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We consider the problem of expected cost analysis over nondeterministic probabilistic programs, which aims at automated methods for analyzing the resource-usage of such programs. Previous approaches for this problem could only handle nonnegative bounded costs. However, in many scenarios, such as queuing networks or analysis of cryptocurrency protocols, both positive and negative costs are necessary and the costs are unbounded as well.

In this work, we present a sound and efficient approach to obtain polynomial bounds on the expected accumulated cost of nondeterministic probabilistic programs. Our approach can handle (a) general positive and negative costs with bounded updates in variables; and (b) nonnegative costs with general updates to variables. We show that several natural examples which could not be handled by previous approaches are captured in our framework.

Moreover, our approach leads to an efficient polynomialtime algorithm, while no previous approach for cost analysis of probabilistic programs could guarantee polynomial runtime. Finally, we show the effectiveness of our approach using experimental results on a variety of programs for which we efficiently synthesize tight resource-usage bounds.

Introduction

In this work, we consider expected cost analysis of nondeterminisitic probabilistic programs, and present a sound and efficient approach for a large class of such programs. We start with the description of probabilistic programs and the cost analysis problem, and then present our contributions. Probabilistic programs. Extending classical imperative programs with randomization, i.e. generation of random values according to a predefined probability distribution, leads to the class of probabilistic programs [START_REF] Andrew D Gordon | Probabilistic programming[END_REF]. Probabilistic programs are shown to be powerful models for a wide variety of applications, such as analysis of stochastic network protocols [START_REF] Foster | Probabilistic NetKAT[END_REF][START_REF] David | Undecidable Problems for Probabilistic Network Programming[END_REF][START_REF] Smolka | Cantor meets Scott: semantic foundations for probabilistic networks[END_REF], machine learning applications [START_REF] Claret | Bayesian inference using data flow analysis[END_REF][START_REF] Andrew D Gordon | A model-learner pattern for Bayesian reasoning[END_REF][START_REF] Roy | A stochastic programming perspective on nonparametric Bayes[END_REF][START_REF] Ścibior | Practical probabilistic programming with monads[END_REF], and robot planning [START_REF] Thrun | Probabilistic algorithms in robotics[END_REF][START_REF] Thrun | Probabilistic robotics[END_REF], to name a few. There are also many probabilistic programming languages (such as Church [START_REF] Noah D Goodman | Church: a language for generative models[END_REF], Anglican [START_REF] Tolpin | Design and Implementation of Probabilistic Programming Language Anglican[END_REF] and WebPPL [START_REF] Noah | The Design and Implementation of Probabilistic Programming Languages[END_REF]) and automated analysis of such programs is an active research area in formal methods and programming languages (see [START_REF] Agrawal | Lexicographic ranking supermartingales: an efficient approach to termination of probabilistic programs[END_REF][START_REF] Chakarov | Probabilistic Program Analysis with Martingales[END_REF][START_REF] Chatterjee | Termination Analysis of Probabilistic Programs Through Positivstellensatz's[END_REF][START_REF] Chatterjee | Algorithmic analysis of qualitative and quantitative termination problems for affine probabilistic programs[END_REF][START_REF] Esparza | Proving Termination of Probabilistic Programs Using Patterns[END_REF][START_REF] Benjamin | Weakest Precondition Reasoning for Expected Run-Times of Probabilistic Programs[END_REF][START_REF] Benjamin | On the hardness of analyzing probabilistic programs[END_REF][START_REF] Van Chan Ngo | Bounded expectations: resource analysis for probabilistic programs[END_REF][START_REF] Wang | PMAF: an algebraic framework for static analysis of probabilistic programs[END_REF]). Nondeterministic programs. Besides probability, another important modeling concept in programming languages is nondeterminism. A classic example is abstraction: for efficient static analysis of large programs, it is often infeasible to keep track of all variables. Abstraction ignores some variables and replaces them with worst-case behavior, which is modeled by nondeterminism [START_REF] Cousot | Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints[END_REF].

Termination and cost analysis. The most basic liveness question for probabilistic programs is termination. The basic qualitative questions for termination of probabilistic programs, such as, whether the program terminates with probability 1 or whether the expected termination time is bounded, have been widely studied [START_REF] Chatterjee | Termination Analysis of Probabilistic Programs Through Positivstellensatz's[END_REF][START_REF] Chatterjee | Algorithmic analysis of qualitative and quantitative termination problems for affine probabilistic programs[END_REF][START_REF] Benjamin | Weakest Precondition Reasoning for Expected Run-Times of Probabilistic Programs[END_REF][START_REF] Benjamin | On the hardness of analyzing probabilistic programs[END_REF]. However, in program analysis, the more general quantitative task of obtaining precise bounds on resource-usage is a challenging problem that is of significant interest for the following reasons: (a) in applications such as hard real-time systems, guarantees of worst-case behavior are required; and (b) the bounds are useful in early detection of egregious performance problems in large code bases. Works such as [START_REF] Gulwani | SPEED: Symbolic Complexity Bound Analysis[END_REF][START_REF] Gulwani | SPEED: precise and efficient static estimation of program computational complexity[END_REF][START_REF] Hoffmann | Multivariate amortized resource analysis[END_REF][START_REF] Hoffmann | Resource Aware ML[END_REF] provide excellent motivation for the study of automated methods to obtain worst-case bounds for resource-usage of nonprobabilistic programs. The same motivation applies to the class of probabilistic programs as well. Thus, the problem we consider is as follows: given a probabilistic program with costs associated to each execution step, compute bounds on its expected accumulated cost until its termination. Note that several probabilistic programming languages have observe statements and conditioning operators for limiting the set of valid executions. In this work, we do not consider conditioning and instead focus on computing the expected accumulated cost over all executions. See Remark 1.

Previous approaches. While there is a large body of work for qualitative termination analysis problems (see Section 9 for details), the cost analysis problem has only been considered recently. The most relevant previous work for cost analysis is that of Ngo, Carbonneaux and Hoffmann [START_REF] Van Chan Ngo | Bounded expectations: resource analysis for probabilistic programs[END_REF], which considers the stepwise costs to be nonnegative and bounded. While several interesting classes of programs satisfy the above restrictions, there are many natural and important classes of examples that cannot be modeled in this framework. For example, in the analysis of cryptocurrency protocols, such as mining, there are both energy costs (positive costs) and solution rewards (negative costs). Similarly, in the analysis of queuing networks, the cost is proportional to the length of the queues, which might be unbounded. For concrete motivating examples see Section 3.

Our contribution. In this work, we present a novel approach for synthesis of polynomial bounds on the expected accumulated cost of nondeterministic probabilistic programs.

1. Our sound framework can handle the following cases: (a) general positive and negative costs, with bounded updates to the variables at every step of the execution; and (b) nonnegative costs with general updates (i.e. unbounded costs and unbounded updates to the variables). In the first case, our approach obtains both upper and lower bounds, whereas in the second case we only obtain upper bounds. In contrast, previous approaches only provide upper bounds for bounded nonnegative costs. A key technical novelty of our approach is an extension of the classical Optional Stopping Theorem (OST) for martingales. 2. We present a sound algorithmic approach for the synthesis of polynomial bounds. Our algorithm runs in polynomial time and only relies on standard tools such as linear programming and linear invariant generation as prerequisites. Note that no previous approach provides polynomial runtime guarantee for synthesis of such bounds for nondeterministic probabilistic programs. Our synthesis approach is based on application of results from semi-algebraic geometry. 3. Finally, we present experimental results on a variety of programs, which are motivated from applications such as cryptocurrency protocols, stochastic linear recurrences, and queuing networks, and show that our approach can efficiently obtain tight polynomial resource-usage bounds. We start with preliminaries (Section 2) and then present a set of motivating examples (Section 3). Then, we provide an overview of the main technical ideas of our approach in Section 4. The following sections each present technical details of one of the steps of our approach.

Preliminaries

In this section, we define some necessary notions from probability theory and probabilistic programs. We also formally define the expected accumulated cost of a program.

Martingales

We start by reviewing some notions from probability theory. We consider a probability space (Ω, F , P) where Ω is the sample space, F is the set of events and P : F → [0, 1] is the probability measure.

Random variables. A random variable is an F -measurable function X : Ω → R ∪ {+∞, -∞}, i.e. a function satisfying the condition that for all d ∈ R ∪ {+∞, -∞}, the set of all points in the sample space with an X value of less than d belongs to F .

Expectation. The expected value of a random variable X , denoted by E(X ), is the Lebesgue integral of X wrt P. See [START_REF] Williams | Probability with martingales[END_REF] for the formal definition of Lebesgue integration. If the range of X is a countable set A, then E(X ) = ω ∈A ω • P(X = ω).

Filtrations and stopping times. A filtration of the probability space (Ω, F , P) is an infinite sequence {F n } ∞ n=0 such that for every n, the triple (Ω, F n , P) is a probability space and F n ⊆ F n+1 ⊆ F . A stopping time wrt {F n } ∞ n=0 is a random variable U : Ω → N ∪ {0, ∞} such that for every n ≥ 0, the event U ≤ n is in F n . Intuitively, U is interpreted as the time at which the stochastic process shows a desired behavior.

Discrete-time stochastic processes. A discrete-time stochastic process is a sequence Γ = {X n } ∞ n=0 of random variables in (Ω, F , P). The process Γ is adapted to a filtration {F n } ∞ n=0 , if for all n ≥ 0, X n is a random variable in (Ω, F n , P).

Martingales. A discrete-time stochastic process

Γ = {X n } ∞ n=0 adapted to a filtration {F n } ∞
n=0 is a martingale (resp. supermartingale, submartingale) if for all n ≥ 0, E(|X n |) < ∞ and it holds almost surely (i.e., with probability 1) that [START_REF] Williams | Probability with martingales[END_REF] for details.

E(X n+1 |F n ) = X n (resp. E(X n+1 |F n ) ≤ X n , E(X n+1 |F n ) ≥ X n ). See
Intuitively, a martingale is a discrete-time stochastic process, in which at any time n, the expected value E(X n+1 |F n ) in the next step, given all previous values, is equal to the current value X n . In a supermartingale, this expected value is less than or equal to the current value and a submartingale is defined conversely. Applying martingales for termination analysis is a well-studied technique [START_REF] Chakarov | Probabilistic Program Analysis with Martingales[END_REF][START_REF] Chatterjee | Termination Analysis of Probabilistic Programs Through Positivstellensatz's[END_REF][START_REF] Chatterjee | Stochastic invariants for probabilistic termination[END_REF]. ϕ is a condition on program variables, and the next statement to be executed depends on ϕ.

• A probabilistic label corresponds to an "if prob(p) . . . "

with p ∈ [0, 1], and leads to the then branch with probability p and the else branch with probability 1-p. • A nondeterministic label corresponds to a nondeterministic branching statement indicated by "if ⋆ . . . ", and is nondeterministically followed by either the then branch or the else branch. • A tick label corresponds to a statement tick(q) that triggers a cost of q, and leads to the next label. Note that q is an arithmetic expression, serving as the stepwise cost function, and can depend on the values of program variables. Valuations. Given a set V of variables, a valuation over V is a function v : V → R that assigns a value to each variable. We denote the set of all valuations on V by Val V . Control flow graphs (CFGs) [START_REF]Control flow analysis[END_REF]. We define control flow graphs of our programs in the usual way, i.e. a CFG contains one vertex for each label and an edge connects a label ℓ i to another label ℓ j , if ℓ j can possibly be executed right after ℓ i by the rules above. Formally, a CFG is a tuple

V p , V r , L, → (1) 
where:

• V p and V r are finite sets of program variables and sampling (randomized) variables, respectively; • L is a finite set of labels partitioned into (i) the set L a of assignment labels, (ii) the set L b of branching labels, (iii) the set L p of probabilistic labels, (iv) the set L nd of nondeterministic labels, (v) the set L t of tick labels, and (vi) a special terminal label ℓ out corresponding to the end of the program. Note that the start label ℓ in corresponds to the first statement of the program and is therefore covered in cases (i)-(v).

1 : while x ≥ 1 do 2 :

x := x + r ; 3 :

y := r ′ ; 4 :

t i c k (x * y) od 5 :

x ≥ 1 x ← x + r t i c k ( x * y ) 1 2 3 4 x < 1 5 y ← r Figure 2.
An example program with its labels (left), and its CFG (right). We have ℓ in = 1 and ℓ out = 5.

• → is a transition relation whose every member is a triple of the form (ℓ, α, ℓ ′ ) where ℓ is the source and ℓ ′ is the target of the transition, and α is the rule that must be obeyed when the execution goes from ℓ to ℓ ′ . The rule α is either an update function 

F ℓ : Val V p × Val V r → Val V p if ℓ ∈ L a ,
V p if ℓ ∈ L b , or a real number p ∈ [0, 1] if ℓ ∈ L p , or ⋆ if ℓ ∈ L nd , or a cost function R ℓ : Val V p → R if ℓ ∈ L t .
In the last case, the cost function R ℓ is specified by the arithmetic expression q in tick(q) and maps the values of program variables to the cost of the tick operation.

Example 2.1. Figure 2 provides an example program and its CFG. We assume that the probability distributions for the random variables r and r ′ are (1, -1) : (1/4, 3/4) and

(1, -1) : (2/3, 1/3) respectively. In this program, the value of the variable x is incremented by the sampling variable r , whose value is 1 with probability 1/4 and -1 with probability 3/4. Then, the variable y is assigned a random value sampled from the variable r ′ , that is 1 with probability 2/3 and -1 with probability 1/3. The tick command then incurs a cost of x • y, i.e. x * y is used as the cost function.

Runs and schedulers.

A run of a program is an infinite sequence {(ℓ n , v n )} ∞ n=0 of labels ℓ n and valuations v n to program variables that respects the rules of the CFG. A scheduler is a policy that chooses the next step, based on the history of the program, when the program reaches a nondeterministic choice. For more formal semantics see Appendix C. Termination time [START_REF] María | Probabilistic Termination: Soundness, Completeness, and Compositionality[END_REF]. The termination time is a random variable T defined on program runs as

T ({(ℓ n , v n )} ∞ n=0 ) := min{n | ℓ n = ℓ out }.
We define min ∅ := ∞. Note that T is a stopping time on program runs. Intuitively, the termination time of a run is the number of steps it takes for the run to reach the termination label ℓ out or ∞ if it never terminates. Types of termination [START_REF] Chatterjee | Termination Analysis of Probabilistic Programs Through Positivstellensatz's[END_REF][START_REF] María | Probabilistic Termination: Soundness, Completeness, and Compositionality[END_REF][START_REF] Benjamin | On the hardness of analyzing probabilistic programs[END_REF]. A program is said to almost surely terminate if it terminates with probability 1 using any scheduler. Similarly, a program is finitely terminating if it has finite expected termination time over all schedulers. Finally, a program has the concentration property or concentratedly terminates if there exist positive constants a and b such that for sufficiently large n, we have P(T > n) ≤ a •e -b •n for all schedulers, i.e. if the probability that the program takes n steps or more decreases exponentially as n grows.

Termination analysis of probabilistic programs is a widelystudied topic. For automated approaches, see [START_REF] Agrawal | Lexicographic ranking supermartingales: an efficient approach to termination of probabilistic programs[END_REF][START_REF] Chakarov | Probabilistic Program Analysis with Martingales[END_REF][START_REF] Chatterjee | Termination Analysis of Probabilistic Programs Through Positivstellensatz's[END_REF][START_REF] Mciver | A new proof rule for almost-sure termination[END_REF].

Expected Accumulated Cost

The main notion we use in cost analysis of nondeterministic probabilistic programs is the expected accumulated cost until program termination. This concept naturally models the total cost of execution of a program in the average case. We now formalize this notion. Cost of a run. We define the random variable C m as the cost at the m-th step in a run, which is equal to a cost function R ℓ if the m-th executed statement is a tick statement and is zero otherwise, i.e. given a run ρ = {(ℓ n , v n )} ∞ n=0 , we define:

C m (ρ) := R ℓ m (v m ) if ℓ m ∈ L t 0 otherwise
Moreover, we define the random variable C ∞ as the total cost of all steps, i.e. C ∞ (ρ) := ∞ m=0 C m (ρ). Note that when the program terminates, the run remains in the state ℓ out and does not trigger any costs. Hence, C ∞ represents the total accumulated cost until termination. Given a scheduler σ and an initial valuation v to program variables, we define

E σ v (C ∞ )
as the expected value of the random variable C ∞ over all runs that start with (ℓ in , v) and use σ for making choices at nondeterministic points. Definition 2.2 (Expected Accumulated Cost). Given an initial valuation v to program variables, the maximum expected accumulated cost, supval(v), is defined as sup σ E σ v (C ∞ ), where σ ranges over all possible schedulers. Intuitively, supval(v) is the maximum expected total cost of the program until termination, i.e. assuming a scheduler that resolves nondeterminism to maximize the total accumulated cost. In this work, we focus on automated approaches to find polynomial bounds for supval(v).

Motivating Examples

In this section, we present several motivating examples for the expected cost analysis of nondeterministic probabilistic programs. Previous general approaches for probabilistic programs, such as [START_REF] Van Chan Ngo | Bounded expectations: resource analysis for probabilistic programs[END_REF], require the following restrictions: (a) stepwise costs are nonnegative; and (b) stepwise costs are bounded. We present natural examples which do not satisfy the above restrictions. Our examples are as follows:

1. In Section 3.1, we present an example of Bitcoin mining, where the costs are both positive and negative, but bounded. Then in Section 3.2, we present an example of Bitcoin pool mining, where the costs are both positive and negative, as well as unbounded, but the updates to the variables at each program execution step are bounded.

2. In Section 3.3, we present an example of queuing networks which also has unbounded costs but bounded updates to the variables. 3. In Section 3.4, we present an example of stochastic linear recurrences, where the costs are nonnegative but unbounded, and the updates to the variable values are also unbounded.

Bitcoin Mining

Popular decentralized cryptocurrencies, such as Bitcoin and Ethereum, rely on proof-of-work Blockchain protocols to ensure a consensus about ownership of funds and validity of transactions [START_REF] Nakamoto | Bitcoin: A peer-to-peer electronic cash system[END_REF]95]. In these protocols, a subset of the nodes of the cryptocurrency network, called miners, repeatedly try to solve a computational puzzle. In Bitcoin, the puzzle is to invert a hash function, i.e. to find a nonce value v, such that the SHA256 hash of the state of the Blockchain and the nonce v becomes less than a predefined value [START_REF] Nakamoto | Bitcoin: A peer-to-peer electronic cash system[END_REF]. The first miner to find such a nonce is rewarded by a fixed number of bitcoins. If several miners find correct nonces at almost the same time, which happens with very low probability, only one of them will be rewarded and the solutions found by other miners will get discarded [START_REF] Baliga | Understanding blockchain consensus models[END_REF]. Given the one-way property of hash functions, one strategy for a miner is to constantly try randomly-generated nonces until one of them leads to the desired hash value. Therefore, a miner's chance of getting the next reward is proportional to her computational power. Bitcoin mining uses considerable electricity and is therefore very costly [START_REF] De | Bitcoin's Growing Energy Problem[END_REF].

Bitcoin mining can be modeled by the nondeterministic probabilistic program given in Figure 3. In this program, a miner starts with an initial balance of x and mines as long as he has some money left for the electricity costs. At each step, he generates and checks a series of random nonces. This leads to a cost of α for electricity. With probability p, one of the generated nonces solves the puzzle. When this happens, with probability p ′ the current miner is the only one who has solved the puzzle and receives a reward of β units. However, with probability 1 -p ′ , other miners have also solved the same puzzle in roughly the same time. In this case, whether the miner receives his reward or not is decided by nondeterminism. Since we are modeling the total cost from the point-of-view of the miner, getting a reward has negative cost while paying for electricity has positive cost. The values of parameters α, β, p, and p ′ can be found experimentally in the real world. Basically, α is the cost of electricity for the miner, which depends on location, β is the reward for solving the puzzle, which depends on the Bitcoin exchange rate, and p and p ′ depend on the total computational power of the Bitcoin network, which can be estimated at any time [START_REF] Smith | Hash Rate: The estimated number of tera hashes per second (trillions of hashes per second) the Bitcoin network is performing[END_REF]. In the sequel, we assume α = 1, β = 5000, p = 0.0005, p ′ = 0.99.

Remark 2. Note that in the example of Figure 3, the costs are both positive (tick(α)) and negative (tick(-β)), but bounded 

while x ≥ α do x := x -α ; t i c k (α) ; i f prob ( p ) then i f prob ( p ′ ) then t i c k (-β) e l s e i f ⋆ then t i c k (-β) f i f i f i od

Bitcoin Pool Mining

As mentioned earlier, a miner's chance of solving the puzzle in Bitcoin is proportional to her computational power. Given that the overall computational power of the Bitcoin network is enormous, there is a great deal of variance in miners' revenues, e.g. a miner might not find a solution for several months or even years, and then suddenly find one and earn a huge reward. To decrease the variance in their revenues, miners often collaborate in mining pools [START_REF] Rosenfeld | Analysis of bitcoin pooled mining reward systems[END_REF].

A mining pool is created by a manager who guarantees a steady income for all participating miners. This income is proportional to the miner's computational power. Any miner can join the pool and assign its computational power to solving puzzles for the pool, instead of for himself, i.e. when a puzzle is solved by a miner participating in a pool, the rewards are paid to the pool manager [START_REF] Chatterjee | Ergodic Mean-Payoff Games for the Analysis of Attacks in Crypto-Currencies[END_REF]. Pools charge participation fees, so in the long term, the expected income of a participating miner is less than what he is expected to earn by mining on his own.

A pool can be modeled by the probabilistic program in Figure 4. The manager starts the pool with y identical miners 1 . At each time step, the manager has to pay each miner a fixed amount α. Miners perform the mining as in Figure 3. Note that their mining revenue now belongs to the pool manager. Finally, at each time step, a small stochastic change happens in the number of miners, i.e. a miner might choose to leave the pool or a new miner might join the pool. The probability of such changes can also be estimated experimentally. In our example, we have that the number of miners increases by one with probability 0.4, decrease by one with probability 0.5, and does not change with probability 0.1 (y := y + (-1, 0, 1) : (0.5, 0.1, 0.4)).

Remark 3. In contrast to Figure 3 where the costs are bounded, in Figure 4, they are not bounded (tick(α * y)). Moreover, they are both positive (tick(α * y)) and negative (tick(-β)). However, changes to the program variables i and y are bounded. 

Queuing Networks

A well-studied structure for modeling parallel systems is the Fork and Join (FJ) queuing network [START_REF] Alomari | Efficient response time approximations for multiclass fork and join queues in open and closed queuing networks[END_REF]. An FJ network consists of K processors, each with its own dedicated queue (Figure 5). When a job arrives, the network probabilistically divides (forks) it into one or more parts and assigns each part to one of the processors by adding it to the respective queue. Each processor processes the jobs in its queue on a first-in-first-out basis. When all of the parts of a job are processed, the results are joined and the job is completed.

The processing time of a job is the amount of time it takes from its arrival until its completion. FJ networks have been used to model and analyze the efficiency of a wide variety of parallel systems [START_REF] Alomari | Efficient response time approximations for multiclass fork and join queues in open and closed queuing networks[END_REF], such as web service applications [START_REF] Daniel | Response-time analysis of composite Web services[END_REF], complex network intrusion detection systems [START_REF] Alomari | An autonomic framework for integrating security and quality of service support in databases[END_REF], MapReduce frameworks [START_REF] Dean | MapReduce: simplified data processing on large clusters[END_REF], programs running on multi-core processors [START_REF] Mark | Amdahl's law in the multicore era[END_REF], and health care applications such as diagnosing patients based on test results from several laboratories [START_REF] Almomen | The Design of an Autonomic Controller for Self-managed Emergency Departments[END_REF].

An FJ network can be modeled as a probabilistic program. For example, the program in Figure 6 models a network with K = 2 processors that accepts jobs for n time units. At each unit of time, one unit of work is processed from each queue, and there is a fixed probability 0.02 that a new job arrives. The network then probabilistically decides to assign the job to the first processor (with probability 0.2) or the second processor (with probability 0.4) or to divide it among them (with probability 0.4). We assume that all jobs are identical and for processor 1 it takes 3 time units to process a job, while processor 2 only takes 2 time units. If the job is divided among them, processor 1 takes 2 units to finish its part and processor 2 takes 1 time unit. The variables l 1 and l 2 model the length of the queues for each processor, and the program cost models the total processing time of the jobs.

Note that the processing time is computed from the pointof-view of the jobs and does not model the actual time spent on each job by the processors, instead it is defined as the amount of time from the moment the job enters the network, until the moment it is completed. Hence, the processing time can be computed as soon as the job is assigned to the processors and is equal to the length of the longest queue. 

1 := 0; l 2 := 0; i := 1; while i ≤ n do i f l 1 ≥ 1 then l 1 := l 1 -1 f i ; i f l 2 ≥ 1 then l 2 := l 2 -1 f i ; i f prob ( 0.02 ) then i f prob ( 0.2 ) then l 1 := l 1 + 3 e l s e i f prob ( 0.5 ) then l 2 := l 2 + 2 e l s e l 1 := l 1 + 2; l 2 := l 2 + 1 f i f i ; i f l 1 ≥ l 2 then t i c k (l 1 ) e l s e t i c k (l 2 ) f i f i ; i := i + 1 od Figure 6. A FJ-network Example with K = 2 Processors
Remark 4. In the example of Figure 6, note that the costs, i.e. tick(l 1 ) and tick(l 2 ), depend on the length of the queues and are therefore unbounded. However, all updates in program variables are bounded, i.e. a queue size is increased by at most 3 at each step of the program. The maximal update appears in the assignment l 1 := l 1 + 3.

Stochastic Linear Recurrences

Linear recurrences are systems that consist of a finite set x of variables, together with a finite set a 1 , a 2 , . . . , a m of linear update rules. At each step of the system's execution, one of the rules is chosen and applied to the variables. Formally, if there are n variables, then we consider x and each of the a i 's to be a vector of length n, and applying the rule a i corresponds to the assignment x := a i • x. This process continues as long as a condition ϕ is satisfied. Linear recurrences are well-studied and appear in many contexts, e.g. to model linear dynamical systems, in theoretical biology, and in statistical physics (see [START_REF] Almagor | Effective Divergence Analysis for Linear Recurrence Sequences[END_REF][START_REF] Ouaknine | Decision problems for linear recurrence sequences[END_REF][START_REF] Ouaknine | On linear recurrence sequences and loop termination[END_REF]). A classical example is the so-called species fight in ecology.

A natural extension of linear recurrences is to consider stochastic linear recurrences, where at each step the rule to be applied is chosen probabilistically. Moreover, the cost of the process at each step is a linear combination c • x of the variables. Hence, a general stochastic linear recurrence is a program in the form shown in Figure 7.

We present a concrete instantiation of such a program in the context of species fight. Consider a fight between two types of species, a and b, where there are a finite number of each type in the initial population. The types compete and might also prey upon each other. The fitness of the types depends on the environment, which evolves stochastically. For example, the environment may represent the temperature, and a type might have an advantage over the other type in warm/cold environment. The cost we model is the amount of resources consumed by the population. Hence, it is a linear combination of the population of each type (i.e. each individual consumes some resources at each time step).

while ϕ do i f prob ( p 1 ) then x : = a 1 • x e l s e i f prob ( p 2 ) then x : = a 2 • x . . . e l s e i f prob ( p m ) then x : = a m • x f i . . . f i ; t i c k (c • x) od
Figure 8 provides an explicit example, in which with probability 1/2, the environment becomes hospitable to a, which leads to an increase in its population, and assuming that a preys on b, this leads to a decrease in the population of b. On the other hand, the environment might become hostile to a, which leads to an increase in b's population. Moreover, each individual of either type a or b consumes 1 unit of resource per time unit. We also assume that a population of less than 5 is unsustainable and leads to extinction.

Remark 5. Note that in Figure 8, there are unbounded costs (tick(a +b)) and unbounded updates to the variables (e.g. a := 1.1 * a). However, the costs are always nonnegative.

Main Ideas and Novelty

In this work, our main contribution is an automated approach for obtaining polynomial bounds on the expected accumulated cost of nondeterministic probabilistic programs. In this section, we present an outline of our main ideas, and a discussion on their novelty in comparison with previous approaches. The key contributions are organized as follows: (a) mathematical foundations; (b) soundness of the approach; and (c) computational results.

Mathematical Foundations

The previous approach of [START_REF] Van Chan Ngo | Bounded expectations: resource analysis for probabilistic programs[END_REF] can only handle nonnegative bounded costs. Their main technique is to consider potential functions and probabilistic extensions of weakest precondition, which relies on monotonicity. This is the key reason why the costs must be nonnegative. Instead, our approach is based on martingales, and can hence handle both positive and negative costs.

Extension of OST.

A standard result in the analysis of martingales is the Optional Stopping Theorem (OST), which provides a set of conditions on a (super)martingale {X n } ∞ n=0 that are sufficient to ensure bounds on its expected value at a stopping time. A requirement of the OST is the so-called bounded difference condition, i.e. that there should exist a constant number c, such that the stepwise difference |X n+1 -X n | is always less than c. In program cost analysis, this condition translates to the requirement that the stepwise cost function at each program point must be bounded by a constant. It is well-known that the bounded difference condition in OST is an essential prerequisite, and thus application of classical OST can only handle bounded costs.

We present an extension of the OST that provides certain new conditions for handling differences |X n+1 -X n | that are not bounded by a constant, but instead by a polynomial on the step number n. Hence, our extended OST can be applied to programs such as the motivating examples in Sections 3.1, 3.2 and 3.3. The details of the OST extension are presented in Section 5.

Soundness of the Approach

For a sound approach to compute polynomial bounds on expected accumulated cost, we present the following results (details in Section 6):

1. We define the notions of polynomial upper cost supermartingale (PUCS) and polynomial lower cost submartingale (PLCS) for upper and lower bounds of the expected accumulated cost over probabilistic programs, respectively (see Section 6.1). 2. For the case where the costs can be both positive and negative (bounded or unbounded), but the variable updates are bounded, we use our extended OST to establish that PUCS's and PLCS's provide a sound approach to obtain upper and lower bounds on the expected accumulated cost (see Section 6.2). 3. For costs that are nonnegative (even with unbounded updates), we show that PUCS's provide a sound approach to obtain upper bounds on the expected accumulated cost (see Section 6.3). The key mathematical result we use here is the Monotone Convergence theorem. We do not need OST in this case.

Computational Results

By our definition of PUCS/PLCS, a candidate polynomial h is a PUCS/PLCS for a given program, if it satisfies a number of polynomial inequalities, which can be obtained from the CFG of the program. Hence, we reduce the problem of synthesis of a PUCS/PLCS to solving a system of polynomial inequalities. Such systems can be solved using quantifier elimination, which is computationally expensive. Instead, we present the alternative sound method of using a Positivstellensatz, i.e. a theorem in real semi-algebraic geometry that characterizes positive polynomials over a semi-algebraic set. In particular, we use Handelman's Theorem to show that given a nondeterministic probabilistic program, a PUCS/PLCS can be synthesized by solving a linear programming instance of polynomial size (wrt the size of the input program and invariant). Hence, our sound approach for obtaining polynomial bounds on the expected accumulated cost of a program runs in polynomial time. The details are presented in Section 7.

Novelty

The main novelties of our approach are as follows:

1. Positive and Negative Costs. In contrast to previous approaches, such as [START_REF] Van Chan Ngo | Bounded expectations: resource analysis for probabilistic programs[END_REF], that can only handle positive costs, our approach can handle both positive and negative costs. In particular, approaches that are based on weakest pre-expectation require the onestep pre-expectation of the cost to be non-negative (due to monotonicity conditions). This requirement is enforced by disallowing negative costs. In contrast, our approach can even handle cases where the onestep pre-expectation is negative, e.g. see lines 4-5 in Figure 3 (Section 3.1) and lines 5-6 in Figure 4 (Section 3.2) where the cost is always negative. As shown by these examples, many real-world scenarios contain both costs and rewards (negative costs). We provide the first approach that can handle such scenarios. 2. Variable-dependent Costs. Previous approaches, such as [START_REF] Van Chan Ngo | Bounded expectations: resource analysis for probabilistic programs[END_REF], require the one-step costs to be bounded constants. A major novelty of our approach is that it can handle unbounded variable-dependent costs. This allows us to consider real-world examples, such as the ubiquitous Queuing Networks of Section 3.3, in which the cost depends on the length of a queue. 3. Upper and Lower Bounds. While previous approaches, such as [START_REF] Van Chan Ngo | Bounded expectations: resource analysis for probabilistic programs[END_REF], could only present sound upper bounds with positive bounded costs, our approach for positive and negative costs, with the restriction of bounded updates to the variables, can provide both upper and lower bounds on the expected accumulated costs. Thus, for the examples of Sections 3.1, 3.2 and 3.3, we obtain both upper and lower bounds. This is the first approach that is able to provide lower bounds for expected accumulated cost. 4. Efficiency. We present a provably polynomial-time computational approach for obtaining bounds on the expected accumulated costs. The previous approach in [START_REF] Van Chan Ngo | Bounded expectations: resource analysis for probabilistic programs[END_REF] has exponential dependence on size of the program. 5. Compositionality. Our approach directly leads to a compositional approach. For a program P, we can annotate P with {G}P {H } meaning that G and H are functions of a PUCS/PLCS at the start and end program counter. Then, by applying the conditions of PUCS/PLCS to the program syntax, one can directly establish a proof system for proving the triple {G}P {H }.

Limitations

We now discuss some limitations of our approach. 1. As in previous approaches, such as [START_REF] Chatterjee | Computational Approaches for Stochastic Shortest Path on Succinct MDPs[END_REF][START_REF] Van Chan Ngo | Bounded expectations: resource analysis for probabilistic programs[END_REF], we need to assume that the input program terminates. 2. For programs with both positive and negative costs, we handle either bounded updates to variables or bounded costs. The most general case, with both unbounded costs and unbounded updates, remains open. 3. For unbounded updates to variables, we consider nonnegative costs, and present only upper bounds, and not lower bounds. However, note that our approach is the first one to present any lower bounds for cost analysis of probabilistic programs (with bounded updates to variables), and no previous approach can obtain lower bounds in any case. 4. Our approach assumes that linear invariants at every point of the program are given as part of the input (see Section 6.1). Note that linear invariant generation is a classical problem with several efficient tools (e.g. [START_REF] Sriram Sankaranarayanan | Constraint-based linear-relations analysis[END_REF]).

The Extension of the OST

The Optional Stopping Theorem (OST) states that, given a martingale (resp. supermartingale), if its step-wise difference X n -X n+1 is bounded, then its expected value at a stopping time is equal to (resp. no greater than) its initial value.

Theorem 5.1 (Optional Stopping Theorem (OST) [START_REF] Joseph | What is a Martingale?[END_REF][START_REF] Williams | Probability with martingales[END_REF]).

Consider any stopping time U wrt a filtration {F n } ∞ n=0 and any martingale (resp. supermartingale)

{X n } ∞ n=0 adapted to {F n } ∞ n=0 and let Y = X U . Then the following condition is suf- ficient to ensure that E (|Y |) < ∞ and E (Y ) = E(X 0 ) (resp. E (Y ) ≤ E(X 0 )): • There exists an M ∈ [0, ∞) such that for all n ≥ 0, |X n+1 -X n | ≤ M almost surely.
It is well-known that the stepwise bounded difference condition (i.e. |X n+1 -X n | ≤ M) is an essential prerequisite [START_REF] Williams | Probability with martingales[END_REF]. Below we present our extension of OST to unbounded differences.

Theorem 5.2 (The Extended OST). Consider any stopping time U wrt a filtration {F n } ∞ n=0 and any martingale (resp. supermartingale) {X n } ∞ n=0 adapted to {F n } ∞ n=0 and let Y = X U . Then the following condition is sufficient to ensure that

E (|Y |) < ∞ and E (Y ) = E(X 0 ) (resp. E (Y ) ≤ E(X 0 )):
• There exist real numbers M, c 1 , c 2 , d > 0 such that (i) for sufficiently large n ∈ N, it holds that

P(U > n) ≤ c 1 • e -c 2 •n and (ii) for all n ∈ N, |X n+1 -X n | ≤ M • n d almost surely.
Intuition and proof idea. We extend the OST so that the stepwise difference |X n+1 -X n | need not be bounded by a constant, but instead by a polynomial in terms of the step counter n. However, we require that the stopping time U satisfies the concentration condition that specifies an exponential decrease in P(U > n). We present a rigorous proof that uses Monotone and Dominated Convergence Theorems along with the concentration bounds and polynomial differences to establish the above result. For technical details see Appendix D.1.

Remark 6. We note several points about our extended OST: 1. It can handle unbounded difference. 2. While the original proof for OST ( [START_REF] Williams | Probability with martingales[END_REF]) is restricted to bounded-difference, our proof for the extended OST (Appendix D.1) uses a novel condition, i.e. that the stopping time has exponentially-decreasing probabilities, to handle unbounded difference. 3. We show that the new condition in our extended OST formulation corresponds to program termination. Thus, our extension provides a sound method for cost analysis of terminating programs.

Polynomial Cost Martingales

In this section, we introduce the notion of polynomial cost martingales, which serve as the main tool for reducing the cost analysis problem over nondeterministic probabilistic programs to the analysis of a stochastic process.

Definitions

Below, we fix a probabilistic program and its CFG of form [START_REF] Agrawal | Lexicographic ranking supermartingales: an efficient approach to termination of probabilistic programs[END_REF].

In order to apply our extended OST for cost analysis of the program, it should first be translated into a discrete-time stochastic process. This is achieved using the concept of cost martingales. To define cost martingales, we first need the notions of invariants and pre-expectation. 

: L × Val V p → R by: • pre h (ℓ, v) := h(ℓ, v) if ℓ = ℓ out is the terminal label; • pre h (ℓ, v) := E u [h(ℓ ′ , F ℓ (v, u))] if ℓ ∈ L a
is an assignment label with the update function F ℓ , and the next label is ℓ ′ . Note that in the expectation

E u [h(ℓ ′ , F ℓ (v, u))],
the values of ℓ ′ and v are treated as constants and u observes the probability distributions specified for the sampling variables;

• pre h (ℓ, v) := 1 v |=ϕ • h(ℓ 1 , v) + 1 v̸ |=ϕ • h(ℓ 2 , v) if ℓ ∈ L b
is a branching label and ℓ 1 , ℓ 2 are the labels for the true-branch and the false-branch, respectively. The indicator 1 v |=ϕ is equal to 1 when v satisfies ϕ and 0 otherwise. Conversely, 1 v̸ |=ϕ is 1 when v does not satisfy ϕ and 0 when it does;

• pre h (ℓ, v) := (ℓ,p, ℓ ′ )∈→ p • h(ℓ ′ , v) if ℓ ∈ L p is a prob- abilistic label; • pre h (ℓ, v) := R ℓ (v) + h(ℓ ′ , v) if ℓ ∈ L t is a tick label
with the cost function R ℓ and the successor label ℓ ′ ;

• pre h (ℓ, v) := max (ℓ,⋆, ℓ ′ )∈→ h(ℓ ′ , v) if ℓ ∈ L nd is a non- deterministic label.
Intuition. The pre-expectation pre h (ℓ, v) is the cost of the current step plus the expected value of h in the next step of the program execution, i.e. the step after the configuration (ℓ, v). In this expectation, ℓ and v are treated as constants.

For example, the pre-expectation at a probabilistic branching label is the averaged sum over the values of h at all possible successor labels.

Example 6.4. In Figure 9 (top) we consider the same program as in Example 2.1. Recall that the probability distributions used for sampling variables r and r ′ are (1, -1) :

(1/4, 3/4) and (1, -1) : (2/3, 1/3), respectively. The table in Figure 9 (bottom) provides an example function h and the corresponding pre-expectation pre h . The gray part shows

1 : [x ≥ 0] while x ≥ 1 do 2 : [x ≥ 1] x := x + r ; 3 : [x ≥ 0] y := r ′ ; 4 : [x ≥ 0 ∧ -1 ≤ y ≤ 1] t i c k (x * y) od 5 : [0 ≤ x ≤ 1] n h(ℓ n , x, y)
pr e h (ℓ n , x, y)

1 1 3 x 2 + 1 3 x 1 x ≥1 • h(ℓ 2 , x, y) + 1 x <1 • h(ℓ 5 , x, y) = 1 x ≥1 • ( 1 3 x 2 + 1 3 x ) + 1 x <1 • 0 2 1 3 x 2 + 1 3 x 1 4 h(ℓ 3 , x + 1, y) + 3 4 h(ℓ 3 , x -1, y) = 1 3 x 2 + 1 3 x 3 1 3 x 2 + 2 3 x 2 3 h(ℓ 4 , x, 1) + 1 3 h(ℓ 4 , x, -1) = 1 3 x 2 + 2 3 x 4 1 3 x 2 + xy + 1 3 x x • y + h(ℓ 1 , x, y) = 1 3 x 2 + xy + 1 3 x 5 0 h(ℓ 5 , x, y) = 0 Figure 9.
A program together with an example function h and the corresponding pre-expectation function pre h .

the steps in computing the function pre h and the black part is the final result 2 .

We now define the central notion of cost martingales. For algorithmic purposes, we only consider polynomial cost martingales in this work. We start with the notion of PUCS which is meant to serve as an upperbound for the expected accumulated cost of a program. Intuition. Informally, (C1) specifies that the PUCS should be polynomial at each label, (C2) says that the value of the PUCS at the terminal label ℓ out should always be zero, and (C3) specifies that at all reachable configurations (ℓ, v), the pre-expectation is no more than the value of the PUCS itself. Note that if h is polynomial in program variables, then pre h (ℓ, -) is also polynomial if ℓ is an assignment, probabilistic branching or tick label. For example, in the case of assignment labels, E u [h(ℓ ′ , F ℓ (v, u))] is polynomial in v if both h and F ℓ are polynomial. Example 6.6. By Definition 6.5, the function h given in Example 6.4 is a PUCS. For every label ℓ of the program, h(ℓ, -) is a polynomial of degree at most 2, so h satisfies condition (C1). It is straightforward to verify, using the table in Figure 9 (bottom), that h satisfies (C2) and (C3) as well. 2 The reason for choosing this particular h will be clarified by Example 6.6.

We now define the counterpart of PUCS for lower bound. Definition 6.7 (Polynomial Lower Cost Submartingales). A polynomial lower cost submartingale (PLCS) wrt a linear invariant I is a function h : L × Val V p → R that satisfies (C1) and (C2) above, and the additional condition (C3') below (instead of (C3)): (C3') for all non-terminal labels ℓ ℓ out and reachable valuations v ∈ I (ℓ), we have pre h (ℓ, v) ≥ h(ℓ, v);

Intuitively, a PUCS requires the pre-expectation pre h to be no more than h itself, while a PLCS requires the converse, i.e. that pre h should be no less than h. Example 6.8. As shown in Example 6.6, the function h given in Example 6.4 (Figure 9) satisfies (C1) and (C2). Using the table in Figure 9, one can verify that h satisfies (C3') as well. Hence, h is a PLCS.

In the following sections, we prove that PUCS's and PLCS's are sound methods for obtaining upper and lower bounds on the expected accumulated cost of a program.

General Unbounded Costs and Bounded Updates

In this section, we consider nondeterministic probabilistic programs with general unbounded costs, i.e. both positive and negative costs, and bounded updates to the program variables. Using our extension of the OST (Theorem 5.2), we show that PUCS's and PLCS's are sound for deriving upper and lower bounds for the expected accumulated cost.

Recall that the extended OST has two prerequisites. One is that, for sufficiently large n, the stopping time U should have exponentially decreasing probability of nontermination, i.e. P(U > n) ≤ c 1 • e -c 2 •n . The other is that the stepwise difference |X n+1 -X n | should be bounded by a polynomial on the number n of steps. We first describe how these conditions affect the type of programs that can be considered, and then provide our formal soundness theorems.

The first prerequisite is equivalent to the assumption that the program has the concentration property. To ensure the first prerequisite, we apply the existing approach of difference-bounded ranking-supermartingale maps [START_REF] Chatterjee | Termination Analysis of Probabilistic Programs Through Positivstellensatz's[END_REF][START_REF] Chatterjee | Algorithmic analysis of qualitative and quantitative termination problems for affine probabilistic programs[END_REF]. We ensure the second prerequisite by assuming the bounded update condition, i.e. that every assignment to each program variable changes the value of the variable by a bounded amount. We first formalize the concept of bounded update and then argue why it is sufficient to ensure the second prerequisite. Definition 6.9 (Bounded Update). A program P with invariant I has the bounded update property over its program variables, if there exists a constant M > 0 such that for every assignment label ℓ with update function F ℓ , we have

∀v ∈ I (ℓ) ∀u ∀x ∈ V p |F ℓ (v, u)(x) -v(x)| ≤ M .
The reason for assuming bounded update. A consequence of the bounded update condition is that at the n-th execution step of any run of the program, the absolute value of any program variable x is bounded by M • n + x 0 , where M is the constant bound in the definition above and x 0 is the initial value of the variable x. Hence, for large enough n, the absolute value of any variable x is bounded by (M + 1) • n. Therefore, given a PUCS h of degree d, one can verify that the step-wise difference of h is bounded by a polynomial on the number n of steps. More concretely, h is a degree-d polynomial over variables that are bounded by (M + 1) • n, so h is bounded by M ′ • n d for some constant M ′ > 0 . Thus, the bounded update condition is sufficient to fulfill the second prerequisite of our extended OST.

Based on the discussion above, we have the following soundness theorems: Theorem 6.10 (Soundness of PUCS). Consider a nondeterministic probabilistic program P, with a linear invariant I and a PUCS h. If P satisfies the concentration property and the bounded update property, then supval(v) ≤ h(ℓ in , v) for all initial valuations v ∈ I (ℓ in ).

Proof Sketch. We define the stochastic process {X n } ∞ n=0 as X n := h(ℓ n , v n ), where ℓ n is the random variable representing the label at the n-th step of a program run, and v n is a vector of random variables consisting of components v n (x) which represent values of program variables x at the n-th step. Furthermore, we construct the stochastic process

{Y n } ∞ n=0 such that Y n = X n + n-1 k =0 C k . Recall that C k is the cost of the k-th step of the run and C ∞ = ∞ k =0 C k .
We consider the termination time T of P and prove that {Y n } ∞ n=0 satisfies the prerequisites of our extended OST (Theorem 5.2). This proof depends on the assumption that P has concentration and bounded update properties. Then by applying Theorem 5.2, we have that

E(Y T ) ≤ E(Y 0 ). Since Y T = X T + T k =0 C k = C ∞ ,
we obtain the desired result. For a more detailed proof, see Appendix D. [START_REF] Albert | Automatic Inference of Upper Bounds for Recurrence Relations in Cost Analysis[END_REF]. □ Example 6.11. Given that the h in Example 6.4 is a PUCS, we can conclude that for all initial values x 0 and y 0 , we have supval(x 0 , y 0 ) ≤ h(ℓ 1 , x 0 , y 0 ) = 1 3 x 2 0 + 1 3 x 0 . We showed that PUCS's are sound upper bounds for the expected accumulated cost of a program. The following theorem provides a similar result for PLCS's and lower bounds. Theorem 6.12 (Soundness of PLCS, Proof in Appendix D.4). Consider a nondeterministic probabilistic program P, with a linear invariant I and a PLCS h. If P satisfies the concentration property and the bounded update property, then supval(v) ≥ h(ℓ in , v) for all initial valuations v ∈ I (ℓ in ). Example 6.13. Given that the h in Example 6.4 is a PLCS, we can conclude that for all initial values x 0 and y 0 , we have supval(x 0 , y 0 ) ≥ h(ℓ 1 , x 0 , y 0 ) = 1 3 x 2 0 + 1 3 x 0 . Remark 8. Putting together the results from Examples 6.11 and 6.13, we conclude that the expected accumulated cost of Example 6.4 is precisely 1 3 x 2 0 + 1 3 x 0 .

Remark 9.

The motivating examples in Sections 3.1, 3.2 and 3.3, i.e. Bitcoin mining, Bitcoin pool mining and FJ queuing networks, have potentially unbounded costs that can be both positive and negative. Moreover, they satisfy the bounded update property. Therefore, using PUCS's and PLCS's leads to sound bounds on their expected accumulated costs.

Unbounded Nonnegative Costs and General Updates

In this section, we consider programs with unbounded nonnegative costs, and show that a PUCS is a sound upper bound for their expected accumulated cost. This result holds for programs with arbitrary unbounded updates to the variables. Our main tool is the well-known Monotone Convergence Theorem (MCT) [START_REF] Williams | Probability with martingales[END_REF], which states that if X is a random variable and {X n } ∞ n=0 is a non-decreasing discrete-time stochastic process such that lim n→∞ X n = X almost surely, then

lim n→∞ E(X n ) = E(X ).
As in the previous case, the first step is to translate the program to a stochastic process. However, in contrast with the previous case, in this case we only consider nonnegative PUCS's. This is because all costs are assumed to be nonnegative. We present the following soundness result: Theorem 6.14 (Soundness of nonnegative PUCS). Consider a nondeterministic probabilistic program P, with a linear invariant I and a nonnegative PUCS h. If all the step-wise costs in P are always nonnegative, then supval(v) ≤ h(ℓ in , v) for all initial valuations v ∈ I (ℓ in ).

Proof Sketch. We define the stochastic process {X n } ∞ n=0 as in Theorem 6.12, i.e. X n := h(ℓ n , v n ). By definition, for all n, we have

E(X n+1 ) + E(C n ) ≤ E(X n ), hence by induction, we get E(X n+1 ) + n m=0 E(C m ) ≤ E(X 0 ). Given that h is non- negative, E(X n+1 ) ≥ 0, so n m=0 E(C m ) ≤ E(X 0 ). By apply- ing the MCT, we obtain E(C ∞ ) = E(lim n→∞ n m=0 C m ) = lim n→∞ n m=0 E(C m ) ≤ E(X 0 )
, which is the desired result. For a more detailed proof, see Appendix D. [START_REF] Alias | Multi-dimensional Rankings, Program Termination, and Complexity Bounds of Flowchart Programs[END_REF]. □ Remark 10. The motivating example in Section 3.4, i.e. the species fight stochastic linear recurrence, has unbounded nonnegative costs. Hence, nonnegative PUCS's lead to sound upper bounds on its expected accumulated cost.

Remark 11. We remark two points about general updates:

• As in Theorem 6.14, our approach for general updates requires the PUCS to be nonnegative. However, note that our approach for bounded updates (Section 6.2), does not have this requirement. • Since we are considering real-valued variables, unbounded updates cannot always be replaced with bounded updates and loops. (e.g. consider x := 3.1415 • x .)

Algorithmic Approach

In this section, we provide automated algorithms that, given a program P, an initial valuation v * , a linear invariant I and a constant d, synthesize a PUCS/PLCS of degree d. For brevity, we only describe our algorithm for PUCS synthesis. A PLCS can be synthesized in the same manner. Our algorithms run in polynomial time and reduce the problem of PUCS/PLCS synthesis to a linear programming instance by applying Handelman's theorem.

In order to present Handelman's theorem, we need a few basic definitions. Let X be a finite set of variables and Γ ⊆ R[X ] a finite set of linear functions (degree-1 polynomials) over X . We define ⟨Γ⟩ ⊆ Val X as the set of all valuations v to the variables in X that satisfy д i (v) ≥ 0 for all д i ∈ Γ. We also define the monoid set of Γ as

Monoid(Γ) := t i=1 д i | t ∈ N ∪ {0} ∧ д 1 , . . . , д t ∈ Γ .
By definition, it is obvious that if д ∈ Monoid(Γ), then for every v ∈ ⟨Γ⟩, we have д(v) ≥ 0. Handelman's theorem characterizes every polynomial д that is positive over ⟨Γ⟩.

Theorem 7.1 (Handelman's Theorem [START_REF] Handelman | Representing polynomials by positive linear functions on compact convex polyhedra[END_REF]). Let д ∈ R[X ] and д(x) > 0 for all x ∈ ⟨Γ⟩. If ⟨Γ⟩ is compact, then

д = s k=1 c k • f k ( †)
for some s ∈ N, c 1 , . . . , c s > 0 and f 1 , . . . , f s ∈ Monoid(Γ).

Intuitively, Handelman's theorem asserts that every polynomial д that is positive over ⟨Γ⟩ must be a positive linear combination of polynomials in Monoid(Γ). This means that in order to synthesize a polynomial that is positive over ⟨Γ⟩ we can limit our attention to polynomials of the form ( †). When using Handelman's theorem in our algorithm, we fix a constant K and only consider those elements of Monoid(Γ) that are obtained by K multiplicands or less.

We now have all the required tools to describe our algorithm for synthesizing a PUCS.

PUCS Synthesis Algorithm. The algorithm has four steps:

(1) Creating a Template for h. Let X = V p be the set of program variables. According to (C1), we aim to synthesize a PUCS h, such that for each label ℓ i of the program, h(ℓ i ) is a polynomial of degree at most d over X . Let M d (X ) = { f1 , f2 , . . . , fr } be the set of all monomials of degree at most d over the variables X . Then, h(ℓ i ) has to be of the form r j=1 a i j • fj for some unknown real values a i j . We call this expression a template for h(ℓ i ). Note that by condition (C2) the template for h(ℓ out ) is simply h(ℓ out ) = 0. The algorithm computes these templates at every label ℓ i , treating the a i j 's as unknown variables.

(2) Computing Pre-expectation. The algorithm symbolically computes a template for pre h using Definition 6.3 and the template obtained for h in step [START_REF] Agrawal | Lexicographic ranking supermartingales: an efficient approach to termination of probabilistic programs[END_REF]. This template will also contain a i j 's as unknown variables. (3) Pattern Extraction. The algorithm then processes condition (C3) by symbolically computing polynomials д = h(ℓ i )pre h (ℓ i ) for every label ℓ i . Then, as in Handelman's theorem, it rewrites each д on the left-hand-side of the equations above in the form ( †), using the linear invariant I (ℓ i ) as the set Γ of linear functions. The nonnegativity of h is handled in a similar way. This effectively translates (C3) and the nonnegativity into a system S of linear equalities over the a i j 's and the new nonnegative unknown variables c k resulting from equation ( †). (4) Solution via Linear Programming. The algorithm calls an LP-solver to find a solution of S that optimizes h(ℓ in , v * ). If the algorithm is successful, i.e. if the obtained system of linear equalities is feasible, then the solution to the LP contains values for the unknowns a i j and hence, we get the coefficients of the PUCS h. Note that we are optimizing for h(ℓ in , v * ), so the obtained PUCS is the one that produces the best polynomial upper bound for the expected accumulated cost of P with initial valuation v * . We use the same algorithm for PLCS synthesis, except that we replace (C3) with (C3').

Theorem 7.2. The algorithm above has polynomial runtime and synthesizes sound upper and lower bounds for the expected accumulated cost of the given program P.

Proof.

Step [START_REF] Agrawal | Lexicographic ranking supermartingales: an efficient approach to termination of probabilistic programs[END_REF] ensures that (C1), (C2) are satisfied, while step (3) forces the polynomials h and д's to be nonnegative, ensuring nonnegativity and (C3). So the synthesized h is a PUCS.

Steps ( 1)-( 3) are polynomial-time symbolic computations.

Step ( 4) solves an LP of polynomial size. Hence, the runtime is polynomial wrt the length of the program. The reasoning for PLCS synthesis is similar. □ Let the initial valuation be x 0 = 100, y 0 = 0. To obtain a quadratic PUCS, i.e. d = 2, our algorithm proceeds as follows:

(1) A quadratic template is created for h, by setting h(ℓ n , x, y) :=

a n1 • x 2 + a n2 • xy + a n3 • x + a n4 • y 2 + a n5 • y + a n6 .
This template contains all monomials of degree 2 or less. (2) A template for the function pre h is computed in the same manner as in Example 6.4, except for that the computation is now symbolic and contains the unknown variables a i j . The resulting template is presented in Table 1. (3) For each label ℓ i , the algorithm symbolically computes д = h(ℓ i )pre h (ℓ i ). For example, for ℓ 3 , the algorithm computes д(x, y

) = h(ℓ 3 , x, y) -pre h (ℓ 3 , x, y) = (a 31 - a 41 ) • x 2 + a 32 • xy + (a 33 -1 3 a 42 -a 43 ) • x + a 34 • y 2 + a 35 • y + a 36 -a 44 -1 3 a 45 -a 46 .
It then rewrites д according to ( †) using Γ = {x }, i.e. д(x, y) = c k • f k (x, y). This is because we need to ensure д ≥ 0 to fulfill condition (C3). This leads to the polynomial equation

c k • f k (x, y) = (a 31 -a 41 )•x 2 +a 32 •xy+(a 33 -1 3 a 42 -a 43 )•x +a 34 •y 2 +a 35 •y+ a 36 -a 44 -1
3 a 45 -a 46 . Note that both sides of this equation are polynomials. The coefficients of the polynomial on the LHS are combinations of c k 's and those of the RHS are combinations of a i j 's. Given that two polynomials are equal if and only if all of their corresponding terms Table 1. Template for pre h of the program in Figure 9 n pr e h (ℓ n , x, y) have the same coefficients, the equality above can be translated to several linear equations in terms of the c k 's and a i j 's by equating the coefficient of each term on both sides. These linear equations are generated at every label. (4) The algorithm calls an LP-solver to solve the system consisting of all linear equations obtained in step [START_REF] Albert | Automatic Inference of Upper Bounds for Recurrence Relations in Cost Analysis[END_REF]. Given that we are looking for an optimal upperbound on the expected accumulated cost with the initial valuation x 0 = 100, y 0 = 0, the algorithm minimizes h(ℓ 1 , 100, 0) = 10000•a 11 +100•a 13 +a 16 subject to these linear equations. In this case, the resulting values for a i j 's lead to the same PUCS h as in Figure 9. So the upper bound on the expected accumulated cost is 1 3 x 2 0 + 1 3 x 0 = 3366.6. The algorithm can similarly synthesize a PLCS. In this case, the same function h is reported as a PLCS. Therefore, the exact expected accumulated cost of this program is 3366.6 and our algorithm is able to compute it precisely. See Appendix E for more details.

1 1 x ≥1 • (a 21 • x 2 + a 22 • xy + a 23 • x + a 24 • y 2 + a 25 • y + a 26 ) + 1 x <1 • 0 2 a 31 •

Experimental Results

We now report on an implementation of our approach and present experimental results. First, we compare our approach with [START_REF] Van Chan Ngo | Bounded expectations: resource analysis for probabilistic programs[END_REF]. Then, we show that our approach is able to handle programs that no previous approach could. Implementation and Environment. We implemented our approach in Matlab R2018b. We used the Stanford Invariant Generator [START_REF] Sriram Sankaranarayanan | Constraint-based linear-relations analysis[END_REF] to find linear invariants and the tool in [START_REF] Chatterjee | Termination Analysis of Probabilistic Programs Through Positivstellensatz's[END_REF] to ensure the concentrated termination property for the input programs. The results were obtained on a Windows machine with an Intel Core i7 3.6GHz processor and 8GB of RAM.

Comparison with [START_REF] Van Chan Ngo | Bounded expectations: resource analysis for probabilistic programs[END_REF]. We ran our approach on several benchmarks from [START_REF] Van Chan Ngo | Bounded expectations: resource analysis for probabilistic programs[END_REF]. The results are reported in Table 2. In general, the upper bounds obtained by our approach and [START_REF] Van Chan Ngo | Bounded expectations: resource analysis for probabilistic programs[END_REF] are very similar. We obtain identical results on most benchmarks. Specifically, our leading coefficient is never worse than [START_REF] Van Chan Ngo | Bounded expectations: resource analysis for probabilistic programs[END_REF]. The only cases where we get different bounds are rdseql (our bound is worse by a small additive constant), condand (our bound is better by a small additive constant), pol04 (our bound is worse only in a non-leading coefficient), pol05 (our bound is better in the leading coefficient). Moreover, note that we provide lower bounds through PLCS, while [START_REF] Van Chan Ngo | Bounded expectations: resource analysis for probabilistic programs[END_REF] cannot obtain any lower bounds. Experimental Results on New Benchmarks. Table 3 provides our experimental results over ten new benchmarks. These include the four motivating examples of Section 3, our running example, and five other classical programs. In each case, we optimized the bounds wrt a fixed initial valuation v 0 . We report the upper (resp. lower) bound obtained through PUCS (resp. PLCS). Note that we do not have lower bounds for the Species Fight example as its updates are unbounded. See Appendix F for plots and details about the benchmarks. In all cases of Table 3, the obtained lower and upper bounds are very close, and in many cases they meet. Hence, our approach can obtain tight bounds on the expected accumulated cost of a variety of programs that could not be handled by any previous approach. Moreover, the reported runtimes show the efficiency of our algorithms in practice.

Related Work

Termination and cost analysis. Program termination has been studied extensively [11, 28-30, 33, 68-70, 94]. Automated amortized cost analysis has also been widely studied [5, 18, 41, 47-49, 53, 55-59, 63, 64, 86]. Other resource analysis approaches include: (a) recurrence relations for worst-case analysis [2-4, 39, 46]; (b) average-case analysis by recurrence relations [START_REF] Chatterjee | Automated Recurrence Analysis for Almost-Linear Expected-Runtime Bounds[END_REF] and (c) using theorem-proving [START_REF] Srikanth | Complexity verification using guided theorem enumeration[END_REF]. These approaches do not consider probabilistic programs. Ranking functions. Ranking functions have been widely studied for intraprocedural analysis [START_REF] Bournez | Proving Positive Almost-Sure Termination[END_REF][START_REF] Bradley | Linear Ranking with Reachability[END_REF][START_REF] Chatterjee | Non-polynomial Worst-Case Analysis of Recursive Programs[END_REF][START_REF] Colón | Synthesis of Linear Ranking Functions[END_REF][START_REF] Cousot | Proving Program Invariance and Termination by Parametric Abstraction, Lagrangian Relaxation and Semidefinite Programming[END_REF][START_REF] Podelski | A Complete Method for the Synthesis of Linear Ranking Functions[END_REF][START_REF] Shen | Generating exact nonlinear ranking functions by symbolic-numeric hybrid method[END_REF][START_REF] Sohn | Termination Detection in Logic Programs using Argument Sizes[END_REF][START_REF] Yang | Recent advances in program verification through computer algebra[END_REF]. Most works focus on linear/polynomial ranking functions and target non-probabilistic programs [START_REF] Colón | Synthesis of Linear Ranking Functions[END_REF][START_REF] Cousot | Proving Program Invariance and Termination by Parametric Abstraction, Lagrangian Relaxation and Semidefinite Programming[END_REF][START_REF] Podelski | A Complete Method for the Synthesis of Linear Ranking Functions[END_REF][START_REF] Shen | Generating exact nonlinear ranking functions by symbolic-numeric hybrid method[END_REF][START_REF] Sohn | Termination Detection in Logic Programs using Argument Sizes[END_REF][START_REF] Yang | Recent advances in program verification through computer algebra[END_REF]. They have been extended in various directions, such as: symbolic approaches [START_REF] Brockschmidt | Analyzing Runtime and Size Complexity of Integer Programs[END_REF], proof rules for deterministic programs [START_REF] Wim | Proof Rules for Recursive Procedures[END_REF], sized types [START_REF] Chin | Calculating Sized Types[END_REF][START_REF] Hughes | Recursion and Dynamic Datastructures in Bounded Space: Towards Embedded ML Programming[END_REF][START_REF] Hughes | Proving the Correctness of Reactive Systems Using Sized Types[END_REF], and polynomial resource bounds [START_REF] Shkaravska | Polynomial Size Analysis of First-Order Functions[END_REF]. Moreover, [START_REF] Bhargav | A Numerical Abstract Domain Based on Expression Abstraction and Max Operator with Application in Timing Analysis[END_REF] generates bounds through abstract interpretation using inference systems. However all of these methods are also for non-probabilistic programs only. Ranking supermartingales. Ranking functions have been extended to ranking supermartingales and studied in [1, 16-18, 22, 24, 38]. Proof rules for probabilistic programs are provided in [START_REF] Jones | Probabilistic Non-Determinism[END_REF][START_REF] Olmedo | Reasoning about Recursive Probabilistic Programs[END_REF]. However, these works consider qualitative termination problems. They do not consider precise cost analysis, which is the focus of our work. Cost analysis for probabilistic programs. The most closelyrelated work is [START_REF] Van Chan Ngo | Bounded expectations: resource analysis for probabilistic programs[END_REF]. A detailed comparison has been already provided in Section 4. In particular, we handle positive and negative costs, as well as unbounded costs, whereas [START_REF] Van Chan Ngo | Bounded expectations: resource analysis for probabilistic programs[END_REF] can handle only positive bounded costs. Another related work is [START_REF] Chatterjee | Computational Approaches for Stochastic Shortest Path on Succinct MDPs[END_REF] which considers succinct Markov decision processes (MDPs) and bounds for such MDPs. However, these MDPs only have single while loops and only linear bounds are obtained. Our approach considers polynomial bounds for general probabilistic programs.

Table 2. Comparison of our approach with [START_REF] Van Chan Ngo | Bounded expectations: resource analysis for probabilistic programs[END_REF].

Program Upper bound of [74] h(ℓ in , v) in PUCS h(ℓ in , v) in PLCS ber 2 • n -2 • x 2 • n -2 • x 2 • n -2 • x -2 bin 0.2 • n + 1.8 0.2 • n + 1.8 0.2 • n -0.2 linear01 0.6 • x 0.6 • x 0.6 • x -1.2 prdwalk 1.14286 • n -1.14286 • x + 4.5714 1.14286 • n -1.14286 • x + 4.5714 1.14286 • n -1.14286 • x -1.1429 race 0.666667 • t -0.666667 • h + 6 2 3 • t -2 3 • h + 6 2 3 • t -2 3 • h rdseql 2.25 • x + y 2.25 • x + y + 2.25 2 • x rdwalk 2 • n -2 • x + 2 2 • n -2 • x + 2 2 • n -2 • x -2 sprdwalk 2 • n -2 • x 2 • n -2 • x 2 • n -2 • x -2 C4B_t13 1.25 • x + y 1.25 • x + y x -1 prnes 0.052631 • y -68.4795 • n 0.05263 • y -68.4795 • n -10 • n -10 condand m + n m + n -1 0 pol04 4.5 • x 2 + 7.5 • x 4.5 • x 2 + 10.5 • x 0 pol05 x 2 + x 0.5 • x 2 + 2.5 • x 0 rdbub 3 • n 2 3 • n 2 0 trader -5 • s 2 min -5 • s min + 5 • s 2 + 5 • s -5 • s 2 min -5 • s min + 5 • s 2 + 5 • s 0
Table 3. Symbolic upper and lower bounds, i.e. h(ℓ in , v), obtained through PUCS and PLCS. 3)

Program v 0 h(ℓ in , v) in PUCS h(ℓ in , v) in PLCS Runtime (s) Bitcoin Mining (Figure
x 0 = 100 1.475 -1.475 • x -1.5 • x 9.24
Bitcoin Mining Pool (Figure 4)

y 0 = 100 -7.375 • y 2 -41.62 • y + 49.0 -7.5 • y 2 -67.5 • y 27.81
Queuing Network (Figure 6)

n 0 = 320 0.0492 • n -0.0492 • i + 0.0103 • l 2 1 + 0.00342 • l 3 2 + 0.00726 • l 2 2 + 0.0492 0.0384 • n -0.0384 • i -(1.76 × 10 -4 ) • l 2 1 - 0.00854 • l 1 • l 2 2 -(8.16 × 10 -5 ) • l 3 2 - 0.00173 • l 2 2 + 0.0384 282.44
Species Fight (Figure 8)

a 0 = 16, b 0 = 10 40 • a • b -180 • b -180 • a + 810 - 16.30
Figure 2 x 0 = 200 

1 3 • x 2 + 1 3 • x 1 3 • x 2 + 1 3 • x -2 3 6.00 Nested Loop i 0 = 150 1 3 • i 2 + i 1 3 • i 2 -1 3 • i 31.73 Random Walk x 0 = 12, n 0 = 20 2.5 • x -2.5 • n 2.5 • x -2.

Conclusion

We considered the problem of cost analysis of probabilistic programs. While previous approaches only handled positive bounded costs, our approach can derive polynomial bounds for programs with both positive and negative costs. It is sound for general costs and bounded updates, and general updates with nonnegative costs. However, finding sound approaches that can handle general costs and general updates remains an interesting direction for future work. Another interesting direction is finding non-polynomial bounds.

• A tick label corresponds to a tick statement 'tick(q)' that triggers a cost/reward, and leads to the next label without change on values. The arithmetic expression q determines a cost function that outputs a real number (as the amount of cost/reward) upon the current values of program variables for this statement. It is intuitively clear that any probabilistic program can be transformed into a CFG. We refer to existing results [START_REF] Chatterjee | Termination Analysis of Probabilistic Programs Through Positivstellensatz's[END_REF][START_REF] Chatterjee | Algorithmic analysis of qualitative and quantitative termination problems for affine probabilistic programs[END_REF] for a detailed transformation from programs to CFGs.

Based on CFGs, the semantics of the program is given by general state space Markov chains (GSSMCs) as follows. Below we fix a probabilistic program W with its CFG in the form (1). To illustrate the semantics, we need the notions of configurations, sampling functions, runs and schedulers as follows.

Configurations. A configuration is a triple (ℓ, ν ) where ℓ ∈ L and ν ∈ Val V p . We say that a configuration (ℓ, ν ) is terminal if ℓ = ℓ out ; moreover, it is nondeterministic if ℓ ∈ L nd . Informally, a configuration (ℓ, ν ) specifies that the next statement to be executed is the one labelled with ℓ and the current values of program variables is specified by the valuation ν . Sampling functions. A sampling function ϒ is a function assigning to every sampling variable r ∈ V r a (possibly continuous) probability distribution over R. Informally, a sampling function ϒ specifies the probability distributions for the sampling of all sampling variables, i.e., for each r ∈ V r , its sampled value is drawn from the probability distribution ϒ(r ). Finite and infinite runs. A finite run ρ is a finite sequence (ℓ 0 , ν 0 ), . . . , (ℓ n , ν n ) of configurations. An infinite run is an infinite sequence {(ℓ n , ν n )} n ∈N 0 of configurations. The intuition is that each ℓ n and ν n are the current program counter and respectively the current valuation for program variables at the nth step of a program execution. Schedulers. A scheduler σ is a function that assigns to every finite run ending in a nondeterministic configuration (ℓ, ν ) a transition with source label ℓ (in the CFG) that leads to the target label as the next label. Thus, based on the whole history of configuration visited so far, a scheduler resolves the choice between the thenand else-branch at a nondeterministic branch.

Based on these notions, we can have an intuitive description on an execution of a probabilistic program. Given a scheduler σ , the execution starts in an initial configuration (ℓ 0 , ν 0 ). Then in every step n ∈ N 0 , assuming that the current configuration is c n = (ℓ n , ν n ), the following happens.

• If ℓ n = ℓ out (i.e., the program terminates), then (ℓ n+1 , ν n+1 ) = (ℓ n , ν n ). Otherwise, proceed as follows.

• A valuation r on the sampling variables is sampled w.r.t the probability distributions in the sampling function ϒ.

• A transition τ = (ℓ n , α * , ℓ * ) enabled at the current configuration (ℓ n , ν n ) is chosen, and then the next configuration is determined by the chosen transition. In detail, we have the following.

-If ℓ n ∈ L a , then τ is chosen as the unique transition from ℓ n such that α * is an update function, and the next configuration (ℓ n+1 , ν n+1 ) is set to be (ℓ * , α * (ν n , r)). -If ℓ n ∈ L b , then τ is chosen as the unique transition such that ν n satisfies the propositional arithmetic predicate α * , and the next configuration (ℓ n+1 , ν n+1 ) is set to be (ℓ * , ν n ). -If ℓ n ∈ L p with the probability p specified in its corresponding statement, then τ is chosen to be the then-branch with probability p and the else-branch with probability 1 -p, and the next configuration

(ℓ n+1 , ν n+1 ) is set to be (ℓ * , ν n ). -If ℓ n ∈ L nd , then τ is chosen by the scheduler σ . That is, if ρ = c 0 c 1 • • • c n is the finite path of configura- tions traversed so far, then τ equals σ (c 0 c 1 • • • c n ),
and the next configuration (ℓ n+1 , ν n+1 ) is set to be (ℓ * , ν n ). -If ℓ n ∈ L t , then τ is chosen as the unique transition from ℓ n such that α * is a cost function, then the next configuration (ℓ n+1 , ν n+1 ) is set to be (ℓ * , ν n ) and the statement triggers a cost of amount α * (ν n ). In this way, the scheduler and random choices eventually produce a random infinite run in a probabilistic program. Then given any scheduler that resolves nondeterminism, the semantics of a probabilistic program is a GSSMC, where the kernel functions can be directly defined over configurations and based on the transitions in the CFG so that they specify the probabilities of the next configuration given the current configuration.

Given a scheduler σ and an initial configuration c, the GSSMC of a probabilistic program induces a probability space where the sample space is the set of all infinite runs, the sigma-algebra is generated from cylinder sets of infinite runs, and the probability measure is determined by the scheduler and the random sampling in the program.

D Proofs for Martingale Results

D.1 The Extended OST

In the proof of the extended OST, for a stopping time U and a nonnegative integer n ∈ N 0 , we denote by U ∧ n the random variable min{U , n}. Proof. We only prove the "≤" case, the "=" case is similar. For every n ∈ N 0 ,

|X U ∧n | = X 0 + U ∧n-1 k =0 (X k +1 -X k ) = X 0 + ∞ k =0 (X k +1 -X k ) • 1 U >k∧n >k ≤ |X 0 | + ∞ k =0 |(X k +1 -X k ) • 1 U >k ∧n >k | ≤ |X 0 | + ∞ k =0 |(X k +1 -X k ) • 1 U >k | .
Then

E |X 0 | + ∞ k =0 |(X k +1 -X k ) • 1 U >k | = (By Monotone Convergence Theorem) E (|X 0 |) + ∞ k =0 E (|(X k+1 -X k ) • 1 U >k |) = E (|X 0 |) + ∞ k =0 E (|X k +1 -X k | • 1 U >k ) ≤ E (|X 0 |) + ∞ k =0 E λ • k d • 1 U >k = E (|X 0 |) + ∞ k =0 M • k d • P (U > k) ≤ E (|X 0 |) + ∞ k =0 M • k d • c 1 • e -c 2 •k = E (|X 0 |) + M • c 1 • ∞ k =0 k d • e -c 2 •k < ∞ .
Thus, by Dominated Convergence Theorem and the fact that

X U = lim n→∞ X R∧n a.s., E (X U ) = E lim n→∞ X U ∧n = lim n→∞ E (X U ∧n ) .
Finally the result follows from properties for the stopped process {X U ∧n } n ∈N 0 that E (X U ) ≤ E (X 0 ) .

□ D.2 An Important Lemma

In this part, we prove an important lemma. Below we define the following sequences of (vectors of) random variables:

• v 0 , v 1 , . . . where each v n represents the valuation to program variables at the nth execution step of a probabilistic program; • u 0 , u 1 , . . . where each u n represents the sampled valuation to sampling variables at the nth execution step of a probabilistic program; • ℓ 0 , ℓ 1 , . . . where each ℓ n represents the label at the nth execution step of a probabilistic program.

Lemma D.1. Let h be a PUCS and σ be any scheduler. Let the stochastic process {X n } n ∈N 0 be defined such that

X n := h(ℓ n , v n ).
Then for all n ∈ N 0 , we have

E(X n+1 + C n |F n ) ≤ pre h (ℓ n , v n ).
Proof. For all n ∈ N 0 , from the program syntax we have

X n+1 = 1 ℓ n =ℓ out • X n + Y p + Y a + Y nd + Y t + Y b
where the terms are described below:

Y p := ℓ ∈L p       1 ℓ n =ℓ • i ∈ {0,1} 1 B ℓ =i • h(ℓ B ℓ =i , v n )      
where each random variable B ℓ is the Bernoulli random variable for the decision of the probabilistic branch and ℓ B ℓ =0 , ℓ B ℓ =1 are the corresponding successor locations of ℓ. Note that all B ℓ 's and u 's are independent of F n . In other words, Y p describes the semantics of probabilistic locations.

Y a := ℓ ∈L a 1 ℓ n =ℓ • h(ℓ ′ , F ℓ (v n , u))
describes the semantics of assignment locations where ℓ ′ is its successor label.

Y nd := ℓ ∈L nd 1 ℓ n =ℓ • h(σ (ℓ, v n ) , v n )
describes the semantics of nondeterministic locations, where σ (-, -) here denotes the target location of the transition chosen by the scheduler σ .

Y t := ℓ ∈L t 1 ℓ n =ℓ • h(ℓ ′ , v n )
describes the semantics of tick locations.

Y b := ℓ ∈L b       1 ℓ n =ℓ • i ∈ {1,2} 1 v n |=ϕ i • h(ℓ i , v n )      
describes the semantics of branching locations, where ϕ 1 = ϕ, ϕ 2 = ¬ϕ and ℓ 1 , ℓ 2 are the corresponding successor locations. Then from properties of conditional expectation, one obtains:

E(X n+1 + C n |F n ) = E(X n+1 |F n ) + E(C n |F n ) = 1 ℓ n =ℓ out • X n + Y ′ p + Y ′ a + Y nd + Y t + Y b +1 ℓ n ∈L t • C n where Y ′ p := ℓ ∈L p       1 ℓ n =ℓ • i ∈ {0,1} P(B ℓ = i) • h(ℓ B ℓ =i , v n )       and Y ′ a := ℓ ∈L a 1 ℓ n =ℓ • E u (h(ℓ ′ , F ℓ (v n , u)))
This follows from the facts that (i) We define the stochastic process {X n } n ∈N 0 by X n = h(ℓ n , ν n ). Then we define the stochastic process Y 0 , Y 1 , . . . by:

1 ℓ n =ℓ out • X n , Y nd , Y t , Y b are measurable in F n ; (ii) E(C n |F n ) = 1 ℓ n =L t • C n ; (iii) for Y p and Y a , their conditional expectations are resp. Y ′ p , Y ′ a . From (C3), when ℓ n ∈ L p ∪ L a ∪ L b , we have pre h (ℓ n , v n ) = 1 ℓ n =ℓ out •X n +Y ′ p +Y ′ a +Y b . When ℓ n ∈ L t , we have pre h (ℓ n , v n ) = Y t + C n . Then we get: E(X n+1 + C n |F n ) = pre h (ℓ n , v n ) . When ℓ n ∈ L nd , we have E(X n+1 + C n |F n ) = Y nd ≤ pre h (ℓ n , v n ).
Y n := h(ℓ n , v n ) + n-1 m=0 C m .
Furthermore, we accompany Y 0 , Y 1 , . . . with the filtration F 0 , F 1 , . . . such that each F n is the smallest sigma-algebra that makes all random variables from {v 0 , . . . , v n }, {u 0 , . . . , u n } and {ℓ 0 , . . . , ℓ n-1 } measurable. Then by Lemma D.1, we have

E(X n+1 + C n |F n ) ≤ X n .
Thus we get:

E(Y n+1 |F n ) = E Y n + h(ℓ n+1 , v n+1 ) -h(ℓ n , v n ) + C n |F n = Y n + E h(ℓ n+1 , v n+1 ) + C n |F n -h(ℓ n , v n ) ≤ Y n
Hence, {Y n } n ∈N 0 is a supermartingale. Moreover, we have from the bounded-update property that

|Y n+1 -Y n | = |h n+1 + n m=1 C m -h n - n-1 m=1 C m | = |h n+1 -h n + C n | ≤ |h n+1 -h n | + |C n | ≤ M • n d + c ′′ • n ≤ M d • n
for some M > 0. Thus, by applying Optional Stopping Theorem, we obtain immediately that E(Y T ) ≤ E(Y 0 ). By definition, Proof of Theorem 6.12. We follow most definitions above. Fix any scheduler σ and initial valuation v for a nondeterministic probabilistic program P. Let T = min{n | ℓ n = ℓ out }. By our assumption, E(T ) < ∞ under σ . We recall the random variables C 0 , C 1 , . . . where each C n represents the cost/reward accumulated during the nth execution step of P. We define the stochastic process {X n } n ∈N 0 by X n = h(ℓ n , ν n ).

Y T = h(ℓ T , v T ) + T -1 m=1 C m = T -1 m=1 C m . It follows from (C2) that E(C ∞ ) = E( T -1 m=1 C m ) ≤ E(Y 0 ) = h(ℓ in , v).
Then we define the stochastic process Y 0 , Y 1 , . . . by:

Y n := h(ℓ n , v n ) + n-1 m=0 C m .
Furthermore, we accompany Y 0 , Y 1 , . . . with the filtration F 0 , F 1 , . . . such that each F n is the smallest sigma-algebra that makes all random variables from {v 0 , . . . , v n }, {u 0 , . . . , u n-1 } and {ℓ 0 , . . . , ℓ n } measurable. Then by (C3'), we have

E(X n+1 + C n |F n ) ≥ h(ℓ n , v n ). • ℓ 1 ∈ L b , pre h (ℓ 1 , x, y) = 1 ℓ ′ =ℓ 2 • h(ℓ 2 , x, y) + 1 ℓ ′ =ℓ 5 • h(ℓ 5 , x, y) = 1 ℓ ′ =ℓ 2 • (a 21 • x 2 + a 22 • xy + a 23 • x +a 24 • y 2 + a 25 • y + a 26 ) + 1 ℓ ′ =ℓ 5 • 0 • ℓ 2 ∈ L a , pre h (ℓ 2 , x, y) = E R [h(ℓ 3 , x + r , y)] = E R [a 31 • (x + r ) 2 + a 32 • (x + r )y +a 33 • (x + r ) + a 34 • y 2 + a 35 • y + a 36 ] = a 31 • x 2 + a 32 • xy + (a 33 -a 31 ) • x +a 34 • y 2 + (a 35 - 1 2 a 32 ) • y + a 31 - 1 2 a 33 + a 36 • ℓ 3 ∈ L a , pre h (ℓ 3 , x, y) = E R [h(ℓ 4 , x, r ′ )] = E R [a 41 • x 2 + a 42 • x • r ′ + a 43 • x +a 44 • r ′2 + a 45 • r ′ + a 46 ] = a 41 • x 2 + ( 1 3 a 42 + a 43 ) • x + a 44 + 1 3 a 45 + a 46 • ℓ 4 ∈ L t , pre h (ℓ 4 , x, y) = h(ℓ 1 , x, y) + E R (x • y) = a 11 • x 2 + a 12 • xy + a 13 • x + a 14 • y 2 +a 15 • y + a 16 + xy = a 11 • x 2 + (a 12 + 1) • xy + a 13 • x +a 14 • y 2 + a 15 • y + a 16
Let the maximal number of multiplicands t in Monoid(Γ) be 2, the form of Eq. (♯) is as following: Then we extract instances conforming to pattern д = h(ℓ, ν )pre h (ℓ, ν ) from C3. Our target function is h(ℓ 1 , x 0 , y 0 ), where x 0 , y 0 are the initial inputs and we fix x 0 to be a proper large integer, i.e. P(r = 1) = 0.25, P(r = -1) = 0.75 while x ≤ n do i f prob ( 0 . 6 ) then x : = x +1 e l s e

• (label 1) (1)ℓ ′ = ℓ 2 Γ = {x, x -1} u 1 = 1, u 2 = x, u 3 = x -1, u 4 = x 2 -x, u 5 = x 2 , u 6 = x 2 -2x + 1; д(x) = b 1 + b 2 x + b 3 (x -1) + b 4 (x 2 -x) + b 5 x 2 +b 6 (x 2 -2x + 1) = (b 4 + b 5 + b 6 )x 2 + (b 2 + b 3 -b 4 -2b 6 )x +b 1 -b 3 + b 6 (2)ℓ ′ = ℓ 5 Γ = {x, 1 -x } u 1 = 1, u 2 = x, u 3 = 1 -x, u 4 = x -x 2 , u 5 = x 2 , u 6 = 1 -2x + x 2 ; д(x) = b 7 + b 8 x + b 9 (1 -x) + b 10 (x -x 2 ) + b 11 x 2 +b 12 (1 -2x + x 2 ) = (b 11 + b 12 -b 10 )x 2 + (b 8 -b 9 + b 10 -2b 12 )x +b 7 + b 12 for b i ≥ 0, i = 1, . . . , 12. • (label 2) Γ = {x -1} u 1 = 1, u 2 = x -1, u 3 = x 2 -2x + 1; д(x) = c 1 + c 2 (x -1) + c 3 (x 2 -2x + 1) = c 3 x 2 + (c 2 -2c 3 )x + c 1 -c 2 + c 3 for c j ≥ 0, j = 1, 2, 3. • (label 3) Γ = {x } u 1 = 1, u 2 = x, u 3 = x 2 ; д(x) = d 1 + d 2 x + d 3 x 2 = d 3 x 2 + d 2 x + d 1 for d l ≥ 0, l = 1, 2, 3. • (label 4) Γ = {x, 1 -y, 1 + y} u 1 = 1, u 2 = x, u 3 = 1 -y, u 4 = 1 + y, u 5 = x(1 -y), u 6 = x(1 + y), u 7 = (1 -y)(1 + y), u 8 = x 2 , u 9 = (1 -y) 2 , u 10 = (1 + y) 2 ;
• (C3, label 1) (1)ℓ ′ = ℓ 2 д(x) = h(ℓ 1 , x, y) -pre h (ℓ 1 , x, y) = h(ℓ 1 , x, y) -h(ℓ 2 , x, y) = (a 11 -a 21 )x 2 + (a 12 -a 22 )xy + (a 13 -a 23 )x +(a 14 -a 24 )y 2 + (a 15 -a 25 )y + a 16 -a 26 (2)ℓ ′ = ℓ 5 д(x) = h(ℓ 1 , x, y) -pre h (ℓ 1 , x, y) = h(ℓ 1 , x, y) -h(ℓ 5 , x, y) = a 11 • x 2 + a 12 • xy + a 13 • + a 14 • y 2 +a 15 • y + a 16 • (C3, label 2) д(x) = h(ℓ 2 , x, y) -pre h (ℓ 2 , x, y) = (
                       a 11 -a 21 = b 4 + b 5 + b 6 a 12 -a 22 = 0 a 13 -a 23 = b 2 + b 3 -b 4 -2b 6 a 14 -a 24 = 0 a 15 -a 25 = 0 a 16 -a 26 = b 1 -b 3 + b 6 and                        a 11 = b 11 + b 12 -b 10 a 12 = 0 a 13 = b 8 -b 9 + b 10 -2b 12 a 14 = 0 a 15 = 0 a 16 = b 7 + b 12 (II) For label 2,                        a 21 -a 31 = c 3 a 22 -a 32 = 0 a 23 -a 33 + a 31 = c 2 -2c 3 a 24 -a 34 = 0 a 25 -a 35 + 1 2 a 32 = 0 a 26 -a 31 + 1 2 a 33 -a 36 = c 1 -c 2 + c 3 (III) For label 3,                        a 31 -a 41 = d 3 a 32 = 0 a 33 -1 3 a 42 -a 43 = d 2 a 34 = 0 a 35 = 0 a 36 -a 44 -1 3 a 45 -a 46 = d 1 (IV) For label 4,                       
x : = x -1 f i ; y = r ; t i c k (y) od e l s e skip f i f i f i f i f i f i f i f i ; t i c k (0.707 * (x -y)) od 4 shows the numeric upper and lower bounds obtained for each benchmark over several initial valuations. In each case, we report the upper bound obtained through PUCS, the runtime of our PUCS synthesis algorithm, the lower bound obtained through PLCS, and the runtime of our PLCS synthesis algorithm. Moreover, we simulated 1000 runs of each program with each initial value, computed the resulting costs, and reported the mean µ and standard deviation σ of the costs. Note that we do not have simulation results for Bitcoin mining examples as they involve nondeterminism. Also we do not have lower bounds for species fight example as its updates are unbounded.

In another experiment, we set the time limit for simulations to the time it takes for our approach to synthesize a PUCS/PLCS. We also replaced the nondeterministic if ⋆ statements with probabilistic if prob(0.5). The results are reported in Table 5.

In a third experiment, we simulated each example program over 20 different initial valuations (1000 simulated executions for each valuation) to experimentally compare upper and lower bounds obtained using our approach with simulations (Figures 15161718192021222324). 

Figure 1 .
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 78 Figure 7. A general stochastic linear recurrence

Definition 6 . 5 (

 65 Polynomial Upper Cost Supermartingales).A polynomial upper cost supermartingale (PUCS) of degree d wrt a given linear invariant I is a function h : L × Val V p → R that satisfies the following conditions: (C1) for each label ℓ, h(ℓ) is a polynomial of degree at most d over program variables; (C2) for all valuations v ∈ Val V p , we have h(ℓ out , v) = 0; (C3) for all non-terminal labels ℓ ∈ L \ {ℓ out } and reachable valuations v ∈ I (ℓ), we have pre h (ℓ, v) ≤ h(ℓ, v).

Example 7 . 3 .

 73 Consider the program in Figure 9 (Page 10).

Theorem 5 . 2 .

 52 (The Extended OST) Consider any stopping time U wrt a filtration {F n } ∞ n=0 and any martingale (resp. supermartingale) {X n } ∞ n=0 adapted to {F n } ∞ n=0 and let Y = X U . Then the following condition is sufficient to ensure thatE (|Y |) < ∞ and E (Y ) = E(X 0 ) (resp. E (Y ) ≤ E(X 0 )): • There exist real numbers M, c 1 , c 2 , d > 0 such that (i)for sufficiently large n ∈ N, it holds thatP(U > n) ≤ c 1 • e -c2 •n and (ii) for all n ∈ N, |X n+1 -X n | ≤ M • n d almost surely.
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 1516 Figure 15. Bitcoin Mining
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  Intuition. An invariant I is an over-approximation of the reachable valuations at each label of the program. An invariant is called linear if it can be represented by a finite number of linear inequalities.Remark 7. In the sequel, we compute polynomial bounds that are applicable to every initial valuation that satisfies the linear invariants. To obtain concrete bounds, we fix a single initial valuation v * and choose polynomial bounds that are as tight as possible wrt v * . Nevertheless, these polynomial bounds are valid upper/lower bounds for all other valid initial valuations, too. Example 6.2. Figure 9 (top), shows the same program as in Example 2.1, together with linear invariants for each label of the program. The invariants are enclosed in square brackets.

	Definition 6.1 (Invariants and linear invariants). Given a
	program, its set L of labels, and an initial valuation v * to
	program variables V

p , an invariant is a function I : L → P(Val V p ) that assigns a set I (ℓ) of valuations over V p to every label ℓ, such that for all configurations (ℓ, v) that are reachable from the initial configuration (ℓ in , v * ) by a run of the program, it holds that v ∈ I (ℓ). The invariant I is linear if every I (ℓ) is a finite union of polyhedra. Definition 6.3 (Pre-expectation). Consider any function h : L × Val V p → R. We define its pre-expectation as the function pre h

  x 2 +a 32 •xy+(a 33 -a 31 )•x +a 34 •y 2 +(a 35 -1 2 a 32 )•y+a 31 -1 2 a 33 +a 36 3 a 41 • x 2 + ( 1 3 a 42 + c 43 ) • x + a 44 + 1 3 a 45 + a 46 4 a 11 • x 2 + (a 12 + 1) • xy + a 13 • x + a 14 • y 2 + a 15 • y + a 16 5 0

  Proof of Theorem 6.10. Fix any scheduler σ and initial valuation v for a nondeterministic probabilistic program P. Let T = min{n | ℓ n = ℓ out }. By our assumption, E(T ) < ∞ under σ . We recall the random variables C 0 , C 1 , . . . where each C n represents the cost/reward accumulated during the nth execution step of P.

	Hence the result follows.	□
	D.3 Polynomial Upper Cost Supermartingales	
	(PUCSs)	
	Theorem 6.10.	

(Soundness of PUCS) Consider a nondeterministic probabilistic program P, with a linear invariant I and a PUCS h. If P satisfies the concentration property and the bounded update property, then supval(v) ≤ h(ℓ in , v) for all initial valuations v ∈ I (ℓ in ).

  Since the scheduler σ is chosen arbitrarily, we obtain that supval(v) ≤ h(ℓ in , v).

□ D.

[START_REF] Albert | Cost Analysis of Java Bytecode[END_REF] 

Polynomial Lower Cost Submartingales (PLCSs) Theorem 6.12. (Soundness of PLCS) Consider a nondeterministic probabilistic program P, with a linear invariant I and a PLCS h. If P satisfies the concentration property and the bounded update property, then supval(v) ≥ h(ℓ in , v) for all initial valuations v ∈ I (ℓ in ).

  a 21 -a 31 )x 2 + (a 22 -a 32 )xy +(a 23 -a 33 + a 31 )x + (a 24 -a 34 )y 2 = h(ℓ 4 , x, y) -pre h (ℓ 4 , x, y) = (a 41 -a 11 )x 2 + (a 42 -a 12 -1)xy + (a 43 -a 13 )x +(a 44 -a 14 )y 2 + (a 45 -a 15 )y + a 46 -a 16

						• (C3, label 4)
						д(x) So we can translate them into systems of linear equalities.
						(I) For label 1,
	+(a 25 -a 35 +	1 2	a 32 )y + a 26 -a 31 +	1 2	a 33 -a 36
	• (C3, label 3)				
	д(x) = h(ℓ 3 , x, y) -pre h (ℓ 3 , x, y)		
			1 3	a 45 -a 46

= (a 31 -a 41 )x 2 + a 32 xy + (a 33 -1 3 a 42 -a 43 )x +a 34 y 2 + a 35 y + a 36 -a 44 -

Table 4 .

 4 Experimental Results. All times are reported in seconds. = 100, y 0 = 40 8.23 × 10 3 20.11 8.11 × 10 3 20.03 7.96 × 10 3 5.83 × 10 3 x 0 = 100, y 0 = 60 4.15 × 10 3 20.16 4.02 × 10 3 20.13 4.01 × 10 3 3.64 × 10 3 x 0 = 100, y 0 = 80 1.45 × 10 3 20.15 1.32 × 10 3 20.13 1.36 × 10 3 2.00 × 10 3

	Benchmark	v 0	PUCS		PLCS		Simulation
	Program		h(ℓ in , v 0 )	T	h(ℓ in , v 0 )	T	µ	σ
	Bitcoin Mining	x 0 = 20	-28.03	4.69	-30.00	4.73	-	-
	(Figure 3)	x 0 = 50	-72.28	4.66	-75.00	4.63	-	-
		x 0 = 100	-146.03	4.62	-150.00	4.62	-	-
	Bitcoin Mining Pool	y 0 = 20	-3.73 × 10 3 14.03 -4.35 × 10 3 13.73	-	-
	(Figure 4)	y 0 = 50	-2.05 × 10 4 13.78 -2.21 × 10 4 13.76	-	-
		y 0 = 100	-7.79 × 10 4 13.96 -8.18 × 10 4 13.85	-	-
	Queuing Network	n 0 = 240	11.82	141.28	9.23	141.32	9.90	4.43
	(Figure 6)	n 0 = 280	13.79	142.16	10.76	140.70	11.15	4.66
		n 0 = 320	15.76	141.02	12.30	141.42	12.99	5.29
	Species Fight	a 0 = 12, b 0 = 10	1.65 × 10 3	16.43	-	-	817.40	379.28
	(Figure 8)	a 0 = 14, b 0 = 10	2.09 × 10 3	16.47	-	-	971.86	453.89
		a 0 = 16, b 0 = 10	2.53 × 10 3	16.30	-	-	1.13 × 10 3 0.55 × 10 3
	Figure 2	x 0 = 100	3.37 × 10 3	3.05	3.37 × 10 3	3.03	3.41 × 10 3 0.90 × 10 3
		x 0 = 160	8.59 × 10 3	3.00	8.59 × 10 3	3.02	8.62 × 10 3 1.76 × 10 3
		x 0 = 200	1.34 × 10 4	3.00	1.34 × 10 4	3.00	1.35 × 10 4 0.25 × 10 4
	Nested Loop	i 0 = 50	883.33	15.82	816.67	15.91	872.78	344.29
		i 0 = 100	3.43 × 10 3	16.13	3.30 × 10 3	15.89 3.43 × 10 3 0.90 × 10 3
		i 0 = 150	7.65 × 10 3	15.80	7.45 × 10 3	15.93 7.66 × 10 3 1.68 × 10 3
	Random Walk	x 0 = 4, n 0 = 20	-40.00	7.00	-42.50	7.07	-42.77	23.46
		x 0 = 8, n 0 = 20	-30.00	6.96	-32.50	6.96	-32.32	21.27
		x 0 = 12, n 0 = 20	-20.00	7.09	-22.50	7.93	-23.23	18.47
	2D Robot x 0 Goods Discount n 0 = 100, d 0 = 1	46.30	8.42	37.89	8.45	41.45	4.22
		n 0 = 150, d 0 = 1	11.63	8.43	2.56	8.43	6.33	3.84
		n 0 = 200, d 0 = 1	-23.02	8.46	-32.77	8.43	-28.26	3.34
	Pollutant Disposal	n 0 = 50	2.01 × 10 3	10.04	1.53 × 10 3	9.85	1.66 × 10 3 1.02 × 10 3
		n 0 = 80	2.74 × 10 3	9.78	2.25 × 10 3	9.88	2.42 × 10 3 1.13 × 10 3
		n 0 = 200	2.04 × 10 3	9.75	1.56 × 10 3	9.78	1.66 × 10 3 1.56 × 10 3

Table 5 .

 5 Experimental Results on Programs in which Nondeterminism is Replaced with Probability. Modified Bitcoin Mining Pool y 0 = 20 -3.77 × 10 3 14.62 -4.31 × 10 3 14.73 -4.26 × 10 3 7.00 × 10 3 y 0 = 50 -2.06 × 10 4 14.88 -2.19 × 10 4 14.76 -2.27 × 10 4 1.86 × 10 4 y 0 = 100 -7.85 × 10 4 14.93 -8.11 × 10 4 14.81 -7.92 × 10 4 3.93 × 10 4 = 100, y 0 = 40 8.23 × 10 3 20.11 8.11 × 10 3 20.03 8.17 × 10 3 6.19 × 10 3 x 0 = 100, y 0 = 60 4.15 × 10 3 20.16 4.02 × 10 3 20.13 4.08 × 10 3 3.85 × 10 3 x 0 = 100, y 0 = 80 1.45 × 10 3

	Benchmark	v 0	PUCS		PLCS		Simulation
	Program		h(ℓ in , v 0 )	T	h(ℓ in , v 0 )	T	µ	σ
	Modified Bitcoin Mining	x 0 = 20	-28.26	4.41	-29.75	4.24	-30.04	500.75
		x 0 = 50	-72.89	4.52	-74.38	4.33	-73.90	788.04
		x 0 = 100	-147.26	6.26	-148.75	6.12	-145.40	1.11 × 10 3
	Queuing Network	n 0 = 240	11.82	141.28	9.23	141.32	10.64	4.94
	(Figure 6)	n 0 = 280	13.79	142.16	10.76	140.70	12.41	5.34
		n 0 = 320	15.76	141.02	12.30	141.42	14.17	5.69
	Species Fight	a 0 = 12, b 0 = 10	1.65 × 10 3	16.43	-	-	808.20	379.91
	(Figure 8)	a 0 = 14, b 0 = 10	2.09 × 10 3	16.47	-	-	978.48	458.93
		a 0 = 16, b 0 = 10	2.53 × 10 3	16.30	-	-	1.13 × 10 3 0.54 × 10 3
	Figure 2	x 0 = 100	3.37 × 10 3	3.05	3.37 × 10 3	3.03	3.36 × 10 3 0.92 × 10 3
		x 0 = 160	8.59 × 10 3	3.00	8.59 × 10 3	3.02	8.58 × 10 3 1.84 × 10 3
		x 0 = 200	1.34 × 10 4	3.00	1.34 × 10 4	3.00	1.34 × 10 4 0.26 × 10 4
	Nested Loop	i 0 = 50	883.33	15.82	816.67	15.91	880.12	329.54
		i 0 = 100	3.43 × 10 3	16.13	3.30 × 10 3	15.89	3.40 × 10 3 0.92 × 10 3
		i 0 = 150	7.65 × 10 3	15.80	7.45 × 10 3	15.93	7.67 × 10 3 1.61 × 10 3
	Random Walk	x 0 = 4, n 0 = 20	-40.00	7.00	-42.50	7.07	-42.73	24.12
		x 0 = 8, n 0 = 20	-30.00	6.96	-32.50	6.96	-32.43	20.86
		x 0 = 12, n 0 = 20	-20.00	7.09	-22.50	7.93	-22.45	17.37
	2D Robot	x 0 20.15	1.32 × 10 3	20.13	1.36 × 10 3 2.07 × 10 3
	Goods Discount	n 0 = 100, d 0 = 1	46.30	8.42	37.89	8.45	41.43	4.23
		n 0 = 150, d 0 = 1	11.63	8.43	2.56	8.43	6.48	3.76
		n 0 = 200, d 0 = 1	-23.02	8.46	-32.77	8.43	-28.43	3.33
	Pollutant Disposal	n 0 = 50	2.01 × 10 3	10.04	1.53 × 10 3	9.85	1.66 × 10 3 1.00 × 10 3
		n 0 = 80	2.74 × 10 3	9.78	2.25 × 10 3	9.88	2.38 × 10 3 1.11 × 10 3
		n 0 = 200	2.04 × 10 3	9.75	1.56 × 10 3	9.78	1.69 × 10 3 1.57 × 10 3

This assumption does not affect the generality of our modeling. If the miners have different computational powers, a more powerful miner can be modeled as a union of several less powerful miners.
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A Conditional Expectation

Let X be any random variable from a probability space (Ω, F , P) such that E(|X |) < ∞. Then given any σ -algebra G ⊆ F , there exists a random variable (from (Ω, F , P)), conventionally denoted by E(X |G), such that (E1) E(X |G) is G-measurable, and (E2) E (|E(X |G)|) < ∞, and (E3) for all A ∈ G, we have ∫ A E(X |G) dP = ∫ A X dP. The random variable E(X |G) is called the conditional expectation of X given G. The random variable E(X |G) is a.s. unique in the sense that if Y is another random variable satisfying (E1)-(E3), then P(Y = E(X |G)) = 1.

Conditional expectation has the following properties for any random variables X , Y and {X n } n ∈N 0 (from a same probability space) satisfying

(n ≥ 0) and any suitable sub-σ -algebras G, H :

(E4) E (E(X |G)) = E(X ) ; (E5) if X is G-measurable, then E(X |G) = X a.s.;

(E6) for any real constants b, d,

, where E(X ) here is deemed as the random variable with constant value E(X ); (E10) if it holds a.s that X ≥ 0, then E(X |G) ≥ 0 a.s.; (E11) if it holds a.s. that (i) X n ≥ 0 and X n ≤ X n+1 for all n and (ii) lim n→∞

s. We refer to [START_REF] Williams | Probability with martingales[END_REF]Chapter 9] for more details.

B Detailed Syntax

In the sequel, we fix two countable sets of program variables and sampling variables. W.l.o.g, these three sets are pairwise disjoint.

Informally, program variables are variables that are directly related to the control-flow of a program, while sampling variables reflect randomized inputs to the program. Every program variable holds an integer upon instantiation, while every sampling variable is bound to a discrete probability distribution. The Syntax. Below we explain the grammar in in Figure 1 

C Detailed Semantics

Informally, a control-flow graph specifies how values for program variables and the program counter change along an execution of a program. We refer to the status of the program counter as a label, and assign an initial label ℓ in and a terminal label ℓ out to the start and the end of the program. Moreover, we have five types of labels, namely assignment, branching, probabilistic, nondeterministic and tick labels. Thus we get:

Moreover, we have from the bounded update property that

for some M > 0. Thus, by applying Optional Stopping Theorem, we obtain Proof of Theorem 6.14. We also follow most definitions above. Fix any scheduler σ and initial valuation v for a nondeterministic probabilistic program P. Let T = min{n | ℓ n = ℓ out }. By our assumption, E(T ) < ∞ under σ . We recall the random variables C 0 , C 1 , . . . where each C n represents the cost/reward accumulated during the nth execution step of P. Then we define the stochastic process X 0 , X 1 , . . . by:

Furthermore, we accompany X 0 , X 1 , . . . with the filtration F 0 , F 1 , . . . such that each F n is the smallest sigma-algebra that makes all random variables from {v 0 , . . . , v n }, {u 0 , . . . , u n-1 } and {ℓ 0 , . . . , ℓ n-1 } measurable. Then by C3, we have

Thus we get:

The Induction is:

Because all the PUCSs are nonnegative, we can get E(X n+1 ) ≥ 0. When n → ∞, we obtain

Since the scheduler σ is chosen arbitrarily, we obtain that supval(v) ≤ h(v). □

E Details of Example 7.3

Since our algorithm is technical, we will illustrate the computational steps of the our algorithms on the example in Figure 2.

Example E.1 (Illustration of our algorithms). We consider the example in Figure 2, and assign the invariant I as in Figure 9.

Firstly, the algorithm sets up a quadratic template h for a PUCS by setting h(ℓ n , x, y) := a n1 •x 2 +a n2 •xy +a n3 •x +a n4 • y 2 + a n5 • y + a n6 for each ℓ n (n = 1, . . . , 4) and h(ℓ 5 , x, y) = 0 because ℓ 5 = ℓ out , where a np are scalar variables for n = 1, . . . , 4 and p = 1, . . . , 6.

Next we compute the pre-expectations of this example.

x 0 = 100, and y 0 to be 0. min a 11 x 2 0 + a 13 x 0 + a 16 subject to (I ), (II ), (III ), (IV ) b i , c j , d l , e m ≥ 0, ∀i, j, l, m Finally, the algorithm gives the optimal solutions through linear programming such that:

To find a PLCS for this example, the steps are similar. The algorithm sets up a quadratic template h ′ for a PLCS with the similar form of the above PUCS h. By the same way, we get the optimal solutions of the template h ′ and find they are the same as the PUCS's.

By the definition of PUCS and PLCS (see Section 6), we can conclude that this template h is both PUCS and PLCS, and we can get the accurate value of expected resource consumption that

F Experimental Results

F.1 Benchmarks

We use ten example programs for our experimental results, including (1) Bitcoin Mining (see Figure 3); (2) Bitcoin Mining Pool (see Figure 4); (3) Queuing Network (see Figure 6); (4) Species Fight (see Figure 8); (5) Simple Loop (see Figure 2); (6) Nested Loop (see Figure 10); [START_REF] Almagor | Effective Divergence Analysis for Linear Recurrence Sequences[END_REF] Random Walk (see Figure 11); (8) 2D Robot (see Figure 12); (9) Goods Discount (see Figure 13); and (10) Pollutant Disposal (see Figure 14). We now provide a brief introduction about 2D Robot, Goods discount, and Pollutant Disposal. 2D Robot. We consider a robot walking in a plane. Suppose that the robot is initially located below the line y = x and we want it to cross this line, i.e. the program continues until the robot crosses the line. At each iteration, the robot probabilistically chooses one of the following 9 directions and moves in that direction: {0: North, 1: South, 2: East, 3: West, 4: Northeast, 5: Southeast, 6: Northwest, 7: Southwest, 8: Stay}. Moreover, the robot's step size is a uniformly random variable between 1 and 3. At the end of each iteration, a cost is incurred, which is dependent on the distance between the robot and the line y = x. Goods Discount. Consider a shop that sells a specific type of perishable goods with an expiration date. After a certain number of days (30 days in our example), when the expiration date is close, the goods have to be sold at a discount, which will cause losses. Moreover, stocking goods takes up space, which also incurs costs. On the other hand, selling goods leads to a reward. In this example, we model this scenario as follows: n is the number of goods which are on sale, d is the number of days after the goods are manufactured and each time one piece of goods is sold, d will be incremented by a random variable r which has a uniform distribution [START_REF] Agrawal | Lexicographic ranking supermartingales: an efficient approach to termination of probabilistic programs[END_REF][START_REF] Albert | Termination and Cost Analysis with COSTA and its User Interfaces[END_REF] (This models the time it takes to sell the next piece). The program starts with the initial value n = a , d = b and terminates if d exceeds 30 days, which will eventually happen with probability 1.

Pollutant Disposal. We consider a pollutant disposal factory that has two machines A and B. At first, the factory is given an initial amount of pollutants to dispose of. At each iteration, the factory uses machine A with probability 0.6 and machine B with probability 0.4. Machine A can dispose of r 1 units of pollutants, while creating r ′ 1 new units of pollutants in the process. Similarly, machine B can dispose of r 2 units by creating r ′ 2 new units of pollutants. The sampling variables r 1 , r 2 are integer-valued random variables which have an equivalent sampling rate between 1 and 10. Similarly, r ′ 1 , r ′ 2 are integer-valued random variables which have an equivalent sampling rate between 2 and 8. There is a reward associated with disposing of each unit of pollutants. On the other hand, at the end of each iteration, a cost is incurred which is proportional to the amount of remaining pollutants.

1 : while i ≥ 1 do 2 :

x := i ; 3 : while x ≥ 1 do 4 :

x := x + r ; 5 :

y := r ′ ; 6 : tick(y) od 7 : i := i + r ′′ ; 8 z := r ′′′ ; 9 : tick(-z * i) od 10 :