Krishnendu Chatterjee
email: krishnendu.chatterjee@ist.ac.at

Amir Hongfei Fu

Ehsan Kafshdar Goharshady

Amir Kafshdar Goharshady
email: amir.goharshady@ist.ac.at

Ehsan Kafshdar Goharshady
email: e.goharshady1@gmail.com

Polynomial Invariant Generation for Non-deterministic Recursive Programs

Keywords: • Theory of computation → Logic and verification; Invariants Invariant generation, Positivstellensätze, Polynomial programs

come

Introduction

Invariants. An assertion at a program location that is always satisfied by the variables whenever the location is reached is called an invariant. Invariants are essential for many quantitative analyses, as well as for fundamental problems such as proving termination [START_REF] Chatterjee | Non-polynomial Worst-Case Analysis of Recursive Programs[END_REF][START_REF] Halbwachs | Verification of real-time systems using linear relation analysis[END_REF][START_REF] Henzinger | Model checking strategies for linear hybrid systems[END_REF][START_REF] Van Chan Ngo | Bounded expectations: resource analysis for probabilistic programs[END_REF]. Invariant generation is a classical problem in verification and programming languages, and has been studied for decades, e.g. for safety and liveness analysis [START_REF] Cousot | Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints[END_REF][START_REF] Cousot | Automatic discovery of linear restraints among variables of a program[END_REF][START_REF] Manna | Temporal verification of reactive systems: Safety[END_REF]. Inductive Invariants. An inductive assertion is an assertion that holds at a location for the first visit to it and is preserved under every cyclic execution path to and from the location. Inductive assertions are guaranteed to be invariants, and the well-established method to prove an assertion is an invariant is to find an inductive invariant that strengthens it [START_REF] Michael Colón | Linear Invariant Generation Using Non-linear Constraint Solving[END_REF][START_REF] Manna | Temporal verification of reactive systems: Safety[END_REF].

Abstract Interpretation. One technique to find inductive invariants is abstract interpretation [START_REF] Cousot | Automatic discovery of linear restraints among variables of a program[END_REF], which is primarily a theory of semantic approximations. It has been used for invariant generation by computing least fixed points of abstractions of the collecting semantics, but it guarantees completeness only for rare special cases [START_REF] Giacobazzi | Completeness in abstract interpretation: A domain perspective[END_REF].

Linear vs Polynomial Invariants. For linear invariant generation over programs with linear updates, a sound and complete methodology was obtained by [START_REF] Michael Colón | Linear Invariant Generation Using Non-linear Constraint Solving[END_REF]. We consider programs with polynomial updates and the problem of generating polynomial invariants, i.e. invariants that are a conjunction of polynomial inequalities over program variables. Hence, our setting is more general than [START_REF] Michael Colón | Linear Invariant Generation Using Non-linear Constraint Solving[END_REF] in terms of the programs we analyze, and also the desired invariants. The only previous approach that provides completeness for this problem is [START_REF] Kapur | Automatically generating loop invariants using quantifier elimination[END_REF]. However, it has doubly-exponential complexity and is not practically applicable even to toy programs. Conversely, efficient but incomplete methods were proposed in [START_REF] Farzan | Compositional Recurrence Analysis[END_REF][START_REF] Kincaid | Compositional recurrence analysis revisited[END_REF][START_REF] Kincaid | Non-linear reasoning for invariant synthesis[END_REF]. Polynomial invariants are more desirable than linear invariants for a variety of reasons. First, there are many cases, such as the benchmarks in [START_REF] Rodríguez-Carbonell | Some programs that need polynomial invariants in order to be verified[END_REF] and programs in reinforcement learning [START_REF] Zhu | An Inductive Synthesis Framework for Verifiable Reinforcement Learning[END_REF], where linear assertions are not enough and verification goals require higher-degree polynomial inequalities. Second, even when the desired assertions are linear, they might not be provable by means of a linear inductive invariant, i.e. the inductivity might require nonlinearity. Finally, many programs have polynomial assignments and guards. For such programs, even when looking for linear inductive invariants, our approach is the first applicable method with completeness guarantees.

Motivation for Polynomial Invariants. Given that polynomial invariants provide greater expressiveness in comparison with linear invariants, they improve solutions to many classical problems, such as the following: • Safety Verification. This is one of the most well-studied model checking problems: Given a program and a set of safety assertions that must hold at specific points of the program, prove that the assertions hold or report that they might be violated by the program. Many existing approaches for safety verification rely on invariants to prove the desired assertions (see [START_REF] Albarghouthi | Ufo: A framework for abstraction-and interpolation-based software verification[END_REF][START_REF] Alur | Predicate abstraction for reachability analysis of hybrid systems[END_REF][START_REF] Manna | Temporal verification of reactive systems: Safety[END_REF][START_REF] Padon | Ivy: safety verification by interactive generalization[END_REF]). In these cases, weak invariants can lead to an increase in false positives, i.e. if the supplied invariants are inaccurate and grossly overestimate the program's behavior, then the verifier might falsely infer that a true assertion can be violated. • Termination Analysis. A principal approach in proving termination of programs is to synthesize ranking functions [START_REF] Robert | Assigning meanings to programs[END_REF]. Virtually all synthesis algorithms for ranking functions depend on invariants, e.g. [START_REF] Aaron R Bradley | Linear ranking with reachability[END_REF][START_REF] Chen | Discovering non-linear ranking functions by solving semialgebraic systems[END_REF][START_REF] Michael | Synthesis of linear ranking functions[END_REF]. Having inaccurate invariants, such as linear instead of polynomial, can lead to a failure in the synthesis and hence inability to prove termination. The same point also applies to termination analysis of probabilistic programs [START_REF] Chakarov | Probabilistic program analysis with martingales[END_REF][START_REF] Huang | Modular verification for almost-sure termination of probabilistic programs[END_REF][START_REF] Wang | Cost analysis of nondeterministic probabilistic programs[END_REF]]. • Inferring Complexity Bounds. Another fundamental problem is to find automated algorithms that infer asymptotic complexity bounds on the runtime of (recursive) programs.

Current algorithms for tackling this problem, such as [START_REF] Chatterjee | Non-polynomial Worst-Case Analysis of Recursive Programs[END_REF], rely heavily on invariants and their accuracy. Inaccurate invariants can lead to an over-approximation of complexity or even failure to synthesize any complexity bound. These points not only justify the use of polynomial invariants, but also the need for completeness guarantees. Previous state-of-the-art approaches in polynomial invariant generation either lack such guarantees or have doubly-exponential runtime and cannot be applied even to toy programs. Our Contribution. We consider two variants of the invariant generation problem. Informally, the weak variant asks for an optimal invariant w.r.t. a given objective function, while the strong variant asks for a representative set of all invariants. Our contributions are as follows:

• Soundness and Semi-completeness. We present a sound and semi-complete method to generate polynomial invariants for programs with polynomial updates. Our completeness requires a compactness condition that is satisfied by all real-world programs (Remark 4). We also show that, using the standard notions of pre and post-conditions, our method can be extended to handle recursion as well. • Theoretical Complexity. We show that the worst-case complexity of our procedure is subexponential if we consider polynomial invariants with rational coefficients. In comparison, complexity of the procedure in [START_REF] Kapur | Automatically generating loop invariants using quantifier elimination[END_REF] is doublyexponential and the approach of [START_REF] Michael Colón | Linear Invariant Generation Using Non-linear Constraint Solving[END_REF], which is sound and complete for linear invariants, has exponential complexity, whereas we show how to generate polynomial invariants in subexponential time. • Practical Approach. We present a polynomial-time reduction from weak invariant generation to quadratic programming (QCLP). Solving QCLPs is an active area of research in optimization and there are many industrial solvers for handling its real-world instances. Using our algorithm, practical improvements to such solvers carry over to polynomial invariant generation. Hence, our main contribution is theoretical, i.e. presenting a sub-exponential sound and semi-complete method for generating polynomial invariants. Moreover, we also demonstrate the applicability of our approach by providing experimental results on several academic examples from [START_REF] Rodríguez-Carbonell | Some programs that need polynomial invariants in order to be verified[END_REF] that require polynomial invariants. Unsurprisingly, we observe that our approach is slower than previous sound but incomplete methods, so there is a trade-off between completeness and efficiency. However, we expect practical improvements in solving QCLPs to narrow the efficiency gap in the future. On the other hand, the only previous complete method, proposed in [START_REF] Kapur | Automatically generating loop invariants using quantifier elimination[END_REF], is extremely impractical and cannot handle any of our benchmarks, not even our toy running example.

Techniqes. While the approaches of [START_REF] Michael Colón | Linear Invariant Generation Using Non-linear Constraint Solving[END_REF][START_REF] Kapur | Automatically generating loop invariants using quantifier elimination[END_REF] use Farkas' lemma and quantifier elimination to generate invariants, our technique is based on a positivstellensatz. Our method replaces the quantifier elimination step with either (i) an algorithm of [START_REF] Grigor | Solving systems of polynomial inequalities in subexponential time[END_REF] for characterizing solutions of systems of polynomial inequalities or (ii) a reduction to QCLP.

Related works

Automated invariant generation has received much attention in the past years, and various classes of approaches have been proposed, including recurrence analysis [START_REF] Farzan | Compositional Recurrence Analysis[END_REF][START_REF] Humenberger | Automated Generation of Non-Linear Loop Invariants Utilizing Hypergeometric Sequences[END_REF][START_REF] Kincaid | Compositional recurrence analysis revisited[END_REF][START_REF] Kincaid | Non-linear reasoning for invariant synthesis[END_REF], abstract interpretation [START_REF] Bagnara | Generation of Basic Semi-algebraic Invariants Using Convex Polyhedra[END_REF][START_REF] Chakarov | Expectation Invariants for Probabilistic Program Loops as Fixed Points[END_REF][START_REF] Cousot | The ASTREÉ Analyzer[END_REF][START_REF] Müller | Computing polynomial program invariants[END_REF][START_REF] Rodríguez | Automatic generation of polynomial invariants of bounded degree using abstract interpretation[END_REF], constraint solving [START_REF] Chatterjee | Stochastic invariants for probabilistic termination[END_REF][START_REF] Chen | Counterexample-Guided Polynomial Loop Invariant Generation by Lagrange Interpolation[END_REF][START_REF] Michael Colón | Linear Invariant Generation Using Non-linear Constraint Solving[END_REF][START_REF] Cousot | Proving Program Invariance and Termination by Parametric Abstraction, Lagrangian Relaxation and Semidefinite Programming[END_REF][START_REF] Steven De Oliveira | Polynomial Invariants by Linear Algebra[END_REF][START_REF] Feng | Finding Polynomial Loop Invariants for Probabilistic Programs[END_REF][START_REF] Kapur | Automatically generating loop invariants using quantifier elimination[END_REF][START_REF] Katoen | Linear-Invariant Generation for Probabilistic Programs: -Automated Support for Proof-Based Methods[END_REF][START_REF] Lin | Proving total correctness and generating preconditions for loop programs via symbolic-numeric computation methods[END_REF][START_REF] Rodríguez | Automatic generation of polynomial loop invariants: Algebraic foundations[END_REF][START_REF] Sriram Sankaranarayanan | Non-linear loop invariant generation using Gröbner bases[END_REF][START_REF] Yang | Recent advances in program verification through computer algebra[END_REF], inference [START_REF] Dillig | Inductive invariant generation via abductive inference[END_REF][START_REF] Gulwani | Constraint-Based Invariant Inference over Predicate Abstraction[END_REF][START_REF] Sharma | From invariant checking to invariant inference using randomized search[END_REF], interpolation [START_REF] Kenneth | Quantified Invariant Generation Using an Interpolating Saturation Prover[END_REF], symbolic execution [START_REF] Csallner | DySy: dynamic symbolic execution for invariant inference[END_REF], dynamic analysis [START_REF] Nguyen | Using dynamic analysis to discover polynomial and array invariants[END_REF] and learning [START_REF] Garg | Learning invariants using decision trees and implication counterexamples[END_REF].

Summary. A summary of the results of the literature w.r.t. types of assignments, type of generated invariants, programming language features that can be handled (i.e. non-determinism, probability and recursion), soundness, completeness, and whether the approach can handle weak/strong invariant generation is presented in Table 1. For approaches that are applicable to weak/strong invariant generation, the respective runtimes are also reported. Most previous methods are indeed incomparable with our approach, because they handle different problems, e.g. different types of programs. We present the first applicable sound and semi-complete approach for polynomial invariant generation. Our complexity (subexponential) is not only better than the previous doublyexponential complexity for polynomial invariants [START_REF] Kapur | Automatically generating loop invariants using quantifier elimination[END_REF], it even beats the exponential complexity of complete methods for linear invariants [START_REF] Michael Colón | Linear Invariant Generation Using Non-linear Constraint Solving[END_REF].

Approach

Assignments and Guards Invariants Nondet Rec Prob Sound Complete Weak Strong

This Work Polynomial Polynomial ✓ ✓ × ✓ ✓ ♦ ✓ QCLP ✓ Subexp [19] CAV'03 Linear c Linear ✓ × × ✓ ✓ ✓ Exp † ✓ Exp † [50] ACA'04 Polynomial Polynomial ✓ ✓ × ✓ ✓ ✓ 2Exp ✓ 2Exp [29] OOPSLA'13 General Linear (Presburger) ✓ ✓ × ✓ × × × [32] ATVA'17 Polynomial Polynomial × × ✓ ✓ ✓ a ✓ Poly × [47] LICS'18 Linear ‡ Polynomial Equalities ✓ × × ✓ ‡ ✓ ‡ × ✓ ‡,b [53] POPL'18 Polynomial, Exponential, Logarithmic Polynomial, Exponential, Logarithmic ✓ ✓ × ✓ × × × [66]* ISSAC'04 Polynomial, Exponential Polynomial Equalities ✓ × × ✓ ✓ ✓ b ✓ b [69] POPL'04 Polynomial c Polynomial Equalities ✓ × × ✓ ✓ b ✓ b ✓ b [31] FMCAD'15 General d General d ✓ × e × ✓ × × × [52] PLDI'17 General General ✓ ✓ × ✓ × × × [28] ATVA'16 Polynomial, Without Conditional Branching Polynomial Equalities ✓ × × ✓ ✓ ✓ Poly ✓ Poly [49]* ISSAC'17 Polynomial ‡ Polynomial Equalities ✓ × × ✓ ✓ ‡ ✓ ‡,b ✓ ‡,b [1] * SAS'15 Polynomial Polynomial × × × ✓ × × ×
Table 1. Summary of approaches for invariant generation.

Recurrence Analysis. While approaches based on recurrence analysis can derive exact invariants, they are applicable to a restricted class of programs where closed-form solutions exist. Our approach does not require closed-form solutions.

Abstract Interpretation. This is the oldest and most classical approach to invariant generation [START_REF] Cousot | Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints[END_REF][START_REF] Cousot | Automatic discovery of linear restraints among variables of a program[END_REF] and has also been used for generating quadratic invariants [START_REF] Adjé | Coupling policy iteration with semi-definite relaxation to compute accurate numerical invariants in static analysis[END_REF]. However, unlike our approach, it cannot provide completeness, except in very special cases [START_REF] Giacobazzi | Completeness in abstract interpretation: A domain perspective[END_REF]. There are efficient tools and algorithms for invariant generation using abstract interpretation [START_REF] Singh | Making numerical program analysis fast[END_REF][START_REF] Singh | Fast polyhedra abstract domain[END_REF], but they focus on generating linear invariants.

Constraint Solving. Our approach falls in this category. First, we handle polynomial invariants, thus extending approaches based on linear arithmetics, such as [START_REF] Chatterjee | Stochastic invariants for probabilistic termination[END_REF][START_REF] Michael Colón | Linear Invariant Generation Using Non-linear Constraint Solving[END_REF][START_REF] Steven De Oliveira | Polynomial Invariants by Linear Algebra[END_REF][START_REF] Katoen | Linear-Invariant Generation for Probabilistic Programs: -Automated Support for Proof-Based Methods[END_REF]. Second, we generate invariants consisting of polynomial inequalities, whereas several previous approaches synthesize polynomial equalities [START_REF] Rodríguez | Automatic generation of polynomial loop invariants: Algebraic foundations[END_REF][START_REF] Sriram Sankaranarayanan | Non-linear loop invariant generation using Gröbner bases[END_REF]. Third, our approach is semi-complete, thus it is more accurate than approaches with relaxations (e.g. [START_REF] Cousot | Proving Program Invariance and Termination by Parametric Abstraction, Lagrangian Relaxation and Semidefinite Programming[END_REF][START_REF] Lin | Proving total correctness and generating preconditions for loop programs via symbolic-numeric computation methods[END_REF]). Fourth, compared to previous complete approaches that solve formulas in the first-order theory of reals (e.g. [START_REF] Chen | Counterexample-Guided Polynomial Loop Invariant Generation by Lagrange Interpolation[END_REF][START_REF] Kapur | Automatically generating loop invariants using quantifier elimination[END_REF][START_REF] Yang | Recent advances in program verification through computer algebra[END_REF]) to generate invariants, our approach has lower complexity, i.e. our approach is subexponential, whereas they take exponential or doubly-exponential time.

Another notable work is [START_REF] Zhu | An Inductive Synthesis Framework for Verifiable Reinforcement Learning[END_REF] that synthesizes barrier certificates for the verification of reinforcement learning methods. Compared to [START_REF] Zhu | An Inductive Synthesis Framework for Verifiable Reinforcement Learning[END_REF], our approach is not restricted to barrier certificates and can handle non-convex invariants, whereas [START_REF] Zhu | An Inductive Synthesis Framework for Verifiable Reinforcement Learning[END_REF] relies on [START_REF] Erling | MOSEK Optimization Suite[END_REF] and requires convexity.

Approaches in Dynamical Systems. Similar techniques have also been applied in the context of continuous and hybrid dynamical systems [START_REF] Amin | Linear relaxations of polynomial positivity for polynomial lyapunov function synthesis[END_REF][START_REF] Oustry | Inner approximations of the maximal positively invariant set for polynomial dynamical systems[END_REF][START_REF] Sankaranarayanan | Automatic abstraction of non-linear systems using change of bases transformations[END_REF]. However, they ensure neither completeness nor subexponential complexity.

Comparison with [START_REF] Feng | Finding Polynomial Loop Invariants for Probabilistic Programs[END_REF]. Finally, we compare our approach with the most related work, i.e. [START_REF] Feng | Finding Polynomial Loop Invariants for Probabilistic Programs[END_REF]. A main difference is that our approach can find a representative set of all solutions, but [START_REF] Feng | Finding Polynomial Loop Invariants for Probabilistic Programs[END_REF] might miss some solutions, i.e. it only guarantees to find at least one solution as long as the problem is feasible.

In terms of techniques, [START_REF] Feng | Finding Polynomial Loop Invariants for Probabilistic Programs[END_REF] uses Stengle's positivstellensatz, while we use Putinar's positivstellensatz and the algorithm of Grigor'ev [START_REF] Grigor | Solving systems of polynomial inequalities in subexponential time[END_REF]. Moreover, [START_REF] Feng | Finding Polynomial Loop Invariants for Probabilistic Programs[END_REF] considers the class of probabilistic programs without non-determinism and only focuses on single probabilistic while loops, while we consider programs in general form, with non-determinism and recursion, but without probability.

Before going into technical details, we first illustrate the main ideas and insights behind our approach using a very simple example. Consider the following program:

Precondition: 100 -y 2 ≥ 0 i f x 2 -100 ≥ 0 then Invariant: c 1 • y 2 + c 2 • y + c 3 ≥ 0 x : = y e l s e Invariant: c 4 • x 2 + c 5 • x + c 6 ≥ 0 skip f i Postcondition: c 7 • x + c 8 ≥ 0
There are two program variables, namely x and y. A precondition 100y 2 ≥ 0 is assumed to hold at the beginning of the program, and the goal is to synthesize a postcondition and an invariant for each of the branches of the if statement. Moreover, a template is given for each of the desired expressions, e.g. inside the then branch, we are interested in synthesizing an invariant of the form

c 1 • y 2 + c 2 • y + c 3 ≥ 0,
where the c i 's are unknown coefficients, i.e. the goal is to find values for the c i 's so that this expression becomes an invariant. To do this, it suffices to synthesize values for the c i 's such that the assertion at each point of the program can be deduced from those at its predecessors. More concretely:

(i) 100 -

y 2 ≥ 0 ∧ x 2 -100 ≥ 0 ⇒ c 1 • y 2 + c 2 • y + c 3 ≥ 0, i.e.
the invariant should hold when we transition inside the then branch. (ii) 100 -

y 2 ≥ 0 ∧ 100 -x 2 > 0 ⇒ c 4 • x 2 + c 5 • x + c 6 ≥ 0,
i.e. the invariant should hold when we transition inside the else branch.

(iii) c 1 • y 2 + c 2 • y + c 3 ≥ 0 ⇒ c 7 • y + c 8 ≥ 0, i.e. the post-
condition should hold when we exit the then branch. Note that the assignment x := y is applied to the RHS. (iv)

c 4 • x 2 + c 5 • x + c 6 ≥ 0 ⇒ c 7 • x + c 8 ≥ 0, i.e. the post-
condition should hold when we exit the else branch. One ad-hoc way to satisfy the constraints above is to force the RHS polynomial expression to be a nonnegative combination of the LHS polynomials, e.g. in (i), we can set c 1 = -1, c 2 = 0, c 3 = 100, essentially making the RHS polynomial equal to the first LHS polynomial. Similarly, in (ii), we can set c 4 = -1, c 5 = 0, c 6 = 100. However, this cannot work for (iii). To handle this constraint, note that, without loss of generality, we can add any tautology to our assumptions. For example, we know that (a • yb) 2 ≥ 0 holds for all real numbers a and b, so we prove

(a • y -b) 2 ≥ 0 ∧ c 1 • y 2 + c 2 • y + c 3 ≥ 0 ⇒ c 7 • y + c 8 ≥ 0.
To solve the latter, we can simply let

c 7 • y + c 8 = (a • y -b) 2 + d • (c 1 • y 2 + c 2 • y + c 3), where d is a nonnegative real number. Let us expand the RHS to get c 7 •y +c 8 = a 2 •y 2 -2•a •b •y +b 2 +c 1 •d •y 2 +c 2 •d •y +c 3 •d.
Note that this is an equality between two polynomials over the variable y. These polynomials are equal iff they have the same coefficient for each power of y, therefore this equality is equivalent to the following system:

• 0 = a 2 + c 1 • d, i.e. the coefficients of y 2 should be equal; • c 7 = -2 • a • b + c 2 • d, i.e. the coefficients of y are equal; • c 8 = b 2 + c 3 • d, i.e.
the constant factors should be the same. We can now use a quadratic programming solver, together with the values we already have for c 1 , c 2 , c 3 from the previous steps, to obtain one possible solution, e.g.

c 7 = -1, c 8 = 10, a = 1 2 √ 5 , b = √ 5, d = 1 20 .
We can solve (iv) similarly. Putting everything together, we have:

Precondition: 100 -y 2 ≥ 0 i f x 2 -100 ≥ 0 then Invariant: -y 2 + 100 ≥ 0 x : = y e l s e Invariant: -x 2 + 100 ≥ 0 skip f i Postcondition: 10 -x ≥ 0
To obtain this, we had to find values for c i 's and proofs that conditions (i)-(iv) above hold when we plug in these values. The proofs for (i) and (ii) are easy, because the RHS polynomial is already assumed to be nonnegative in the LHS. For (iii) and (iv) we had to become more creative and add suitable tautologies to the LHS. For example, we proved (iii) by showing that 10y = 1 Our approach in this paper generalizes the simple ideas above. Given a program, we cannot be sure about the right template to use at each point, so we instead use the most general template, i.e. our template polynomials contain all possible monomials up to a certain degree. Then, we write the constraints that ensure these templates become a valid inductive invariant (such as (i)-(iv) above). Afterwards, we have to synthesize suitable values for the unknown coefficients (c i 's) and prove that all the required constraints hold. In general, when we want to prove a constraint of the form д 1 ≥ 0, д 2 ≥ 0, . . . , д m ≥ 0 ⇒ д ≥ 0, where д and д i 's are polynomials, we use a technique similar to what we did for constraint (iii) above and write д as a combination of д i 's and sum-of-square polynomials, i.e. д = h 0 + m i=1 h i • д i , where each h i is a sum of squares and hence always nonnegative. Therefore, wherever д i 's are nonnegative, it trivially follows that д must also be nonnegative. Hence, our approach is sound. Moreover, a classical theorem in real algebraic geometry, called Putinar's Positivstellensatz (Theorem 4.1), helps us prove that our approach preserves completeness under certain conditions, i.e. that any positive д can be written as a combination of д i 's in the form above. Using this idea, we can translate our constraints to quadratic programming in essentially the same manner we handled constraint (iii) above, i.e. by equating the coefficients of corresponding terms on the two sides of the polynomial equality. In the following sections, we formalize and build on these simple ideas.

3 Polynomial Programs and Invariants

Syntax and Semantics

We consider non-deterministic recursive programs with polynomial assignments and guards. Our syntax is shown in Figure 1. The ⋆ denotes non-deterministic branching. See Appendix A for more details. We fix two disjoint finite sets: the set V of program variables and the set F of functions.

Program Counters (Labels). We assign a unique program counter to each statement of the program and the endpoint of every function. We also refer to program counters as labels.

We use L to denote the set of labels. We denote the first label in a function f by ℓ f in and the label of its endpoint by ℓ f out . Types of Labels. We partition the set L of labels as follows:

• L a : Labels of assignment, skip or return statements, • L b : Labels of branching (if) and while-loop statements, • L c : Labels of function call statements, • L d : Labels of non-deterministic branching statements,

• L e : Labels of the endpoints of functions.

Example 3.1. Consider the simple program in Figure 2. The numbers on the left are the labels and their subscripts denote their types. We will use this program as our running example. It contains a single function sum that takes a parameter n and then non-deterministically sums up some of the numbers between 1 and n and returns the summation. Our goal is to prove that the return value of sum is always less than 0.5

• n 2 + 0.5 • n + 1.
New Variables. For each function f ∈ F, whose header is of the form f (v 1 , . . . , v n), we define n + 1 new variables ret f , v1 , . . . , vn . Informally, ret f is the return value of the function f and each variable vi holds the value passed to the function f from its caller for parameter v i without allowing f to change it. We define and let V f contain V f * , and any other variable that appears in the body of f . Similarly, L f denotes the set of labels in f . CFGs. We use standard control flow graphs as in [START_REF]Control flow analysis[END_REF][START_REF] Chatterjee | Non-polynomial Worst-Case Analysis of Recursive Programs[END_REF]. A Control Flow Graph (CFG) is a triple (F, L, →) where: • F is the set of functions;

V f * := {ret f , v 1 , . . . ,
• the labels L form the set of vertices, and • → is a relation whose members are triples (ℓ, α, ℓ ′) in which the source label ℓ and the target label ℓ ′ are in the same L f , the source label is not the end of function label, i.e. ℓ ℓ f out , and α is one of the following: (i) an update function α :

R f → R f if ℓ ∈ L a , or (ii) a propositional polynomial predicate over V f if ℓ ∈ L b , or (iii) ⊥ if ℓ ∈ L c , or (iv) ⋆ if ℓ ∈ L d .
Intuitively, we say that a CFG (F, L, →) is the CFG of program P if (i) for each label ℓ ∈ L, the successors of ℓ in → are the labels that are in the same function as ℓ and can possibly be executed right after ℓ, and (ii) the α's correspond to the behavior of the program, e.g. if (ℓ, α, ℓ ′) ∈→, ℓ is an if statement and ℓ ′ is the first statement in its 'else' part, then α should be the negation of the if condition. See [START_REF] Chatterjee | Non-polynomial Worst-Case Analysis of Recursive Programs[END_REF] for more details. Note that a return statement in a function f changes the value of the variable ret f and is succeeded by the endpoint label ℓ f out . Figure 3 provides the CFG of Example 3.1. Our semantics are defined based on a CFG in the standard manner. See Appendix B for details.

Invariants

Pre-conditions. A pre-condition is a function Pre mapping each label ℓ ∈ L f of the program to a conjunctive propositional formula Pre(ℓ) := m i=0 (e i ≥ 0), where each e i is an arithmetic expression over the set V f of variables * † . Intuitively, a pre-condition specifies a set of requirements for the runs of the program, i.e. a run of the program is valid if it always respects the pre-condition, and a run that does not satisfy the pre-condition is considered to be invalid or impossible and is ignored in our analysis. Post-conditions. A post-condition is a function Post that maps each program function f of the form f (v 1 , . . . , v n) to a conjunctive propositional formula Post(f) := m i=0 (e i > 0) over {ret f , v1 , . . . , vn }. Informally, a post-condition characterizes the return value ret f of each function f based on the values of parameters passed to f when it was called.

Remark 1 (Strict and Non-strict Inequalities). In the definitions above the inequalities in post-conditions are strict, whereas pre-conditions contain non-strict inequalities. There is a technical reason behind this choice, having to do with Theorem 4.1. Basically, Putinar's positivstellensatz characterizes strictly positive polynomials over a closed semi-algebraic set. Therefore, this subtle difference in the definitions of pre and post-conditions is necessary for our completeness result (Lemma 4.8). However, our soundness does not depend on it.

Model of Computation. We consider programs in which variables can have arbitrary real values. However, some of our results only hold if the variable values are bounded. In such cases we explicitly mention that the result holds on "bounded reals". The formal interpretation of this point is that there exists a constant value c ∈ R + such that for every label ℓ ∈ L f and every variable v ∈ V f , the pre-condition Pre(ℓ) contains the inequalities -c ≤ v ≤ c. In other words, in the bounded reals model of computation, a variable overflows if its value becomes more than c (resp. underflows if its value becomes less than -c), and any run containing an overflow or underflow is considered invalid. As a direct consequence, in every valid run, when we are in a function f and the valuation of variables is ν, we have ∥ν ∥ 2 ≤ c |V f |. Hence, when discussing bounded reals, we assume every pre-condition contains the inequality V f 2 2 ≤ c 2 |V f |, too. ‡ Note that this inequality is entailed by the bounds on values of individual * Classically, pre-conditions are only defined for the first labels of functions, but we allow pre-conditions for every label. This setting is strictly more general, given that one can let Pre(ℓ) = true for every other label.

† The value of every uninitialized (non-parameter) variable v is always 0 when the program reaches ℓ f in . Hence, w.l.o.g. we assume that Pre(ℓ f in) contains the assertions v ≥ 0 and -v ≥ 0. Similarly, we assume that for every parameter v of f , we have the assertions

v -v ≥ 0 and v -v ≥ 0 in Pre(ℓ f in). ‡ More concretely, if V f = {v 1 , v 2 , . . . , v n }, then the pre-condition contains the inequality v 2 1 + v 2 2 + . . . + v 2 n ≤ c 2 • n.
variables. We will later use it to satisfy the requirements of our positivstellensatz (Theorem 4.1).

Invariants. An invariant is a function Inv mapping each label ℓ ∈ L f of the program to a conjunctive propositional formula Inv(ℓ) := m i=0 (e i > 0) over V f , such that whenever a valid run reaches ℓ, Inv(ℓ) is satisfied.

Positivity Witnesses. Let e be an arithmetic expression on program variables and ϕ = m i=0 (e i ▷◁ i 0) for ▷◁ i ∈ {>, ≥}, such that for every valuation ν , we have ν |= ϕ ⇒ e(ν) > 0. We say that a constant ϵ > 0 is a positivity witness for e w.r.t. ϕ if for every valuation ν, we have ν |= ϕ ⇒ e(ν) > ϵ. In the sequel, we limit our focus to inequalities that have positivity witnesses. Intuitively, this means that we consider invariants of the form m j=1 (e j > 0) where the values of e j 's in the runs of the program cannot get arbitrarily close to 0 § . Inductive Assertion Maps. An inductive assertion map for a non-recursive program is a function Ind mapping each label ℓ ∈ L f of the program to a conjunctive propositional formula Ind(ℓ) := m i=0 (e i > 0) over V f , such that the following two conditions hold:

• Initiation. Pre(ℓ f in) ⇒ Ind(ℓ f in) • Consecution.
In every valid transition of the program from ℓ 0 to ℓ 1 , if Ind(ℓ 0) holds at ℓ 0 , then Ind(ℓ 1) must hold at ℓ 1 .

Intuitively, this condition means that the inductive assertion map cannot be falsified by running a valid step of the execution of the program. It is well-known that every inductive assertion map is an invariant. So, inductive assertion maps are often called inductive invariants, too. See Appendix C for a short proof and more formal definitions. of its behavior, and hence avoid running the function itself. See Appendix B for a formal definition.

Example 3.3. Assume the pre and post-conditions of Example 3.2 and consider a program P whose main function f main calls the function sum of Figure 2. Suppose sum is called at label ℓ, i.e. the statement at ℓ is y := sum(x), and (ℓ, ⊥, ℓ ′) ∈→ . In a normal run of P, when the program reaches ℓ, control moves to sum. In contrast, in an abstract path starting at ℓ, control directly moves to ℓ ′ , provided that no variable other than y gets its value changed and that the pre-condition and post-condition are satisfied. For example, the following sequences are abstract paths:

⟨⟨(f main , ℓ, x = 3, y = 0)⟩, ⟨(f main , ℓ ′ , x = 3, y = ϵ)⟩⟩ ⟨⟨(f main , ℓ, x = 3, y = 1)⟩, ⟨(f main , ℓ ′ , x = 3, y = 99.9)⟩⟩
The latter configuration cannot happen in any valid run, but it does not violate the conditions of an abstract path. This is because the post-condition in this example is very weak and hence abstract paths grossly overestimate valid paths. As we will see, our algorithms synthesize stronger post-conditions as part of the invariant generation process. Finally, the following are not abstract paths:

⟨⟨(f main , ℓ, x = -1, y = 1)⟩, ⟨(f main , ℓ ′ , x = -1, y = 10)⟩⟩ Reason: It violates Pre(ℓ sum in)[n ← x, n ← x] ⟨⟨(f main , ℓ, x = 1, y = 1)⟩, ⟨(f main , ℓ ′ , x = 1, y = -1)⟩⟩ Reason: It violates Post(sum)[n ← x, ret sum ← y] ⟨⟨(f main , ℓ, x = 3, y = 3)⟩, ⟨(f main , ℓ ′ , x = 2, y = 4)⟩⟩ Reason: It changes the value of x
Recursive Inductive Invariants. Given a recursive program P and a pre-condition Pre, a recursive inductive invariant is a pair (Post, Ind) where Post is a post-condition and Ind is a function that maps every label ℓ ∈ L f of the program to a conjunctive propositional formula Ind(ℓ) := m i=0 (e i > 0), such that the following requirements are met: • Initiation. For every function f , we have Pre(ℓ

f in) ⇒ Ind(ℓ f in).
• Consecution. For every valid unit-length abstract path that transitions from ℓ 0 to ℓ 1 , if Ind(ℓ 0) holds at ℓ 0 , then Ind(ℓ 1) must hold at ℓ 1 . • Post-condition Consecution. For every valid unit-length abstract path that starts at ℓ 0 ∈ L f and ends at the endpoint label ℓ

f out , if Ind(ℓ 0) holds at ℓ 0 , then the post-condition Post(f) must hold at ℓ f out .
Following an argument similar to the case of inductive invariants, if (Post, Ind) is a recursive inductive invariant, then Ind is an invariant. See Appendix C for details.

We define our synthesis problem in terms of (recursive) inductive invariants, because the classical method for finding or verifying invariants is to consider inductive invariants that strengthen them [START_REF] Michael Colón | Linear Invariant Generation Using Non-linear Constraint Solving[END_REF][START_REF] Manna | Temporal verification of reactive systems: Safety[END_REF]. The Invariant Synthesis Problem. Given a program P, together with a pre-condition Pre, the invariant synthesis problem asks for (recursive) inductive invariants of a given form and size (e.g. linear or polynomial of a given degree). The problem can be divided into two variants:

• The Strong Invariant Synthesis Problem asks for a characterization or a representative set of all possible invariants. • The Weak Invariant Synthesis Problem provides an objective function over the invariants (e.g. a function over the coefficients of polynomial invariants) and asks for an invariant that maximizes the objective function. Motivation. There are several motives for defining both strong and weak invariant synthesis:

• Strong invariant synthesis can be used in compositional reasoning, e.g. having separate representations for all invariants of programs P 1 , P 2 , . . . , P n , an invariant for their sequential composition P 1 ; P 2 ; . . . ; P n can be derived by considering each part separately. • Strong invariant synthesis is computationally expensive, so in practice, weak invariant synthesis can be used to obtain invariants that are desirable (according to a given objective function). For example, in Section 6, we use it to prove desired assertions (partial invariants) at a few points of the program by synthesizing an inductive invariant that includes them. • Another use-case of weak invariant synthesis is to find bounds for a given expression R at some point of the program. The objective function can be set to find the tightest possible bound. Such bounds are useful in many contexts, e.g. if R is a ranking function, then its upperbound is also a bound on the runtime of the program. Polynomial Invariants. In the sequel, we consider the synthesis problems for polynomial invariants and pre and postconditions, i.e. we assume that all arithmetic expressions used in the atomic assertions are polynomials.

Invariants for Non-recursive Programs

We first provide a sound and semi-complete reduction from inductive invariants to solutions of a system of quadratic equalities. Our main tool is a theorem in real semi-algebraic geometry called Putinar's positivstellensatz [START_REF] Putinar | Positive polynomials on compact semi-algebraic sets[END_REF]. We show that the Strong Invariant Synthesis problem can be solved in subexponential time. We also show that the Weak Invariant Synthesis problem can be reduced to QCLP.

Mathematical Tools and Lemmas

The following theorem is the main tool in our reduction: Theorem 4.1 (Putinar's Positivstellensatz [START_REF] Putinar | Positive polynomials on compact semi-algebraic sets[END_REF]). Let V be a finite set of variables and д, д 1 , . . . , д m ∈ R[V] polynomials over V with real coefficients. We define

Π := {x ∈ R V | ∀i д i (x) ≥ 0} as the set of points in which every д i is non-negative. If (i) there exists some д k s.t. the set {x ∈ R V | д k (x) ≥ 0} is compact, and (ii) д(x) > 0 for all x ∈ Π, then д = h 0 + m i=1 h i • д i (1)
where each polynomial h i is the sum of squares of some poly-

nomials in R[V], i.e. h i = n j=0 f 2 i, j for some f i, j 's in R[V].
Corollary 4.2 (Proof in Appendix D.1). Let V , д, д 1 , . . . , д m and Π be as above. Then д(x) > 0 for all x ∈ Π if and only if:

д = ϵ + h 0 + m i=1 h i • д i (2)
where ϵ > 0 is a real number and each polynomial h i is the sum of squares of some polynomials in R[V].

Hence, Putinar's positivstellensatz provides a characterization of all polynomials д that are positive over the closed set Π. Intuitively, given a set of atomic non-negativity assumptions д i (x) ≥ 0, in order to find all polynomials д that are positive under these assumptions, we only need to look into polynomials of form [START_REF] Adjé | Coupling policy iteration with semi-definite relaxation to compute accurate numerical invariants in static analysis[END_REF]. Moreover, the real number ϵ in (2) serves as a positivity witness for д.

Our algorithm also relies on the following lemma:

Lemma 4.3 (Proof in Appendix D.2). Given a polynomial h ∈ R[V]
as input, the problem of deciding whether h is a sum of squares, i.e. whether h can be written as i f 2 i for some polynomials f i ∈ R[V], can be reduced in polynomial time to solving a system of quadratic equalities.

Overview of the Approach

In this section, we provide an overview of our algorithms. The next sections go through all the details. Our algorithms for Strong and Weak Invariant Synthesis are very similar. They each consist of four main steps and differ only in the last step. The steps are as follows:

Step 1) First, the algorithm creates a template for the inductive invariant at each label. More specifically, it creates polynomial templates of the desired size and degree, but with unknown coefficients. The goal is to synthesize values for these unknown coefficients so that the template becomes a valid inductive invariant.

Step 2) The algorithm generates a set of constraints that should be satisfied by the template so as to ensure that it becomes an inductive invariant. These constraints encode the initiation and consecution requirements as in the definition of inductive invariants. Moreover, they have a very specific form: each constraint consists of polynomials д 1 , . . . , д m and д and encodes the requirement that for every valuation ν , if we have д 1 (ν) ≥ 0, д 2 (ν) ≥ 0, . . . , д m (ν) ≥ 0, then we must also have д(ν) > 0.

Step 3) Exploiting the structure of the constraints generated in the previous step, the algorithm applies Putinar's positivstellensatz to translate the constraints into quadratic equalities over the unknown coefficients.

Step 4) The algorithm uses an external solver for handling the system of quadratic equalities generated in the previous step. In case of Strong Invariant Synthesis, the external solver would use the algorithm of [START_REF] Grigor | Solving systems of polynomial inequalities in subexponential time[END_REF] to provide a representative set of all invariants. In contrast, for Weak Invariant Synthesis, the external solver is an optimization suite for quadratic programming (QCLP).

Strong Invariant Synthesis

We now provide a formal description of the input to our algorithm for Strong Invariant Synthesis and then present details of every step.

The StrongInvSynth Algorithm. We present an algorithm StrongInvSynth that gets the following items as its input:

• A non-recursive program P which is generated by the grammar in Figure 1,

• A polynomial pre-condition Pre,
• Positive integers d, n and ϒ, where d is the degree of polynomials in the desired inductive invariants, n is the desired size of the invariant generated at each label, i.e. number of atomic assertions, and ϒ is a technical parameter to ensure semi-completeness, which will be discussed later; and produces a representative set of all inductive invariants Ind of the program P, such that for all ℓ ∈ L, the set Ind(ℓ) consists of n atomic assertions of degree at most d. Our algorithm consists of the following four steps:

Step 1) Setting up templates.

Let V f = {v 1 , v 2 , . . . , v t } and define M f d = {m 1 , m 2 , . . . , m r } as the set of all monomi- als of degree at most d over V f , i.e. M f d := { t i=1 v α i i | ∀i α i ∈ N 0 ∧ t i=1 α i ≤ d }.
At each label ℓ ∈ L f of the program P, the algorithm generates a template η(ℓ) := n i=1 φ ℓ,i where each φ ℓ,i is of the form φ ℓ,i := r j=1 s ℓ,i, j • m j > 0 . Here, the s ℓ,i, j 's are new unknown variables. For brevity, we call them s-variables. Intuitively, our goal is to synthesize values for s-variables such that η becomes an inductive invariant.

Example 4.4. Consider the summation program in Figure 2. We have V sum = {n, n, i, s, ret sum }. For brevity we define r := ret sum . Suppose that we want to synthesize a single quadratic assertion as the invariant at each label. In Step 1, the algorithm creates the following template for each label ℓ ∈ {1, 2, . . . , 9}:

η(ℓ) := s ℓ,1,1 + s ℓ,1,2 • n + s ℓ,1,3 • n + s ℓ,1,4 • i + s ℓ,1,5 • s + s ℓ,1,6 • r + s ℓ,1,7 • n 2 + s ℓ,1,8 • n • n + s ℓ,1,9 • n • i + s ℓ,1,10 • n • s + s ℓ,1,11 • n • r + s ℓ,1,12 • n2 + s ℓ,1,13 • n • i + s ℓ,1,14 • n • s + s ℓ,1,15 • n • r + s ℓ,1,16 • i 2 + s ℓ,1,17 • i • s + s ℓ,1,18 • i • r + s ℓ,1,19 • s 2 + s ℓ,1,20 • s • r + s ℓ,1,21 • r 2 > 0.
Step 2) Setting up constraint pairs. For each transition e = (ℓ, α, ℓ ′) of the CFG of P, the algorithm constructs a set Λ e of constraint pairs of the form λ = (Γ, д) where Γ = m i=1 (д i ≥ 0) and д, д 1 , . . . , д m are polynomials with unknown coefficients (based on the s-variables). Intuitively, a condition pair (Γ, д) encodes the following condition:

∀ν ∈ R f ν |= Γ ⇒ д(ν) > 0 ≡ ∀ν ∈ R V f (∀д i ∈ Γ д i (ν) ≥ 0) ⇒ д(ν) > 0.
The construction is as follows (note that all computations are done symbolically):

• If ℓ ∈ L a , for every polynomial д for which д > 0 appears in η(ℓ ′), the algorithm adds the condition pair (Pre(ℓ) ∧ η(ℓ) ∧ (Pre(ℓ ′) • α), д • α) to Λ e . Note that α is an update function that assigns a polynomial to every variable and hence the constraint pair can be computed symbolically. • If ℓ ∈ L b , then α is a propositional predicate. The algorithm writes α in disjunctive normal form as α = α 1 ∨α 2 ∨. . .∨α a . Each α i is a conjunction of atomic assertions. For every α i and every д such that д > 0 appears in η(ℓ ′), it adds the condition pair

(Pre(ℓ) ∧ η(ℓ) ∧ Pre(ℓ ′) ∧ α i , д) to Λ e . • If ℓ ∈ L d ,
= (n ≥ 0) ∧ (i ≥ 0) ∧ (-i ≥ 0) ∧ (s ≥ 0) ∧ (-s ≥ 0) ∧ (ret sum ≥ 0) ∧ (-ret sum ≥ 0) ∧ (n -n ≥ 0) ∧ (n -n ≥ 0) and Pre(ℓ) := (1 ≥ 0) ≡ true for every ℓ 1.
Note that (n ≥ 0) is the only non-trivial assertion and all the other assertions are true by definition, given that 1 is the first statement in sum. We provide some examples of constraint pairs generated in Step 2 of the algorithm:

• 1 ∈ L a and e 1 = (1, [i ← 1], 2) ∈→ (see the CFG in
Figure 3). Hence, we have the following constraint pair:

(Pre(1) ∧ η(1) ∧ Pre(2)[i ← 1], η(2)[i ← 1])
which is symbolically computed as:

(n ≥ 0) ∧ (i ≥ 0) ∧ (-i ≥ 0)∧ (s ≥ 0) ∧ (-s ≥ 0) ∧ (r ≥ 0)∧ (-r ≥ 0) ∧ (n -n ≥ 0) ∧ (n -n ≥ 0)∧ (s 1,1,1 + s 1,1,2 • n + . . . + s 1,1,21 • r 2 ≥ 0) , s 2,1,1 + s 2,1,2 • n + . . . + s 2,1,4 + . . . + s 2,1,9 • n + . . . + s 2,1,13 • n + s 2,1,16 + s 2,1,17 • s + s 2,1,18 • r + . . . + s 2,1,21 • r 2
and added to Λ e 1 . Note that Pre(2) is true and so ignored.

• 3 ∈ L b and e 2 = (3, (n-i ≥ 0), 4) ∈→, so the constraint pair (Pre(3) ∧η(3) ∧ Pre(4) ∧ (n -i ≥ 0), η(4)) ≡ (η(3) ∧ (n -i ≥ 0), η (4)
) is symbolically computed and added to Λ e 2 . • 1 = ℓ sum in , so the constraint pair (Pre(1), η(1)) is symbolically computed and added to Λ in .

Step 3) Translating constraint pairs to quadratic equalities. Let Λ := e ∈→ Λ e ∪Λ in be the set of all constraint pairs from the previous step. For each λ = m i=1 (д i ≥ 0) , д ∈ Λ, the algorithm takes the following actions:

(i) Let V = {v 1 , . . . , v t ′ } be the set of all program variables that appear in д or the д i 's. The algorithm computes the set

M ϒ = {m ′ 1 , m ′ 2 , . . . , m ′ r ′ }
of all monomials of degree at most ϒ over V . Note that ϒ is a technical parameter that was supplied as part of the input. (ii) It symbolically computes an equation of the form (2):

д = ϵ + h 0 + m i=1 h i • д i (†)
where ϵ is a new unknown and positive real variable and each polynomial h i is of the form r j=1 t i, j •m ′ j . Here, the t i, j 's are also new unknown variables. Intuitively, we aim to synthesize values for both t-variables and svariables in order to ensure the polynomial equality (†). Note that both sides of (†) are polynomials in R[V] whose coefficients are quadratic expressions over the newly-introduced s-, t-and ϵ-variables.

(iii) The algorithm equates the coefficients of corresponding monomials in the left and right hand sides of (†), leading to a set of quadratic equalities over the new variables. (iv) The algorithm computes a set of quadratic equalities which are equivalent to the assertion that the h i 's can be written as sums of squares (Lemma 4.3). The algorithm conjunctively compiles all the generated quadratic equalities into a single system. Note that this system's size is polynomially dependent on the number of lines in the program, assuming that d and ϒ are constants.

Remark 2. Based on above, the technical parameter ϒ is the maximum degree of the sum-of-squares polynomials h i in (†). More specifically, in Step 3, we are applying a special case of Putinar's positivstellensatz, in which the sum-of-square polynomials can have a degree of at most ϒ. [START_REF] Thomas H Cormen | Introduction to algorithms[END_REF] • r 2 , where each t i, j is a new unknown variable. It then equates the coefficients of corresponding monomials on the two sides of (†). For example, consider the monomial r 2 . Its coefficient in the LHS of (†) is s 2,1,21 . In the RHS of (†), there are a variety of ways to obtain r 2 , hence its coefficient is the sum of the following: Step 4) Finding representative solutions. The previous step has created a system of quadratic equalities over svariables and other new variables. In this step, the algorithm finds a representative set Σ of solutions to this system by calling an external solver. Then, for each solution σ ∈ Σ, it plugs the values synthesized for the s-variables into the template η to obtain an inductive invariant η σ := η[s ℓ,i, j ← σ (s ℓ,i, j)]. The algorithm outputs I = {η σ | σ ∈ Σ}.

h i = t i,1 + t i,2 • n + . . . + t i,
• t 0,21 , i.e. the coefficient of r 2 in h 0 , • t 6,6 , i.e. the coefficient of r 2 in h 6 • д 6 = h 6 • r , • -t 7,6 , i.e. the coefficient of r 2 in h 7 • д 7 = h 7 • (-r), • t 10,1 • s 1,
Remark 3 (Representative Solutions). In real algebraic geometry, a standard notion for a representative set of solutions to a polynomial system of equalities is to include one solution from each connected component of the set of solutions [START_REF] Basu | Algorithms in real algebraic geometry[END_REF]. The classical algorithm for this problem is called cylindrical algebraic decomposition and has a doubly-exponential runtime [START_REF] Basu | Algorithms in real algebraic geometry[END_REF][START_REF] Sturmfels | Solving systems of polynomial equations[END_REF]. However, if the coefficients are limited to rational numbers instead of real numbers, then a subexponential algorithm is provided in [START_REF] Grigor | Solving systems of polynomial inequalities in subexponential time[END_REF] . Hence, Step 4 of StrongInvSynth has subexponential runtime in theory.

σ := η[s ℓ,i, j ← σ (s ℓ,i, j)] is an inductive invariant.
Proof. The valuation σ satisfies the system of quadratic equalities obtained in Step 3. Hence, for every constraint pair (Γ, д) ∈ Λ, д[s ℓ,i, j ← σ (s ℓ,i, j)] can be written in the form (†). Hence, we have σ |= (Γ, д). By definition of Step 2, this is equivalent to η σ having the initiation and consecution properties and hence being an inductive invariant.

□

We now prove our completeness result. Our approach is semi-complete for bounded reals in the sense of [START_REF] Chatterjee | Termination Analysis of Probabilistic Programs Through Positivstellensatz's[END_REF]. Concretely, this means that if we assume the bounded reals model of computation (see Section 3.2), then any valid inductive invariant can be found by our approach so long as the technical parameter ϒ is large enough. Recall that ϒ is a bound on the degree of the sum-of-square polynomials (see Remark 2). Lemma 4.8 (Semi-completeness with Compactness). If the pre-condition Pre satisfies the compactness condition of Theorem 4.1, i.e. if in every label ℓ, Pre(ℓ) contains an atomic proposition of the form д ≥ 0 such that the set {ν ∈ R V f | д(ν) ≥ 0} is compact, then for every inductive invariant Ind that has the form of the template η, there exists a natural number ϒ Ind , such that for every technical parameter ϒ ≥ ϒ Ind , the invariant Ind corresponds to a solution of the system of quadratic equalities obtained in Step 3 of StrongInvSynth.

Proof. Let Ind be an inductive invariant in the form of the template η. We denote the value of s ℓ,i, j in Ind by σ (s ℓ,i, j). Given that Ind satisfies initiation and consecution, the valuation σ satisfies every constraint pair (Γ, д) generated in Step 2.

No tight runtime analysis is available for this algorithm, but [START_REF] Grigor | Solving systems of polynomial inequalities in subexponential time[END_REF] proves that its runtime is subexponential.

Each such Γ contains an assertion д

i ≥ 0 s.t. {x ∈ R V f | д i (x) ≥
0} is compact. Hence, by Corollary 4.2, д can be written in the form (†) ∥ and for large enough ϒ, there exists a solution to the system that maps each s ℓ,i, j to σ (s ℓ,i, j). □ Remark 4 (Bounded Reals, Compactness and Real-world programs). Note that in the bounded reals model of computation, every pre-condition enforces that the value of every variable is between -c and c and also contains the polynomial inequality

V f 2 2 ≤ c 2 • |V f | (see Section 3.2)
. The set of valuations that satisfy the latter polynomial are points in R f whose distance from the origin is at most a fixed amount c |V f |. Hence, this set is closed and bounded and therefore compact, and satisfies the requirement of Putinar's positivstellensatz. So, our approach is semi-complete for bounded reals. It is worth mentioning that almost all real-world programs have bounded variables, e.g. programs that use floating-point variables can at most store a finite number of values in each variable, hence their variables are always bounded. Also, note that while the completeness result is dependent on bounded variables, our soundness result holds for general unbounded real variables.

Remark 5 (Non-strict inequalities). Although we considered invariants consisting of inequalities with positivity witnesses, i.e. invariants of the form (д(x) > 0), our algorithm can easily be extended to generate invariants with non-strict inequalities, i.e. invariants of the form (д(x) ≥ 0). To do so, it suffices to replace Equation (†) in Step 3 of the algorithm with Equation (1), i.e. remove the ϵ-variables (positivity witnesses). This results in a sound, but not complete, method for generating non-strict polynomial invariants. Alternatively, we can use Stengle's positivstellensatz [START_REF] Stengle | A Nullstellensatz and a Positivstellensatz in semialgebraic geometry[END_REF] instead of Theorem 4.1. Stengle is able to characterize non-negative polynomials as well. Hence, using it will ensure semi-completeness even for non-strict invariants. The downside is that, in comparison with Putinar, it leads to a much higher runtime in practice.

Remark 6 (Complexity). It is straightforward to verify that

Steps 1-3 of StrongInvSynth have polynomial runtime. Hence, our algorithm provides a polynomial reduction from the Strong Invariant Synthesis problem to the problem of finding representative solutions of a system of quadratic equalities. As mentioned earlier, this problem is solvable in subexponential time [START_REF] Grigor | Solving systems of polynomial inequalities in subexponential time[END_REF]. Hence, the runtime of our approach is subexponential, too. Note that we consider d and ϒ to be fixed constants. Theorem 4.9 (Strong Invariant Synthesis). Given a nonrecursive program P and a pre-condition Pre that satisfies the compactness condition, the StrongInvSynth algorithm solves the Strong Invariant Synthesis problem in subexponential time. This solution is sound and semi-complete.

Remark 7 (Inefficiency). Despite its subexponential runtime, the algorithm of [START_REF] Grigor | Solving systems of polynomial inequalities in subexponential time[END_REF] has a poor performance in practice [START_REF] Hong | Comparison of several decision algorithms for the existential theory of the reals[END_REF].

∥ Theorem 4.1 requires compactness and so does Corollary 4.2.

Hence, Theorem 4.9 can only be considered as a theoretical contribution and is not applicable to real-world programs.

Weak Invariant Synthesis and Practical Method

Due to the practical inefficiency mentioned in Remark 7, in this section we focus on using a very similar approach to reduce the Weak Invariant Synthesis problem to QCLP. Given that there are many industrial solvers capable of handling real-world instances of QCLP, this reduction will provide a practical sound and semi-complete method for polynomial invariant generation. We now provide an algorithm for the Weak Invariant Synthesis problem. This is very similar to StrongInvSynth, so we only describe the differences.

The WeakInvSynth Algorithm. Our algorithm WeakInvSynth takes the same set of inputs as StrongInvSynth, as well as an objective function obj over the resulting inductive invariants. We assume that obj is a linear or quadratic polynomial over the s-variables in the template. Intuitively, obj serves as a measure of desirability of a synthesized invariant and the goal is to find the most desirable invariant.

The first three steps of the algorithm are the same as StrongInvSynth. The only difference is in Step 4, where WeakInvSynth needs to find only one solution for the computed system of quadratic equalities, i.e. the solution that maximizes obj. Hence, Step 4 is changed as follows:

Step 4) Finding the optimal solution. Step 3 has generated a system of quadratic equalities. In this step, the algorithm uses a QCLP-solver to find a solution σ of this system that maximizes the objective function obj. It then outputs the inductive invariant η σ := η[s ℓ,i, j ← σ (s ℓ,i, j)].

Example 4.10. In Example 3.1, we mentioned that our goal is to prove that the return value of sum is less than 0.5 • n 2 + 0.5 •n + 1, i.e. we want to obtain 0.5 • n2 + 0.5 • n + 1 -r > 0 (*) at the endpoint label 9 of sum. To do so, our algorithm calls a QCLP-solver over the system of quadratic equalities obtained in Example 4.6, with the objective of minimizing the Euclidean distance between the coefficients synthesized for η(9) and those of (*). The QCLP-solver obtains a solution σ (i.e. a valuation to the new unknown s-, t-and ϵ-variables), such that η(9)[s 9,i, j ← σ (s 9,i, j)] = 0.5 • n2 + 0.5 • n + 1r > 0, hence proving the desired invariant. The complete solution is provided in Appendix E.1.

Remark 8 (Form of the Objective Function). At first sight, the objective functions considered above might seem bizarre, given that they are functions of the unknown s-variables, i.e. the coefficients of the invariant which should be synthesized by the algorithm. In our view, this is a useful formulation. In many cases, the goal of a verification process is to prove that a certain desired invariant Inv(ℓ) holds at a specific point ℓ of the program. This goal can be specified as an objective function over the s-variables. However, it does not simplify the invariant generation problem, because although Inv(ℓ) is given, in order

rsum (n) { 1 : i f n ≤ 0 then 2 :
return n e l s e 3 :

m : = n -1 ; 4 :

s : = rsum (m) ; 5 :

i f ⋆ then 6 : s : = s + n 7 :

e l s e skip f i ; 8 : return s 9 :

f i } to prove that it is an invariant, we have to find an inductive invariant for every other point of the program, too.

Theorem 4.11 (Weak Invariant Synthesis). Given a nonrecursive program P, a pre-condition Pre that satisfies the compactness condition and a linear/quadratic objective function obj, the WeakInvSynth algorithm reduces the Weak Invariant Synthesis problem to QCLP in polynomial time. This reduction is sound and semi-complete.

Invariants for Recursive Programs

We extend our algorithms to handle recursion. Recall that the only differences between recursive and non-recursive inductive invariants are (i) presence of function-call statements in recursive programs, (ii) presence of post-conditions, and (iii) the post-condition consecution requirement. We expect an invariant generation algorithm for recursive programs to also synthesize a post-condition for every function.

Example 5.1. Consider the program in Figure 4, which is a recursive variant of the non-deterministic summation program of Figure 2. We use this program to illustrate our approach for handling recursion.

The RecStrongInvSynth and RecWeakInvSynth Algorithms.

Our algorithm for Strong (resp. Weak) Invariant Synthesis over a recursive program P is called RecStrongInvSynth (resp. RecWeakInvSynth). It takes the same inputs as in the non-recursive case, except that the input program P can now be recursive. It performs the same steps as in its nonrecursive counterpart, except that the following additional actions are taken in Steps 1 and 2:

Step 1.a) Setting up a template for the post-condition. Let Mf d = { m1 , m2 , . . . , m r } be the set of all monomials of degree at most d over {ret f , v1 , . . . , vn }. The algorithm generates an additional template µ(f) := n i=1 φ f ,i where each φ f ,i is of the form φ f ,i := r j=1 s f ,i, j • mj > 0 where the s f ,i, j 's are additional new s-variables. Intuitively, our goal is to synthesize the right value for s-variables such that (µ, η) becomes a recursive inductive invariant. As a consequence, µ will be a post-condition and η a valid invariant.

Example 5.2. Consider the program in Figure 4 and assume that each desired invariant/post-condition consists of a single quadratic inequality. The algorithm generates a template µ(rsum) for the post-condition of rsum. By definition, such a post-condition can only depend on n, i.e. the value passed for the parameter n when rsum is called, and the return value r := ret rsum . Hence, the algorithm generates the following template: µ(rsum)

:= s rsum,1,1 + s rsum,1,2 • n + s rsum,1,3 • r + s rsum,1,4 • n2 + s rsum,1,5 • n • r + s rsum,1,6 • r 2 > 0
Step 2.a) Setting up constraint pairs at function-call statements. For every transition e = (ℓ, ⊥, ℓ ′) where ℓ is a function-call statement of the form v 0 := f ′ (v 1 , . . . , v n) calling a function with header f ′ (v ′ 1 , . . . , v ′ n), and every polynomial д for which д > 0 appears in η(ℓ ′), the algorithm defines a new program variable v * 0 and adds the following constraint pair to Λ e :

Pre(ℓ) ∧ η(ℓ) ∧ Pre(ℓ f ′ in)[v ′ i ← v i , v ′ i ← v i]∧ µ(f ′)[ret f ′ ← v * 0 , v ′ i ← v i] ∧ Pre(ℓ ′)[v 0 ← v * 0] , д[v 0 ← v * 0] ,
in which ϕ[x ← y] is the result of replacing every occurrence of x in ϕ with a y. Intuitively, v * 0 models the value of v 0 after the function call (equivalently the return value of f ′) * * . The constraint pair above encodes the consecution requirement at function-call labels, i.e. it simply requires every valid abstract path that satisfies the invariant at ℓ to satisfy it at ℓ ′ , too. Note that a valid abstract path must satisfy the post-condition and all the pre-conditions.

Pre(4) ∧ η(4) ∧ Pre(1)[n ← m, n ← m]∧ µ(rsum)[ret rsum ← s * , n ← m] ∧ Pre(5)[s ← s *] , η(5)[s ← s *] .
We now explain this constraint in detail. The purpose of this constraint is to enforce the consecution property in the transition e from label 4 to label 5. Recall that the consecution property requires that for every valid unit-length abstract path π = ⟨(rsum, 4, ν 4), (rsum, 5, ν 5)⟩, we have ν 4 |= η(4) ⇒ ν 5 |= η [START_REF] Alur | Predicate abstraction for reachability analysis of hybrid systems[END_REF]. Since the variable s is updated in line 4, we use s to denote its value before execution of the recursive call and s * to model its value after the function call. Hence, ν 5 |= η(5) can be simply rewritten as η(5)[s ← s *] (the second component of the above constraint). On the other hand, the first component of the constraint should encode the properties that (a) ν 4 |= η(4) and (b) π is a valid abstract path. The property (a) is ensured by including η(4) in the first component of the constraint. Similarly, (b) is encoded as follows:

• Pre(4) encodes the requirement ν 4 |= Pre(4). * * Note that v 0 is the only variable in f whose value might change after the call to f ′ . Hence, we need to distinguish between the initial value of v 0 and its value after the execution of f ′ , which is denoted by v * 0 .

• Pre [START_REF] Adjé | Propertybased polynomial invariant generation using sums-of-squares optimization[END_REF][n ← m, n ← m] encodes the requirement that the function rsum can be called using the parameter m, i.e. that m satisfies the pre-condition of 1 = ℓ rsum in . • µ(rsum)[ret rsum ← s * , n ← m] checks that the call to rsum is abstracted correctly, i.e. that the value s * returned by rsum respects the post-condition µ(rsum). • Pre(5)[s ← s *] encodes the requirement that the program should be able to continue its execution from point 5 with the new value of s, or equivalently ν 5 |= Pre(5).

Step

(Pre(2) ∧ η(2) ∧ Pre(9)[ret rsum ← n] , µ(rsum)[ret rsum ← n]) = (Pre(2) ∧ η(2) ∧ Pre(9)[ret rsum ← n] , s rsum,1,1 + s rsum,1,2 • n +s rsum,1,3 • n + s rsum,1,4 • n2 + s rsum,1,5 • n • n + s rsum,1,6 • n 2 > 0).
This enforces the post-condition consecution requirement, i.e. that in every valid execution step going from line 2 to line 9, the post-condition µ(rsum) holds.

The soundness, completeness and complexity arguments carry over from the non-recursive case.

Theorem 5.5 (Recursive Strong Invariant Synthesis). Given a recursive program P and a pre-condition Pre that satisfies the compactness condition, the RecStrongInvSynth algorithm solves the Strong Invariant Synthesis problem in subexponential time. This solution is sound and semi-complete. Theorem 5.6 (Recursive Weak Invariant Synthesis). Given a recursive program P, a pre-condition Pre that satisfies the compactness condition and a linear/quadratic objective function obj, the RecWeakInvSynth algorithm reduces the Weak Invariant Synthesis Problem to QCLP/QCQP in polynomial time. This reduction is sound and semi-complete.

Experimental Results

Implementation. We implemented our algorithms for weak invariant generation in Java and used LOQO [START_REF] Vanderbei | LOQO User's Manual -Version 4[END_REF] for solving the QCLPs. All results were obtained on an Intel Core i5-7200U machine with 6 GB of RAM, running Ubuntu 18.04. Previous Methods. We compare our approach against five previous methods, including three widely-used tools, namely ICRA [START_REF] Kincaid | Non-linear reasoning for invariant synthesis[END_REF], SeaHorn [START_REF] Gurfinkel | The SeaHorn Verification Framework[END_REF], and UAutomizer [START_REF] Heizmann | Ultimate Automizer with SMT-Interpol[END_REF], a state-of-theart method using hypergeometric sequences [START_REF] Humenberger | Automated Generation of Non-Linear Loop Invariants Utilizing Hypergeometric Sequences[END_REF], and our own implementation of the previous method that provides completeness guarantees for polynomial invariants [START_REF] Kapur | Automatically generating loop invariants using quantifier elimination[END_REF]. Technical Parameters. In our experiments, we set n to be the maximal number of desired inequalities given at the same label, i.e. we used the smallest possible number of conjuncts needed to represent the desired assertions. Similarly, we let d be the highest degree among desired inequalities in the input and ϒ = d. Alternatively, our algorithm can be run iteratively, increasing the values of d and ϒ in a diagonal fashion, until the desired invariant is found. Moreover, we did not bound our variables using pre-conditions. Solver Errors. Ensuring stability of the QCLP solver is an orthogonal problem. However, to gain confidence that the soundness of our approach is not compromised by potentially cascading numerical errors in our solver, we checked each output using infinite-precision arithmetic, by plugging it back into Equation (†) in Step 3 to make sure that (i) every synthesized strict inequality has a positivity witness of 10 -9 or larger, and (ii) every instance of (†) corresponding to an equality д = 0 holds within an error margin of 10 -9 . Non-recursive Results. We used the benchmarks in [START_REF] Rodríguez-Carbonell | Some programs that need polynomial invariants in order to be verified[END_REF], which contain programs, pre-conditions, and the desired post-conditions and assertions (invariants at a few labels) that are needed for their verification. The problem is to find an inductive invariant that proves the given post-conditions and assertions. We ignored benchmarks that contained nonpolynomial assignments or pre-conditions. The results are summarized in Table 2. Our algorithm is not complete for non-strict invariants (Remark 5), but it successfully generated all the desired invariants for these benchmarks. Recursive Results. Recursive results are shown in Table 3. Our recursive benchmarks can be divided in two categories: • Reinforcement Learning. We ran our approach on three programs from [START_REF] Zhu | An Inductive Synthesis Framework for Verifiable Reinforcement Learning[END_REF] which are used for safety verification of reinforcement learning applications in cyber-physical systems such as Segway transporters. In these examples, the desired partial invariants are linear. However, the programs themselves contain polynomial assignments and conditions of degree 4. Thus, approaches for linear invariant generation, such as [START_REF] Sriram Sankaranarayanan | Constraint-based linear-relations analysis[END_REF], are not applicable. • Classical Examples. We considered Figure 4, and its extensions to sums of squares and cubes, to show that our algorithm is able to synthesize invariants of higher degrees. We also considered a program that recursively computes the largest power of 2 that is no more than a given bound x, showing that our algorithm can handle recursive invariants with more than one assertion at each label. Finally, we generated invariants for an implementation of the Merge Sort algorithm that counts number of inversions in a sequence [START_REF] Thomas H Cormen | Introduction to algorithms[END_REF]. See Appendix E.2 for details. Runtimes. Our runtimes over these benchmarks are typically under a minute, while the maximum runtime is close to 10 minutes. This shows that our approach is applicable in practice and does not suffer from the same impracticalities as [START_REF] Grigor | Solving systems of polynomial inequalities in subexponential time[END_REF], which would take years on problems of this size [START_REF] Hong | Comparison of several decision algorithms for the existential theory of the reals[END_REF].

Comparison with Complete Approaches. Almost none of the previous complete approaches are applicable to our benchmarks due to the existence of non-linear assignments and also because the desired invariants are polynomial inequalities (See Table 1). The only previous complete approach that handles polynomial programs and polynomial inequalities in invariants is [START_REF] Kapur | Automatically generating loop invariants using quantifier elimination[END_REF]. However, it relies on quantifier elimination and is extremely inefficient. We confirmed this point experimentally. We generated the constraints of [START_REF] Kapur | Automatically generating loop invariants using quantifier elimination[END_REF] for our benchmarks and used state-of-the-art quantifier elimination / SMT solver tools (Mathematica [64], QEPCAD [START_REF] Christopher W Brown | QEPCAD -Quantifier Elimination by Partial Cylindrical Algebraic Decomposition[END_REF] and Z3 [START_REF] De | Z3: An efficient SMT solver[END_REF]) to solve them. In all cases, the solver either did not terminate, even when we increased the timeout to 12 hours, or returned with failure. This was the case even for our simple running example (Figure 2).

Comparison with Incomplete Approaches. As is evident in Tables 2 and3, our approach is slower than previous sound methods that do not provide any completeness guarantee. However, it is able to handle a strictly more general set of benchmarks. Specifically, there are several benchmarks, especially among the recursive programs, where our approach was the only one that could successfully prove the desired assertions. Hence, there is currently a trade-off between accuracy (completeness guarantees) and efficiency. While the semi-completeness guarantee is a key novelty of our approach, we expect that advancements in quadratic programming, which is an active research topic in optimization, will narrow the runtime gap.

Generality and Types of Invariants. As shown in Tables 2 and 3, our approach is able to synthesize polynomial invariants of various degrees for a variety of benchmarks. None of the previous tools can handle all the benchmarks in Tables 2 and3, and there are several instances where our approach is the only successful method. Moreover, we can also successfully synthesize invariants containing polynomial equalities. See Appendix E.4 for a detailed demonstration. This being said, the power of our approach becomes much more apparent when we consider recursive programs (Table 3). On our recursive benchmarks, every other method fails in almost all cases. Additionally, our approach is also able to synthesize invariants for two or more functions that recursively call each other. See Appendix E.3 for a detailed example of this. Finally, in Appendix E.5, we show a classical program that approximates an irrational number using its continued fraction representation. This example requires invariants of degree 5, which are beyond the reach of previous methods. We manually tried all the methods in Table 1 and every one of them was either not applicable to this example or failed to synthesize the required invariants. In contrast, our approach could easily handle this program. Table 3. Experimental results over recursive programs. The results are reported in the same manner as in Table 2.

Conclusion

We presented a subexponential sound and semi-complete method to generate polynomial invariants for programs with polynomial updates. On the practical side, we demonstrated how to generate such invariants using QCLP. Previous methods were either extremely inefficient or lacked completeness guarantees. An interesting, but non-trivial, direction of future work is to exploit special structural properties of CFGs, such as sparsity and low treewidth [START_REF] Thorup | All structured programs have small tree width and good register allocation[END_REF], to speed up the solution of our QCLP instances. Such techniques have previously been applied for solving linear programs [START_REF] En-Hsu Yen | Sparse linear programming via primal and dual augmented coordinate descent[END_REF] and systems of linear equations [START_REF] Fedor V Fomin | Fully polynomial-time parameterized computations for graphs and matrices of low treewidth[END_REF], but not QCLPs.

A Detailed Syntax

Polynomial Arithmetic Expressions. A polynomial arithmetic expression e over V is an expression built from the variables in V, real constants, and the arithmetic operations of addition, subtraction and multiplication. Propositional Polynomial Predicates. A propositional polynomial predicate is a propositional formula built from (i) atomic assertions of the form e 1 ▷◁ e 2 , where e 1 and e 2 are polynomial arithmetic expressions, and ▷◁ ∈ {<, ≤, ≥, >} and (ii) propositional connectives ∨, ∧ and ¬. The satisfaction relation |= between a valuation ν and a propositional polynomial predicate ϕ is defined in the natural way, i.e. by substituting the variables with their values in ν and evaluating the resulting boolean expression. Detailed Grammar. Figure 5 provides a more detailed grammar specifying the syntax of non-deterministic recursive programs with polynomial assignments and guards. Below, we intuitively explain some aspects of the syntax: • Variables and Function Names. Expressions ⟨var⟩ (resp. ⟨fname⟩) range over the set V (resp. F). • Arithmetic and Boolean Expressions. Expressions ⟨expr⟩ range over all polynomial arithmetic expressions over program variables. Similarly, expressions ⟨bexpr⟩ range over propositional polynomial predicates.

• Statements. A statement can be one of the following:

-A special 'skip' statement which does not do anything, -An assignment statement (⟨var⟩ ':=' ⟨expr⟩), -A conditional branch ('if' ⟨bexpr⟩) in which the ⟨bexpr⟩ serves as the branching condition; -A non-deterministic branch ('if ⋆'), -A while-loop ('while' ⟨bexpr⟩) in which the ⟨bexpr⟩ serves as the loop guard; -A function call statement (⟨var⟩ := ⟨fname⟩ '(' ⟨varlist⟩ ')') which calls the function specified by ⟨fname⟩ using the parameters specified in the ⟨varlist⟩ and assigns the resulting returned value to the variable on its left hand side; -A return statement ('return' ⟨expr⟩) that ends the current function and returns the value of the expression ⟨expr⟩ and the control to the parent function or ends the program if there is no parent function. • Programs and Functions. A program is simply a list of functions. Each function has a name, a set of parameters and a body. The function body is a sequence of statements. We assume that there is a distinguished function f main that is the starting point of the program.

Syntactic Assumptions. We assume that each function in F is defined exactly once in the program, function headers do not contain duplicate variables, and each function call statement provides exactly as many parameters as defined in the header of the function that is being called. Moreover, we assume that no variable appears in both sides of a function call statement.

Simple vs. Recursive Programs. We call a program simple, or non-recursive, if it contains only one function and no function call statements. Otherwise, we say that the program is recursive.

B Detailed Semantics

Valuations. A valuation over a set W ⊆ V of variables is a function ν : W → R that assigns a real value to each variable in W . We denote the set of all valuations on W by R W . We sometimes use a valuation ν over a set W ′ ⊂ W of variables as a valuation over W . In such cases, we assume that ν (w) = 0 for every w ∈ W \ W ′ . Given a valuation ν , a variable v and x ∈ R, we write ν [v ← x] to denote a valuation ν ′ such that ν ′ (v) = x and ν ′ agrees with ν for every other variable.

Notation. We define V f * := {ret f , v 1 , . . . , v n , v1 , . . . , vn } and let V f be the set containing all members of V f * , as well as any variable that appears somewhere in the body of the function f . W.l.o.g. we assume that the V f 's are pairwise disjoint. Moreover, we write R f as a shorthand for R V f . In other words, R f is the set of all valuations over the variables that appear in f , including its header, its body and its new variables. Similarly, we define L f as the set of labels that occur in f . Configurations. A stack element ξ is a tuple (f , ℓ, ν) where f ∈ F is a function and ℓ ∈ L f and ν ∈ R f are respectively a label and a valuation in f . A configuration κ = ⟨ξ i ⟩ n i=0 is a finite sequence of stack elements. Notation. Given a configuration κ and a stack element ξ , we write κ • ξ to denote the configuration obtained by adding ξ to the end of κ. Also, we define κ -i as the sequence obtained by removing the last i stack elements of κ. Runs. A run is an infinite sequence of configurations that starts at the first label of f main and follows the requirements of the CFG. Intuitively, a run models the sequence of configurations that are met in an execution of the program. Formal Definition of Runs. Given a program P and its CFG (F, L, →), a run is a sequence ρ = {κ i } ∞ i=0 of configurations such that:

• κ 0 = ⟨(f main , ℓ f main in , ν)⟩ for some valuation ν ∈ R f main . Intu- itively,
κ i+1 = κ -1 i • (f , ℓ ′ , α(ν)). (b) ℓ ∈ L b and (ℓ, ϕ, ℓ ′) ∈→ where ϕ is a predicate such that ν |= ϕ and κ i+1 = κ -1 i • (f , ℓ ′ , ν). (c) ℓ ∈ L c , the statement corresponding to ℓ is the function call v 0 := f ′ (v 1 , v 2 , . . . , v n), the header of the function f ′ is f ′ (v ′ 1 , v ′ 2 , . . . , v ′ n), and κ i+1 = κ i • (f ′ , ℓ f ′ in , ν ′) where ν ′ (x) = ν (v i) x ∈ {v ′ i , v ′ i } 0 otherwise .
:= f (v 1 , . . . , v n), (l, ⊥, l′) ∈→ and κ i+1 = κ -2 i • (f , l′ , ν [v 0 ← ν (ret f)]).
Informally, this corresponds to returning control from the function f into its parent function f . Return Assumption. We assume that every execution of a function ends with a return statement. If this is not the case, we can add "return 0" to suitable points of the program to obtain an equivalent program that satisfies this condition. Semi-runs and Paths. A semi-run starting at a stack element ξ = (f , ℓ, ν) is a sequence ϱ = ⟨κ i ⟩ ∞ i=0 that satisfies all the conditions of a run, except that it starts with κ 0 = ⟨ξ ⟩. A path π = ⟨κ i ⟩ n i=0 of length n is a finite prefix of a semi-run. Valid Runs. A run ρ is valid w.r.t. a pre-condition Pre, if for every stack element ξ = (f , ℓ, ν) appearing in one of its configurations, we have ν |= Pre(ℓ). Valid semi-runs and paths are defined similarly. A stack element is reachable if it appears in a valid run.

Abstract Paths. Given a pre-condition Pre and a postcondition Post, an abstract path starting at a stack element ξ = (f , ℓ 0 , ν 0) is a sequence ϖ = ⟨κ i = ⟨(f , ℓ i , ν i)⟩⟩ n i=0 such that for all i < n, κ i+1 satisfies either one of the conditions (a), (b) and (d) as in the definition of runs or the following modified (c) condition:

(c ′) ℓ i ∈ L c , i.e. the statement corresponding to ℓ i is a func- tion call v 0 := f ′ (v 1 , . . . , v n) where f ′ is a function with the header f ′ (v ′ 1 , . . . , v ′ n) and ν i |= Pre(ℓ f ′ in)[v ′ i ← v i , v ′ i ← v i].
Moreover, (ℓ i , ⊥, ℓ i+1) ∈→, the valuation ν i+1 agrees with ν i over every variable, except possibly v 0 , and

ν i+1 |= Post(f)[v ′ i ← v i , ret f ← v 0].
The latter is the result of replacing each occurrence of v ′ i with its respective v i and ret f with v 0 in Post(f). An abstract path always remains in the same function and hence each configuration in an abstract path consists of only one stack element. A valid abstract path is defined similarly to a valid path.

C Inductive Assertion Maps and Invariants

Invariants. Given a program P and a pre-condition Pre, an invariant is a function Inv mapping each label ℓ ∈ L f of the program to a conjunctive propositional formula Inv(ℓ) := m i=0 (e i > 0) over V f , such that for every reachable stack element (f , ℓ, ν), it holds that ν |= Inv(ℓ).

Inductive Assertion Maps. Given a non-recursive program P and a pre-condition Pre, an inductive assertion map is a function Ind mapping each label ℓ ∈ L f of the program to a conjunctive propositional formula Ind(ℓ) := m i=0 (e i > 0) over V f , such that the following two conditions hold: • Initiation. For every stack element ξ = (f main , ℓ

f main in , ν 0), we have ν 0 |= Pre(ℓ f main in) ⇒ ν 0 |= Ind(ℓ f main in).
Intuitively, this means that Ind(ℓ f main in) should be deducible from the pre-condition Pre(ℓ f main in).

• Consecution. For every valid unit-length path π = ⟨(f main , ℓ 0 , ν 0), (f main , ℓ 1 , ν 1)⟩ that starts at ℓ 0 and ends at ℓ 1 , we have ν 0 |= Ind(ℓ 0) ⇒ ν 1 |= Ind(ℓ 1). Intuitively, this condition means that the inductive assertion map cannot be falsified by running a valid step of the execution of the program.

Lemma C.1. Given a non-recursive program P and a precondition Pre, every inductive assertion map Ind is an invariant.

Proof. Consider a valid run ρ = ⟨κ i ⟩ ∞ i=0 = ⟨⟨(f main , ℓ i , ν i)⟩⟩ ∞ i=0 of P. Let π = ⟨κ i ⟩ n i=0 be a prefix of ρ, which is a valid path of length n. We prove that ν n |= Ind(ℓ n). Our proof is by induction on n. For the base case of n = 0, we have ℓ 0 = ℓ f main in . By validity of ρ, we have ν 0 |= Pre(ℓ f main in). Hence, by Polynomial Invariant Generation initiation, ν 0 |= Ind(ℓ f main in). For the induction step, assuming that ν n-1 |= Ind(ℓ n-1), we prove that ν n |= Ind(ℓ n). We apply the consecution property to the unit-length valid path ⟨(f main , ℓ n-1 , ν n-1), (f main , ℓ n , ν n)⟩, which leads to ν n |= Ind(ℓ n).

Hence, for every reachable stack element (f main , ℓ, ν), we have ν |= Ind(ℓ), which means Ind is an invariant. □

Recursive Inductive Invariants. Given a recursive program P and a pre-condition Pre, a recursive inductive invariant is a pair (Post, Ind) where Post is a post-condition and Ind is a function that maps every label ℓ ∈ L f of the program to a conjunctive propositional formula Ind(ℓ) := m i=0 (e i > 0), such that the following requirements are met:

• Initiation. For every stack element ξ = (f , ℓ f in , ν 0) at start of a function f , we have ν 0 |= Pre(ℓ f in) ⇒ ν 0 |= Ind(ℓ f in).
• Consecution. For every valid unit-length abstract path π = ⟨(f , ℓ 0 , ν 0), (f , ℓ 1 , ν 1)⟩ that starts at ℓ 0 ∈ L f and ends at ℓ 1 ∈ L f , we have ν 0 |= Ind(ℓ 0) ⇒ ν 1 |= Ind(ℓ 1). • Post-condition Consecution. For every valid unit-length abstract path π = ⟨(f , ℓ 0 , ν 0), (f , ℓ f out , ν 1)⟩ that starts at ℓ 0 ∈ L f and ends at the endpoint label ℓ f out , we have

ν 0 |= Ind(ℓ 0) ⇒ ν 1 |= Post(f).
Lemma C.2. Given a recursive program P and a pre-condition Pre, if (Post, Ind) is a recursive inductive invariant, then the function Ind is an invariant.

Proof. Consider an arbitrary valid run ρ = ⟨κ i ⟩ ∞ i=0 of P. Let π = ⟨κ i ⟩ n i=0 be a prefix of ρ, which is a valid path of length n and ξ = (f , ℓ, ν) the last stack element of κ n . We prove that ν |= Ind(ℓ). Our proof is by induction on n.

For the base case of n = 0, we have ℓ = ℓ For the inductive step, we let ξ ′ = (f ′ , ℓ ′ , ν ′) be the last stack element in κ n-1 . We prove that ν |= Ind(ℓ). We consider the following cases:

• If f ′ = f , then ⟨(f ′ , ℓ ′ , ν ′), (f , ℓ, ν)⟩ is
д = ϵ + h 0 + m i=1 h i • д i (3)
where ϵ > 0 is a real number and each polynomial h i is the sum of squares of some polynomials in R[V].

Proof. It is obvious that if (3) holds, then д(x) > 0 for all x ∈ Π. We prove the other side. Let д(x) > 0 for all x ∈ Π.

Given that Π is compact and д continuous, д(Π) must also be compact and hence closed. Therefore, δ : Given the two theorems above, our reduction uses the following procedure for generating quadratic equations that are equivalent to the assertion that h is a sum-of-squares: The Reduction. The algorithm generates the set M ⌊d /2⌋ of monomials of degree at most ⌊d/2⌋ over V . It then orders these monomials arbitrarily into a vector y and symbolically computes the equality

= inf x ∈Π д(x) > 0. Let ϵ = δ /2,
h = y T LL T y (4
)
where L is a lower-triangular matrix whose every non-zero entry is a new variable in the system. We call these variables l-variables. For every l i,i , i.e. every l-variable that appears on the diagonal of L, the algorithm adds the constraint l i,i ≥ 0 to the quadratic system. Then, it translates Equation (4) into quadratic equations over the coefficients of h † † and lvariables by equating the coefficients of corresponding terms on the two sides of (4). The resulting system encodes the property that h is a sum-of-squares.

Example D.3. Let V = {a, b} be the set of variables and h

∈ R[V] a quadratic polynomial, i.e. h(a, b) = t 1 + t 2 • a + t 3 • b + t 4 • a 2 + t 5 • a • b + t 6 • b 2 .
We aim to encode the property that h is a sum-of-squares as a system of quadratic equalities and inequalities. To do so, we first generate all monomials of degree at most ⌊d/2⌋ = 1, which are 1, a and b. Hence, we let y = 1 a b T . We then generate a lower-triangular matrix L whose every non-zero entry is a new variable:

L =       l 1 0 0 l 2 l 3 0 l 4 l 5 l 6       .
We also add the inequalities l 1 ≥ 0, l 3 ≥ 0 and l 6 ≥ 0 to our system. Now, we write the equation h = y T LL T y and compute it symbolically:

h = 1 a b       l 1 0 0 l 2 l 3 0 l 4 l 5 l 6             l 1 l 2 l 4 0 l 3 l 5 0 0 l 6             1 a b       , which leads to: t 1 +t 2 •a+t 3 •b +t 4 •a 2 +t 5 •a•b +t 6 •b 2 = l 2 1 +2•l 1 • l 2 •a+2•l 1 •l 4 •b+(l 2 2 +l 2 3)•a 2 +(2•l 2 •l 4 +2•l 3 •l 5)•a•b+(l 2 4 +l 2 5 +l 2 6)•b 2 .
Note that both sides of the equation above are polynomials over {a, b}, hence they are equal iff their corresponding coefficients are equal. So, we get the following quadratic equalities over the t-variables and l-variables: t

1 = l 2 1 , t 2 = 2 • l 1 • l 2 , . . . , t 6 = l 2 4 + l 2 5 + l 2 6
. This concludes the construction of our quadratic system.

E Experimental Results

E.1 The Invariant Synthesized for Our Running

Example Table 4 shows the output of our invariant generation algorithm, i.e. WeakInvSynth, on the running example of Figure 2.

ℓ Pre(ℓ) Ind(ℓ)

1 n = n, n ≥ 1 0.13 -0.01 • n -0.05 • r -0.07 • s - 0.24 • i + 0.06 • n + 0.16 • n2 -0.08 • n • r + 0.11 • r 2 -0.13 • n • s + 0.18 • r • s + 0.15 •s 2 -0.13 • n •i + 0.16 •r •i + 0.24 • i •s +0.23 •i 2 +0.07 • n •n -0.52 •r •n - 0.67 • n • s -0.66 • i • n + 1.10 • n 2 > 0 2 true 0.09-0.01• n-0.18•r -0.30•s +0.09• i + 0.11 • n + 0.03 • n2 + 0.01 • n • r + 0.13 •r 2 -0.03 • n •s +0.16 •r •s +0.23 • s 2 -0.01 • n •i -0.18 •r •i -0.30 •i •s + 0.09 • i 2 + 0.01 • n • n + 0.11 • i • n > 0 3 true 0.49 + 0.01 • n + 0.11 • r -0.59 • s - 0.30 • i -0.29 • n + 0.13 • r 2 -0.01 • n • s -0.35 • r • s + 0.60 • s 2 + 0.05 • r • i -0.01 • i • s + 0.16 • i 2 -0.04 • r • n - 0.06 • n • s -0.04 • i • n + 0.18 • n 2 > 0 4 true 0.20 -0.12 • n + 0.01 • r -0.01 • s - 0.22 • i -0.07 • n + 1.08 • n2 + 0.10 • n • r + 0.15 • r 2 -0.49 • n • s -0.08 • r • s + 0.10 •s 2 -0.65 • n •i -0.15 •r •i + 0.16 • i •s +0.14 •i 2 -0.57 • n •n -0.11 •r •n + 0.13 • n • s + 0.24 • i • n + 0.22 • n 2 > 0 5 true 0.22 -0.12 • n + 0.01 • r -0.02 • s - 0.05 • i -0.28 • n + 1.08 • n2 + 0.10 • n • r + 0.15 • r 2 -0.49 • n • s -0.08 • r • s + 0.10 •s 2 -0.63 • n •i -0.13 •r •i + 0.16 • i •s +0.14 •i 2 -0.60 • n •n -0.12 •r •n + 0.13 • n • s + 0.22 • i • n + 0.24 • n 2 > 0 6 true 0.22 -0.12 • n + 0.01 • r -0.02 • s - 0.05 • i -0.28 • n + 1.08 • n2 + 0.10 • n • r + 0.15 • r 2 -0.49 • n • s -0.08 • r • s + 0.10 •s 2 -0.63 • n •i -0.13 •r •i + 0.16 • i •s +0.14 •i 2 -0.60 • n •n -0.12 •r •n + 0.13 • n • s + 0.22 • i • n + 0.24 • n 2 > 0 7 true 0.15 -0.09 • n -0.12 • r + 0.03 • s - 0.07 • i -0.13 • n + 0.23 • n2 + 0.48 • n • r + 0.35 • r 2 -0.31 • n • s -0.40 • r • s + 0.13 •s 2 + 0.16 • n •i + 0.13 •r •i -0.09 • i •s +0.06 •i 2 -0.24 • n •n -0.24 •r •n + 0.18 • n • s -0.10 • i • n + 0.14 • n 2 > 0 8 true 0.18 -0.11 • n + 0.01 • r + 0.50 • i - 0.79 • n + 1.09 • n2 + 0.11 • n • r + 0.15 • r 2 -0.48 • n • s -0.08 • r • s + 0.10 • s 2 -0.57 • n • i -0.09 • r • i + 0.16 • i • s + 0.18 • i 2 -0.66 • n • n -0.16 • r • n + 0.12 • n • s + 0.13 • i • n + 0.27 • n 2 > 0 9 true 1 + 0.5 • n -r + 0.5 • n2 > 0 Table 4.

E.3 Example with Two Functions Recursively

Calling Each Other Our approach can handle any combination of recursive function calls as long as a polynomial recursive inductive invariant exists. As an example, consider the following program, consisting of two functions f and д, which recursively call each other. Our algorithm is able to handle it in 47s using parameters n = d = ϒ = 2. This program leads to a quadratic system of size 5453.

f (n) { # n ≥ 1 # i f n ≤ 1 then
return 1 e l s e

x : = д(n -1);

x : = x + 2 • n -1; y : = 0; while (y + 1) 2 ≤ x do y : = y + 1 od ; return y f i

[ret f ≤ n] } g (n) { # n ≥ 1 # return n • f (n) [ret g ≤ n 2] }
sum (n) { 1 : i : = 1 ; 2 : s : = 0 ; 3 : while i ≤ n do 4 : s : = s + i ; 5 :

i : = i + 1 od ; 6 : return s 7 : }

E.4 Example of Synthesizing Polynomial Equality

Invariants To demonstrate that our approach is able to generate invariants including polynomial equalities, we slightly change the program in Figure 2 to obtain the one in Figure 6. This program precisely computes 1 + 2 + . . . + n = n •(n+1)

2

. Let r be the return value of sum(n), we would like to prove that r = 0.5•n 2 +0.5•n, which is equivalent to 0.5•n 2 +0.5•n -r ≥ 0 ∧ r -0.5 • n 2 -0.5 • n ≥ 0. We can therefore run the sound but incomplete variant of our approach, i.e. the variant that does not incorporate positivity witnesses, with parameters n = d = ϒ = 2. Our algorithm successfully synthesizes an inductive invariant that proves the desired equality. The resulting inductive invariant is given in Table 5 6 Therefore, we aim to find an inductive invariant that contains the following inequalities at lines 8 and 11, respectively:

(q 1 • √ 2p 1) 2 • q 2 0 ≤ 1, (q 0 • √ 2p 0) 2 • q 2 1 ≤ 1. (iv) This property is already in polynomial form wrt our program variables. Therefore, it corresponds to the following equality at lines 8 and 11:

q 0 • p 1 -q 1 • p 0 = 1.
Execution Results. We ran our approach on the program of Figure 7 with the goal of finding an inductive invariant containing the partial invariants listed above. Note that the partial invariants in (ii) are of degree 5 and hence we set d = ϒ = 5. Moreover, we set n = 5, i.e. we generate 5 polynomial inequalities at each program point. Using these parameters, our approach was able to successfully generate the desired inductive invariant in 48m. To the best of our knowledge, no previous approach for polynomial invariant generation can handle this example.

Remark 9. Note that the choice of x = √ 2 in the example above was arbitrary. One can replace √ 2 with any other real number with a periodic continued fraction representation, thus obtaining a family of programs whose desired partial invariants (as in Lemma E.1) can be automatically proven by our approach, but not by any of the previous approaches. It is wellknown that the set of real numbers with periodic continued fraction representation is the same as the set of quadratic irrationals, i.e. irrational roots of quadratic equations with integer coefficients [START_REF] Weisstein | MathWorld-A Wolfram Web Resource[END_REF]. For example, this set contains √ n for every non-square n ∈ N.

2 √ 5 2 √ 5

 2525 y 2 + 100 , hence the assertion -y 2 + 100 ≥ 0 ⇒ 10y ≥ 0 holds, because the RHS is a nonnegative combination of the LHS and an always-nonnegative polynomial1

Figure 2 .Figure 3 .

 23 Figure 2. A non-deterministic summation program

 for every д for which д > 0 appears in η(ℓ ′), it adds the condition pair (Pre(ℓ) ∧ η(ℓ) ∧ Pre(ℓ ′), д) to Λ e . Finally, the algorithm constructs the following set Λ in :• For every polynomial д for which д > 0 appears in η(ℓ f in), the algorithm constructs the constraint pair (Pre(ℓ f in), д) and adds it to Λ in .Example 4.5. In the summation program of Figure2, suppose that Pre(1) :

Example 4 . 6 .

 46 Consider the first constraint pair generated in Example 4.5. The algorithm writes (†), i.e. д = ϵ + h 0 + 10 i=1 h i •д i where д = s 2,1,1 +. . .+s 2,1,21 •r 2 (the polynomial in the second component of the constraint pair), д 1 = n, д 2 = i, д 3 = -i, . . . , д 10 = s 1,1,1 + . . . + s 1,1,21 (the polynomials in the first component of the constraint pair) and each h i is a newly generated polynomial containing all possible monomials of degree at most ϒ, e.g. if ϒ = 2, we have

Lemma 4 . 7 (

 47 Soundness). Every output of StrongInvSynth is an inductive invariant. More generally, for every solution σ ∈ Σ obtained in Step 4, the function η

Figure 4 .

 4 Figure 4. A recursive non-deterministic summation program

Example 5 . 3 .

 53 Consider the transition e = (4, ⊥, 5) in Figure 4. The algorithm computes the following constraint and adds it to Λ e :

 2.b) Setting up constraint pairs for post-condition consecution. For each transition e = (ℓ, α, ℓ ′) where ℓ is a return statement and ℓ ′ = ℓ f out for some program function f , the algorithm generates the following constraint pairs: • For every polynomial д such that д > 0 appears in µ(f), the algorithm adds the condition pair (Pre(ℓ)∧η(ℓ)∧(Pre(ℓ ′)• α), д • α) to Λ e . These constraints encode post-condition consecution. Example 5.4. Consider transition e = (2, ret rsum ← n, 9) in the program of Figure 4. The algorithm generates the following constraint and adds it to Λ e :

 ⟨prog⟩ ::= ⟨func⟩ |⟨func⟩ ⟨prog⟩ ⟨func⟩ ::= ⟨fname⟩ '(' ⟨varlist⟩ ')' '{' ⟨stmtlist⟩ '}' ⟨varlist⟩ ::= ⟨var⟩ |⟨var⟩ ',' ⟨varlist⟩ ⟨stmtlist⟩ ::= ⟨stmt⟩ |⟨stmt⟩ ';' ⟨stmtlist⟩ ⟨stmt⟩ ::= 'skip' |⟨var⟩ ':=' ⟨expr⟩ |'if' ⟨bexpr⟩ 'then' ⟨stmtlist⟩ 'else' ⟨stmtlist⟩ 'fi' |'if' '⋆' 'then' ⟨stmtlist⟩ 'else' ⟨stmtlist⟩ 'fi' |'while' ⟨bexpr⟩ 'do' ⟨stmtlist⟩ 'od' |⟨var⟩ := ⟨fname⟩ '(' ⟨varlist⟩ ')' |'return' ⟨expr⟩ ⟨bexpr⟩ ::= ⟨literal⟩ |'¬' ⟨bexpr⟩ |⟨bexpr⟩ '∨' ⟨bexpr⟩ |⟨bexpr⟩ '∧' ⟨bexpr⟩ ⟨literal⟩ ::= ⟨expr⟩ '<' ⟨expr⟩ |⟨expr⟩ '≤' ⟨expr⟩ |⟨expr⟩ '≥' ⟨expr⟩ |⟨expr⟩ '>' ⟨expr⟩ ⟨expr⟩ ::= ⟨var⟩ |⟨constant⟩ |⟨expr⟩ '+' ⟨expr⟩ |⟨expr⟩ '-' ⟨expr⟩ |⟨expr⟩ ' * ' ⟨expr⟩

Figure 5 .

 5 Figure 5. Detailed Syntax of Non-deterministic Recursive Programs

 a run begins from the f main function. • If |κ i | = 0, then |κ i+1 | = 0, too. Informally, this case corresponds to when the program has already terminated. • Let ξ = (f , ℓ, ν) be the last stack element in κ i . Then, κ i+1 should satisfy one of the following rules: (a) ℓ ∈ L a and (ℓ, α, ℓ ′) ∈→ and

Intuitively, this corresponds

 to adding the new function to the stack. (d) ℓ ∈ L d and (ℓ, ⋆, ℓ ′) ∈→ and κ i+1 = κ -1 i • (f , ℓ ′ , ν). (e 1) ℓ ∈ L e and |κ i | = 1 and |κ i+1 | = 0. Informally, this case corresponds to the termination of the program when the f main function returns and the stack becomes empty. (e 2) ℓ ∈ L e , |κ i | > 1, ξ = (f , l, ν) is the stack element before ξ in κ i , the label l corresponds to a function call of the form v 0

 By validity of ρ, we have ν |= Pre(ℓ f main in). Hence, by initiation, ν |= Ind(ℓ f main in).

a valid abstract path of length 1 . 2 Corollary 4 . 2 .

 1242 Hence, by consecution, we have ν |= Ind(ℓ).• If f ′ is the parent function of f , i.e. ℓ = ℓ f in and ℓ ′ is a function-call statement calling f , then by validity of ρ, we have ν |= Pre(ℓ) and by initiation, we infer ν |= Ind(ℓ).• If f is the parent function of f ′ , i.e. ℓ ′ = ℓ f ′out , then let ξ = (f , l, ν) be the last visited stack element in f before f ′ was called. It is easy to verify that l is a function-call statement calling f ′ and (l, ⊥, ℓ) ∈→. By post-condition consecution, ν ′ |= Post(f ′), hence ⟨(f , l, ν), (f , ℓ, ν)⟩ is a valid abstract path of length 1. By the induction hypothesis, we have ν |= Ind(l), hence, by consecution, we deduce ν |= Ind(ℓ).Hence, for every reachable stack element ξ = (f , ℓ, ν), we have ν |= Ind(ℓ) which means Ind is an invariant. □D Mathematical Tools and LemmasD.1 Proof of Corollary 4.Let V , д, д 1 , . . . , д m and Π be as in Theorem 4.1. Then д(x) > 0 for all x ∈ Π if and only if :

2 E. 2

 22 The inductive invariant generated by WeakInvSynth for the running example in FigureRecursiveExamples We used the following recursive examples as benchmarks. Desired assertions are shown in brackets. Pre-conditions are enclosed in # signs. In all cases our algorithm synthesizes an inductive invariant that contains the desired assertions.recursive-sum (n) { # n ≥ 0 # i f n ≤ 0 then return n e l s e m : = n -1 ; s : = recursive-sum (m) ; i f ⋆ then s : = s + n e l s e skip f i ; return s f i [ret recursive-sum < 0.5 • n2 + 0.5 • n + 1] } recursive-square-sum (n) { # n ≥ 0 # i f n ≤ 0 then return n e l s e m : = n -1 ; s : = recursive-sum (m) ; i f ⋆ then s : = s + n * n e l s e skip f i ; return s f i [ret recursive-square-sum < 0.34 • n3 + 0.5 • n2 + 0.17 • n + 1] } recursive-cube-sum (n) { # n ≥ 0 # i f n ≤ 0 then return n e l s e m : = n -1 ; s : = recursive-sum (m) ; i f ⋆ then s : = s + n * n * n e l s e skip f i ; return s f i [ret recursive-cube-sum < 0.25 • n2 • (n + 1) 2 + 1] } pw2 (x) { / / computes the largest power of 2 that is ≤ x # x ≥ 1 # i f x ≥ 2 then y : = 0.5 * x ; return 2 * pw2(y) e l s e return 1 f i [ret pw2 ≤ x ∧ 2 • ret pw2 > x] } merge-sort (s , e) / /sorts and returns number of inversions in[s..e] { # e ≥ s # i f s ≥ e then return 0 e l s e i : = 0.5 * s + 0.5 * e ; j : = ⌊i⌋ ; i : = j + 1 ; r : = merge-sort(s, j) ; ans : = merge-sort(i, e) ; ans : = ans + r ; k : = s ; while i ≤ e do while k ≤ j do i f ⋆ then / / array[k] ≤ array[i] k : = k + 1 ; skip / / temp.push_back (array[k]) e l s e / / array[k] > array[i] ans : = ans + jk + 1 ; / / add inversions i : = i + 1 ; skip / / temp.push_back (array[i]) f i od ; skip ; / / temp.push_back (array[i]) i : = i + 1 od ; while s ≤ e do skip ; / / copy from temp to array s : = s + 1 od ; return ans f i [ret merge-sort < 0.5 • (ēs) • (ēs + 1) + 1] }

Figure 6 .

 6 Figure 6. A summation program

 v n , v1 , . . . , vn }

	sum (n) {
	1 a : i : = 1 ;
	2 a : s : = 0 ;
	3 b : while i ≤ n do
	4 d :	i f ⋆ then
	5 a :	s : = s + i
		e l s e
	6 a :	skip
		f i ;
	7 a :	i : = i + 1
	od ;	
	8 a : return s
	9 e : }	

 1,21 + t 10,6 • s 1,1,6 + t 10,21 • s 1,1,1 , i.e. the coefficient of r 2 in h 10 • д 10 . Hence, the algorithm generates the quadratic equality s 2,1,21 = t 0,21 +t 6,6 -t 7,6 +t 10,1 •s 1,1,21 +t 10,6 •s 1,1,6 +t 10,21 •s 1,1,1 over the sand t-variables. The algorithm computes similar equalities for every other monomial.

Table 2 .

 2 Experimental results over the benchmarks of[START_REF] Rodríguez-Carbonell | Some programs that need polynomial invariants in order to be verified[END_REF]. |V| is number of program variables and |S| is size of the quadratic system, i.e. number of constraints in Step 3. Runtimes are reported in seconds. We set a time-limit of 1 hour.

	Benchmark n d |V |		|S |	Ours	ICRA	SeaHorn	[49]	UAutomizer [50] using Z3
	cohendiv	3 2	6	17391	15.2	0.7	0.1	Not Applicable	3.3	Timed Out
	divbin		3 2	5	18351	5.4	Failed Timed Out	0.2	Failed	Timed Out
	hard		3 2	6	24975	28.0	Failed	Failed		0.4	Failed	Timed Out
	mannadiv	3 2	5	16245	18.2	Failed	0.1		0.1	Timed Out	Timed Out
	wensely	2 2	7	18874	20.1	Failed	Failed		0.1	Failed	Timed Out
	sqrt		2 2	4		4072	5.8	0.8	Failed		0.1	Timed Out	Timed Out
	dijkstra		2 2	5	10156	12.8	Failed	Failed	Not Applicable	Failed	Timed Out
	z3sqrt		2 2	6		9404	12.9	0.5	0.1	Not Applicable	Failed	Timed Out
	freire1		2 2	3		2432	26.5	0.6	Failed		0.1	Failed	Timed Out
	freire2		2 3	4		9708	10.7	1.1	Failed		0.1	Failed	Timed Out
	euclidex1	2 2	11 45756	97.5	Failed	Failed	Not Applicable	Timed Out	Timed Out
	euclidex2	2 2	8	22468	39.3	Failed	Failed		0.4	Timed Out	Timed Out
	euclidex3	2 2	13 72762 203.1	Failed	Failed	Not Applicable	Timed Out	Timed Out
	lcm1		2 2	6	13361	17.9	0.8	0.1	Not Applicable	3.7	Timed Out
	lcm2		2 2	6	12517	18.7	0.8	0.1		0.1	3.2	Timed Out
	prodbin	2 2	5	10096	12.1	Failed	Failed	Not Applicable	Timed Out	Timed Out
	prod4br	2 2	6	21064	43.2	Failed	Failed	Not Applicable	Timed Out	Timed Out
	cohencu	2 3	5	16664	11.8	0.6	Failed		0.1	Timed Out	Timed Out
	petter		1 2	3		1080	20.4	0.5	0.1		0.1	2.7	Timed Out
	Benchmark n d |V |	|S |	Ours	ICRA	SeaHorn	[49]	UAutomizer [50] using Z3
	Reinforcement Learning [82]	inverted-pendulum strict-inverted-	1 3 4 2	7 7	9951 14390 587.8 496.1	Failed 11.5	Failed Failed	Not Applicable Not Applicable	Failed Failed	Timed Out Timed Out
		pendulum								
			oscillator	1 2	7	3552	39.7	Failed	Failed	Not Applicable	Failed	Timed Out
		recursive-sum	1 2	3	1700	10.9	0.6	Failed	Not Applicable	Timed Out	Timed Out
	Classical Examples	recursive-square-sum	1 3	3	1121	17.4	Failed	Failed	Not Applicable	Failed	Timed Out
	(Appendix E.2)	recursive-cube-sum	1 4	3	15840 221.2	Failed	Failed	Not Applicable	Failed	Timed Out
			pw2	2 1	3	430	5.4	0.7	0.1	Not Applicable	Failed	Timed Out
		merge-sort	1 2	13 33002	78.1	Failed	Failed	Not Applicable	Failed	Timed Out

 then д(x)ϵ > 0 for all x ∈ Π. Applying Putinar's Positivstellensatz, i.e. equation (1), to дϵ leads to the desired result.

□

D.2 Proof of Lemma 4.3

In our algorithm, we have to reduce the problem of checking whether a polynomial h ∈ R[V] is a sum-of-squares to solving a quadratic system. We now present this reduction in detail. Our reduction is based on the following two well-known theorems: Theorem D.1 (See

[START_REF] Roger | Matrix analysis[END_REF]

, Corollary 7.2.9). A polynomial h ∈ R[V] of even degree d is a sum-of-squares if and only if there exists a k-dimensional symmetric positive semi-definite matrix Q such that h = y T Qy, where k is the number of monomials of degree no greater than d/2 and y is a column vector consisting of every such monomial.

Theorem D.2 (

[START_REF] Gene | Matrix computations[END_REF][START_REF] Nicholas | Cholesky factorization[END_REF]

). A symmetric square matrix Q is positive semi-definite if and only if it has a Cholesky decomposition of the form Q = LL T where L is a lower-triangular matrix with non-negative diagonal entries.

Table 5 .

 5 .-0.09 -0.79 • n -0.95 • r -0.72 • s -1.12 • i -0.39 • n + 1.90 • n2 -0.12• n • r + 1.62 • r 2 -0.25 • n • s -0.36 • r • s + 1.48 • s 2 -0.79 • n • i -0.67 • r • i -0.94 • i • s + 1.57 • i 2 + 0.42 • n • n + 0.10 • r • n -0.15 • n • s -0.82 • i • n + 2.36 • n 2 ≥ 0 0.45 -0.77 • n -0.85 • r -0.56 • s -0.75 • i -0.47 • n + 1.68 • n2 -0.37 • n • r + 1.45 • r 2 -0.44 • n • s -0.52 • r • s + 1.42 • s 2 -0.89 • n • i -0.67 • r • i -0.89 • i • s + 1.73 • i 2 + 0.09 • n • n -0.20 • r • n -0.38 • n • s -0.92 • i • n + 2.07 • n 2 ≥ 0 2 true 0.08 -1.07 • n -1.48 • r -2.00 • s -2.42 • i -0.34 • n + 3.14 • n2 -0.62 • n • r + 3.51 • r 2 -1.33 • n • s -2.12 • r • s + 2.32 • s 2 + 0.64 • n • i + 0.76 • r • i -1.37 • i • s + 3.40 • i 2 -0.50 • n • n + 0.22 • r • n -0.68 • n • s + 0.94 • i • n + 3.67 • n 2 ≥ 0 0.76 -1.37 • n -1.08 • r -1.64 • s -1.77 • i -0.01 • n + 2.25 • n2 -1.34 • n • r + 3.25 • r 2 -1.20 • n • s -2.27 • r • s + 2.68 • s 2 -0.04 • n • i + 0.59 • r • i -1.23 • i • s + 2.93 • i 2 -1.68 • n • n -0.32 • r • n -0.95 • n • s + 0.31 • i • n + 2.93 • n 2 ≥ 0 3 true 0.94 -0.37 • n -0.07 •r + 0.95 •s + 0.38 •i -0.09 • n + 0.07 • n2 + 0.03 • n •r -0.19 • n •s -0.04 •r •s + 0.28 •s 2 -0.07 • n •i -0.01 •r •i + 0.27 •i •s + 0.11 • i 2 +0.01• n •n+0.02•n •s +0.06•i •n+0.18•n 2 ≥ 0 3.69+3.15• n-0.09•r -3.37•s -0.06•i -0.19•n+ 4.87 • n2 -0.01 • n •r + 0.01 •r 2 -1.44 • n •s -0.09 • r • s + 2.89 • s 2 + 0.01 • n • i -0.05 • i • s + 0.02 • i 2 + 0.02 • n • n + 0.02 • r • n -0.25 • n • s + 0.03 • n 2 ≥ 0 4 true 0.89 -0.31 • n -0.06 •r + 0.91 •s + 0.39 •i -0.26 • n + 0.06 • n2 + 0.02 • n •r -0.16 • n •s -0.03 •r •s + 0.26 •s 2 -0.06 • n •i -0.01 •r •i + 0.27 •i •s + 0.11 • i 2 +0.01• n •n-0.09•n •s -0.02•i •n+0.23•n 2 ≥ 0 0.34+0.47• n-0.55•s -0.56•i +0.01•n+0.82• n2 -0.01• n •r -0.16• n •s +0.25•s 2 -0.15• n •i +0.51•i • s +0.26•i 2 -0.01• n •n -0.01•n •s -0.01•i •n ≥ 0 5 true 2.83 -1.01 • n -0.20 • r + 2.86 • s -1.62 • i -0.86 • n + 0.26 • n2 + 0.10 • n • r + 0.01 • r 2 -0.52 • n • s -0.11 • r • s + 0.83 • s 2 + 0.30 • n • i + 0.05 • r • i -0.80 • i • s + 0.32 • i 2 + 0.04 • n • n + 0.01 • r • n -0.27 • n • s + 0.21 • i • n + 0.73 • n 2 ≥ 0 2.03 + 2.31 • n -0.04 • r -2.82 • s -0.01 • i -0.02 • n + 4.08 • n2 -0.03 • n • r -0.79 • n • s -0.01 • r • s + 1.32 • s 2 + 0.03 • n • i + 0.02 • i The inductive invariant generated by WeakInvSynth for the summation program in Figure

	ℓ	Pre(ℓ)	Ind(ℓ), first inequality	Ind(ℓ), second inequality
	1 n = n, n ≥ 1		

2

-0.06

• n • n + 0.01 • r • n -0.06 • n • s + 0.01 • n 2 ≥ 0 6 true 20.37 -8.79 • n -0.05 • r + 25.48 • s -0.19 • i -2.16 • n + 4.25 • n2 -0.25 • n • r + 2.89 • r 2 -7.49 • n • s + 2.00 • r • s + 25.53 • s 2 -1.08 • n • i -0.97 • r • i -0.64 • i • s + 2.83 • i 2 -1.79 • n • n -2.21 • r • n -4.19 • n • s -0.86 • i • n + 4.49 • n 2 ≥ 0 68.26 + 60.81 • n -2.84 • r -68.34 • s -2.64 • i -3.44 • n + 100.00 • n2 + 0.76 • n • r + 2.64 • r 2 -33.53 • n • s -2.63 • r • s + 57.63 • s 2 + 0.71 • n • i -1.22 • r • i -2.45 • i • s + 2.36 • i 2 + 0.91 • n • n -1.74 • r • n -3.16 • n • s -1.82 • i • n + 2.

19 • n 2 ≥ 0 7 true 0.50 • n 2 + 0.50 • nr ≥ 0 r -0.50 • n 2 -0.50 • n ≥ 0

§ Note that this is a very minor restriction, in the sense that if e > 0 is an invariant, then so is e + ϵ > 0. We are unable to find invariants e > 0 where e can get arbitrarily close to 0 over all valid runs of the program. However, in such cases, we can synthesize e + ϵ > 0 for any positive ϵ , as long as e + ϵ > 0 is also part of an inductive invariant.

† † These coefficients are called t -variables in our algorithm.

Acknowledgments. The research was partially supported by Austrian Science Fund (FWF) Grant No. NFN S11407-N23 (RiSE/SHiNE), Vienna Science and Technology Fund (WWTF) Project ICT15-003, National Natural Science foundation of China (NSFC) Grant No. 61802254, Facebook PhD Fellowship Program, and DOC Fellowship No. 24956 of the Austrian Academy of Sciences (ÖAW).

E.5 Continued Fraction Example

Given that our approach has semi-completeness guarantees (over bounded reals), it is no surprise that it can generate desired polynomial invariants for inputs which no previous incomplete approach could handle. We now present a classical example of a program that approximates √ 2 using its continued fraction representation. Our implementation generates required invariants of degree 5, which is beyond the reach of all previous methods in Table 1. Specifically, we manually tried all the incomplete approaches in Table 1 over this example. They are either not applicable or fail to synthesize the desired invariant. However, some of them synthesize other invariants for the same program.

We first review some well-known facts about continued fractions. A continued fraction is an expression of the following form:

in which the a i 's are natural numbers. For brevity, we denote this fraction as x = [a 0 ; a 1 , a 2 , . . .]. Note that the continued fraction representation might be finite (in case of rational numbers) or infinite (in case of irrationals). Specifically, it is easy to verify that

In any case, we define x n := [a 0 ; a 1 , . . . , a n] and call it the n-th convergent of x. A standard way for approximating irrational numbers is to evaluate the convergents of their continued fraction representation. We consider a program that approximates √ 2 using this technique.

The following well-known lemma provides some properties of the convergents and a simple algorithm for computing them:

n=-2 and ⟨Q n ⟩ ∞ n=-2 as follows:

The following properties hold for all 0 ≤ n < ∞:

□

Consider the program in Figure 7. This program computes the values of P n and Q n for every n ≥ 0. We use the variable p 0 to save values of P 2n , i.e. even-indexed values of the sequence P, and p 1 to save P 2n+1 . The variables q 0 and q 1 are used in a similar manner. We can encode properties (ii) to (iv) of Lemma E.1 as partial invariants for the program in Figure 7 and check if our approach can synthesize inductive invariants that prove them. continued-fraction () { 1 : p 0 : = 1 ; 2 : p 1 : = 3 ; 3 : q 0 : = 1 ; 4 : q 1 : = 2 ; 5 : while 1 ≥ 0 do 6 :

p 0 : = 2 • p 1 + p 0 ; 7 :

q 0 : = 2 • q 1 + q 0 ; 8 : skip ; / / x n : = p 0 /q 0 ; 9 :

2 by computing the two sequences defined in Lemma E.1. Specifically, letting x = √ 2 we want the algorithm to prove the following partial invariants:

(ii) |xx n | ≤ |xx n+1 | can be rewritten as follows:

which is a polynomial inequality. Hence, we aim to find an inductive invariant that contains the following inequalities at lines 8 and 11, respectively:

To model √ 2, we consider a new program variable x whose value is always √ 2. We enforce this by adding x 2 ≤ 2∧x 2 ≥ 2 ∧ x ≥ 0 to every pre-condition. (iii) Similar to the previous case, this property can be rewritten as a polynomial inequality as follows: