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ABSTRACT 
For the first time, we propose a 3D-monolithic SRAM architecture 

with a local back-plane for top-tier transistors enabling local back-bias 

assist techniques without area penalty as well as the capability to route 

two additional row-wise signals on individual back-planes. Experimental 

data are extracted from a 14nm planar Fully-Depleted-Silicon-on-

Insulator (FDSOI) 0.078µm2 SRAM in order to properly model 3D top-

tier cells. Simulations show this technique yields a 7% bitline capacitance 

reduction, a 12%/16% read/write access time improvement at VDD=0.8V 

and a reduction of minimum operating voltage Vmin by 60mV at 6w.r.t. 

planar SRAMs. 

INTRODUCTION 
Static-Random-Access-Memory (SRAM) optimization under area 

and performance constraints suffers from conflicting best-case conditions 

for read/write/retention, especially for low voltage operation. While assist 

techniques have been commonly adopted to address this issue [1], FDSOI 

offers a new degree of freedom owing to the use of static back-biasing as 

demonstrated in 28-22nm node SRAMs [2,3,4]. In planar FDSOI, 

dynamic back-bias assist suffers from a large well capacitance penalty. 

The bias range is also limited due to partially shared wells in the SRAM 

matrix between neighboring rows or columns. 3D-monolithic 

CoolCubeTM technology [5], which consists in stacking transistors on 

different tiers, does not suffer from these limitations (provided local back 

planes are dielectrically isolated from one another). This integration was 

recently demonstrated to efficiently enable dynamic back-bias in standard 

cells [6]. This work is focused on SRAM back-bias assist techniques using 

the unique features of 3D-monolithic top-tier 14nm FDSOI technology.  

MEASUREMENT OF PLANAR 14NM FDSOI SRAMS 

14nm planar CMOS devices were fabricated featuring 6nm-thin 

channels, 20nm minimum gate length, SiGeB/SiP in-situ doped 

source/drain, 90nm Contacted Poly Pitch, 64nm Metal Pitch and 

0.078µm2 SRAM minimum area [7]. High density (HD, 0.078µm2) and 

high current (HC, 0.098µm2) bitcell device dimensions are summarized 

in Fig.1. All the HC/HD transistors, i.e. the Pull-Up (PU) pMOS as well 

as the Pass-Gate (PG) and Pull-Down (PD) nMOS are built on silicon 

channel, with a single metal gate and single p-doped well (Figs 1-2). 

Excellent experimental static performance is obtained (nominal 

conditions are VDD=0.8V, Vwell=0) (Figs 3-5). 

PLANAR SRAM CELL SENSITIVITY TO BACK BIAS 

The sensitivity of SRAM vs. back bias (Vwell) was also characterized 

experimentally. Since the well is shared between all devices in the 

analyzed bitcell, Vwell<0 strengthens the Pull-Up PMOS (PU) and 

weakens the Pass-Gate (PG) and Pull-Down (PD) NMOS transistors, 

helping the PU to maintain BLTI=1 and thus BLFI=0 during the read 

operation (see SNM in Fig.6). Conversely, using Vwell>0 improves the 

PG/PU strength ratio (and in turn the WNM) and increases the write 

current (governed by PG drive). As a consequence, back biasing can be 

used to assist both write (Vwell>0) and read operation (Vwell<0). In regular 

FDSOI, this cannot be practically achieved because a single well is 

common to the whole array (no column selection). Performing dynamic 

back-bias would, therefore, require switching a huge capacitance between 

read and write operation, leading to unacceptable increase of access 

energy and delay. 3D-monolithic integration with local back planes offers 

thus much greater opportunities for assist techniques than planar FDSOI. 

PERFORMANCE ASSESSMENT OF 3D TOP-TIER SRAMS  

A FDSOI SPICE model and a design kit were built using electrical 

parameters characteristics of the CoolCubeTM low-temperature process 

[5]. The 14nm 3D-monolithic design environment includes four 

intermediate metal lines iML and a back plane, which follow the same 

design rules as a back-end metal layer (Figs 7-8).  

A detailed study of the influence of independent back-bias for 

PU/PG/PD shows that the threshold voltage of the PU must be lowered 

(VBpu<0) for all figures of merit (FoM), which cannot easily be achieved 

using a gate-first FDSOI process with Si channel (Fig.9). This can be 

performed in 3D by using a PU-dedicated back plane with a constant bias 

(VBpu=-0.8V) applied in all operation modes. Additionally, PD (or PG) 

threshold voltage can be dynamically modulated according to SRAM 

operation to improve margins and currents. Three promising assist modes 

(with different VBpg,VBpu,VBpd) are selected for the write (A1) and read 

stability (A2) as well as for the read time (A3) assist. Using this versatile 

assist yields +23% WNM, +28% Iwrite with A1, +4% SNM with A2 and 

+28% Iread with A3 at VDD=0.8V and Vwell= ± VDD/GND vs. the reference 

configuration with a single back-plane biased at 0V (Fig.9). Furthermore 

the gains are more pronounced at low supply voltage VDD (Fig.10), 

leading to a 60mV Vmin reduction with A2 (Fig.11). The corresponding 

layout (common for A1-A2-A3) has been designed, connecting two 

groups of local (to-the-bitcell) back planes for PD and PG through internal 

vias (Fig.8) without area penalty. Actually back plane lines parallel to BLs 

distribute a static PU bias. Moreover the two dynamic signals are routed 

by iML3 in the WL direction within the SRAM height (whereas wells are 

typically in the BL direction in planar technologies). Thus, back biasing 

allows boosting a selected row in top-tier without disturbing other rows. 

 In order to evaluate the capacitance gain provided by a local back-

plane compared with a continuous one (or a single well in planar), back-

end parasitics have been extracted using TCAD and included in the 

SPICE netlist. A 7% BL capacitance reduction and a 12/16% read/write 

time improvement is achieved (w.r.t. reference cell at VDD=0.8V) (Figs 

12-13). The demonstrated assist technique can be combined with WL 

underdrive, negative BL or other standard assist techniques [8] for further 

performance and stability improvement (Fig.14). 

CONCLUSION 
The presence of local back planes in 3D-monolithic technology 

provides an extra knob to optimize the static and dynamic bitcell 

performance/area of top-tier FDSOI SRAMs. This specific feature is 

related to the integration of row-based, local back-planes addressed by 

internal vias and intermediate metal lines. The optimization of back bias 

assist techniques in such 3D architecture allows us to reduce the read 

/write access time by 12/16% and Vmin by 60mV in a 14nm HD SRAM.  



 

 

 

 
 

  
  

Fig.1: 14nm FDSOI 6T-SRAM. Top: 
key dimensions. Bottom: 14nm planar 
HD SRAM SEM observed at the gate 

level. 

Fig.2: SRAM schematic. The additionnal 

terminals provided by CoolCubeTM
 

technology are highlited in red. 

Fig.3: Exp. SNM butterfly curve 
and WNM at VDD=0.8 V vs. SPICE. 

Fig.4: Exp. comparison between HD, 
HC cell for typical Figures-of-Merit 

(FoM). 

        
Fig.5: Exp. cell current vs. cell leakage 

for different p-well biasing (Vwell). 
 Fig.6: Exp. read and write FoM as 

a function of Vwell. 
Fig.7: Schematic stack of CoolCubeTM 

14nm Design Kit with intermediate vias 
between the back plane and the upper 

intermediate metal line. 

Fig.8: SRAM 3D layout view with 
underneath backbias connections routed 

in the word line direction. 

   
Fig.9: Sensibility (%) of (a) WNM, (b) IWRITE, (c) SNM and (d) IREAD on 
independent back-biasing (on PD,PG,PU) (nominal configuration is at 

VBG=GND) (SPICE). Three assist modes are highlighted: A1, A2 and A3. 

Fig.10: WNM/SNM/Iwrite/Iread 
improvement w.r.t. REF vs. VDD 

(SPICE).  

Fig.11: SNM/WNM (at µ-6σ) as a 
function of VDD. Vmin is lowered by 
60mV with back-biasing (SPICE). 
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Fig.12: Bitline capacitance computation 
for a single bitcell with different back 

plane configurations (TCAD). 

Fig.13: Read/write time (SPICE). A3 is 
particularly interesting to boost cell 

reading time.  

Fig.14: Gain summary of different 
read/write assists. 
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