Fast audio-haptic prototyping with mass-interaction physics
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This paper presents ongoing work on the topic of physical modelling and force-feedback interaction. Specifically, it proposes a framework for rapidly prototyping virtual objects and scenes by means of mass-interaction models, and coupling the user and these objects via an affordable multi-DoF haptic device. The modelled objects can be computed at the rate of the haptic loop, but can also operate at a higher audio-rate, producing sound. The open-source design and overall simplicity of the proposed system makes it an interesting solution for introducing both physical simulations and force-feedback interaction, and also for applications in artistic creation. This first implementation prefigures current work conducted on the development of modular open-source mass-interaction physics tools for the design of haptic and multisensory applications.
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In recent years, the access to digital fabrication technologies coupled with the surge of do-it-yourself electronics and a drive from the Virtual Reality industry have given rise to a new interest in haptics: once considered only as costly lab equipment reserved to specific academic fields, a new generation of force-feedback and vibrotactile devices now offer affordable open designs, that can be built, customised or tampered with, and used by individuals for a vast range of purposes including musical & artistic creation [ , ].

Prototyping haptic interactions generally involves creating and computing a physical scene that the user will interact with through the device. However, tools for designing the virtual scenes (such as CHAI D ) are often difficult to apprehend. We argue that following the increased accessibility of haptic solutions, equally accessible tools should allow for simple and fast prototyping of modular virtual scenes, applicable to any number of purposes, including haptic-audio multi-modal VR.

This paper proposes such a framework using a new open-source massinteraction physical modelling engine and an existing open-source / open-hardware haptic device. First, we briefly introduce the context of force-feedback interaction technologies and physical modelling concepts for designing multisensory virtual scenes. Our prototyping framework is then presented and illustrated through a series of examples. Finally, we will offer perspectives for future work.

N I D R

Throughout the history of information technologies, advances in computation methods and process have always evolved in tight relationship with technologies allowing humans to interact with the machine. In recent years, global trends in HCI have shifted from input peripherals (such as the keyboard and mouse), towards natural interaction through speech recognition, motion capture and gesture recognition, and virtual reality technologies.

Blending digital realities with the real physical world is now commonplace, and to this end technologies have evolved significantly both in performances and affordability, driven essentially by the video-game and entertainment industry. However, focus has primarily been on visual aspects (CGI animation, etc.), sometimes sound (through immersive D audio techniques), but rarely on the sense of touch or physical presence inside a virtual scene, using haptic (or force-feedback) technologies. Indeed, the sense of touch relies on a coupled action-perception loop [ ], distributed across the entire human body. Hence, when developing or using haptic systems capable of "rendering" this interaction with a virtual entity, one is faced with two main technological challenges:

• Simulating the immediacy of the action-perception loop: in a forcefeedback chain the computer receives position data from a sensor, computes interaction forces based on a virtual scene, and sends these forces data back to mechanical transducers . All of these operations take time, and hardware/software architectures must allow a sufficiently fast loop to convey the impression of immediate action-reaction, and also for stability reasons [ , ].

• Sufficient degrees of freedom: very few human gestures can be reduced to a small number of degrees of freedom, and applied in only one or a few points. However, designing haptic systems with a large number of DoF and/or contact points poses many mechanical challenges. Various systems have been proposed, from penlike interfaces [ ], to exoskeletons [ ] or haptic gloves [ ], but in each case they are generally specifically tailored to a specific type of interaction.

Developments and applications of haptic devices for artistic creation can be traced back to the late s [8]. Since then, a steadily growing scientific community has formed around the use of force-feedback and vibrotactile technologies applied to the fields of music and digital arts [ ].
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Due to their mechanical complexity and often dedicated hardware/software, haptic systems are generally considered costly. Among others, we can cite the Phantom system [ ], or the TGR from ACROE [ ]. The gaming industry has led to some cheaper alternatives, such as the Novint Falcon [ ], at the cost of reduced performance. What's more, the rapid evolution of computer systems and peripherals has rendered the software and hardware compatibility of proprietary/commercial solutions increasingly problematic as drivers are not always maintained for recent operating systems.

In the case of impedance-based haptic devices.

Copyright is held by authors These systems are cheaper to build and repair, use simple communication protocols, and minimise or entirely circumvent the use of any proprietary software. We decided to use the Haply system for our work. Similarly to the Fire-Fader, it relies on an Arduino-based board (the Haply M ) to process sensor data and drive motors, and communicates over USB (through a virtual serial port) with a simulation context running on a host machine. However, the FireFader offers one or several DoF sliders that are connected to one-dimensional sound synthesis simulations, whereas the Haply is a DoF (cf. Figure ) system that can be extended to , allowing exploration of more complex interaction modalities with multidimensional virtual environments. The open-source hAPI programming interface allows to easily configure the haptic device and interact with a virtual scene.

Figure : The -DoF Haply force-feedback device

D

A question of equal importance to the force-feedback peripheral itself concerns how a multimodal (visual, audio and haptic) virtual scene can be designed, computed and "rendered" for the user to see, hear and feel. We categorise two main approaches, shown in Figure :   Distributed Approach Complex virtual scenes are often distributed into separate computational processes for each modality [ ]. Visual rendering is handled at a relatively low rate ( -Hz, latency of up to ms tolerated), audio is processed at a high-rate ( . kHz, with latency under ms), and physics are generally computed around kHz, with critical latency conditions for the haptic loop ( ms or less). This scheme is especially adapted in cases where audio or visual processes may rely on abstract (non-physical) algorithms. However, it does pose the problem of defining mapping and control relationships between the processes. If the correlation between different modalities is not sufficiently explicit, the sensation of believability and presence of the virtual objects may suffer.

Single Model Approach An alternative way of designing multimodal virtual scenes is to model them with a single formalism (cf. Figure b). Physical modelling allows creating scenes of deformable objects that exhibit visual, mechanical and acoustic behaviour. The object that we touch is the one we see, and that we hear. This approach is sometimes http://www.haply.co referred to as multisensory, and guarantees coherence between the different modalities. Works such as [ 6, ] use this approach with massinteraction physical modelling, a formalism presented below.

M -I P M

Representing mechanical systems by means of punctual masses linked together by elements such as springs or dampers, and submitted to various constraints, is one of the most common ways to describe and calculate their behaviour. From Newton's laws we know the equation of movement of a mass in a given referential; the action of springs, dampers and other elements can be mathematically described or approximated by well known formulas. By resolving the equation system composed of the equations of each element in a mechanical construction, we obtain the global behaviour.

Mass-interaction physical modelling and simulation [ ] relies on exactly this principle: the inertial behaviours of material elements and interactions (springs, dampers, etc.) are described by simple discrete-time difference equations, following a given discretisation scheme (see [ , ] for algorithms and implementation details). Positions and forces can be expressed as scalar values (for D systems) or as D or D vectors according to the spatial attributes of the scene. Mechanical constructions are then built by assembling masses and interactions together in a network, setting physical parameters and initial conditions, and then computing the behaviour over time. Figure shows a topological representation of a mass-interaction model. Owing to their inherent simplicity and efficient computation, lumped methods such as mass-interaction physics have been widely used and studied in the field of haptics, for the design of virtual deformable matter and haptic interaction models [6, 8, ], including for direct forcefeedback interaction with virtual musical instruments [ , ]. However, we notice a relative lack of open and accessible frameworks or tools allowing for modular and unified design of multisensory virtual objects and scenes, that can be considered for their visual, acoustical, haptic behaviour, or indeed any combination of the three.

In the following section, we present our contribution to such a framework in the form a mass-interaction physics engine that can be coupled with an open-hardware force-feedback device (in our case, the Haply) in order to create any kind of haptic or audio-haptic virtual scene.

A P -H P F

Our prototyping framework is based on P , an open-source Java based programming environment tailored for sketching D and D animated scenes. It is currently one of the most popular tools used to introduce and teach interactive and visual programming, while remaining capable of complex rendering, communication with hardware, and even physical modelling . What's more, hAPI, the Haply programming interface, is written in Java and is directly fitted for running within Psketches. Although, it is not an audio programming environment as such, external libraries can be used to add real-time sound synthesis functionality.

A -J

P

is a new open-source modular mass-interaction physics engine prototype, recently developed by the authors. As opposed to existing physical modelling libraries within P , P allows designing D physical objects through modular networks of masses and interactions, easily integrating any type of user interaction (for manipulation, parameter modification, dynamic topology changes, etc.), and building any type of visualisation process on top of the created model. As in any mass-interaction system, the main types of physical elements proposed by P are:

• Mass-type modules: Three-dimensional masses, oscillators and fixed-Points, as well as D masses (constrained on the z plane) or D masses (that only vibrate along the z plane).

• Interaction-type modules: Three-dimensional interactions such as springs, dampers, contacts, enclosing bubbles, etc. For specific use cases, D springs have also been implemented.

One of the main design goals for P is simplicity of use and direct access to each element of a physical model, including during run-time. Each mass or interaction is labelled with a specific name or identifier that can be used to connect the element to others, to read its state or change its physical parameters during the simulation. Metacategories of physical elements can be created to allow for grouped parameter modifications. In addition to specific physical parameters, global "air friction" and gravity direction/force of the entire virtual scene can be configured and modified. Figure shows the general code structure when creating a physical model.

I H D

From the point of view of the physical simulation, the haptic device is represented by an avatar: a mass-type module, called HapticInput D.

Instead of calculating a new position based on its previous states and the forces applied to it (as a regular mass would), this module sends its force signal out to the real haptic device's transducers and sets its position from the haptic device's sensor data. We use the existing hAPI functions to transform the encoder values of the two motors into a D position by calculating the kinematics of the linkage arms, and reciprocally to translate forces applied in a D space to torque values applied to the motors. Therefore, the end-user has only to consider the device's end-effector in a D plane and connect it directly to the simulation. The 8-bit resolution of the encoders can result in strong quantisation of the position data and fairly "jumpy" physical behaviour. We chose to feed the raw position value into an Exponential Weighted Moving Average filter with a high weighting decrease. As such the filter adds latency, theoretically impacting haptic stability. However, given the low resolution position data, the trade-off of smoother data versus the small increase in latency leads to no observable increase of instability. Time has not yet allowed for complete real/virtual calibration of the haptic device. For now, the real → virtual position gain alpha and the virtual → real force gain beta (cf. Figure ) are empirically defined by the user depending on the mechanical impedance of the virtual scene/objects.

E U E : P

Haptic Simulation Framework In the case of non-audio haptic simulations, the P sketch is organised as shown in Figure : the haptic input/output communication with the Haply Board, the kinematics and the physical computation all run in a dedicated thread running at a fixed-rate, generally kHz. The draw() method renders the model by observing its state at a lower display rate. The rendering process can be generic (visualise all mass-type and interaction-type elements according to pre-defined drawing routines) or custom-coded by the user. Portability and ease of use is an important consideration. The sketches run on Mac, Linux and Windows, the only noticeable difference measured being the scheduling performance of the haptic thread: early tests show a higher dropout rate (missed steps in the haptic-loop) on a Windows system, correlated with system load; however, on a standard Linux OS the scheduling is more robust, and very few steps are missed. Performance in these conditions is satisfactory, meaning there is no need for a dedicated Real-Time OS, sometimes used in high-performance synchronous systems [ ].

Real-time Audio-Haptic Simulation Framework

Handling real-time audio streams in Processing can be done using the MINIM library 6 , which implements the common Unit Generator paradigm, found in environments such as Super Collider [ ]. A P UG class has been created, extending the MINIM UG template. It contains the mass interaction model (built and initialized in the class constructor), and computes steps whenever needed (by overriding the uGenerate() method). The system is slightly more complex here:

• The haptic thread runs at kHz, getting the haptic I/O and performing the kinematic transformations. At each step, it sets a new position value from incoming sensor data, and discharges the force from the model to the haptic device (sending it to the motors).

• The sound synthesis UG runs at the audio rate ( . kHz), providing new audio data by computing steps of the physical model whenever needed through a callback API. The haptic avatar module upsamples and smoothes raw position data from the haptic device, using by the EWMA filter. Symmetrically, force applied by the model to the avatar is accumulated into a buffer until it is consumed by the haptic thread (see [ ] for details regarding multirate audio mass-interaction systems with haptics).

• The visualisation thread (draw() method) observes the model positions and creates the visual representation.

A lock synchronisation system ensures mutual exclusion in the critical sections of the haptic, sound synthesis and rendering threads, thus avoiding temporary glitches & errors that can be induced by concurrent memory access (e.g. reading the model state in the display thread while it is being updated by the physics thread).

6 http://code.compartmental.net/tools/minim/
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A number of Haply-specific examples can be found the in the example section of the P github repository , as well as ready-to-use templates in which the user has only to add his/her physical model code and visualisation specificities. Below, we present four simple cases:

H E : H
This simple example attaches a chain of D masses to the haptic device (which moves on the x-y plane). The springs are fairly loose, but the combined weight of the virtual masses is enough to add significant inertial behaviour to the system: when dragging the chain, one can feel the effort needed to set them in motion, and must work with/against their momentum when stopping or changing direction. 

H E : E M

In this model, two-hundred D masses are enclosed within a sphere (using bubble interactions) and above a flat surface (using planeContact modules). Each mass has contact interactions set up with all other masses, as well as with the haptic input module. Gravity and air friction are configured so that the masses fall down onto the plane, and eventually stop moving. By "rummaging" around with the haptic device, the user interacts simultaneously with many masses, sending them bouncing up against the edges, giving a global "stirring" motion, and so forth.

Dropping the haptic thread rate to Hz allows to increase the number of masses to 6 , at the cost of reduced bandwidth (less sharp dynamics) in the physics computation.

Figure :

The "Enclosed Marbles" example sketch.

A -H E : P S

Using the real-time audio architecture described in the previous section, this model illustrates the simple case of a plucked string. The string itself is composed of masses constrained to move along the x-y plane (keeping a constant z value), connected by damped D springs, and ended with two fixed points. Contact interactions link the haptic device to each mass of the string, with a given sphere of action (analogous to the "width" of the plectrum), so that the user can pluck the string in any part (in the middle, near the bridge, etc.) and also excite and rapidly dampen the string in specific areas to obtain palm-mute or natural harmonic effects. A similar example combines multiple strings placed below each other, so that they can be played one at a time or strummed together. It can be noted that in the case of D strings, the resting length of the springs relative to the elongation imposed by the extremities is a key factor in the physical behaviour, in particular regarding non-linear tension effects [ ] such as the "twang" or pitch glide at high excitation levels. This will be illustrated in the last example.

A -H E : T R S

This model explores the non-linearities of D strings by pushing the situation to the extreme: the string is still attached to a fixed point at one end but the other end is a very heavy mass set with an initial velocity. This mass slowly stretches the string until it recoils, then loosening up until it is completely limp, before stretching again. What's more, by plucking or exerting pressure on the string, the user can influence the course of the heavy mass, resulting in bizarre "worm-like" behaviour, the string sometimes wrapping almost entirely around the haptic device (as seen in Figure .

These four examples serve as a small introduction to what is possible with the platform. The modular design of the physics and the haptic interaction allow creating all kinds of virtual objects and interaction scenarios, the only real limit being the computational complexity that can fit 

P & F W

This work offers several possible axes for improvement:

. Performance, stability and robustness of the haptic device: the Haply's D printed plastic parts lack rigidity and present some play between mechanical elements (especially concerning the linkage arm pivots). This could be addressed by making sturdier aluminium parts based on the provided mechanical schematics. The motor performance also presents some limits for small amounts of force feedback (it takes a certain threshold of command torque for the motor to actually move). For these reasons, implementing stiff spring interactions directly between the device and a virtual point is problematic, as unstable oscillations tend to occur.

. Calibration of the real/virtual chain: through mechanical characterisation of the device and dedicated calibration models, it should be possible to set exactly how a mass of gram in the virtual model is projected into the real world, and reciprocally, helping to standardise the parametrisation of virtual models and make them easier to port to & from other haptic devices.

. Optimisation of the simulation engine: this work is a prototype developed entirely in Java and has prioritised object-oriented concepts and global intelligibility over lean, speed-oriented processing. Switching the core engine to a more powerful language such as C++ while keeping user-friendly model building functions is an interesting perspective for future work.

The authors feel that the presented system constitutes an interesting base for teaching students about modular physical modelling and forcefeedback interaction : the overall framework is very straightforward and concise, placing emphasis on the concepts of mass-interaction physical modelling, the specific time constraints of haptic feedback loops and real-time audio computation. The entire system is open-source, multiplatform and very affordable. As with any newly released open-source tool, the next step is to measure its ease-of-use and robustness in a variety of applications and contexts, hopefully developing a community of users and contributors over time.
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  Partially in response to these issues, several open-hardware systems have been proposed, such as the simple low-tech haptic systems designed by Bill Verplank [ , ]. More recently, the rise of digital fabrication technologies and open-electronics have given rise to new, affordable and open-source & hardware haptic devices, such as Edgar Berdahl & A. Kontogeorgokapopoulos' FireFader [ ], or the Haply system [ ].

Figure

  Figure : a) Distributed approach to multi-modal virtual scenes (left), b) single model approach (right).

Figure :

 : Figure : Representation of a mass-interaction model, composed of different types of mass and interaction elements.

  Figure : Creating a mass-interaction physical model with P .

Figure :

 : Figure : Full user-model interaction chain for non-audio haptic simulations. The kinematic calculations, physical computation and position/force I/O are all performed in a haptic thread, running at kHz. The model is rendered at a lower rate in the draw() method.

Figure 6 :

 6 Figure 6: Chain of masses (green) attached to the Haply system (red) by springs.

Figure 8 :

 8 Figure 8: D Plucked String Example. The haptic mass (red) is pressed against the string.

Figure :

 : Figure : Various screen shots of the "recoil" string. The green point is fixed, whereas the yellow one is a very heavy mobile mass, causing the string to tighten/loosen, wrap around the Haply device, etc.

  this paper, we have presented a new open-source & openhardware framework for prototyping audio-haptic interaction with massinteraction models. Based on the Haply device, a new physics engine prototype, and the P sketching environment, users can easily create scenes composed of virtual objects and interact with them. Two scenarios allow the physical computation to either be calculated in sync with the haptic data acquisition & computation loop, or in a higher rate thread in the form of a physics-based Unit Generator for real time audio. A first batch of examples shows promising results. The D haptic device offers new interactions with virtual acoustical objects; augmenting the current Haply device to or DoF should open further perspectives.
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