
HAL Id: hal-02015740
https://hal.science/hal-02015740v1

Submitted on 12 Feb 2019 (v1), last revised 25 Feb 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast audio-haptic prototyping with mass-interaction
physics

James Leonard, Jerome Villeneuve

To cite this version:
James Leonard, Jerome Villeneuve. Fast audio-haptic prototyping with mass-interaction physics.
International Workshop on Haptic and Audio Interaction Design - HAID2019, Mar 2019, Lille, France.
�hal-02015740v1�

https://hal.science/hal-02015740v1
https://hal.archives-ouvertes.fr

HAID 2019, Lille, France

Fast audio-haptic prototyping with mass-interaction physics
JAMES LEONARD*1 AND JÉRÔME VILLENEUVE†1
1UNIV. GRENOBLE ALPES, CNRS, GRENOBLE INP*, GIPSA-LAB,

38000 GRENOBLE, FRANCE,
* INSTITUTE OF ENGINEERING UNIV. GRENOBLE ALPES

This paper presents ongoingwork on the topic of physicalmodelling
and force-feedback interaction. Specifically, it proposes a frame-
work for rapidly prototyping virtual objects and scenes by means of
mass-interaction models, and coupling the user and these objects
via an affordablemulti-DoF haptic device. Themodelled objects can
be computed at the rate of the haptic loop, but can also operate at
a higher audio-rate, producing sound. The open-source design and
overall simplicity of the proposed systemmakes it an interesting so-
lution for introducing both physical simulations and force-feedback
interaction, and also for applications in artistic creation. This first
implementation prefigures current work conducted on the develop-
ment ofmodular open-sourcemass-interaction physics tools for the
design of haptic and multisensory applications.

INTRODUCTION

In recent years, the access to digital fabrication technologies coupledwith the surge of do-it-yourself electronics and a drive from the VirtualReality industry have given rise to a new interest in haptics: once consid-ered only as costly lab equipment reserved to specific academic fields,a new generation of force-feedback and vibrotactile devices now offeraffordable open designs, that can be built, customised or tampered with,and used by individuals for a vast range of purposes including musical& artistic creation [1, 12].
Prototyping haptic interactions generally involves creating and comput-ing a physical scene that the user will interact with through the device.However, tools for designing the virtual scenes (such as CHAI3D1) areoften difficult to apprehend. We argue that following the increased ac-cessibility of haptic solutions, equally accessible tools should allow forsimple and fast prototyping of modular virtual scenes, applicable to anynumber of purposes, including haptic-audio multi-modal VR.
This paper proposes such a framework using a new open-source mass-interaction physical modelling engine and an existing open-source /open-hardware haptic device. First, we briefly introduce the contextof force-feedback interaction technologies and physical modelling con-cepts for designing multisensory virtual scenes. Our prototyping frame-work is then presented and illustrated through a series of examples. Fi-nally, we will offer perspectives for future work.
NATURAL INTERACTION WITH DIGITAL REALITIES

Throughout the history of information technologies, advances in com-putation methods and process have always evolved in tight relationshipwith technologies allowing humans to interact with the machine. In re-cent years, global trends in HCI have shifted from input peripherals (suchas the keyboard andmouse), towards natural interaction through speech
*james.leonard@gipsa-lab.fr†jerome.villeneuve@gipsa-lab.fr1http://www.chai3d.org

recognition, motion capture and gesture recognition, and virtual realitytechnologies.
Blending digital realities with the real physical world is now common-place, and to this end technologies have evolved significantly both in per-formances and affordability, driven essentially by the video-game andentertainment industry. However, focus has primarily been on visual as-pects (CGI animation, etc.), sometimes sound (through immersive 3Daudio techniques), but rarely on the sense of touch or physical presenceinside a virtual scene, using haptic (or force-feedback) technologies.
Indeed, the sense of touch relies on a coupled action-perception loop[11], distributed across the entire human body. Hence, when developingor using haptic systems capable of "rendering" this interaction with avirtual entity, one is faced with two main technological challenges:

• Simulating the immediacy of the action-perception loop: in a force-feedback chain the computer receives position data from a sensor,computes interaction forces based on a virtual scene, and sendsthese forces data back to mechanical transducers2. All of theseoperations take time, and hardware/software architectures mustallow a sufficiently fast loop to convey the impression of immedi-ate action-reaction, and also for stability reasons [14, 10].
• Sufficient degrees of freedom: very few human gestures can bereduced to a small number of degrees of freedom, and applied inonly one or a few points. However, designing haptic systems witha large number of DoF and/or contact points poses many mechan-ical challenges. Various systems have been proposed, from pen-like interfaces [20], to exoskeletons [13] or haptic gloves [2], but ineach case they are generally specifically tailored to a specific typeof interaction.

Developments and applications of haptic devices for artistic creationcan be traced back to the late 1970s [8]. Since then, a steadily growingscientific community has formed around the use of force-feedback andvibrotactile technologies applied to the fields of music and digital arts[22].
OPEN-HARDWARE HAPTIC SYSTEMS

Due to their mechanical complexity and often dedicated hardware/soft-ware, haptic systems are generally considered costly. Among others, wecan cite the Phantom system [20], or the TGR from ACROE [9]. The gam-ing industry has led to some cheaper alternatives, such as the NovintFalcon [19], at the cost of reduced performance. What’s more, the rapidevolution of computer systems and peripherals has rendered the soft-ware and hardware compatibility of proprietary/commercial solutionsincreasingly problematic as drivers are not always maintained for recentoperating systems.
2In the case of impedance-based haptic devices.

Copyright is held by authors

HAID 2019, Lille, France

Partially in response to these issues, several open-hardware systemshave been proposed, such as the simple, low-tech haptic systems de-signed by Bill Verplank [25, 24]. More recently, the rise of digital fabri-cation technologies and open-electronics have given rise to new, afford-able and open-source & hardware haptic devices, such as Edgar Berdahl& A. Kontogeorgokapopoulos’ FireFader [1], or the Haply3 system [7].These systems are cheaper to build and repair, use simple communica-tion protocols, and minimise or entirely circumvent the use of any pro-prietary software.
We decided to use the Haply system for our work. Similarly to the Fire-Fader, it relies on an Arduino-based board (the Haply M0) to processsensor data and drive motors, and communicates over USB (through avirtual serial port) with a simulation context running on a host machine.However, the FireFader offers one or several 1 DoF sliders that are con-nected to one-dimensional sound synthesis simulations, whereas theHaply is a 2 DoF (cf. Figure 1) system that can be extended to 4, al-lowing exploration of more complex interaction modalities with multi-dimensional virtual environments. The open-source hAPI programminginterface allows to easily configure the haptic device and interact with avirtual scene.

Figure 1: The 2-DoF Haply force-feedback device

DESIGNING MULTIMODAL VIRTUAL SCENES

A question of equal importance to the force-feedback peripheral itselfconcerns how a multimodal (visual, audio and haptic) virtual scene canbe designed, computed and "rendered" for the user to see, hear and feel.We categorise two main approaches, shown in Figure 2:
Distributed Approach Complex virtual scenes are often distributedinto separate computational processes for each modality [23]. Visualrendering is handled at a relatively low rate (50-100 Hz, latency of upto 40ms tolerated), audio is processed at a high-rate (44.1 kHz, with la-tency under 10ms), and physics are generally computed around 1kHz,with critical latency conditions for the haptic loop (1ms or less). Thisscheme is especially adapted in cases where audio or visual processesmay rely on abstract (non-physical) algorithms. However, it does posethe problem of defining mapping and control relationships between theprocesses. If the correlation between different modalities is not suffi-ciently explicit, the sensation of believability and presence of the virtualobjects may suffer.
SingleModel Approach An alternativeway of designingmultimodal vir-tual scenes is to model them with a single formalism (cf. Figure 2b).Physical modelling allows creating scenes of deformable objects thatexhibit visual, mechanical and acoustic behaviour. The object that wetouch is the one we see, and that we hear. This approach is sometimes

3http://www.haply.co

referred to as multisensory, and guarantees coherence between the dif-ferent modalities. Works such as [16, 1] use this approach with mass-interaction physical modelling, a formalism presented below.
MASS-INTERACTION PHYSICAL MODELLING

Representing mechanical systems by means of punctual masses linkedtogether by elements such as springs or dampers, and submitted to vari-ous constraints, is one of the most common ways to describe and calcu-late their behaviour. From Newton’s laws we know the equation of move-ment of a mass in a given referential; the action of springs, dampersand other elements can be mathematically described or approximatedby well known formulas. By resolving the equation system composed ofthe equations of each element in a mechanical construction, we obtainthe global behaviour.
Mass-interaction physical modelling and simulation [4] relies on exactlythis principle: the inertial behaviours of material elements and interac-tions (springs, dampers, etc.) are described by simple discrete-time dif-ference equations, following a given discretisation scheme (see [3, 15]for algorithms and implementation details). Positions and forces canbe expressed as scalar values (for 1D systems) or as 2D or 3D vectorsaccording to the spatial attributes of the scene.
Mechanical constructions are then built by assembling masses and in-teractions together in a network, setting physical parameters and initialconditions, and then computing the behaviour over time. Figure 3 showsa topological representation of a mass-interaction model.
Owing to their inherent simplicity and efficient computation, lumpedmethods such as mass-interaction physics have been widely used andstudied in the field of haptics, for the design of virtual deformable mat-ter and haptic interaction models [6, 18, 10], including for direct force-feedback interaction with virtual musical instruments [17, 1]. However,we notice a relative lack of open and accessible frameworks or toolsallowing for modular and unified design of multisensory virtual objectsand scenes, that can be considered for their visual, acoustical, hapticbehaviour, or indeed any combination of the three.
In the following section, we present our contribution to such a frameworkin the form a mass-interaction physics engine that can be coupled withan open-hardware force-feedback device (in our case, the Haply) in orderto create any kind of haptic or audio-haptic virtual scene.
A PHYSICS-BASED HAPTIC PROTOTYPING FRAMEWORK

Our prototyping framework is based on PROCESSING4, an open-sourceJava based programming environment tailored for sketching 2D and 3Danimated scenes. It is currently one of the most popular tools used tointroduce and teach interactive and visual programming, while remain-ing capable of complex rendering, communication with hardware, andeven physical modelling5. What’s more, hAPI, the Haply programminginterface, is written in Java and is directly fitted for running within PRO-CESSING sketches. Although, it is not an audio programming environmentas such, external libraries can be used to add real-time sound synthesisfunctionality.
A MASS-INTERACTION PHYSICS ENGINE IN JAVA

MIPHYSICS is a new open-source modular mass-interaction physics en-gine prototype, recently developed by the authors. As opposed to ex-isting physical modelling libraries within PROCESSING, MIPHYSICS allowsdesigning 3D physical objects throughmodular networks of masses andinteractions, easily integrating any type of user interaction (for manip-ulation, parameter modification, dynamic topology changes, etc.), andbuilding any type of visualisation process on top of the created model.
4https://processing.org/5https://github.com/diwi/PixelFlow

HAID 2019, Lille, France

Figure 2: a) Distributed approach to multi-modal virtual scenes (left), b) single model approach (right).

Figure 3: Representation of a mass-interaction model, composed of dif-
ferent types of mass and interaction elements.

As in any mass-interaction system, the main types of physical elementsproposed by MIPHYSICS are:
• Mass-type modules: Three-dimensional masses, oscillators andfixed-Points, as well as 2D masses (constrained on the z plane) or1D masses (that only vibrate along the z plane).
• Interaction-type modules: Three-dimensional interactions suchas springs, dampers, contacts, enclosing bubbles, etc. For spe-cific use cases, 1D springs have also been implemented.

One of the main design goals for MIPHYSICS is simplicity of use anddirect access to each element of a physical model, including duringrun-time. Each mass or interaction is labelled with a specific name oridentifier that can be used to connect the element to others, to read itsstate or change its physical parameters during the simulation. Meta-categories of physical elements can be created to allow for groupedparameter modifications. In addition to specific physical parameters,global "air friction" and gravity direction/force of the entire virtual scenecan be configured and modified. Figure 4 shows the general code struc-ture when creating a physical model.
INTEGRATION OF THE HAPTIC DEVICE

From the point of view of the physical simulation, the haptic device isrepresented by an avatar: a mass-type module, called HapticInput3D.Instead of calculating a new position based on its previous states andthe forces applied to it (as a regular mass would), this module sendsits force signal out to the real haptic device’s transducers and sets itsposition from the haptic device’s sensor data.
We use the existing hAPI functions to transform the encoder values ofthe two motors into a 2D position by calculating the kinematics of thelinkage arms, and reciprocally to translate forces applied in a 2D spaceto torque values applied to the motors. Therefore, the end-user has onlyto consider the device’s end-effector in a 2D plane and connect it directlyto the simulation.

1/ * g l o b a l v a r i a b l e * / 2Ph y s i c a lMode l mdl ; 3s imRa te = 300 ; 4d i s p R a t e = 60 ; 56v o i d se t up () { 78/ * . . . g e n e r a l s e t up code . . . * / 910mdl = new Ph y s i c a lMode l (s imRate , d i s pRa t e , paramSystem . ALGO_UNITS) ; 1112/ * C r e a t e a mass , connec ted t o f i x e d p o i n t s v i a S p r i n g Dampers * / 13mdl . addMass3D (" mass " , m, new Vect3D (0 . , 0 . , 0 .) , new Vect3D (0 . , 0 . , 1 .)) ; 1415mdl . addGround3D (" g r ound 1 " , new Vect3D (d i s t , 0 . , 0 .)) ; 16mdl . addGround3D (" g round2 " , new Vect3D(−d i s t , 0 . , 0 .)) ; 1718/ * . . . add o t h e r m a t e r i a l e l emen t s . . . * / 1920mdl . addSpr ingDamper3D (" s p r i n g 1 " , 1 . , 0 . 1 , 0 . 0 1 , " mass " , " g r ound 1 ") ; 21mdl . addSpr ingDamper3D (" s p r i n g 2 " , 1 . , 0 . 1 5 , 0 . 0 1 , " mass " , " g round2 ") ; 2223/ * . . . add o t h e r i n t e r a c t i o n s . . . * / 2425mdl . i n i t () ; 26} 2728v o i d draw () { 2930/ * C a l c u l a t e Ph y s i c s * / 31mdl . d r aw _ph y s i c s () ; 3233/ * Get t h e p o s i t i o n o f t h e " mass " module * / 34PVec to r pos = mdl . g e tMa tPVec t o r (" mass ") ; 3536/ * . . . Draw t h e scene , t h e mass and t h e s p r i n g s . . . * / 37}

Figure 4: Creating a mass-interaction physical model with MIPHYSICS.

The 8-bit resolution of the encoders can result in strong quantisationof the position data and fairly "jumpy" physical behaviour. We chose tofeed the raw position value into an Exponential WeightedMoving Averagefilter with a high weighting decrease. As such the filter adds latency, the-oretically impacting haptic stability. However, given the low resolutionposition data, the trade-off of smoother data versus the small increasein latency leads to no observable increase of instability.
Time has not yet allowed for complete real/virtual calibration of thehaptic device. For now, the real → virtual position gain alpha andthe virtual → real force gain beta (cf. Figure 5) are empirically de-fined by the user depending on the mechanical impedance of the virtualscene/objects.
END USER ENVIRONMENT: PROCESSING

Haptic Simulation Framework In the case of non-audio haptic simu-lations, the PROCESSING sketch is organised as shown in Figure 5: thehaptic input/output communication with the Haply Board, the kinemat-ics and the physical computation all run in a dedicated thread runningat a fixed-rate, generally 1 kHz. The draw() method renders the model byobserving its state at a lower display rate. The rendering process can begeneric (visualise all mass-type and interaction-type elements accord-ing to pre-defined drawing routines) or custom-coded by the user.

HAID 2019, Lille, France

Figure 5: Full user-model interaction chain for non-audio haptic simulations. The kinematic calculations, physical computation and position/force
I/O are all performed in a haptic thread, running at 1 kHz. The model is rendered at a lower rate in the draw() method.

Portability and ease of use is an important consideration. The sketchesrun on Mac, Linux and Windows, the only noticeable difference mea-sured being the scheduling performance of the haptic thread: early testsshow a higher dropout rate (missed steps in the haptic-loop) on a Win-dows system, correlated with system load; however, on a standard LinuxOS the scheduling is more robust, and very few steps are missed. Per-formance in these conditions is satisfactory, meaning there is no needfor a dedicated Real-Time OS, sometimes used in high-performance syn-chronous systems [17].
Real-time Audio-Haptic Simulation Framework Handling real-time au-dio streams in Processing can be done using the MINIM library6, whichimplements the common Unit Generator paradigm, found in environ-ments such as Super Collider [21]. A PHYUGEN class has been cre-ated, extending the MINIM UGEN template. It contains the mass interac-tion model (built and initialized in the class constructor), and computessteps whenever needed (by overriding the uGenerate() method).
The system is slightly more complex here:

• The haptic thread runs at 1 kHz, getting the haptic I/O and perform-ing the kinematic transformations. At each step, it sets a new po-sition value from incoming sensor data, and discharges the forcefrom the model to the haptic device (sending it to the motors).
• The sound synthesis UGEN runs at the audio rate (44.1 kHz), pro-viding new audio data by computing steps of the physical modelwhenever needed through a callback API. The haptic avatar mod-ule upsamples and smoothes raw position data from the hapticdevice, using by the EWMA filter. Symmetrically, force applied bythe model to the avatar is accumulated into a buffer until it is con-sumed by the haptic thread (see [17] for details regarding multirateaudio mass-interaction systems with haptics).
• The visualisation thread (draw() method) observes the model po-sitions and creates the visual representation.

A lock synchronisation system ensures mutual exclusion in the criti-cal sections of the haptic, sound synthesis and rendering threads, thusavoiding temporary glitches & errors that can be induced by concurrentmemory access (e.g. reading the model state in the display thread whileit is being updated by the physics thread).
6http://code.compartmental.net/tools/minim/

RESULTS & EXAMPLES

A number of Haply-specific examples can be found the in the examplesection of theMIPHYSICS github repository7, as well as ready-to-use tem-plates in which the user has only to add his specific model code andvisualisation specificities. Below, we present four simple cases:
HAPTIC EXAMPLE 1: HEAVY MASS CHAIN

This simple example attaches a chain of 3D masses to the haptic de-vice (which moves on the x-y plane). The springs are fairly loose, but thecombined weight of the virtual masses is enough to add significant iner-tial behaviour to the system: when dragging the chain, one can feel theeffort needed to set them in motion, and must work with/against theirmomentum when stopping or changing direction.

Figure 6: Chain of masses (green) attached to the Haply system (red) by
springs.

HAPTIC EXAMPLE 2: ENCLOSED MARBLES

In this model, two-hundred 3D masses are enclosed within a sphere (us-ing bubble interactions) and above a flat surface (using planeContactmodules). Each mass has contact interactions set up with all othermasses, as well as with the haptic input module. Gravity and air frictionare configured so that the masses fall down onto the plane, and even-tually stop moving. By "rummaging" around with the haptic device, theuser interacts simultaneously with many masses, sending them bounc-ing up against the edges, giving a global "stirring" motion, and so forth.Dropping the haptic thread rate to 200 Hz allows to increase the numberof masses to 600, at the cost of reduced bandwidth (less sharp dynam-ics) in the physics computation.
7https://github.com/mi-creative/miPhysics_Processing

HAID 2019, Lille, France

Figure 7: The "Enclosed Marbles" example sketch.

AUDIO-HAPTIC EXAMPLE 1: PLUCKED STRING

Using the real-time audio architecture described in the previous section,this model illustrates the simple case of a plucked string. The string it-self is composed of masses constrained to move along the x-y plane(keeping a constant z value), connected by damped 3D springs, andended with two fixed points.
Contact interactions link the haptic device to each mass of the string,with a given sphere of action (analogous to the "width" of the plectrum),so that the user can pluck the string in any part (in the middle, near thebridge, etc.) and also excite and rapidly dampen the string in specific ar-eas to obtain palm-mute or natural harmonic effects. A similar examplecombines multiple strings placed below each other, so that they can beplayed one at a time or strummed together.

Figure 8: 2D Plucked String Example. The haptic mass (red) is pressed
against the string.

It can be noted that in the case of 2D strings, the resting length of thesprings relative to the elongation imposed by the extremities is a key fac-tor in the physical behaviour, in particular regarding non-linear tensioneffects [5] such as the "twang" or pitch glide at high excitation levels.This will be illustrated in the last example.
AUDIO-HAPTIC EXAMPLE 2: THE RECOIL STRING

This model explores the non-linearities of 2D strings by pushing the situ-ation to the extreme: the string is still attached to a fixed point at one endbut the other end it a very heavy mass, set with an initial velocity. Thismass slowly stretches the string until it recoils, then loosening up untilit is completely limp, before stretching again. What’s more, by pluck-ing or exerting pressure on the string, the user can influence the courseof the heavy mass, resulting in bizarre "worm-like" behaviour, the stringsometimes wrapping almost entirely around the haptic device (as seenin Figure 9.
These four examples serve as a small introduction to what is possiblewith the platform. The modular design of the physics and the haptic in-teraction allow creating all kinds of virtual objects and interaction sce-narios, the only real limit being the computational complexity that can fit

Figure 9: Various screen shots of the "recoil" string. The green point is
fixed, whereas the yellow one is a very heavy mobile mass, causing the
string to tighten/loosen, wrap around the Haply device, etc.

inside a haptic or audio frame. Preliminary results (on a fairly worn-downlaptop running Debian 7) show a maximal attainable model complexityof approximately ten thousand 3D elements at 1 kHz for haptics-onlysketches, and four hundred elements for audio-rate sketches.
PERSPECTIVES & FUTURE WORK

This work offers several possible axes for improvement:
1. Performance, stability and robustness of the haptic device: theHaply’s 3D printed plastic parts lack rigidity and present someplay betweenmechanical elements (especially concerning the link-age arm pivots). This could be addressed by making sturdier alu-minium parts based on the provided mechanical schematics. Themotor performance also presents some limits for small amountsof force feedback (it takes a certain threshold of command torquefor the motor to actually move). For these reasons, implementingstiff spring interactions directly between the device and a virtualpoint is problematic, as unstable oscillations tend to occur.
2. Calibration of the real/virtual chain: through mechanical charac-terisation of the device and dedicated calibrationmodels, it shouldbe possible to set exactly how amass of 1 gram in the virtualmodelis projected into the real world, and reciprocally, helping to stan-dardise the parametrisation of virtual models and make them eas-ier to port to & from other haptic devices.
3. Optimisation of the simulation engine: this work is a prototype de-veloped entirely in Java and has prioritised object-oriented con-cepts and global intelligibility over lean, speed-oriented process-ing. Switching the core engine to a more powerful language suchas C++ while keeping user-friendly model building functions is aninteresting perspective for future work.

The authors feel that the presented system constitutes an interestingbase for teaching students about modular physical modelling and force-feedback interaction : the overall framework is very straightforward andconcise, placing emphasis on the concepts of mass-interaction physicalmodelling, the specific time constraints of haptic feedback loops andreal-time audio computation. The entire system is open-source, multi-platform and very affordable. As with any newly released open-sourcetool, the next step is to measure its ease-of-use and robustness in avariety of applications and contexts, hopefully developing a communityof users and contributors over time.

HAID 2019, Lille, France

CONCLUSION

In this paper, we have presented a new open-source & open-hardware framework for prototyping audio-haptic interaction with mass-interaction models. Based on the Haply device, a new physics engineprototype, and the PROCESSING sketching environment, users can easilycreate scenes composed of virtual objects and interact with them. Twoscenarios allow the physical computation to either be calculated in syncwith the haptic data acquisition & computation loop, or in a higher ratethread in the form of a physics-based Unit Generator for real time audio.
A first batch of examples shows promising results. The 2D haptic de-vice offers new interactions with virtual acoustical objects; augmentingthe current Haply device to 3 or 4 DoF should open further perspectives.The simplicity and affordability of the proposed systemmakes it an idealcandidate for teaching students about force-feedback interaction andmass-interaction physical modelling. More generally, is serves as a gen-eral framework for modular, open haptic interaction design. We aim tohost a series of introductory workshops in the coming months.
REFERENCES

[1] E. Berdahl and A. Kontogeorgakopoulos. The firefader: Simple,open-source, and reconfigurable haptic force feedback for musi-cians. Computer Music Journal, 37(1):23–34, 2013.
[2] J. Blake and H. B. Gurocak. Haptic glove with mr brakes for virtualreality. IEEE/ASME Transactions On Mechatronics, 14(5):606–615,2009.
[3] C. Cadoz and J.-L. Florens. The physical model : Modeling andsimulating the instrumental universe. In Representations ofMusical

Signals, pages 227–268. MIT Press, 1991.
[4] C. Cadoz, A. Luciani, and J. L. Florens. Cordis-anima: a modelingand simulation system for sound and image synthesis: the generalformalism. Computer music journal, 17(1):19–29, 1993.
[5] N. Castagné and C. Cadoz. Physical modeling synthesis: balancebetween realism and computing speed. In Proceedings of the COST

G-6 conference on the digital audio effects (DAFX-00), page 6, 2000.
[6] M. C. Cavusoglu and F. Tendick. Multirate simulation for high fi-delity haptic interaction with deformable objects in virtual environ-ments. In Robotics and Automation, 2000. Proceedings. ICRA’00.

IEEE International Conference on, volume 3, pages 2458–2465.IEEE, 2000.
[7] S. Ding and C. Gallacher. The haply development platform: A mod-ular and open-sourced entry level haptic toolset. In Extended Ab-

stracts of the 2018 CHI Conference on Human Factors in Computing
Systems, page D309. ACM, 2018.

[8] J.-L. Florens. Coupleur Gestuel Retroactif pour la Commande et le
Controle de Sons Synthetises en Temps-Reel. PhD thesis, InstitutNational Polytechnique de Grenoble, 1978.

[9] J.-L. Florens, A. Luciani, C. Cadoz, and N. Castagné. Ergos: Multi-degrees of freedom and versatile force-feedback panoply. In Euro-
Haptics 2004, 2004.

[10] J.-L. Florens, A. Voda, and D. Urma. Dynamical issues in interac-tive representation of physical objects. In EuroHaptics 2006 con-
ference, pages 213–219, 2006.

[11] R. B. Gillespie and S. O’Modhrain. Embodied cognition as amotivat-ing perspective for haptic interaction design: A position paper. In
World Haptics Conference (WHC), 2011 IEEE, pages 481–486. IEEE,2011.

[12] M. Giordano and M. M. Wanderley. Perceptual and technologicalissues in the design of vibrotactile-augmented interfaces for musictechnology and media. In International Workshop on Haptic and
Audio Interaction Design, pages 89–98. Springer, 2013.

[13] A. Gupta and M. K. O’Malley. Design of a haptic arm exoskeletonfor training and rehabilitation. IEEE/ASME Transactions on mecha-
tronics, 11(3):280–289, 2006.

[14] V. Hayward, O. R. Astley, M. Cruz-Hernandez, D. Grant, andG. Robles-De-La-Torre. Haptic interfaces and devices. Sensor Re-
view, 24(1):16–29, 2004.

[15] A. Kontogeorgakopoulos and C. Cadoz. Cordis anima physicalmodeling and simulation system analysis. In 4th Sound and Mu-
sic Computing Conference 2007, pages 275–282. National andKapodistrian University of Athens, 2007.

[16] J. Leonard and C. Cadoz. Physical modelling concepts for a collec-tion of multisensory virtual musical instruments. In New Interfaces
for Musical Expression 2015, pages 150–155, 2015.

[17] J. Leonard, N. Castagné, C. Cadoz, and A. Luciani. The msci plat-form: A framework for the design and simulation of multisensoryvirtual musical instruments. In Musical Haptics, pages 151–169.Springer, 2018.
[18] S. Marlière, F. Marchi, J.-L. Florens, A. Luciani, and J. Chevrier. Anaugmented reality nanomanipulator for learning nanophysics: The.In International Conference on Cyberworlds 2008, pages 94–101.IEEE, 2008.
[19] S. Martin and N. Hillier. Characterisation of the novint falcon hap-tic device for application as a robot manipulator. In Australasian

Conference on Robotics and Automation (ACRA), pages 291–292.Citeseer, 2009.
[20] T. H. Massie, J. K. Salisbury, et al. The phantom haptic interface:A device for probing virtual objects. In Proceedings of the ASME

winter annual meeting, symposium on haptic interfaces for virtual
environment and teleoperator systems, volume 55, pages 295–300.Citeseer, 1994.

[21] J. McCartney. Rethinking the computer music language: Supercol-lider. Computer Music Journal, 26(4):61–68, 2002.
[22] S. Papetti and C. Saitis. Musical haptics: Introduction. In Musical

Haptics, pages 1–7. Springer, 2018.
[23] S. Sinclair and M. M. Wanderley. A run-time programmable sim-ulator to enable multi-modal interaction with rigid-body systems.

Interacting with Computers, 21(1-2):54–63, 2008.
[24] W. Verplank. Haptic music exercises. In Proceedings of the 2005

conference on New interfaces for musical expression, pages 256–257. National University of Singapore, 2005.
[25] W. Verplank, M. Gurevich, and M. Mathews. The plank: designinga simple haptic controller. In Proceedings of the 2002 conference

on New interfaces for musical expression, pages 1–4. National Uni-versity of Singapore, 2002.

