
SIFT-AID: BOOSTING SIFT WITH AN AFFINE INVARIANT DESCRIPTOR

BASED ON CONVOLUTIONAL NEURAL NETWORKS

M. Rodrı́guez,† G. Facciolo,† R. Grompone von Gioi,† P. Musé,§ J.-M. Morel,† and J. Delon‡
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ABSTRACT

The classic approach to image matching consists in the detec-

tion, description and matching of keypoints. The descriptor

encodes the local information around the keypoint. An ad-

vantage of local approaches is that viewpoint deformations

are well approximated by affine maps. This motivated the

quest for affine invariant local descriptors. Despite numerous

efforts, such descriptors remained elusive, ultimately result-

ing in the compromise of using viewpoint simulations to at-

tain affine invariance. In this work we propose a CNN-based

patch descriptor which captures affine invariance without the

need for viewpoint simulations. This is achieved by training

a neural network to associate similar vectorial representations

to patches related by affine transformations. During match-

ing, these vectors are compared very efficiently. The invari-

ance to translation, rotation and scale is still obtained by the

first stages of SIFT, which produce the keypoints. The pro-

posed descriptor outperforms the state-of-the-art in retaining

affine invariant properties.

Index Terms— image comparison, affine invariance,

IMAS, SIFT, RootSIFT, convolutional neural networks.

1. INTRODUCTION

The classic approach to image matching consists in three

steps: detection, description and matching [1]. First, key-

points are detected in both images to be compared. Second,

regions around these points are described by local descrip-

tors. Finally, all these descriptors are compared and possibly

matched. Both the detection and description steps are usu-

ally designed to ensure some invariance to various geometric

or radiometric changes. A benefit of local descriptors is

that viewpoint deformations are well approximated by affine

maps. Indeed, for any smooth deformation, its first order

Taylor approximation is an affine map. This observation has

motivated the development of comparison methods based on

local descriptors that are as affine invariant as possible.
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Fig. 1: Top: matches by Affine-RootSIFT (48). Bottom:

matches by the proposed SIFT-AID method (295).

To ensure invariance to affine transforms, some authors

have proposed moment-based region detectors [2, 3] includ-

ing the Harris-Affine and Hessian-Affine region detectors [4,

5]. Locally affine invariant region detectors can also be based

on edges [6, 7], intensity [8, 7], or entropy [9]. Finally, the

detectors MSER (Maximally Stable Extremal Region) [10]

and LLD (Level Line Descriptor) [11, 12, 13] both rely on

image level lines. Yet the affine invariance of these descip-

tors in images acquired with real cameras is limited by the

fact that optical blur and affine transforms do not commute,

as shown in [14]. Thus, none of the previously mentioned

descriptors can be considered fully affine invariant. In [15],

RootSIFT [16] was reported to be the robustest descriptor

to affine viewpoint changes (up to 60◦). To overcome this

limitation, several simulation-based solutions have been pro-

posed: ASIFT [17], FAIR-SURF [18], MODS [19], Affine-

AC-W [20]. Some optimal versions have been proposed in

[21], including Optimal Affine-RootSIFT, which was proven

to be the best choice.

On the other hand, local descriptors, which once were

manually-designed, are currently being learned from data,

with the promise of a better performance. Mimicking the

classic process of image matching, they learn a similarity

measure between image patches. In [22], three similarity

score architectures were introduced (CNN + a decision net-
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Fig. 2: The proposed descritor is computed using a CNN that produces a feature vector of dimension 6272.

work). For stereo matching, two architectures based on CNNs

were proposed in [23], one of them computing the similarity

score with the cosine proximity operator.

CNN-based geometric matching between images has also

been tested for the case of affine and homography transforma-

tions [24, 25]. In [24], the POOL4 layer of the VGG-16 net-

work [26] was used for acquiring features from images and

correlation maps fed to a regression network that outputs the

best affine transform fitting the query into the target image. In

a direct approach, the authors of [25] trained a network to es-

timate the homography relating the query to the target image.

Both [24, 25] were trained on synthetically generated images,

however neither of them took into account the blur caused by

camera zoom-out or tilt.

In this paper we combine manually-designed and learned

methods in order to obtain a fast affine invariant image

matching algorithm, capable of capturing strong viewpoint

changes. The proposed method is based on the first stages

of SIFT [1, 27], which ensure invariance to similarity trans-

formations (translations, rotations and zooms) up to small

perturbations (see [28] for a mathematical proof). At this

point the SIFT descriptor is replaced by a neural network

(Figure 2) that takes a 60× 60 patch as input and produces a

6272-element vector descriptor. The network is trained on a

dataset containing pairs of patches related by affine transfor-

mations, aiming at producing similar descriptor vectors for

affine pairs and dissimilar vectors otherwise [23].

A simple way of measuring similarity between vector

descriptors is through the cosine proximity operator, i.e.

cos (x,y) := 〈x,y〉
‖x‖‖y‖ . Therefore, we train the network to

cluster similar descriptors with respect to angle. Finally,

only the sign of each vector component is kept, leading to

a binary descriptor. This allows to save memory and accel-

erate the matching process, while keeping the same level of

performance and discriminative power. Figure 1 presents an

example of the proposed method compared to the Affine-

RootSIFT method.

2. AFFINE VIEWPOINT SIMULATION

Let us now focus on how to properly model affine viewpoints,

which is needed for generating synthetic data to train our de-

scriptor. Let u denote an image, A the set of affine maps

and define Au(x) = u(Ax) for A ∈ A. We define A+ =

Fig. 3: Geometric interpretation of equation (1).

{A + b ∈ A| det(A) > 0} where A is a linear map and b

a translation vector. We call S the set of similarity transfor-

mations, which are any combination of translations, rotations

and zooms. Finally we define the set A+
∗ = A+ \ S , where

we exclude pure similarities. It was proven in [14] that every

A ∈ A+
∗ is uniquely decomposed as

A = λR1(ψ)TtR2(φ), (1)

whereR1, R2 are rotations and Tt =

[

t 0
0 1

]

with t > 1, λ >

0, φ ∈ [0, π) and ψ ∈ [0, 2π). Furthermore, the above decom-

position comes with a geometric interpretation (see Figure 3)

where the longitude φ and latitude θ = arccos 1
t

characterize

the camera’s viewpoint angles (or tilt), ψ parameterizes the

camera roll and λ corresponds to the camera zoom.

A digital image u obtained by any camera at infinity can

be written as u = S1G1AT u0 where S1 is the image sam-

pling operator (on a unitary grid), A a linear map, T a planar

translation, u0 a continuous image and Gδ denotes the convo-

lution by a Gaussian kernel broad enough to ensure no alias-

ing by δ-sampling. Unfortunately, G1 and A do not commute

when A involves a tilt or a zoom. As a consequence, a simple

warping A(u0) of the frontal image u0 := S1G1u0 is not a

correct optical affine simulation of u. As stated in [14, 15],

the correct way of simulating a tilt t in the x-direction is:

u → S1T
x
t G

x√
t2−1

Iu, (2)

where I is the Shannon-Whittaker interpolator and the su-

perscript x indicates the operator takes place only in the x-

direction. We denote T
x
t := T x

t G
x√
t2−1

I . Similarly for y.

It is clear that there is loss of information due to the blur;

indeed, the operator Tx
t is not invertible. Which means that,

depending on the image u, there might not be any optical

transformation A satisfying A(u1) = u2 or u1 = A(u2).
Consider, for example, u1 = T

x
t u and u2 = T

y
tu.
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Fig. 4: Diagram of the siamese network for training D.

With that in mind, we design a data generation scheme

that, given an image u and a pair of random affine trans-

formations A1 and A2, simulates affine views u1 = A1(u)
and u2 = A2(u). Both A1,A2 with maximal viewpoint an-

gles up to 75◦ with respect to u. Instances of u are provided

accordingly from three independent MS-COCO [29] datasets

for training, validation and test. Patch pairs seeing the same

scene from u1 and u2 are said to belong to the same class and

will be used to train the descriptor network.

3. DESCRIPTORS AND MATCHING CRITERIA

Inspired on [23], our descriptor network D is trained to pro-

duce similar descriptor vectors for patch pairs of the same

class, and dissimilar vectors for patch pairs of different class.

The network architecture is adapted from [25], see Figure 2.

It consists of 4 blocks of two convolutional layers each fol-

lowed by batch normalization and ReLU activations. Be-

tween each block a max-pooling layer is introduced. A 2D

Spatial Dropout with a probability 0.5 is applied after the last

convolutional layer.

Here, dropout is not used to avoid over-fitting but to en-

courage the descriptor network to use all the dimensions of

the feature vector. In addition, it does facilitate the learning

process: the validation loss has proved to be much more sta-

ble than without dropout.

The affine approximation holds locally, which suggests

the use of small patch sizes; on the other hand, small patches

entail less information, leading to insufficient descriptions.

As a compromise, we set the patch size to 60 × 60, which

provides a good balance between locality and enough view-

point information.

Training with hinge loss. During training, the descriptor net-

work is immersed into a siamese network, represented in Fig-

ure 4. The siamese network consists of two identical sub-

networks joined at the top by a virtual layer that computes the

hinge loss between their two outputs:

λp = cos(D(Pa),D(Pp)), λn = cos(D(Pa),D(Pn)),
where patches Pa, Pp belong to the same class whereas

Pn does not. While training, we simulate random con-

Fig. 5: Density plots from each BigAID dimension (6272),

computed over 5·104 BigAID descriptions of random patches

from the test dataset.
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Fig. 6: Positive and negative density estimation on measure-

ments. For that, 6·105 random intra and extra class pairs were

used. The vertical line depicts the threshold minimizing both

error probabilities: false negatives and false positives.

trast changes on all input patches. The hinge loss, i.e.

L (λp, λn) := max (0,m+ λn − λp) , is used with parame-

ter m set to 0.2 in our experiments.

Binary descriptor and matching. When training is com-

plete, the descriptor network is plugged out from the siamese

network and expected to produce descriptors that capture

affine invariant properties from input patches. We call this

description BigAID (6272 floats). Figure 5 shows density esti-

mations on each BigAID dimension. Notice the involvement

of all the dimensions in the description and the symmetry of

all densities around zero. With this in mind, we propose a

new affine invariant descriptor, that we call AID (6272 bits),

which only keeps the sign information from the BigAID. Two

AID descriptors x and y are consequently matched via the

sign alignment measure, i.e.
∑

i ✶sign(xi)=sign(yi). Intra- and

extra-class measure density estimations are shown in Figure 6

for RootSIFT (128 floats = 4096 bits) and our descriptors,

suggesting that for the BigAID and AID descriptors, a sim-

ple thresholding of their respective measures is sufficient to

single out classes.



Test I: Using SIFT keypoints Test II: Using Affine-RootSIFT keypoints

# keypoints per image
Without viewpoint

simulations
# keypoints per image

With viewpoint

simulations

Without viewpoint

simulations

query target RS BigAID AID query target A-RS BigAID* AID*

coke 5443 5670 115 1316 1409 28609 31965 1395 5298 5346

notredame 2285 1235 14 282 295 11739 6444 48 590 731

arc 1384 1387 40 445 420 5719 4759 244 579 600

graffiti 1661 3117 0 182 172 14290 15225 613 502 516

adam 269 192 30 67 69 3647 2364 484 496 520

Table 1: Viewpoint performance test. RS, A-RS, BigAID and AID denote Homography consistent Matches found by ORSA

for RootSIFT, Affine-RootSIFT, BigAID and AID. The Second-Nearest-Neighbor ratio in RootSIFT and Affine-RootSIFT was

set to 0.8. The thresholds for BigAID and AID were 0.4 and 4000, respectively. The star (*) indicates on oracle keypoints.

A-RootSIFT

L2 norm

SIFT-BigAID

Cos. Prox.

SIFT-AID

Sign Align.

ET-D ET-M ET-D* ET-M ET-D* ET-M

coke 4.500 14.440 9.876 35.512 9.838 0.777

notredame 1.930 1.120 3.272 3.287 3.177 0.138

arc 1.520 0.380 2.581 2.236 2.465 0.107

graf 2.790 3.800 4.441 5.960 4.369 0.186

adam 1.210 0.130 0.601 0.088 0.525 0.030

Table 2: Time performance for Affine-RootSIFT, SIFT-

BigAID and SIFT-AID. Elapsed time (in seconds) in building

descriptors (ET-D) and matching them (ET-M); The star (*)

denotes GPU time.

adam arc notredame

coke graffiti

Fig. 7: Viewpoint challenge dataset.

4. EXPERIMENTS

Up until now, the descriptor network D has only seen op-

tically simulated input patches. Figure 7 provides a realis-

tic viewpoint challenge dataset in the form of 5 pairs of im-

ages. Given a fixed set of SIFT keypoints from these im-

ages, the proposed methods are compared against RootSIFT

in the section Test I of Table 1. The number of homography-

consistent matches found by ORSA [30] (an a-contrario val-

idated RANSAC) shows the superiority of the AID descrip-

tors with respect to RootSIFT. AID is more compact and has

a similar performance to BigAID. For these reasons, we pre-

fer the AID descriptor and we call SIFT-AID the matching

method resulting from its combination with SIFT keypoints.

The A-RS column (Test II) in Table 1 shows the num-

ber of homography consistent matches for Affine-RootSIFT.

Notice how SIFT-AID has comparable performances without

using viewpoint simulations. But in some cases, it yields less

matches, as for the adam pair. Why? As stated in [15], Affine-

RootSIFT has about 7 times more keypoints than SIFT. Some

of those keypoints come exclusively from simulated versions

of the input images, i.e., they do not belong to the Gaussian

pyramid of the original input images. To further test AID de-

scriptors, we define an oracle yielding precise keypoints in the

original Gaussian pyramid best approximating each keypoint

from the first stages of Affine-RootSIFT. Keypoints provided

by this oracle are the best possible choices that could have

been found by the first stages of SIFT. Table 1 (Test II) also

shows the number of homography consistent matches for or-

acle + AID descriptors. This experiment reveals that both

AID and BigAID would have been sufficient to identify al-

most all Affine-RootSIFT matches, provided that proper key-

points had been correctly spotted by the first stages of SIFT.

In the case of the graffiti pair, most of the missing matches

for AID descriptors involve viewpoint angles close to 75◦,

the maximal viewpoint angle present in the training dataset.

Finally, Table 2 shows the time consumed by SIFT-AID

and Affine-RootSIFT (as in [21]) in building descriptors and

matching them1. Overall, the SIFT-AID method can achieve

results in less time than Affine-RootSIFT.

5. CONCLUSION

We proposed a CNN image patch descriptor capturing affine

invariance. Our experiments show that the SIFT-AID method

attains a performance comparable to Affine-RootSIFT with-

out the necessity of using viewpoint simulations. Most of

the missing matches are due to SIFT’s keypoint detection

step failures; more work is needed to improve this step. The

viewpoint robustness of the proposed method could be fur-

ther extended by affine simulations techniques similar to

those in [14, 15]. This extension will be the focus of future

work. Finally, the descriptor network architecture could be

optimized to improve the performance.

Reproducibility: The source code of SIFT-AID is available

at https://rdguez-mariano.github.io/pages/sift-aid

1Hardware settings: (CPU) Intel(R) Core(TM) i7-6700HQ 2.60GHz;

(GPU) NVIDIA Corporation GM204GLM [Quadro M5000M].
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