider three aspects: the 
evolution of mode share, evolution of elasticity and evolution of willingness to wait. 
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Evolution of mode share: the figure shows that car use decreased slightly in 2010 in comparison 
to 2002 for all the three motives: home-work, home-shopping and home-leisure. On the contrary, 
public transport and other modes choice increased slightly for all the three motives. By modes, car 
share is highest for home-work, followed by home-shopping and then home-leisure trips in both 
2002 and 2010. However, this is not true for public transport. PT share of home-shopping is the 
highest among all the three motives in 2002, but it’s replaced by home-work in 2010. 

 

Fig. 13: Mode share by year and by motive 

Evolutions of elasticity and willingness to wait: The significance level of travel time for models 
of home-leisure trips in 2002 and 2010 is not high. So, we don’t consider willingness to wait for 
these models. 
 

We divided variables into 2 groups: decisive variables and important but not decisive variables. 
For decisive variables such as car availability, a number of cars of household, travel time, departure 
time, origin zones and destination zones, we consider both elasticity and willingness to wait. For 
less important variables with a low level of significance, the willingness to wait is meaningless. 
we consider only their elasticity. 

The calculation details of elasticity and willingness to wait for single trips in 2002 and 2010 can 
be found in Table 5 and Table 6. Here are the evolutions extracted from the results. 

SOCIO-DEMOGRAPHIC DETERMINANTS: 

Gender: we can’t find differences in car use between men and women in 2002 and 2010. This 
variable appeared not to be important in our models. 
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Age: In 2002, age is one of quite important variables for both the three motives, older people are 
less likely to use the car than younger people. However, its role decreased significantly in 2010. 
We can’t find these differences anymore. 

 

Fig. 14: Elasticity of probability of car choice to age by motive and by year 

Occupation: occupation is a quite important variable, especially full-time workers, pupils, and 
students. Full-time workers are less likely to use the car for home-leisure trips while pupil and 
students are less likely to use the car for both home-shopping and home-leisure trips in 2002. 
However, its contribution to car use decreased significantly in 2010 where we can only find the 
negative influence of students and pupils on car use of home-leisure trips. 

  

Fig. 15: Elasticity of probability of car choice to full-time workers (left) and pupils and students 
(right) by motive and by year 

Education: is a quite important variable for home-shopping trips in 2002 where high educated 
people are less likely to use the car than low-educated people. However, its role switched from 
home-shopping to home-work trips in 2010 where high educated people are less likely to use the 
car for home-work trips. 
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Fig. 16: Elasticity of probability of car choice to education level by motive and by year 

Car availability: is one of the crucial variables in our models where people with cars are more 
likely to use them for traveling than people without cars. However, the importance of car 
availability decreased between 2002 and 2010 for home- shopping and home-leisure trips where 
elasticity was down from 0.174% to 0.124% for home-shopping and from 0.141% to 0.072% for 
home-leisure. As well as the decrease of elasticity, consumer’s willingness to wait was down from 
9.606 to 8.787 for home-shopping trips. Conversely, car availability increased its role in home-
work trips with an increase of both elasticity and willingness to wait, from 1.584% to 1.876% and 
from 23.924 to 48.199 respectively. 

  

Fig. 17: Elasticity of probability of car choice to car availability (left) and willingness to wait of 
car availability (right) by motive and by year 

Household composition: in 2002, household size negatively affect car use of home-leisure trips 
while a number of men and number of women have negative influences on car use of home-
working trips. In 2010, the influence of household size switched from home-leisure to home-
shopping trips while a number of women and number of men increased its role on both the three 
motives. 
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Fig. 18: Elasticity of probability of car choice to car household size (top left), number of men 
(top right) and number of women (bottom) by motive and by year 

Number of cars of household is one of the most important variables for car use where the more 
number of cars a household owns, the more likely members of the household will use the car for 
traveling. Its role increased slowly for home-shopping trips in terms of elasticity and willingness 
to wait, but was quite stable for home-work and home-leisure trips between 2002 and 2010. 

  

Fig. 19: Elasticity of probability of car choice to number of cars of household (left) and 
willingness to wait of number of cars of household (right) by motive and by year 
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TRIP CHARACTERISTICS: 

Travel time is a decisive variable for home-shopping and home-work rather than home-leisure 
trips. The longer the travel time of home-work and home-shopping trips is, the more likely people 
will use the car. However, its role was slightly down for home-shopping and significantly down 
for home-work trips between 2002 and 2010 

 

Fig. 20: Elasticity of probability of car choice to travel time by motive and by year 

Departure time is a crucial variable for home-shopping and home-leisure trips. People leaving 
home late are more likely to use cars. Between 2002 and 2010, its contribution to home-shopping 
trips decreased slightly while its influence on home-leisure trips increased slowly. 

 

Fig. 21: Elasticity of probability of car choice to departure time (left) and willingness to wait of 
departure time (right) by motive and by year 

Origin zone of a trip is a quite important variable for all the three motives.  However, for home-
leisure trips, the roles of sub-urban and peri-urban were significantly down for both elasticity and 
willingness to wait between 2002 and 2010. For home-shopping trips, its role was slowly down in 
peri-urban and slightly up in sub-urban. The trends in home-work trips are opposite to the ones in 
home-shopping trips where its contribution increases slowly in peri-urban and decreases 
significantly in sub-urban. 
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Fig. 22: Elasticity of probability of car choice to origin zone (left) and willingness to wait of 
origin zone (right) by motive and by year 

The destination zone, especially sub-urban, is a quite important variable for home-work and 
home-shopping, people going to sub-urban for home-work and home-shopping are more likely to 
use cars than to other zones. However, its role was slightly down between 2002 and 2010. 

  

Fig. 23: Elasticity of probability of car choice to destination zone (left) and willingness to wait of 
destination zone (right) by motive and by year 

 Four-trip loops 

3.3.1 Model estimation 

Grenoble 2010: 

The results of the multinomial logit model estimation (Table 7) show that 

The maximum log-likelihood and the AIC criterions show that among the three models, the models 
with household, individual, trip characteristic and loop variables are best ones, followed by the 
models with household, individual and trip characteristic variables and then the models with 
household and individual variables only. However, the BIC criterion (where added variables are 
penalized higher than the others) reveals that for moderate-complexity loops, the models with 
household, individual and trip characteristic variables are the best ones while for high-complexity 
loops, the models with only household and individual variables are the favorite ones. 
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Occupation (full-time, part-time and pupil & student), car availability, number of cars of HH, 
travel time, origin zones (sub-urban and peri-urban) and at least one working trip are found to be 
determinants for both the two models 

Number of men, number of women, destination zone: sub-urban and at least one accompanying 
trip are found to be characteristic variables for moderate-complexity 4-trip loops while education, 
departure time, and destination zone: peri-urban are found to be characteristic variables for high-
complexity 4-trip loops 

The IIA tests (table 8) show that the substitutions between car and PT are not the same in the 
models with other modes and models without other modes for all the two complexity levels of trip 
loops. Conversely, the substitutions between the car and other modes and between PT and other 
modes are the same for both the two complexity levels. 

This revealed many risks for forecasting the substitutions between car and PT for all the three 
motives. 

Grenoble 2002: 

The results of the multinomial logit model estimation (Table 9) show that 

In term of preferred models among the three estimated ones, the conclusions are the same as in 
Grenoble 2010 where the maximum log-likelihood and the AIC criterions show that the models 
with household, individual, trip characteristic and loop variables are best ones while the BIC 
criterion reveals two different conclusions: the models with household, individual and trip 
characteristic variables are the best ones for moderate-complexity loops while the models with 
only household and individual variables are the favourite ones for high-complexity loops. 

Occupation: pupil & student, car availability, household size, number of cars of HH, travel time, 
origin zones (sub-urban and peri-urban) and at least one accompanying trip are found to be 
determinants for both the two models 

Occupation: full-time is the unique characteristic variable for moderate-complexity 4-trip loops 
while age and occupation: part-time are found to be characteristic variables for high-complexity 
4-trip loops 

The IIA tests (table 10) show that the substitution between car, PT and other modes are the same 
for moderate-complexity trip loops. Conversely, the substitutions between car and PT and between 
PT and other modes are not the same for the high-complexity level. The substitution between the 
car and other modes is the unique one being the same for the high-complexity level. 

This revealed many risks for forecasting the substitutions between car and PT, between PT and 
other modes for the high-complexity trip loops. 

3.3.2 Mode choice evolution 
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In order to see the evolution of four-trip loops in Grenoble between 2002 and 2010, we consider 
three aspects: the evolution of mode share, evolution of elasticity and of willingness to wait. 

Evolution of mode share: the figure shows that car use decreased slightly while public transport 
use increased slowly in 2010 in comparison to 2002 for both the moderate-complexity and high-
complexity trips. Multi-modal share decreased slightly for high-complexity four-trip loops and 
increased slowly for moderate-complexity four-trip loops. On the contrary, the share of other 
modes increased slowly for high-complexity four-trip loops and decreased slightly for moderate-
complexity four-trip loops. 

 

Fig. 24: Mode share by Mode, complexity level of trip loop and by year 

 

Evolution of elasticity and willingness to wait: 

The calculation details of the elasticity and the willingness to wait can be found in table 11 and 
table 12. Below are their evolutions extracted from the results. 

SOCIO-DEMOGRAPHIC: 

Gender: gender appears to be not an important variable in our model. We can’t see the difference 
in car use between men and women 

Age: age was found to be a quite important variable for high-complexity four-trip loops in 2002 
where older people are less likely to use car than younger people, but it appeared to be insignificant 
in 2010 
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Fig. 25: Elasticity of probability of car choice to age by loop complexity and by year 

Occupation (full-time, part-time and pupil & student): 

  

Fig. 26: Elasticity of probability of car choice to occupation and willingness to wait by loop 
complexity and by year 

 

Occupation: pupil and student is one of the most important variables for both moderate and 
high-complexity four-trip loops in 2002 and 2010 where they are less likely to use the car for 
traveling. 

 

Fig. 27: Elasticity of probability of car choice to pupils and students by loop complexity and by 
year 
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Occupation: full-time workers is found to be important in 2002 for only moderate complexity 
four-trip loops but appeared to be significant for both moderate and high-complexity four-trip 
loops in 2010. People of this type of occupation are less likely to use the car for traveling than 
other occupations. 

 

Fig. 28: Elasticity of probability of car choice to full-time workers by loop complexity and by 
year 

Part-time workers: In contrast to full-time workers, part-time workers is found to be important 
in 2002 for only high-complexity four-trip loops but appeared to be significant for both moderate 
and high-complexity four-trip loops in 2010. People of this type of occupation are less likely to 
use the car for traveling than other occupations. 

 

 

Fig. 29: Elasticity of probability of car choice to part-time workers by loop complexity and by 
year 

Education: is not a significant variable in 2002 for the both models but revealed to be quite 
important for high-complexity 4-trip loops in 2010. High-educated people are less likely to use car 
for high-complexity 4-trip loops than low-educated people 



  
 

51  

 

Fig. 30: Elasticity of probability of car choice to education level by loop complexity and by year 

Car availability is one of the crucial variables in our models where people with cars are more 
likely to use them for traveling than people without cars. 

Between 2002 and 2010, the contributions of car availability decreased slightly for moderate-
complexity trip loops and significantly for high-complexity trip loops in term of both elasticity 
and willingness to wait. 

  

Fig. 31: Elasticity of probability of car choice to car availability (left) and willingness to wait of 
car availability (right) by loop complexity and by year 

Household composition: 

Household size is a quite important variable in 2002 for both moderate and high-complexity four-
trip loops, the bigger the household size is, the less likely they will use the car for traveling. 
However, it appeared not be significant anymore in 2010. 
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Fig. 32: Elasticity of probability of car choice to household size by loop complexity and by year 

Number of women and number of men are not important variables in 2002 but appeared to be 
quite important for moderate-complexity 4-trip loops in 2010. The more number of men or women 
a household has, the less likely they will use car for moderate-complexity 4-trip loops 

  

Fig. 33: Elasticity of probability of car choice to number of men (left) and number of women 
(right) by loop complexity and by year 

Number of cars of household: is one of the most important variables in our models. Its 
contributions are quite stable over year, the more number of cars a household owns, the more likely 
members of the household will use car for traveling. However, there is a significant increase in 
willingness to wait of high-complexity loops and a significant decrease in moderate-complexity 
loops. 
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Fig. 34: Elasticity of probability of car choice to number of cars of household and willingness to 
wait of number of cars of household by loop complexity and by year 

TRIP CHARACTERISTIC: 

Travel time is one of the most important variables in both the two models, the longer the travel 
time of trips is, the more likely people use the car. Its role in car choice decreased slightly between 
2002 and 2010 for high-complexity trip loops and increased significantly for moderate-complexity 
trip loops 

 

Fig. 35: Elasticity of probability of car choice to travel time by loop complexity and by year 

Origin zone of a trip is one of decisive variables for all the two trip loops. People leaving from 
sub-urban and peri-urban zones are more likely to use the car than in center zones. However, 
leaving from sub-urban decreased significantly its contribution to car choice for both moderate 
and high complexity trip loops between 2002 and 2010. For loops starting from peri-urban, its role 
for moderate-complexity loops was still stable while this was down sharply with high complexity 
loops. The willingness to wait was decreasing for people leaving from both sub-urban and peri-
urban in 2010 in comparison to 2002. 
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Fig. 36: Elasticity of probability of car choice to origin zone (left) and willingness to wait of 
origin zone (right) by loop complexity and by year 

Destination zone: is found not to be a significant variable in 2002 for both the models. However, 
in 2010, destination zone:sub-urban appeared to be significant for moderate-complexity 4-trip 
loops while destination zone:peri-urban is found to be important for high-complexity 4-trip loops. 
People going to sub-urban for moderate-complexity 4-trip loops are more likely to use cars than 
to other zones while people going to peri-urban in moderate-complexity 4-trip loops are more 
likely to use cars than to other zones. 

LOOP VARIABLES 

Accompanying someone during 4-trip loops were found to be very important variable in 2002 for 
both the models. If there is at least one trip catching up or dropping off someone in the loops, 
people are likely to use car. However, its role decreased slightly for moderate-complexity 4-trip 
loops and dramatically for high-complexity 4-trip loops in 2010. Willingness to wait to accompany 
someone during the loops also decreased significantly over year. 

  

Fig. 37: Elasticity of probability of car choice to accompanying someone (left) and willingness 
to wait of accompanying someone (right) by loop complexity and by year 
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At least one working trip is not a significant variable in 2002 but appeared to be very important in 
2010 for both the models. if there is at least one trip for working in the loops, people are likely to 
use the car. 

  

Fig. 38: Elasticity of probability of car choice to at least one working trip and willingness to 
wait of at least one working trip by loop complexity and by year 

4. Conclusion 

In this research, we use the multinomial Logit model, a type of discrete choice models, to give the 
estimations for travel mode choice in Grenoble between 2002 and 2010 based on socio-economic 
variables (socio-demographic and trip characteristic). The estimations then allow us to analyze the 
evolution of the city by looking at the elasticity and the willingness to wait. The usual data 
problem, interdependency between variables, was eliminated by considering variance inflation 
factors (VIFs and GVIF) and correlation matrices of variables. 

The estimations allow us to give some following conclusions:  

For single trips, the number of cars of household is the unique determinant appearing to be crucial 
for all the three trip motives (home-work, home-shopping and home-leisure) and its contributions 
are quite stable between 2002 and 2010. Travel time appears to be a decisive determinant for both 
home-work and home-shopping. However, its role decreased slightly for home-shopping and 
significantly for home-work in 2010 in comparison to 2002. Car availability is the most important 
determinant for home-work trip and its contribution increased slightly over year. Education is also 
a very important variable for home-work, its contributions increased dramatically in 2010 in 
comparison to in 2002. Departure time appears to be the second most important determinant for 
home-leisure, just after the number of cars of household and furthermore, its role increased slightly 
over year. 
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For four-trip loops, a number of cars of household is also the most important determinants for both 
of two levels of trip loop complexity. Its contributions to moderate-complexity loops are a little 
higher than the ones to high-complexity but both of contributions are quite stable between 2002 
and 2010. Different from single trips, occupation: pupil & student appears to be the second most 
important determinant for both levels of trip loop complexity, especially for the moderate-
complexity level in 2002 and 2010. However, their contributions decreased slightly over year.  Car 
availability is still a very important determinant in mode choice even though we found a slight 
decrease of its contributions in 2010 in comparison to in 2002. Origin zones: sub urban and peri 
urban are two quite important variables, especially for the high-complexity level. However, its 
roles decreased significantly over year.  

Apart from these common important determinants, we found new variables that were not 
significant in 2002 but appeared to be important in 2010 like occupation: full-time and making a 
working trip during the loops. However, on the contrary to this term, there are several variables 
losing their positions over time like accompanying someone during the trip loops, decreased 
slightly for moderate-complexity level and dramatically for the high-complexity level or Age, 
decreased dramatically for both of two complexity levels. 

Besides, we find out something very strange that the important contributions of household size in 
2002 were replaced completely by a number of men and number of women of household in 2010. 
This might be related to the multicollinearity between these variables and need to be further 
investigated. 

From conclusions above, we recommend that in order to decrease car use and increase the use of 
other transport modes, we should: 

Firstly, reduce the rate of car ownership of each household and each individual. Secondly, upgrade 
public transportation networks to increase their average speed in comparison to cars’ as well as set 
up the limit speed inside the city for cars. Finally, keep continuing support pupils, students and 
full-time workers to use alternatives of cars like public transport or bikes.  
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There are several possible limitations that might cause potential impacts on our findings: in term 
of methods, the Haussmann-Mac Fadden test for the IIA assumption revealed that the rate of 
substitution between the car and public transport is dependent on the availability of other modes. 
I would recommend that a nested Logit or a mixed Logit should be implemented to avoid impacts 
of this assumption failure. In term of data, we eliminated several variables of poor quality (missing 
data, unreliable data etc.) or variables that are not available in both 2002 and 2010 like proximity 
to infrastructures, working zones and distances. I would recommend that we should take care of 
these variables in the future studies. Besides, we used continuous data for several variable 
definitions like age, education level, household composition, departure time and number of cars of 
household. Factoring these variables might change their significance levels in our models. In term 
of research scope, we considered only three principal motives of single trips, almost 50% of the 
data was eliminated, and only four-trip loops, almost 75-80% of data was eliminated. For future 
studies, other motives of single trips (studying, professional, etc.), and other loops of trip loops (2-
trip, 3-trip, 5-trip, etc.) should be taken into account. 
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7. Appendix 
Table 1 

Multinomial Logit model estimations for single trips, Grenoble 2010 
 

Model Estimation Home-work Home-shopping Home-leisure 

Dependent variables 
S1:HH & 
IND variable 

S2:S1+ trip 
variables 

S3:HH & 
IND variable 

S4:S3+ trip 
variables 

S5:HH & IND 
variable 

S6:S5+ trip 
variables 

Constant   0.857    -0.752    -0.817*   -2.764*** -0.629    -2.020*** 
Gender  0.232     0.271    -0.116    -0.136     0.171     0.148    
Age -0.009    -0.012(.)    0.001    -0.000    -0.001    -0.001    
Occupation: full-time -1.065(.)   -0.938    -0.381(.)   -0.420(.)   -0.092    -0.287    
Occupation: part-time -0.941    -0.658    -0.058    -0.055    -0.373    -0.468    
Occupation: pupil & student -1.448    -1.289    -0.410    -0.415    -0.490(.)   -0.744*   
Education -0.316*** -0.287*** -0.081    -0.048    -0.071    -0.042    
Car availability  2.448***  2.451***  0.419*    0.567*    0.334     0.326    
Household size   0.096     0.068     0.265***  0.263***  0.061     0.041    
Number of men -0.365*   -0.309(.)   -0.673*** -0.609*** -0.437**  -0.402**  
Number of women -0.504**  -0.489**  -0.425**  -0.418*   -0.367*   -0.321(.)   
Number of cars of HH  0.796***  0.697***  1.289***  1.117***  1.064***  0.925*** 
Travel time   0.050***   0.064***  -0.002    
Departure time   0.008      0.040*     0.075*** 
Origin zone: sub-urban   0.520**    0.740***   0.479**  
Origin zone: peri-urban   1.038***   1.689***   1.013*** 
Destination zone: sub-urban   0.592***   0.622***   0.317*   
Destination zone: peri-urban   0.405(.)    -0.218      0.107    
Log Likelihood -1300.6 -1106.3 -1768.7 -1475.9 -1491.9 -1377.5 
AIC 2649.2 2284.6 3585.4 3023.8 3031.8 2826.9 
BIC 2807.3 2521.8 3745.9 3264.5 3187.8 3060.8 

(.) 0.1, * 0.05, ** 0.01, ***0.001 level of significance 

 

Table 2 
IIA test for multinomial Logit model of single trips, Grenoble 2010 

H0: IIA is held 
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Motive Alternative 
subset 

χ2(18,0.05) χ2 P-
value 

For or against H0 

Home-work Car and PT 28.869 35.444 0.0083 Against H0 

Car and 
others 

28.869 45.749 0.0003 Against H0 

PT and 
others 

28.869 -20.483 1 For H0 

Home-
shopping 

Car and PT 28.869 219.02 0 Against H0 

Car and 
others 

28.869 14.967 0.6642 For H0 

PT and 
others 

28.869 -338.55 1 For H0 

Home- 
leisure 

Car and PT 28.869 265.13 0 Against H0 

Car and 
others 

28.869 -6.6778 1 For H0 

PT and 
others 

28.869 -1.9004 1 For H0 

 

Table 3 
Multinomial Logit model estimations for single trips, Grenoble 2002 
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Model Estimation Home-work Home-shopping Home-leisure 

Dependent variables 
S1:HH & 
IND variable 

S2:S1+ trip 
variables 

S3:HH & 
IND variable 

S4:S3+ trip 
variables 

S5:HH & IND 
variable 

S6:S5+ trip 
variables 

Constant   0.470    -2.286**  -0.019    -2.128***  0.909*   -0.073    
Gender  0.121     0.159    -0.129    -0.171     0.156     0.141    
Age -0.015*   -0.016*   -0.011*   -0.012**  -0.022*** -0.023*** 
Occupation: full-time -0.218     0.149    -0.038     0.008    -0.448(.)   -0.499*   
Occupation: part-time -0.643    -0.344     0.075     0.135    -0.262    -0.385    
Occupation: pupil & student -0.986    -0.728    -0.924**  -0.922**  -1.082*** -1.304*** 
Education -0.091    -0.021    -0.128*   -0.049    -0.085    -0.085    
Car availability  2.014***  2.152***  0.658**   0.689**   0.639**   0.565**  
Household size   0.081     0.086     0.070     0.021    -0.206*** -0.225*** 
Number of men -0.407*   -0.428*   -0.229(.)   -0.184    -0.108    -0.101    
Number of women -0.354*   -0.389*   -0.209    -0.192    -0.189    -0.136    
Number of cars of HH  0.757***  0.778***  1.090***  0.928***  1.040***  0.877*** 
Travel time   0.089***   0.071***  -0.007*   
Departure time  -0.013      0.052**    0.065*** 
Origin zone: sub-urban   0.962***   0.489**    0.758*** 
Origin zone: peri-urban   0.636*     2.337***   1.429*** 
Destination zone: sub-urban   0.887***   0.802***  -0.061    
Destination zone: peri-urban   0.582*    -0.862(.)    -0.527*   
Log Likelihood -947.02 -810.46 -1372.2 -1160.2 -1322.2 -1234.9 
AIC 1942.0 1692.9 2792.3 2392.4 2692.3 2541.8 
BIC 2095.7 1923.4 2947.5 2625.2 2845.9 2772.1 

(.) 0.1, * 0.05, ** 0.01, ***0.001 level of significance 

 
Table 4 

IIA test for multinomial Logit model of single trips, Grenoble 2002 

H0: IIA is held 
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 Alternative 
subset 

χ2(18,0.05) χ2 P-value For or against H0 

Home-work Car and PT 28.869 77.245 0 Against H0 

Car and 
others 

28.869 -19974 1 For H0 

PT and others 28.869 36.194 0.0066 Against H0 

Home-
shopping 

Car and PT 28.869 200.45 0 Against H0 

Car and 
others 

28.869 -19.498 1 For H0 

PT and others 28.869 26.912 0.0806 For H0 

Home- leisure Car and PT 28.869 315.61 0 Against H0 

Car and 
others 

28.869 -4.4422 1 For H0 

PT and others 28.869 -20.782 1 For H0 

 

Table 5 
Estimated elasticity and willingness to wait for single trips, Grenoble 2010 

Model Estimation Home-work Home-shopping Home-leisure 

Dependent variables Elasticity 
Willingness 
to wait Elasticity 

Willingness 
to wait Elasticity 

Willingness 
to wait 

Gender   0.130  -5.335    -0.074   2.109      0.076 - 
Age  -0.501   0.236(.)   -0.047   0.014     -0.054 - 
Occupation: full-time  -0.755  18.459    -0.086   6.515(.)    -0.059 - 
Occupation: part-time  -0.101  12.947    -0.004   0.856     -0.028 - 
Occupation: pupil & student  -0.023  25.353    -0.043   6.435     -0.174* - 
Education  -0.892   5.652*** -0.121   0.755     -0.101 - 
Car availability   1.876 -48.199***  0.124  -8.787*     0.072 - 
Household size    0.187  -1.346     0.628  -4.087***   0.104 - 
Number of men  -0.310   6.076(.)   -0.540   9.443***  -0.312** - 
Number of women  -0.491   9.631**  -0.412   6.477*    -0.369(.) - 
Number of cars of HH   1.054 -13.703***  1.336 -17.311***   1.196*** - 
Travel time   0.996  -1.000***  0.904  -1.000***  -0.045 - 
Departure time   0.068  -0.165     0.477  -0.624*     1.101*** - 
Origin zone: sub-urban   0.226 -10.232**   0.325 -11.469***   0.200** - 
Origin zone: peri-urban   0.207 -20.425***  0.290 -26.177***   0.201*** - 
Destination zone: sub-urban   0.270 -11.656***  0.278  -9.649***   0.130* - 
Destination zone: peri-urban   0.048  -7.975(.)   -0.021   3.385      0.016 - 

(.) 0.1, * 0.05, ** 0.01, ***0.001 level of significance of coefficients in estimated models 

 

Table 6 



  
 

65  

Estimated elasticity and willingness to wait for single trips, Grenoble 2002 
 

Model Estimation Home-work Home-shopping Home-leisure 

Dependent variables Elasticity 
Willingness 
to wait Elasticity 

Willingness 
to wait Elasticity 

Willingness 
to wait 

Gender  0.075    -1.770    -0.092    2.391     0.070 - 
Age -0.641     0.177*   -0.610    0.179**  -0.922*** - 
Occupation: full-time  0.117    -1.657     0.002   -0.120    -0.100* - 
Occupation: part-time -0.055     3.827     0.011   -1.882    -0.021 - 
Occupation: pupil & student -0.018     8.099    -0.129   12.854**  -0.430*** - 
Education -0.059     0.238    -0.110     0.685*    -0.171 - 
Car availability  1.584  -23.924***  0.174    -9.606**   0.141** - 
Household size   0.249    -0.961     0.057    -0.301    -0.623*** - 
Number of men -0.395     4.324*   -0.183     2.679    -0.129 - 
Number of women -0.426     4.767*   -0.167     2.565    -0.089 - 
Number of cars of HH  1.230    -8.650***  1.110  -12.940***  1.110*** - 
Travel time  1.759    -1.000***  0.916    -1.000*** -0.139* - 
Departure time -0.111     0.148     0.638    -0.732**   0.967*** - 
Origin zone: sub-urban  0.410  -10.693***  0.209   - 6.827**   0.336*** - 
Origin zone: peri-urban  0.142    -7.068*    0.412  -32.578***  0.264*** - 
Destination zone: sub-urban  0.380    -9.860***  0.370  -11.186*** -0.024 - 
Destination zone: peri-urban  0.075    -6.478*   -0.076   12.021(.)   -0.070* - 

(.) 0.1, * 0.05, ** 0.01, ***0.001 level of significance of coefficients in estimated models 

 

Table 7 
Multinomial Logit model estimations for four-trip loops, Grenoble 2010 
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Model Estimation Moderate-complexity loops High-complexity loops 

Dependent variables 
S1:HH & 
IND variable 

S2:S1+ trip 
variables 

S3:S2+ loop 
variables 

S4:HH & IND 
variable 

S5:S4+ trip 
variables 

S6:S5+ loop 
variables 

Constant   1.003    -0.034    -0.828    -0.125    -1.808    -2.536(.)   
Gender -0.241    -0.215    -0.336    -0.040    -0.043    -0.025    
Age -0.005    -0.010    -0.005    -0.010    -0.014    -0.011    
Occupation: full-time -1.660*** -2.045*** -2.575*** -1.336*   -1.327*   -2.543*** 
Occupation: part-time -1.695**  -1.943**  -2.466*** -0.947    -0.859    -1.861*   
Occupation: pupil & student -2.921*** -3.290*** -2.733*** -2.274**  -2.342**  -2.004**  
Education  0.067     0.126     0.136    -0.286(.)   -0.297(.)   -0.312*   
Car availability  2.003***  2.068***  1.992***  2.516***  2.672***  2.616*** 
Household size  -0.110    -0.090    -0.122    -0.109    -0.077    -0.156    
Number of men -0.743**  -0.798**  -0.748**   0.088     0.045     0.096    
Number of women -0.834*** -0.934*** -0.892*** -0.033    -0.136    -0.068    
Number of cars of HH  1.455***  1.347***  1.358***  1.354***  1.131***  1.159*** 
Travel time   0.054***  0.057***   0.035*    0.030*   
Departure time  -0.030    -0.005      0.096     0.152*   
Origin zone: sub-urban   0.647*    0.636*     1.276***  1.308*** 
Origin zone: peri-urban   1.707***  1.725***   1.944***  1.968*** 
Destination zone: sub-urban   0.923**   0.848**   -0.085    -0.092    
Destination zone: peri-urban   0.300     0.209     -0.710    -0.638    
At least one working trip    0.957*      1.760**  
At least one accompanying trip    1.156**     0.736    
Log Likelihood -1051.8 -965.4 -956.7 -635.7 -597.7 -589.3 
AIC 2175.5 2038.9 2033.5 1343.4 1303.4 1298.7 
BIC 2400.4 2376.2 2408.3 1553.6 1618.7 1649.0 

(.) 0.1, * 0.05, ** 0.01, ***0.001 level of significance 
 

Table 8 

IIA test for multinomial Logit model of four-trip loops, Grenoble 2010 

H0: IIA is held 

Complexity 
level of loop 

Alternative 
subset 

χ2(20,0.05) χ2 P-value For or against H0 

Moderate  Car and PT 31.410 33.227 0.0318 Against H0 

Car and 
others 

31.410 -298.01 1 For H0 

PT and others 31.410 25.965 0.167 For H0 

High  Car and PT 31.410 41.379 0.003 Against H0 

Car and 
others 

31.410 -5.802 1 For H0 

PT and others 31.410 10.778 0.9518 For H0 
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Table 9 
Multinomial Logit model estimations for four-trip loops, Grenoble 2002 

 
Model Estimation Moderate-complexity loops High-complexity loops 

Dependent variables 
S1:HH & 
IND variable 

S2:S1+ trip 
variables 

S3:S2+ test 
variables 

S4:HH & IND 
variable 

S5:S4+ trip 
variables 

S6:S5+ test 
variables 

Constant   1.700.   -0.803    -9.094     1.865     2.699     3.527    
Gender -0.156    -0.208    -2.426     0.012    -1.113    -1.908    
Age -0.021(.)   -0.021(.)   -1.914    -0.043**  -5.377*** -5.165*** 
Occupation: full-time -0.997*   -0.980(.)   -6.235    -0.468    -3.904    -5.504    
Occupation: part-time -0.819    -0.526    -1.615    -1.348    -1.828*   -2.154*   
Occupation: pupil & student -3.191*** -3.000*** -2.752*** -2.582*** -3.221*** -2.993*** 
Education -0.300(.)   -0.225    -2.096    -0.000    -3.075     3.770    
Car availability  1.996***  2.298***  2.225***  3.283***  3.888***  3.935*** 
Household size  -0.347**  -0.316**  -3.945*** -0.418**  -4.494**  -5.669**  
Number of women -0.227    -0.222    -1.622     0.164    -2.781    -1.705    
Number of men -0.155    -0.181    -1.312    -0.244    -1.561     1.732    
Number of cars of HH  1.488***  1.276***  1.365***  1.367***  1.093***  1.131*** 
Travel time   0.033*    3.998**    3.672(.)    4.076*   
Departure time   0.104     6.491      9.046     5.192    
Origin zone: sub-urban   1.031**   1.106**    1.705***  1.686*** 
Origin zone: peri-urban   1.773**   1.714**    4.422***  4.225*** 
Destination zone: sub-urban   0.425     4.166      4.681     4.520    
Destination zone: peri-urban   0.326     5.090     -1.890    -1.776    
At least one working trip   -3.688       1.543    
At least one accompanying trip    1.914**     1.518**  
Log Likelihood -769.2 -693.6 -683.3 -430.6 -390.6 -382.8 
AIC 1610.4 1495.2 1486.7 933.3 889.3 885.7 
BIC 1826.2 1818.9 1846.4 1132.6 1188.3 1217.9 

 (.) 0.1, * 0.05, ** 0.01, ***0.001 level of significance 
 

Table 10 

IIA test for multinomial Logit model of four-trip loops, Grenoble 2010 

H0: IIA is held 



  
 

68  

Complexity 
level of loop 

Alternative 
subset 

χ2(20,0.05) χ2 P-value For or against H0 

Moderate  Car and PT 31.410 22.771 0.3002 For H0 

Car and 
others 

31.410 -31.941 1 For H0 

PT and others 31.410 16.023 0.7152 For H0 

High  Car and PT 31.410 253.35 0 Against H0 

Car and 
others 

31.410 -74.635 1 For H0 

PT and others 31.410 138.47 0 Against H0 
 

Table 11 
Estimated elasticity and willingness to wait for 4-trip loops, Grenoble 2010 

Model Estimation Moderate-complexity High-complexity 

Dependent variables Elasticity 
Willingness 
to wait Elasticity 

Willingness 
to wait 

Gender -0.171   5.884    -0.012 - 
Age -0.187   0.095    -0.491 - 
Occupation: full-time -0.834  45.030*** -0.786*** - 
Occupation: part-time -0.142  43.124*** -0.170* - 
Occupation: pupil & student -1.143  47.792*** -0.559** - 
Education  0.290   -2.390    -0.711* - 
Car availability  0.655   -34.835***  0.841*** - 
Household size  -0.383   2.149    -0.424 - 
Number of women -0.874  15.596*** -0.066 - 
Number of men -0.781  13.081**   0.094 - 
Number of cars of HH  1.896   -23.741***  1.544*** - 
Travel time  0.930    -1.000***  0.512* - 
Departure time -0.044   0.092     1.340* - 
Origin zone: sub-urban  0.272   -11.128*    0.553*** - 
Origin zone: peri-urban  0.372   -30.163***  0.385*** - 
Destination zone: sub-urban  0.395   -14.840**  -0.040 - 
Destination zone: peri-urban  0.025    -3.666    -0.075 - 
At least one working trip  0.331   -16.736*    0.605** - 
At least one accompanying trip  0.093   -20.210**   0.112 - 
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      (.) 0.1, * 0.05, ** 0.01, ***0.001 level of significance of coefficients in estimated models 
 

Table 12 
Estimated elasticity and willingness to wait for 4-trip loops, Grenoble 2002 

Model Estimation Moderate-complexity High-complexity 

Dependent variables Elasticity 
Willingness to 
wait Elasticity 

Willingness to 
wait 

Gender -0.119   6.068    -0.091 - 
Age -0.611   0.478    -1.933*** - 
Occupation: full-time -0.209  15.595    -0.137 - 
Occupation: part-time -0.008   4.039    -0.169* - 
Occupation: pupil & student -1.237  68.849*** -1.059*** - 
Education -0.397   5.243     0.007 - 
Car availability  0.759   -55.662***  1.183*** - 
Household size  -1.276   9.867*** -1.744** - 
Number of women -0.149   4.058    -0.015 - 
Number of men -0.130   3.283     0.001 - 
Number of cars of HH  1.879   -34.159***  1.488*** - 
Travel time  0.631    -1.000**   0.656* - 
Departure time  0.541    -1.623     0.460 - 
Origin zone: sub-urban  0.494  -27.661**   0.679*** - 
Origin zone: peri-urban  0.349   -42.883**   0.900*** - 
Destination zone: sub-urban  0.193   -10.421     0.199 - 
Destination zone: peri-urban  0.066   -12.732    -0.234 - 
At least one working trip -0.133   9.225     0.048 - 
At least one accompanying trip  0.103   -47.873**   0.249** - 

(.) 0.1, * 0.05, ** 0.01, ***0.001 level of significance of coefficients in estimated models 
 

 


	Introduction:
	After a continuous increase of car use in most of the metropolitans of the OECD (Organization for Economic Co-operation and Development), we witness a reversal trend in many countries with the decrease of the car use according to measured indicators a...
	Many factors have been used to explain this evolution such as population age, petrol price, congestion, travel policy, alternative modes and environmental concern.
	However, which factors are the most important ones for single trips of an individual? Are their contributions to mode choice the same among different trip motives, and over time? And if we consider trips of each individual as a trip chain instead of i...
	In order to answer these questions, we focus on two types of trips: single trips where we consider only one trip for each individual, and four-trip loops, a type of trip chains consisting of four trips in a chain and the first trip is leaving from hom...
	The studied data is based on two local household-trip surveys (realized in 2002 and 2010) in Grenoble, a medium city in France – an OECD country. Each survey is a part of the French national household-trip surveys (EMD) that have been carried out regu...
	The most usual discrete choice model, multinomial Logit, will be used to give estimations based on commonly studied socio-economic variables: socio-demographic (gender, age, occupation, education, car availability, household size, number of women, num...
	From the obtained results, we hope to be able to identify and quantify the contribution of each explanatory factor to the evolution of the mode choice behaviors in Grenoble between 2002 and 2010. Thus, propose authorities of the city solutions to chan...
	In the first section, we review the literature of travel mode choice to see common approaches to this problem. In the second section, we introduce the research methods that allow to give estimations and to calculate the indicators of the evolution, an...
	1. Economical literature of travel mode choice
	1.1 Introduction to travel mode choice problem
	1.1.1 Travel mode choice definition
	Every day, people spend a lot of time moving from one place to another place with many different trip motives such as working, studying and shopping. There are many transport modes serving this mobility demand like the car, the public transport, and t...
	Choosing one of available travel modes (also called travel mode choice) is a very complex process, depending on objective and subjective, conscious and unconscious factors. The below figure describes the current view of the theory of choice (McFadden,...
	Fig. 1: The choice process (McFadden, D., 2000)
	The model shows that the choice process is a decision-making process based on perceptions and beliefs built by available information and memory from past experiences, influenced by motivation, affect, attitudes and preferences.
	Perception is the state of being or process of becoming aware of something through the senses. Motivation is related to the willingness to do something toward the perceived goals. Affect refers to the emotional state of the decision-maker. Attitude is...
	In fig.1, the context of the current decision is based on available information, experience, and memory in the past. As a loop, the result of this choice will influence the decision-making in the future. The heavy arrows of the model correspond to the...
	Based on the model of the choice process, many different approaches to travel mode choice have been considered. De Witte, A. et al., 2013, summarized current approaches of the travel mode choice problem consisting of rational, socio-geographical, soci...
	 The rational approach assumes that travelers make their decision in mode choice based on the utility maximization (minimizing travel cost and travel time). This microeconomic approach deals with all type of available information of alternatives, ind...
	 Socio-geographical approach: in comparison to the first approach, this approach adds spatial factors into the decision-making process with the assumption that people travel not only for the sake of it but also to do activities distributed in space. ...
	 The socio-psychological approach focuses on the subjective components, especially individuals’ attitudes. Thence, intentions and habits are key elements of this approach.
	 The multi-disciplinary approach is most used nowadays giving the researchers a multi-discipline view to deal with the travel mode choice problem. This approach is the combination of all previous approaches, considering four different factor groups: ...
	Quantitative studies based on these variables been developed through many stages since the first model of Warner, S., 1962. Researchers try to use mathematical formulas to model the travelers’ behaviors from the data of surveys, thence, use these mode...

	1.1.2 Travel mode choice determinants
	A mathematical model of travel mode choice problem usually consists of one or several explained variables (also called dependent variables) and many explanatory variables (also called independent variables). Each independent variable has different inf...
	Fig. 2: Statistics of frequently studied determinants in travel mode choice  (De Witte, A. et al., 2013)
	In her research, De Witte categorized the determinants into 4 groups according to the multi-disciplinary approach (socio-demographic, spatial, journey characteristic and socio-psychological determinants) that we presented above, and then, she summariz...
	Below is our summary of her article:
	SOCIO-DEMOGRAPHIC
	Socio-demographic determinants consist of age, gender, education, employment, income, household composition and car availability.
	Age
	Two different conclusions were found in De Witte’s paper: First, the physical ability to travel decreases when people become older and so, the older people are, the more public transport they use. Second, based on several other papers, he found that c...
	Gender
	In term of gender, De Witte found two different views: The first one showed that men are more likely to use the car while women are likely to use the public transport. The second one revealed that women are more likely to use cars that are convenient ...
	Education
	Education is found to be correlated with employment and income. High educated people have higher incomes than low educated people. Therefore, they are more likely to use cars. However, several other papers showed the opposite that higher educated peop...
	Employment
	Employment has a direct connection with income and car ownership. Full-time workers tend to use more public transport while part-time workers are likely to use cars for traveling. Besides, employed people are more likely to use cars while unemployed p...
	Income
	Income has a positive influence in car use and negative influence in public transport use. People with high income tend to travel by car instead of public transport while people with low income are highly influenced by the transport cost. However, in ...
	Household composition
	The household composition has very big impact on a number of cars per household. Increasing the number of members in a household especially number of children is likely corresponding to an increase of car use and a decrease of public transport use.
	Car availability
	Increasing the motorization rate (number of cars per household) reduces the competition for car use among household members and therefore, increases the car use, decreases the use of shared-ride and public transport means. Households without car likel...
	SPATIAL
	Spatial determinants characterize transportation networks and services consisting of density, diversity, proximity to infrastructures and services, the frequency of public transport and parking.
	Density
	Density is the ratio between a number of inhabitants and living area. It has a very strong negative influence in the average trip distance, thence, stimulates the public transport, bike and walking. Besides, public transport has been found to have hig...
	Diversity
	Diversity is related to the land-use mix such as residence, institution, industry, commerce etc. Land-use mixtures tend to reduce the car use and increase public transport use.
	Proximity to transport infrastructures and services
	Proximity to transport infrastructures and services is related to the accessibility to road networks and public transport infrastructure. This determinant has direct connections to density and diversity at both the origin and destination. Accessibilit...
	Frequency of public transport
	High frequency of public transport creates a comparative advantage with regard to other modes. As a result promotes public transport use. In contrary, poor public transport services lead to lower public transport use.
	Parking
	Parking is a quite important determinant. In most of the case, people tend to use cars when they are assured to have a parking space, especially free one. Decreasing the number of parking lots in the city is likely to decrease the car use and increase...
	TRIP CHARACTERISTIC:
	Trip characteristic determinants consist of travel motive, travel distance, travel time, travel cost, departure time, trip chaining, weather condition, information and interchange.
	Travel motive
	Travel motives can be divided into three main types: commuting, professional and leisure. Commuting trips, especially school trips, share higher use of public transport than other motives while professional trips have the highest share of car use. Wit...
	Travel distance
	People tend to choose faster transport means for longer distance trips. In Brussels, the car is the most used mode for the short trip (less than 30 km). For longer distance, public transport is likely to be used for commuting trips. For access mode of...
	Travel time
	Travel time depends on the travel motive (working, studying, leisure etc.).  People tend to use public transport for longer travel time trips and car for shorter travel time trips. Increasing the travel time of public transport will decrease its deman...
	Travel cost
	Consumers are quite sensitive to changes in price, especially with public transport. If a public transport pass is owned, its use will increase. The increase in public transport fare in relation to car use expenses will decrease its use and increase c...
	Departure time
	During the off-peak hours, due to low congestion, cars are more attractive than public transport. Besides, departure time is related to travel motive. For working or studying trips, people must travel during peak hours. Therefore, they are more likely...
	Trip chaining
	Model choice is determined by all trips in the chain between the origin and the destination. The trip chaining is only significant for multiple-chain trips. Public transport chains are found to be more complex than car chains and so, for multiple-chai...
	Weather condition
	Weather rarely appeared in papers about travel mode choice. Trips made by bicycles are more likely to be shifted to other modes in winter or in bad weather. Besides, 20% of the main employees change their mode of travel in summer.
	Information
	Easy-access information is found to be important for public transport mode. Information about congestion and delays can help to reduce users’ stress and therefore, increases the transport mode use.
	Interchange
	Interchange is related to how transport networks are designed to complement each other. Bad transport public connections will increase the car use.
	SOCIO-PSYCHOLOGICAL:
	Socio-psychological determinants are composed of experiences, familiarity, lifestyle, habits and perception
	Experiences
	Past experiences evidently determine present travel mode choices. People with high experiences of road network tend to use private transport mode to go to work.
	Familiarity
	Familiarity is related to experiencing to different modes of transport. It appeared that using public transport in the past gives people skills and confidence to use it again in the future. Higher familiarity to a transport system reduces the barriers...
	Lifestyle
	Lifestyle is the way of living of a person. It’s directly related to education and occupation. Individual lifestyle is a very important factor in travel mode choice.
	Habit
	People with a strong habit of a transport mean tend to be passive in exploring other alternatives than people with a weak habit.
	Perception
	Preferences are based on attitudes and perceptions. The slowness of public transport is not just about travel time but also about how people experience it. The cost of car use is often underestimated compared to the price of public transport.
	De Witte’s article gave an introduction to the most commonly studied determinants in the world based on 76 international articles. However, travel mode choice in each geographical area is not the same. In order to have a better view about determinants...


	1.2 Research about travel mode choice in France
	The car is one of the most important transport modes in France. According to Roux, S. et al, 2010, based on the French National Travel Survey, car ownership of household increased significantly from 50% in 1966 to 80% in 2007. The average number of ca...
	Fig. 3: Average number of cars per household by household size at different period  (source: Roux, S. et al, 2010)
	The increase of car use over year has caused many problems for French cities, especially congestion and pollution. According to the INRIX France Traffic Scorecard, the congestion has caused major impacts on the French economy and environment. Besides,...
	1.2.1 Paris
	Paris is the largest and also the most congested city in France. Between 1998 and 2020, Paris population is forecasted to increase 16%. Many studies to quantify the contribution of factors in the increase of car use have been carried out.
	Papon, F., 2002 carried out a research about the forecast of travel by car and public transport in Paris by 2020. The research based on the trend observed since 1980 taking into account termed structure factors (age, residential zone, car ownership), ...
	De Lapparent, M., 2003, used the discrete choice model to analyze traveler’s demand for transport alternatives. In his research, he considered wide range of variables: individual characteristics, tastes and psychologies, transport market attributes an...
	Another article of De Lapparent, M., 2005, studied about travel mode choice of home-work trips in the Ile-de-France region. The research considered influences of socio-demographic variables (age, sex, income, residential zone) and trip characteristic ...
	De Palma, A., and C. Fontan, 2001 studied travel choice and value of time based on the data of the travel survey of Ile de France region, 1997. The research studied the influence of variables (age, sex, income, residential place and working place) to ...

	1.2.2 Lyon
	Although Lyon is the second biggest city in France, there are currently not a lot of published studies about travel mode choice in this city.
	Bonnel, P., 2000, studied trends in public transport and car use in Lyon, showed that there was an evolution in public transport use of the city with an increase of 35% (double of metro use) in 1995 compared to 1986. However, the market share of publi...
	Pronello, C., and V. Rappazzo, 2014, aiming to test the traveler behaviors to the congestion pricing policy, showed that people who use cars for daily working trips have a higher willingness to pay than ones who use cars for leisure trips. Researcher ...

	1.2.3 Grenoble
	Grenoble is the second largest urban in the Rhone-Alpes region, 11th largest by population in France (INSEE French national statistical office, 2013). However, the number of studies about the travel mode choice in this city are quite limited.
	Bonnel, P., 1995, considered the changes in behaviors of residents through activity-based travel analysis. The research was carried out in 1987 when the first tram line was opened and a year later (1988), based on the surveys of 478 people (416 people...
	The research carried out by Gandit, M., 2009, analyzed the influence of socio-demographic, structural and psychological factors on the choice of three travel modes: mass transit, mixed mode or private car. Researched revealed that socio-demographic fa...
	A recent research implemented by Hansen, R., 2008, analyzes the daily mobility in the Grenoble metropolitan region. The research based on data from 39 completed travel diaries from 22 households, considered the influence of three factors (gender, the ...

	1.2.4 Conclusion
	Through recent studies about travel mode choice in France, we find out that:
	Age, sex, occupation, car ownership, driving license, income, number of children, residential zone, working zone are the most often studied socio-demographic variables. Among them, car ownership, income, occupation, driving license and residential zon...
	For trip-characteristic variables, travel time, travel cost, departure time, a number of connections, trip frequency and the day of week appeared quite often. Among these variables, travel time, travel cost, departure time and trip frequency are found...
	Spatial and socio-psychological variables are not studied regularly. However, socio-psychological variables (attitudes, norms, habits) appeared to be quite important each time they were studied.
	The results of studies in France are quite similar to De Witte’s research. However, we found new variables that didn’t appear in De Witte’s research, consisting of driving license, residential zone and working zone. We will also consider these variabl...


	1.3 Literature conclusion
	In our research, we focus on two types of variables:
	First, the most important variables according to De Witte, A. et al., 2013 and to the articles about travel mode choice in France, that are: income, occupation, car ownership, car availability, driving license, travel time, travel cost, departure time...
	Second, classical variables that are commonly studied in the literature of travel mode choice: age, sex, education, the number of children, household size, travel motive, distance, proximity to infrastructure, working zone, origin zone, destination zo...
	However, depending on availability and quality of surveyed data and the interdependency of variables, proper variables will be then selected for our analysis.
	In the next section, we will discuss methods used to give the estimations of travel mode choice based on these variables and then, the real databases obtaining from the local surveys in Grenoble in 2002 and in 2010. Both of them will allow us to selec...


	2. Method and data
	2.1 Method
	2.1.1 Discrete choice models
	Choosing one of available travel means is a type of discrete choice where alternatives are a car, public transport, non-motorized and other modes.
	Depending on a number of possible alternatives and their type of data, we obtain different models: binomial model (two alternatives), ordinal model (ordinal alternatives) and multinomial model (at least three alternatives). For the travel mode choice...
	The discrete choice is usually built on the platform of decision maker's preferences (assumption of utility maximization):
	A decision-maker labeled n, has to choose one among J alternatives. The utility function of the decision-maker n obtained from the information of alternative j, labeled Unj, j=1..J
	The utility function can be divided into two parts: observed utility Vnj (depending on attributes of the decision-maker n and the alternative j) and unobserved utility εnj (also called random utility):  Unj= Vnj+ εnj , for each n, j
	Depending on the distribution of unobserved utility, we obtain different discrete choice models. Most common used models are Probit and Logit. The Probit model uses the normal distribution function while the Logit model uses the Gumbel distribution fu...
	There is not much difference between these two models, each model has its advantages and disadvantages. However, in scientific papers about travel mode choice, Logit is the most widely used model, the share of Probit is quite small. The reason is not ...
	The Logit model is obtained by the assumption that each εnj is independently distributed, with the cumulative distribution function and the density distribution function as follows:
	Fig. 4: Cumulative (above) and density (below) distribution functions of Logit model
	The Logit model can be divided into multinomial Logit model, generalized extreme value (GEV) model and mixed Logit model (also called random parameters Logit model).
	The multinomial Logit model (also called conditional Logit model) is the standard Logit model that can be derived as follows:
	The probability that the decision-maker n choose the alternative i:
	Combining with the assumption that εnj respects to the Gumbel distribution:, we obtain the Logit choice probability:
	The observed utility is usually used under the linear form: , where is the vector of observed variables. So, the Logit choice probability becomes:
	In this model, the odds ratio of any set of two alternatives doesn’t depend on the choice of other alternatives. This independent property of the multinomial Logit model comes from the initial assumption that the disturbances are independent and homos...
	This IIA assumption gives many advantages if it truly reflects the reality:
	It permits to estimate model parameters consistently on a subset of alternatives. Exclusion of alternatives in estimation does not affect the consistency of the estimator. Therefore, it is very attractive for researchers being interested in examining ...
	Although this property is very useful for the estimation, it is not so attractive for studies about consumer behaviors (Greene H., 2012). If the IIA assumption is not realistic and the unobserved utility is correlated over alternatives, keeping using ...
	Therefore, testing this assumption has an important role in selecting which Logit model to use. The first developed test is the test on subsets of alternatives that aims to check if the ratio of probabilities between any two alternatives is the same o...
	Where, s: estimators based on the restricted subset, f: estimators based on full set of choices Vs, Vf : respective estimates of asymptotic covariance matrices.
	Negative test statistics () are very common, Hausmann, J., and D. McFadden, 1984 concluded that a negative result is an evidence that IIA has not been violated.
	In case of failure of IIA assumption, it appears that the best advice is to go back to an early statement by McFadden, D., 1974, that the multinomial Logit models should only be used in cases where the outcome categories ‘‘can plausibly be assumed to ...
	Generalized extreme value (GEV) models and mixed Logit models show great promise for models violating this IIA assumption.
	In GEV model, the unobserved portions of utility for all alternatives are jointly distributed as a generalized extreme value. This distribution allows the correlations of alternatives. However, if all the correlations are zero, these GEV models become...
	The most commonly used members of this GEV family are Nested Logit and Heteroskedastic Logit models.
	The nested Logit model is used when the set of alternatives can be divided into subsets (nests).
	For example, a nested Logit model with 2 branches (Branch1, Branch2) and 5 choices (c1|1, c2|1, c1|2, c2|2, c3|2) might be as follows:
	Fig. 5: A nested model with two branches and five choices (Greene, H., 2008)
	For any two alternatives in the same nests (for example c1|1, c2|1), the odds ratio is independent of other alternatives. But not for two alternatives in different nests (for example c1|1, c1|2), the odds ratio can be dependent on other alternatives. ...
	Although the complexity of the nested model depends significantly on the number of levels, the model has been extended to three levels or higher. The reason is that it is a very flexible model and suitable to consumer choice in econometric studies.
	There are problematic aspects of the nested Logit model that the estimation results depend on the way of branching. Bhat, Allenby and Ginter, developed an extension for conditional Logit model to solve this problem called heteroscedastic extreme value...
	The mixed Logit model, also called random parameters Logit, is a random coefficients formulation. Allowing the coefficients to vary randomly across individuals and the correlations between constant terms can help to create a general flexible model tha...
	"It [Mixed Logit] obviates the three limitations of standard Logit by allowing for random taste variation, unrestricted substitution patterns, and correlation in unobserved factors over time."
	“Mixed Logit can also utilize any distribution for the random coefficients, unlike Probit which is limited to the normal distribution. It has been shown that a mixed Logit model can approximate to any degree of accuracy any true random utility model o...
	The unconditional choice probability of mixed Logit model ( in case the utility is linear) is as follows:
	Where : a density function,  : the Logit probability evaluated at parameters
	Based on its formula, we can see that mixed Logit probabilities are the integral of standard Logit probabilities over a density of parameters.
	The table below summarizes the advantage and disadvantage of different Logit models we presented above:
	Table 13 Comparison between common Logit models
	Although Logit models have been developed for a long time, their application has only become widely popular with the appearance of strong computational sorts of software in last several decades.
	Nowadays, the conditional Logit model can be solved instantly by computation tool even with a large number of alternatives and observations or non-linear elements. However, achieving and verifying the convergence of the models is still a hard issue, f...
	Therefore, the simulation tool is becoming practical presentation. A model where simulation methods are usually needed is the mixed Logit model that was developed by Mc Fadden in 1989, Bolduc in 1992 and Brownstone and Train, 1998 (McFadden, D., 2000).

	2.1.2 Model selection criteria
	Multinomial Logit model selection criteria are based on maximum likelihood method:
	The probability density function for a random variable x conditioned on a set of parameters β, labeled . The joint density function of n observations of variable x is the product of individual density functions, also called likelihood function:
	, where : Logit probability evaluated at β or likelihood function
	This function is a function of an unknown set of parameters β and collected data sample x.
	The principle of maximum likelihood is that the model parameters will be estimated in the way that likelihood function (model probability) obtains the maximum value. This means that obtained set of parameters will make this collected data sample most ...
	Besides, a multinomial Logit model can be also selected based on indicators of the goodness of fit such as Akaike information criterion (AIC) and Bayesian information criterion (BIC)
	Akaike information criterion (AIC) and Bayesian information criterion (BIC) are two model selection methods allowing us to penalize the loss of degrees of freedom when new variables are added to the models:
	Where k: number of parameters, n: number of observations, L: maximum value of the likelihood function
	In these criterions, the models with smaller values of AIC or BIC are preferred.
	The BIC model has a higher penalty for the loss of degrees of freedom than the AIC model. However, each model has advantages over the other one.

	2.1.3 Marginal effect and elasticity
	Marginal effect
	Direct marginal effect is defined as the change of the probability Pni of choosing alternative i of individual n given by a change of an observed variable, Xni , entering the observed utility of that alternative while keeping the observed utilities of...
	, where
	If the observed utility is linear in xni with coefficient βx, we obtain:
	This marginal effect is biggest when Pni=0.5 and becomes smaller when Pni approaches one or zero
	Similarly, we can obtain cross marginal effect that is a change of the probability Pni of choosing alternative i of individual n given by a change of an observed variable, Xnj ,of another alternative j, entering the observed utility of the alternative...
	, if Vni is linear,
	Elasticity
	The direct elasticity of Pni with respect to Xni is the percent change in the probability of choosing alternative i of the individual n that is associated with the percent change of variable Xni
	,
	So,
	If the observed utility is linear in Xni with coefficient βx,
	Similarly, the cross-elasticity of Pni with respect to a variable entering alternative j:

	2.1.4 Willingness to pay and willingness to wait
	Willingness to pay (WLP) expresses how much consumers value the attributes of the choices. There are two ways to estimate the willingness to pay for one attribute: using the marginal utility of income or marginal utility of cost.
	WTP = Marginal Utility of Income / Marginal Utility of Attribute
	Or WTP = - Marginal Utility of Cost / Marginal Utility of Attribute
	The formulas of WTP can be derived as follows:
	We consider the influence of the change of attribute Xni to the change of income INni while the other attributes are kept as constants:
	So, we obtain:
	Or
	The change of utility of cost is opposite to the change of utility of income, so we obtain the negative sign for the formula of WTP if we use Marginal Utility of Cost.
	Similarly, Willingness to wait (WLW) expresses how much consumers value the attributes of the choices through the time they will be willing to wait if the attributes of choices are improved. The willingness to wait can be calculated using the marginal...
	WTW = - Marginal Utility of Attribute / Marginal Utility of Travel time

	2.1.5 Multicollinearity
	Multicollinearity is a data problem where the explanatory variables are too highly inter-correlated to allow precise analysis of their individual effects. If the two variables are perfectly correlated, the variance will be infinite. This causes a fail...
	However, this problem doesn’t appear so often. The most common case is when attributes are highly but not perfectly correlated. The assumptions are held but there will be severe statistical problems like small changes in the data produce wide swings i...
	The most common methods used to diagnostic the Multicollinearity are based on variance measurements like correlation matrix, condition number and variance inflation factors (VIF and GVIF)
	The correlation matrix used to evaluate the independence between multiple variables at the same time. Most common correlation matrices are Pearson (used for continuous variables) and Spearman (used for ordinal variables). A value in the correlation ma...
	The condition number of a matrix is the square root of the ratio of the largest to the smallest characteristic root:
	, where λ is the characteristic root of the moment matrix X’X (X: data matrix)
	This method is suggested by Belsley, D. et al., 1980. Belsley showed that a value of condition number in excess of 20 can be a potential problem.
	The Variance inflation factors quantify how much the variance is inflated. The variance inflation factor for the kth factor: where  is the R2-value obtained by regressing the kth predictor on the remaining predictors
	Values of VIFs exceeding 4 warrant further investigations, while values exceeding 10 are signs of serious multicollinearity.
	The GVIF was introduced in Monette G. et al., 1992. The GVIF is important to diagnostic the multicollinearity of factors and polynomial variables where a variable require more than one coefficient. For single variables, GVIF equals to VIF. GVIF^(1/2df...
	The multinomial appears to be a quite good choice for our estimations. Firstly, it’s a standard and most simple Logit model that can give a quite efficient estimation. Secondly, it’s well supported by computational tools allowing us to calculate margi...
	However, we have to be caution in case of failure of IIA test. If this happens, we can keep using this model but the confidence of substitution patterns between modes can be at risk.


	2.2 Data
	2.2.1 Introduction to the French national household-trip survey
	The data is based on the Household-Trip Survey in the whole French territory that has been carried out since 1976, with around 70 surveys in more than 40 French metropolitans.
	Each survey is a photography of the trips made by the inhabitants of a region during a particular day of week and by all the transport modes (public transport, private car, bicycle, etc.).
	The survey allows us to measure the mobility evolutions to estimate the impact of implemented actions and to adapt new travel policies. The results of the survey will support the authority to make a decision in travel policies.
	Fig. 6: Maps of household-trip surveys (EMD) in France from 1976 to 2007
	The survey has used a standard method defined by CERTU (Centre d’Étude et de Recherche sur les Transports et l’Urbanisme) respecting following principles:
	Carried out:
	- On all the trips made by people who live in the studied area on the day before the survey.
	- At home, face to face (during about 1h30’) by trained interviewers, from Tuesday to Saturday
	- Over a long period between 15 October and 30 April, excluding public holidays and school vacations
	- On people being more than 5 years old and having a housing
	- On a representative sample of households, randomly selected based on resident zone and housing file
	The database consists of five subfiles:
	- Household (Ménage): contains household characteristics like location, housing, the number of members and motorization.
	- Person (Personnes Du Ménage): contains individual socio-demographics like age, gender, occupation, education, driving license and car availability.
	- Trip (Déplacements): contains trip characteristics like travel time, departure time, travel motive and travel distance.
	- Path (Trajets): contains information related to path characteristics like walking time, the number of occupants, parking place, and highway toll.
	- Opinion (Opinions): made by a member of each household being more than sixteen years old, containing opinions about transport system: criteria in choosing transport modes, speed qualification of transport modes etc.
	EMD Grenoble 2002 and 2010:
	Our Grenoble 2002 database was taken from l’Enquête Ménages-Déplacements Grande Region Grenobloise 2002 (EMD Grenoble 2001-2002), carried out in an area of 254 villages with 712 000 inhabitants where 17254 individuals of 6963 households were interview...
	Our Grenoble 2010 database was taken from EMD Grenoble 2009-2010 that was carried out during 18 weeks between 2009 and 2010 by 240 investigators, on 7600 households, in a large area of 354 villages with more than 800000 inhabitants. (SMTC, “Résultats ...
	Fig. 7: Surveyed area of EMD Grenoble in 2002 (left) and in 2010 (right)
	Here are some characteristics of the data from the two surveys (source: SMTC, “Résultats EMD 2002: Grande Région Grenobloise”, SMTC, “Résultats EMD 2010: Grande Région Grenobloise” and Licaj, I. et al, 2015):
	Table 14 Data summary of EMD Grenoble 2002 and 2010

	2.2.2 Data treatment
	Our research is based on two household-trip databases of Grenoble in 2002 and 2010.
	The objective of the data treatments is to build a reliable, clean, and similarly-structure data frame, that is commonly implemented by R, a free and high-performing statistical analysis tool. In order to do this, we face with two different choices: F...
	Fig.8 shows the diagram of the data treatment
	Each original household-trip database consists of four sub-database files: Household file, individual file, trip file and path file. This data will be treated by two programs: SAS and R.
	Fig. 8: Data treatment diagram
	The R program then imports the intermediate data into its environment. Based on research scope, inappropriate data is removed from the database:
	- Individuals who didn’t make any trip during the surveyed day
	- Individuals with unclear resident place or at least one unclear origin or destination zone of any trip
	- Individuals who lived, worked or had at least one trip origin or destination in the external zones
	Treated database allow us to remove poor-quality data or data that is not related to our scopes. From now on, the database can be used to define proper variables for our study. In the next section, final variables will be defined and then, our two mod...



	3. Results
	3.1 Variable definition
	Our analysis focuses only on three motives of single trips (home-work, home-shopping and home-leisure) and three complexity levels of trip chains of 4-trip loops where their first trips are leaving from home and their last trips are going back home. O...
	Fig. 9: Research scope
	Fig. 10: Histogram of number of trips made per day in 2002 and 2010
	Above figure show that individuals making 4 trips per day have the highest share among all of the individuals (around 20% in 2002 and 25% in 2010).
	Among single trips, home-work, home-shopping and home-leisure appear to be the most important ones that occupy more than 50% of total number of single trips
	Fig. 11: Histogram of different motives of single trips in 2002 and 2010
	Variables for above models are basically selected based on the literature of travel mode choice determinants of De Witte, A. et al., 2013 and travel mode choice studies in France (see section 1.1 and 1.2). Besides, For 4-trip loops, we consider two mo...
	However, due to data availability and data quality of variables, several variables are removed, consisting of income, working zone, residing near infrastructures, the number of connections, trip frequency, and distance.
	We consider only remaining variables:
	Table 15 List of studied variables after considering data availability and data quality
	One of the common causes of the failure of regression model building is Multicollinearity between variables (see section 2.1.5). Determining and removing highly-correlated variables is a very important task to prepare proper data for model building. B...
	Table 16 Variance inflation factors of different motives in 2002 and 2010 (GVIF):
	Fig. 12: Correlation matrice for databases of different motives in 2002 and 2010
	The correlation matrices and variance inflation factors (GVIF) show the high correlations between size and number of children above 6 years old, driving license and car availability, origin zone and residence zone, PCS group and education.
	In studies about travel mode choice, a number of children above 6 years old, driving license, residence zone and PCS group appears to be less important than size, car availability, origin zone and education. So, we remove these variables from the data...
	Below is the table of final variable selection and variable definition of our research:
	Table 17 Variable definition for model estimations
	The multinomial Logit estimations and the evolutions between 2002 and 2010 are then built based on these variables, using the mLogit package (Croissant, Y., 2015). First, we consider the estimations and the evolutions of single trips with three motive...

	3.2 Single trips
	3.2.1 Model estimation
	For each motive of single trips, we estimate two models: the first one uses only socio-demographic variables (household and individual characteristics) while the second one uses both socio-demographic and trip characteristic variables. However, we sho...
	Grenoble 2010:
	The results of the multinomial logit model estimation (Table 1) show that:
	Based on maximum log-likelihood, AIC and BIC criterions, the models with household, individual, and trip variables are found to be better than models with household and individual variables only. Therefore, these models will be used to analyze the evo...
	Number of cars of household, number of women, number of men, origin zones: sub-urban and peri-urban and destination zone: sub-urban are found to be significant in all the three models
	Car availability and travel time are revealed to be important in home-work and home-shopping trips while departure time is significant in home-shopping and home-leisure trips.
	Education is found to be characteristic variables for home-work trips, household size is characteristic variable for home-shopping trips while occupation: pupil & student is characteristic variable for home-leisure trips
	The IIA tests (Table 2) show that the substitutions between car and PT are not the same in the model with other modes and models without other modes for all the three motives. The substitutions between the car and other modes are the same for home-sho...
	This revealed many risks for forecasting the substitutions between car and PT for the three motives and between the car and other modes for home-work trips.
	Grenoble 2002:
	The results of the multinomial logit model estimation (Table 3) show that:
	Both the three model selection criterions (maximum log-likelihood, AIC, and BIC) reveal that the models with household, individual and trip variables are better than models with household and individual variables only. Therefore, we will use these mod...
	Age, car availability, number of cars of household, travel time, origin zones (sub-urban, peri-urban) are found to be determinants in all the three models
	Destination zone: sub-urban is found to be important in home-work and home-shopping trips, destination zone: peri-urban is significant in home-work and home-leisure trips while occupation: pupil & student and departure time are significant in home-sho...
	Number of women and number of men are found to be characteristic variables for home-work trips, Education is characteristic variable for home-shopping trips while household size and occupation: full-time are characteristic variables for home-leisure t...
	Similar as in 2010, The IIA tests (Table 4) show that the substitutions between car and PT are not the same in the models with other modes and models without other modes for all the three motives. Conversely, the substitutions between the car and othe...
	This revealed many risks for forecasting the substitutions between car and PT for all the three motives, between PT and other modes for home-work trips.

	3.2.2 Mode choice evolution
	In order to see the evolutions in Grenoble between 2002 and 2010, we consider three aspects: the evolution of mode share, evolution of elasticity and evolution of willingness to wait.
	Evolution of mode share: the figure shows that car use decreased slightly in 2010 in comparison to 2002 for all the three motives: home-work, home-shopping and home-leisure. On the contrary, public transport and other modes choice increased slightly f...
	Fig. 13: Mode share by year and by motive
	Evolutions of elasticity and willingness to wait: The significance level of travel time for models of home-leisure trips in 2002 and 2010 is not high. So, we don’t consider willingness to wait for these models.
	We divided variables into 2 groups: decisive variables and important but not decisive variables. For decisive variables such as car availability, a number of cars of household, travel time, departure time, origin zones and destination zones, we consid...
	The calculation details of elasticity and willingness to wait for single trips in 2002 and 2010 can be found in Table 5 and Table 6. Here are the evolutions extracted from the results.
	SOCIO-DEMOGRAPHIC DETERMINANTS:
	Gender: we can’t find differences in car use between men and women in 2002 and 2010. This variable appeared not to be important in our models.
	Age: In 2002, age is one of quite important variables for both the three motives, older people are less likely to use the car than younger people. However, its role decreased significantly in 2010. We can’t find these differences anymore.
	Fig. 14: Elasticity of probability of car choice to age by motive and by year
	Occupation: occupation is a quite important variable, especially full-time workers, pupils, and students. Full-time workers are less likely to use the car for home-leisure trips while pupil and students are less likely to use the car for both home-sho...
	Fig. 15: Elasticity of probability of car choice to full-time workers (left) and pupils and students (right) by motive and by year
	Education: is a quite important variable for home-shopping trips in 2002 where high educated people are less likely to use the car than low-educated people. However, its role switched from home-shopping to home-work trips in 2010 where high educated p...
	Fig. 16: Elasticity of probability of car choice to education level by motive and by year
	Car availability: is one of the crucial variables in our models where people with cars are more likely to use them for traveling than people without cars. However, the importance of car availability decreased between 2002 and 2010 for home- shopping a...
	Fig. 17: Elasticity of probability of car choice to car availability (left) and willingness to wait of car availability (right) by motive and by year
	Household composition: in 2002, household size negatively affect car use of home-leisure trips while a number of men and number of women have negative influences on car use of home-working trips. In 2010, the influence of household size switched from ...
	Fig. 18: Elasticity of probability of car choice to car household size (top left), number of men (top right) and number of women (bottom) by motive and by year
	Number of cars of household is one of the most important variables for car use where the more number of cars a household owns, the more likely members of the household will use the car for traveling. Its role increased slowly for home-shopping trips i...
	Fig. 19: Elasticity of probability of car choice to number of cars of household (left) and willingness to wait of number of cars of household (right) by motive and by year
	TRIP CHARACTERISTICS:
	Travel time is a decisive variable for home-shopping and home-work rather than home-leisure trips. The longer the travel time of home-work and home-shopping trips is, the more likely people will use the car. However, its role was slightly down for hom...
	Fig. 20: Elasticity of probability of car choice to travel time by motive and by year
	Departure time is a crucial variable for home-shopping and home-leisure trips. People leaving home late are more likely to use cars. Between 2002 and 2010, its contribution to home-shopping trips decreased slightly while its influence on home-leisure ...
	Fig. 21: Elasticity of probability of car choice to departure time (left) and willingness to wait of departure time (right) by motive and by year
	Origin zone of a trip is a quite important variable for all the three motives.  However, for home-leisure trips, the roles of sub-urban and peri-urban were significantly down for both elasticity and willingness to wait between 2002 and 2010. For home-...
	Fig. 22: Elasticity of probability of car choice to origin zone (left) and willingness to wait of origin zone (right) by motive and by year
	The destination zone, especially sub-urban, is a quite important variable for home-work and home-shopping, people going to sub-urban for home-work and home-shopping are more likely to use cars than to other zones. However, its role was slightly down b...
	Fig. 23: Elasticity of probability of car choice to destination zone (left) and willingness to wait of destination zone (right) by motive and by year


	3.3 Four-trip loops
	3.3.1 Model estimation
	Grenoble 2010:
	The results of the multinomial logit model estimation (Table 7) show that
	The maximum log-likelihood and the AIC criterions show that among the three models, the models with household, individual, trip characteristic and loop variables are best ones, followed by the models with household, individual and trip characteristic ...
	Occupation (full-time, part-time and pupil & student), car availability, number of cars of HH, travel time, origin zones (sub-urban and peri-urban) and at least one working trip are found to be determinants for both the two models
	Number of men, number of women, destination zone: sub-urban and at least one accompanying trip are found to be characteristic variables for moderate-complexity 4-trip loops while education, departure time, and destination zone: peri-urban are found to...
	The IIA tests (table 8) show that the substitutions between car and PT are not the same in the models with other modes and models without other modes for all the two complexity levels of trip loops. Conversely, the substitutions between the car and ot...
	This revealed many risks for forecasting the substitutions between car and PT for all the three motives.
	Grenoble 2002:
	The results of the multinomial logit model estimation (Table 9) show that
	In term of preferred models among the three estimated ones, the conclusions are the same as in Grenoble 2010 where the maximum log-likelihood and the AIC criterions show that the models with household, individual, trip characteristic and loop variable...
	Occupation: pupil & student, car availability, household size, number of cars of HH, travel time, origin zones (sub-urban and peri-urban) and at least one accompanying trip are found to be determinants for both the two models
	Occupation: full-time is the unique characteristic variable for moderate-complexity 4-trip loops while age and occupation: part-time are found to be characteristic variables for high-complexity 4-trip loops
	The IIA tests (table 10) show that the substitution between car, PT and other modes are the same for moderate-complexity trip loops. Conversely, the substitutions between car and PT and between PT and other modes are not the same for the high-complexi...
	This revealed many risks for forecasting the substitutions between car and PT, between PT and other modes for the high-complexity trip loops.

	3.3.2 Mode choice evolution
	In order to see the evolution of four-trip loops in Grenoble between 2002 and 2010, we consider three aspects: the evolution of mode share, evolution of elasticity and of willingness to wait.
	Evolution of mode share: the figure shows that car use decreased slightly while public transport use increased slowly in 2010 in comparison to 2002 for both the moderate-complexity and high-complexity trips. Multi-modal share decreased slightly for hi...
	Fig. 24: Mode share by Mode, complexity level of trip loop and by year
	Evolution of elasticity and willingness to wait:
	The calculation details of the elasticity and the willingness to wait can be found in table 11 and table 12. Below are their evolutions extracted from the results.
	SOCIO-DEMOGRAPHIC:
	Gender: gender appears to be not an important variable in our model. We can’t see the difference in car use between men and women
	Age: age was found to be a quite important variable for high-complexity four-trip loops in 2002 where older people are less likely to use car than younger people, but it appeared to be insignificant in 2010
	Fig. 25: Elasticity of probability of car choice to age by loop complexity and by year
	Occupation (full-time, part-time and pupil & student):
	Fig. 26: Elasticity of probability of car choice to occupation and willingness to wait by loop complexity and by year
	Occupation: pupil and student is one of the most important variables for both moderate and high-complexity four-trip loops in 2002 and 2010 where they are less likely to use the car for traveling.
	Fig. 27: Elasticity of probability of car choice to pupils and students by loop complexity and by year
	Occupation: full-time workers is found to be important in 2002 for only moderate complexity four-trip loops but appeared to be significant for both moderate and high-complexity four-trip loops in 2010. People of this type of occupation are less likely...
	Fig. 28: Elasticity of probability of car choice to full-time workers by loop complexity and by year
	Part-time workers: In contrast to full-time workers, part-time workers is found to be important in 2002 for only high-complexity four-trip loops but appeared to be significant for both moderate and high-complexity four-trip loops in 2010. People of th...
	Fig. 29: Elasticity of probability of car choice to part-time workers by loop complexity and by year
	Education: is not a significant variable in 2002 for the both models but revealed to be quite important for high-complexity 4-trip loops in 2010. High-educated people are less likely to use car for high-complexity 4-trip loops than low-educated people
	Fig. 30: Elasticity of probability of car choice to education level by loop complexity and by year
	Car availability is one of the crucial variables in our models where people with cars are more likely to use them for traveling than people without cars.
	Between 2002 and 2010, the contributions of car availability decreased slightly for moderate-complexity trip loops and significantly for high-complexity trip loops in term of both elasticity and willingness to wait.
	Fig. 31: Elasticity of probability of car choice to car availability (left) and willingness to wait of car availability (right) by loop complexity and by year
	Household composition:
	Household size is a quite important variable in 2002 for both moderate and high-complexity four-trip loops, the bigger the household size is, the less likely they will use the car for traveling. However, it appeared not be significant anymore in 2010.
	Fig. 32: Elasticity of probability of car choice to household size by loop complexity and by year
	Number of women and number of men are not important variables in 2002 but appeared to be quite important for moderate-complexity 4-trip loops in 2010. The more number of men or women a household has, the less likely they will use car for moderate-comp...
	Fig. 33: Elasticity of probability of car choice to number of men (left) and number of women (right) by loop complexity and by year
	Number of cars of household: is one of the most important variables in our models. Its contributions are quite stable over year, the more number of cars a household owns, the more likely members of the household will use car for traveling. However, th...
	Fig. 34: Elasticity of probability of car choice to number of cars of household and willingness to wait of number of cars of household by loop complexity and by year
	TRIP CHARACTERISTIC:
	Travel time is one of the most important variables in both the two models, the longer the travel time of trips is, the more likely people use the car. Its role in car choice decreased slightly between 2002 and 2010 for high-complexity trip loops and i...
	Fig. 35: Elasticity of probability of car choice to travel time by loop complexity and by year
	Origin zone of a trip is one of decisive variables for all the two trip loops. People leaving from sub-urban and peri-urban zones are more likely to use the car than in center zones. However, leaving from sub-urban decreased significantly its contribu...
	Fig. 36: Elasticity of probability of car choice to origin zone (left) and willingness to wait of origin zone (right) by loop complexity and by year
	Destination zone: is found not to be a significant variable in 2002 for both the models. However, in 2010, destination zone:sub-urban appeared to be significant for moderate-complexity 4-trip loops while destination zone:peri-urban is found to be impo...
	LOOP VARIABLES
	Accompanying someone during 4-trip loops were found to be very important variable in 2002 for both the models. If there is at least one trip catching up or dropping off someone in the loops, people are likely to use car. However, its role decreased sl...
	Fig. 37: Elasticity of probability of car choice to accompanying someone (left) and willingness to wait of accompanying someone (right) by loop complexity and by year
	At least one working trip is not a significant variable in 2002 but appeared to be very important in 2010 for both the models. if there is at least one trip for working in the loops, people are likely to use the car.
	Fig. 38: Elasticity of probability of car choice to at least one working trip and willingness to wait of at least one working trip by loop complexity and by year



	4. Conclusion
	In this research, we use the multinomial Logit model, a type of discrete choice models, to give the estimations for travel mode choice in Grenoble between 2002 and 2010 based on socio-economic variables (socio-demographic and trip characteristic). The...
	The estimations allow us to give some following conclusions:
	For single trips, the number of cars of household is the unique determinant appearing to be crucial for all the three trip motives (home-work, home-shopping and home-leisure) and its contributions are quite stable between 2002 and 2010. Travel time ap...
	For four-trip loops, a number of cars of household is also the most important determinants for both of two levels of trip loop complexity. Its contributions to moderate-complexity loops are a little higher than the ones to high-complexity but both of ...
	Apart from these common important determinants, we found new variables that were not significant in 2002 but appeared to be important in 2010 like occupation: full-time and making a working trip during the loops. However, on the contrary to this term,...
	Besides, we find out something very strange that the important contributions of household size in 2002 were replaced completely by a number of men and number of women of household in 2010. This might be related to the multicollinearity between these v...
	From conclusions above, we recommend that in order to decrease car use and increase the use of other transport modes, we should:
	Firstly, reduce the rate of car ownership of each household and each individual. Secondly, upgrade public transportation networks to increase their average speed in comparison to cars’ as well as set up the limit speed inside the city for cars. Finall...
	There are several possible limitations that might cause potential impacts on our findings: in term of methods, the Haussmann-Mac Fadden test for the IIA assumption revealed that the rate of substitution between the car and public transport is dependen...
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