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Modelling rainfall-induced mudflows using FEMLIP and a unified 

hydro-elasto-plastic model with solid-fluid transition

Z.H. Li, F. Dufour* and F. Darve

Grenoble CNRS, UMR 5521, 3SR, Grenoble Alpes University, Grenoble, France 

The paper describes a proposed unified hydro-elasto-plastic model with a solid–fluid transition. The 

model associates a hydro-elasto-plastic model for partially saturated geomaterials, a Bingham’s 
viscous law, and the transition criterion between solid and fluid states. The model describes both 

solid and fluid behaviours of partially saturated geomaterials in a unified framework. In addition, this 
paper describes a novel Finite Element Method with Lagrangian Integration Points (FEMLIP) 
formulation for solving hydro-mechanical problems. Based on the equilibrium equation of momen-
tum and the continuity equation of water flow, the formulation was developed and implemented in a 

FEMLIP tool. Bishop’s effective stress expression and proper water retention diagrams were taken 

into account. A heuristic column and real rainfall-induced mudflows were also simulated and 

analysed in this study. The permeability effects of partially saturated soil and the effective cohesion 

were considered, which included consideration of the entire mudflow process. The results were 

proven satisfactorily in a qualitative fashion.

Keywords: mudflow; hydro-mechanical coupling; solid–fluid transition; partially
saturated soil; rainfall-induced slope; permeability; failure; FEMLIP

1. Introduction

Flow-type landslides are a common phenomenon worldwide. They can be attributed to

a number of factors, including geology, topography, vegetation, climatic variation and

human activities. However, it is well known that landslides occur frequently after

intense rainfalls in tropical and temperate regions, especially shallow landslides (Petley,

2012). During wetting (rainfall infiltration) of an unsaturated soil, the increased degree

of saturation and decreased suction subsequently decrease the shear strength of the soil.

Landslides are frequently very dangerous because of their rapid velocities and long

run-out distances. For example, the landslide in Brienz (Switzerland, August 2005) and

the mudslide in Gansu (China, August 2010), resulted in more than 1479 fatalities.

Development of a numerical tool to analyse and predict landslides is increasingly

necessary.

Different failure mechanisms before and after the event challenge the analysis of

landslides. A series of questions remain open in international discussions. In this study,

we considered only landslides that translate into torrential flows. In general, partially

saturated geomaterials exhibit an elasto-plastic solid behaviour that can be described

using previously developed elasto-plastic models (Gallipoli, Gens, Sharma, & Vaunat,
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2003; Sheng, Sloan, & Gens, 2004; Wheeler, Sharma, & Buisson, 2003). However, they

can also exhibit a fluid-like behaviour with a burst of kinetic energy in the post-failure

stage, for saturated and loose cases. At the microscopic level, a landslide can be

explained by a ‘weak’ contact network of soil grains in which shear strains develop and

the deviatoric stress cannot be supported. Fine soils act as a fluidizer among soil grains.

To simulate the entire flow landslide process in a partially saturated soil, a unified

solid–fluid model incorporating a hydro-mechanical coupling and a solid–fluid transition

can be established. This model can describe both the solid-like behaviour of partially

saturated soil in the pre-failure phase using an elasto-plastic model, and the fluid-like

behaviour in the post-failure phase using a viscous law. A criterion between the two

phases determines the failure of partially saturated soils. Such a unified model is

detailed in (Li, Dufour, & Darve, 2016).

Current numerical methods do not adequately describe both these behaviours within

the same framework. Numerous mathematical methods analyse a landslide phenomenon

as two separate phases (Alonso, Gens, & Delahaye, 2003; Au, 1998; Chen, Dadson, &

Chi, 2006; Nakata, Liu, Hyodo, Yoshimoto, & Kato, 2010). Modelling of the elasto-

plastic state prior to failure is generally accomplished using the Lagrangian finite ele-

ment method, which allows for inclusion of historical variables. However, this method

is limited when analysing large deformations because of element distortion. Compara-

tively, the post-failure behaviour of geomaterials is generally simulated using the Eule-

rian finite element methods with material velocities. These methods are capable of

addressing run-out behaviour in large-scale terrains, but do not adequately describe geo-

materials in the solid state for tracking elasto-plastic variables. Depth average models

have also been used to simulate post-failure behaviour and the propagation phase of a

flow landslide (Pastor et al., 2015); however, this type of approach cannot simulate dis-

sipative materials.

The complexity of landslides when considering fully coupled hydro-mechanical

behaviour in partially saturated geomaterials requires an adaptable numerical method

that is capable of capturing all behaviours, particularly for large deformation processes.

To fulfil this need, several particle-based methods have been developed for which a

computational grid may be used to speed up the resolution. Because this grid carries no

material properties, these methods are classified as mesh-less or mesh-free methods. The

Particle Finite Element Method (Zhang, Krabbenhoft, Sheng, & Li, 2015) is a mesh-less

method involving a mesh-less finite element interpolation. The mesh is used to discretise

the studied domain and to integrate governing equations in a Lagrangian manner. The

nodes contain information regarding the global displacement and the physical properties

of the materials. Large deformations can be modelled by means of this method, but the

required re-meshing at each time step is costly.

Smooth particle hydrodynamics (SPH) (Cascini, Cuomo, Pastor, Sorbino, &

Piciullo, 2014) is a well-known technique in which the studied domain is discretised

into particles that have a spatial distance or so-called smoothing length. Within this

distance, material properties are “smoothed” using a kernel function. Because of its for-

mulation, SPH can be adapted for problems that are dynamically driven and that require

a specific solution in the treatment of boundary conditions. In addition, the material

point method (MPM) combines the capacities of the Eulerian and Lagrangian methods.

The domain is first discretised into a series of mobile particles, Newton’s second law is

then solved to determine global displacement in the fixed mesh. While this method is

frequently used to describe landslides (Abe, Soga, & Bandara, 2014; Bandara, Ferrari,

2



& Laloui, 2016; Soga, Alonso, Yerro, Kumar, & Bandara, 2015), it suffers from several

weaknesses:

(1) The linear shape functions frequently induce numerical noises in large displace-

ments cases, when material points cross the background mesh (Abe et al., 2014;

Bardenhagen & Kober, 2004), While the Generalised Interpolation Material

Point Method has ameliorated this issue, a very fine mesh can still reveal this

problem (Abe et al., 2014).

(2) The numerical weight of the material particles reflects the particle’s

representative volume which is updated according to the continuum transforma-

tion. However, this volume update does not account for the number of particles

in a cell. Furthermore, Beuth, Wieckowski, and Vermeer (2011) proposed a new

version based on a re-computation of the numerical weight, such as the cell

weight when constant in time. It should be pointed out that this contribution was

first proposed by Moresi et al. (Moresi & Solomatov, 1995) in 1995.

(3) Higher dimensional shape functions demand additional computational time.

In addition to providing the macroscopic description of the entire landslide process,

discrete element methods are also suitable for micromechanical investigation, but

computational costs are high. If macroscopic laws are introduced, use of continuous

methods is more efficient as long as the flow does not exhibit any discontinuities.

After careful consideration, the finite element method with Lagrangian integration

points (FEMLIP), developed from the Particle-in-Cell method (Dufour, 2002; Harlow,

1964; Moresi, Dufour, & Mühlhaus, 2002, 2003), was selected as the preferred

numerical method in this study. This method is capable of tracking internal variables

and solving large displacements (Dufour, 2002; Dufour & Pijaudier-Cabot, 2005;

Moresi et al., 2002, 2003; Prime, Dufour, & Darve, 2013, 2014). In contrast to the

MPM, the numerical weight of the material particles used in this method is refreshed

at each time step, resulting in an acceptable price of calculation, due to the use of an

implicit solver.

The objective of this paper is essentially to validate the proposed unified model with

a solid–fluid transition by comparing and analysing its results qualitatively in different

cases. The paper is organised as follows. Section 2 presents the unified hydro-

elasto-plastic model with a solid–fluid transition for partially saturated geomaterials.

The hydro-mechanical coupling in a partially saturated porous media is taken into

account, by means of an effective stress with a new formulation of parameter χ, and a

hydraulic model that relates water content and suction. Section 3 is devoted to establish-

ing a new FEMLIP formulation for solving hydro-mechanical problems. Problems

induced by the new formulation will be discussed and some possible solutions will be

proposed. Moreover, a new solver based on the bi-conjugate gradient stabilised method

(BiCGSTAB) is implemented to inverse the non-symmetric matrix. Section 4 presents

the modelling of a heuristic partially saturated column. The influences of permeability

and effective cohesion on the occurrence time of the failure in a solid state, and the

effects of viscosity on flow range in a fluid state are presented. Finally, a real rainfall-

induced slope is simulated and analysed. In Section 5, several conclusions and future

research prospects are discussed.
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2. Unified hydro-elasto-plastic model with a solid–fluid transition for partially

saturated geomaterials

For landslides induced by rainfall, especially mudflows, fine soils exhibit a solid-like

behaviour in the pre-failure stage and a fluid-like behaviour following a viscous law in

the post-failure stage. Proposed unified model, incorporating the behaviours of partially

saturated soils during this transitive evolution, was developed during this study, based

on work performed by Li et al. (2016). As shown in Figure 1, a global three-

dimensional model can be displayed in a one-dimensional form to illustrate the model’s

intrinsic characteristics. In Figure 1, the ‘d²W’ is the second-order work.

According to the above scheme, a porous saturated to partially saturated medium is

described by an elasto-plastic model. Hydro-mechanical coupling is considered by intro-

ducing an effective stress and a water retention behaviour in the elasto-plastic model.

Using Hill’s second-order work expressed as effective stress and the yield stress of a

viscous law, the failure condition is assessed for appropriate stress levels. Once failure

occurs, the medium exhibits fluid behaviour and large displacements appear. Note that

the proposed unified model can be applied for both localised and diffuse modes of fail-

ure. However, to avoid any mesh-dependency issues, only the diffuse mode of failure

was analysed in this study. For the post-failure regime, the medium is described by a

visco-plastic law such as Bingham’s law. The plasticity and coupled hydraulic parame-

ters have no physical significance in the fluid form, which is considered as a single

unique phase material, as mudflows are observed in situ.

2.1. Elasto-plastic model with a hydro-mechanical coupling

2.1.1. Bishop’s effective stress

Discussions regarding the selection of appropriate stress variables in partially saturated

soils are ongoing and detailed in (Harlow, 1964; Zhang et al., 2015). In this study, the

proposed unified model was made applicable for a partially saturated domain (Petley,

2012), using Bishop’s effective stress (Bishop, 1959) as follows:

r
0 ¼ r� uamþ vðua � uwÞm (1)

where r
0, r, ua and uw are, respectively, the effective stress vector, the total stress

vector, the isotropic air pressure and the isotropic water pressure. χ is the Bishop’s

parameter taken as a scalar in this model, and mT = (1, 1, 1, 0, 0, 0) s = ua − uw is the

suction value. Although recent studies of partially saturated idealised granular media

Figure 1. Diagram of the 3D global constitutive model in a 1D general scheme.
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have shown the tensorial nature of χ (Scholtès, Chareyre, Nicot, & Darve, 2009;

Scholtès, Hicher, Nicot, Chareyre, & Darve, 2009), Bishop’s parameter was taken as a

scalar for this model to represent a realistic porous media. Bishop’s parameter is com-

monly expressed as χ = Sr, where Sr is the degree of saturation (Bishop, 1959), but this

still reflects an idealised media rather than on realistic porous media. Based on the work

of Alonso, Pereira, Vaunat, and Olivella (2010), a new formulation of χ determined by

two parameters, aχ and nχ, was used in this study because of its ability to explain col-

lapse during the wetting process (Arairo, Prunier, Djéran-Maigre, & Darve, 2013). The

new formulation of χ is written as follows:

v ¼ 1þ avs

Patm

� �nv
� � 1

nv
�1

(2)

where s is the suction value and Patm is the atmospheric pressure. Through proper deter-

mination of aχ and nχ, the v formulation can predict many features of partially saturated

soil, such as settlement during the wetting path. The determination of aχ and nχ must

satisfy the requirement specified by (Alonso et al., 2010), v is considered equivalent to

an effective degree of saturation Sre that is lower than the main drying curve. Addition-

ally, the value of v must remain higher than the main wetting curve in the meantime,

according to assumptions by (Arairo et al., 2013).

2.1.2. PLASOL elasto-plastic model

A non-associated elasto-plastic model, PLASOL (Barnichon, 1998), can be used with

Bishop’s effective stress to describe the behaviour of partially saturated geomaterials in

the solid stage. The plastic limit of this model is the Van Eekelen plasticity criterion

(Van Eekelen, 1980), which is similar to the Mohr–Coulomb plasticity criterion but

avoids geometrical singularities. The plasticity criterion is written as follows:

f ¼ J2r þ m J1r0 �
3c

tanuc

� �
¼ 0 (3)

where J1r0 ¼ trðr0Þ, J2r ¼
ffiffiffiffiffiffiffiffiffiffiffi
trðs2Þ

p
, J3r ¼ 3

ffiffiffiffiffiffiffiffiffiffiffi
trðs3Þ

p
, (s ¼ r

0 � 1
3
trðr0ÞI) are the three

effective stress tensor invariants. I is the identity matrix, c is the cohesion, ϕc is the

mobilised friction angle under triaxial compression paths and m is a coefficient defined

as follows:

m ¼ a 1þ b sin 3bð Þð Þn (4)

where β is the Lode angle expressed by cos3b ¼
ffiffiffi
6

p
J3r
J2r

� �3
, a and b are parameters sta-

ted by:

a ¼ rc

ð1þ bÞn ; b ¼
rc
re

� �1
n�1

rc
re

� �1
nþ1

(5)

where n is an exponent intended to control the shape of the yield surface, whose default

value is −.299 according to Van Eekelen’s suggestion (Van Eekelen, 1980). The parame-

ters, rc and re are the reduced radii for compression and extension of the triaxial tests,

respectively, and are calculated as follows:
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rc ¼
1ffiffiffi
3

p 2� sinuc

3� sinuc

� �
; re ¼

1ffiffiffi
3

p 2sinue

3þ sinue

� �
(6)

where φe is the mobilised friction angle under triaxial extension paths.

The PLASOL model can also be used to simulate hardening of the yield surface

during loading. By introducing the Von Mises equivalent plastic strain, Ep
eq ¼

ffiffiffiffiffiffiffiffiffiffiffi
2
3
e
p
ije

p
ij

q
,

(ep ¼ e
p � 1

3
trðepÞI, the compression, extension friction angles and the cohesion, which

are formulated in Equation (7), vary between elastic initial values (c0, φe0, φc0) and

plastic limit values (cf, φef, φcf) during the plastic regime.

uc ¼ uc0 þ
ðucf �uc0ÞEp

eq

BpþE
p
eq

ue ¼ ue0 þ
ðuef �ue0ÞEp

eq

BpþE
p
eq

c ¼ c0 þ ðcf�c0ÞEp
eq

BcþE
p
eq

(7)

where Bc and Bp are hardening parameters corresponding to the values of Ep
eq for which

half of the hardening on friction angles and cohesion is reached.

Lastly, a non-associated plastic law, differing from f, is formulated as follows:

g ¼ J2r þ m0 J1r0 �
3c

tanuc

� �
(8)

where m′ retains the same form as m, but dilatation angles, ψc in compression and ψe in

extension are substituted for ϕc and ϕe. Taylor’s rule wcf � wc ¼ ucf � uc is followed to

define the dilatation angles (Taylor, 1948). Consequently, only one ψ value is needed.

In total, 13 parameters are required to adequately describe the elasto-plastic beha-

viour of soils:

E, v: Young’s modulus and Poisson’s coefficient

φc0, φcf: mobilised friction angles at elastic and plastic limits under triaxial compres-

sion

φe0, φef: mobilised friction angles at elastic and plastic limits under the triaxial

extension

ψc, ψe: dilatation angles under triaxial compression and extension

c0, cf: cohesions at elastic and plastic limits

Bc, Bp: hardening parameters

n: exponent to control yield surface shape

2.1.3. Water retention behaviour

By relating degree of saturation and suction, water retention curves (WRC) can be used

to describe the hydro-mechanical properties of partially saturated soil. As shown in

Figure 2, complete hydraulic model generally includes a boundary drying curve, a wet-

ting curve and two types of scanning curves. The degree of saturation is generally

greater in the drying process than in the wetting process for a given suction, resulting in

a hydraulic hysteresis.

Numerous hydraulic models have been previously proposed (Feng & Fredlund,

1999; Fredlund & Xing, 1994; Mualem, 1974; Parlange, 1980; Van Genuchten, 1980).

The modified Van Genuchten–Mualem model was selected for our work, because its

boundary curves are commonly used and its scanning curves are simple and precise.
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The modified Van Genuchten–Mualem model with a hydraulic hysteresis, taking into

account the relationship between the degree of saturation and porosity (Arairo et al.,

2013), was used to complete the hydro-mechanical coupling. The model formulation is

as follows:

Srv ¼ Srres þ Srsat � Srresð Þ 1þ avs

Patm

� �nv
� � 1

nv
�1

(9)

where the index v stands for d or w respectively for the drying or wetting processes,

Srres, Srsat and Srv are, respectively, the residual, saturated and current degrees of satura-

tion, av and nv are two parameters. The former is expressed as follows (Arairo et al.,

2013):

av ¼
Patm

saev

nv � 1

nv

� � 1
nv �nv

nv � 1ð Þ2
2nv � 1

nv

� �2� 1
nv

� 2nv � 1

nv

� �
� nv � 1ð Þ2

nv

!

(10a)

where saev is the air entry value (AEV) that is dependent on n and is determined as

follows: (Arairo et al., 2013):

saev ¼ saev0exp k
1

n
� 1

n0

� �� �
(10b)

where saev0 is the reference AEV for a reference porosity n0 and k is a material parame-

ter. Thus, the hydro-mechanical model is dependent on not only suction but also poros-

ity.

The hydro-mechanical model also includes two scanning curve equations as follows:

Srd s1; sð Þ ¼ Srw sð Þ þ Srw s1ð Þ � SrwðsÞ
Srsat � Srw sð Þ Srd sð Þ � SrwðsÞð Þ þ DSr1 (11a)

Figure 2. Scheme of water retention curves for partially saturated soil.
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Srw s2; sð Þ ¼ Srw sð Þ þ Srsat � SrwðsÞ
Srsat � Srw s2ð Þ Srd s2ð Þ � Srwðs2Þð Þ þ DSr2 (11b)

where Srw(s) and Srd(s) are the degrees of saturation on the boundary wetting and

drying curves, respectively, for a suction value s. s1 and s2 are the suction values on the

boundary wetting curve from which the scanning drying curve starts, and on

the boundary drying curve from which the scanning wetting curve starts, respectively.

The differences between the two calculated degrees of saturation are given as

DSr1 ¼ Srdðs1; ŝÞ � Srwðs1; ŝÞ and DSr2 ¼ Srdðs2; ŝÞ � Srwðs2; ŝÞ, where ŝ is the current

suction value when the cycle is reversed (from wetting to drying or from drying to wet-

ting). Note that either ΔSr1 or ΔSr2 will be zero for the first reversal of the cycle (Arairo

et al., 2013).

2.2. Solid–fluid transition criterion

Geomaterials are notably non-associated materials regarding the bifurcation domain of

failures. As defined, bifurcation can cause a sudden or discontinuous change in the

response mode while a constant or infinitesimal perturbed load is charged (Prunier,

Laouafa, Lignon, & Darve, 2009). A typical example of bifurcation in the geomaterial

domain is the liquefaction of loose sand during an undrained triaxial compression test

(Khoa, Georgopoulos, Darve, & Laouafa, 2006). The bifurcation domain is delimited by

a plasticity criterion corresponding to the disappearance of the determinant of M at the

upper limit, and by the second-order work criterion corresponding to the disappearance

of det M s at the lower limit. M is the constitutive matrix and M s is the symmetric part

of M. For associated materials, M is symmetric and the disappearance of det M and det

M s are equivalent. However, for non-associated materials M is not symmetric. Addition-

ally, according to linear algebra principles, det M s will vanish before det M (Laouafa,

Prunier, Daouadji, Al Gali, & Darve, 2011). Thus, the bifurcation is considered once the

second-order work criterion is met.

At the lower limit of the bifurcation domain, the second-order work criterion is con-

sidered the most conservative criterion and can be used to determine the potential insta-

bility of geomaterials (Darve, Servant, Laouafa, & Khoa, 2004; Khoa et al., 2006;

Laouafa et al., 2011; Nicot, Dauuadji, Laouafa, & Darve, 2010; Prunier et al., 2009).

This criterion was selected for use in this study to determine the solid–fluid transition

for the unified model. The second-order criterion is formulated as follows:

d2w ¼ dr0ijdeij (12a)

where r
0 and e are the effective stress and the strain tensors, respectively. The second-

order work written by the effective stress is used, since the instabilities of the granular

skeleton are of interest. If d2w[ 0 for all loading directions, the material is considered

stable. Otherwise, diffuse or localised failures can occur in the directions for which the

values are negative. To maintain reasonable computational time in this study, the

second-order work criterion in Equation (12b) was only calculated for the loading

direction.

The second-order work expressed as Equation (12a) was calculated locally for each

material points in the domain. To analyse the boundary value problem where geometry,

initial and boundary conditions are taken into account, the global second-order work

can be normalised and formulated (Khoa, 2005) as follows:
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D2W ¼
P

ðd2wi � wiJiÞ
ð
P

wiJiÞð
P

dr0i
�� �� deik kÞ

(12b)

where ωi is the numerical weight of the integration point i and Ji is the determinant of

the Jacobian matrix. Equation (12b) can be used to globally determine whether an entire

soil mass behaves as a solid or fluid.

2.3. Bingham’s viscous law

Geomaterials can be considered as viscous fluid using Bingham’s yield stress sy in

the post-failure stage (Coussot, Proust, & Ancey, 1996; Daido, 1971). By neglecting

the non-linearity of the viscous relationship and the dependency of the yield stress

on confinement, geomaterials can be described by the simplified Bingham’s viscous

law. Considering prior formulation by Duvaut and Lions (1972) and Balmforth and

Craster (1999), the simplified Bingham’s viscous law for three dimensions is as

follows:

If : J2r[ sy _eij ¼
1

2g
ðsij � sy

sij

J2r
Þ ¼ J2r � sy

2g
� sij
J2r

else : _eij ¼ 0 (13)

where J2σ is the second stress tensor invariant, s and _e are the deviatoric stress and

strain rate tensors, respectively. η is the dynamic viscosity. When d2w < 0 and J2σ > sy
are both satisfied, a solid–fluid transition occurs. Note that for initially partially

saturated soil, suction effects disappear once failure occurs in the studied medium,

since the mud is considered as a viscous monophasic fluid. Therefore, distinguishing

total stress and effective stress in the fluid stage is meaningless. In the fluid state,

when J2σ < sy, the material returns to a solid state (from a fluid state) following

elasto-plastic behaviour. However, in the proposed model, we were not interested in

the detailed elasto-plastic behaviour following failure. Thus, the elasto-plastic parame-

ters were assumed constant for the pre-failure and post-failure stages (although they

would obviously be different).

To summarise, the proposed hydro-elasto-plastic unified model with a solid–fluid

transition involves multiple steps: The saturated or partially saturated porous medium is

first described by the PLASOL elasto-plastic model. The use of Bishop’s effective stress

and the modified Van Genuchten–Mualem’s hydraulic model accounts for the hydro-

mechanical coupling in the solid stage. Failure occurs along the loading path, once the

second-order work criterion expressed in effective stress is met. The medium flows in

large displacements, obeying Bingham’s viscous law (Bingham’s yield stress criterion is

required to be met).

As illustrated in Figure 3, Bingham’s yield stress is generally lower than Van

Eekelen elastic’s limit, and the second-order work vanishes only in the elasto-plastic

domain (Li et al., 2016). In addition, when J2σ < sy in the fluid state, the medium returns

to a solid state (from a fluid state) and exhibits renewed elasto-plastic behaviour. During

a mudflow, the flow stops and the mud begins to once again sedimentate. The debate

regarding the physical explanation of the mudflow is still an ongoing subject of discus-

sion. Experience indicates that a monophasic fluid no longer possesses an organised

microstructure because of destructive forces during the mudflow. For all fluid types con-

sidered by Bingham, materials return to solid if the deviatoric stress is not sufficiently

large. A gently sloped terrain can contribute to a reduction in deviatoric stress.
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3. A new FEMLIP model for solving hydro-mechanical problems

A simulation model that comprehensively describes the solid–fluid behaviours of

geomaterials must include the following three capacities:

• Internal variables trackings. Landslides comprise geomaterials with an elasto-

plastic behaviour in their solid-like phase. Internal variables associated with the

material points (i.e. hardening parameters and plastic strains) must be tracked in

time and space to calculate plasticity, which is an intrinsic function of the load

history.

• Strict pursuit of the materials in space. Simulation involves different materials,

their interactions, their spatial movements and the demand to strictly identify the

materials positions over time.

• Large displacement solutions. Landslides, especially mudflows, require not only

small transformations in a solid state, but also large displacements as the geomate-

rials spread over long distances in their fluid state.

The elasto-plastic behaviour of partially saturated soils with infiltration process

included as well as the fluid behaviour following failure has been previously modelled

by several researchers (Alonso et al., 2003; Au, 1998; Chen et al., 2006; Nakata et al.,

2010). However, it is difficult to solve large displacements using classical finite element

methods, excessive element distortions preclude integration of a volume or surface using

the Lagrangian finite element methods. Alternatively, it is difficult to track the elasto-

plastic models without diffusion within the framework of the Eulerian finite element

methods.

To satisfy the three simulation model capacities described above, the FEMLIP was

chosen for simulation in this study. As illustrated in Figure 4(a, b), the computational

domain is discretised by means of a computational Eulerian grid while the material dis-

tribution is spatially discretised using Lagrangian material points. The grid is fixed and

used to obtain the nodal equations. With the material kinematic field solved according

to equilibrium equations, each material point moves between time t and t + Δt as

Figure 3. Unified model in the principal stress space (‘VE’ means Van Eekelen) (a) 3D view
and (b) deviatoric stress plane view.
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illustrated in Figure 4(c). At the end of the incremental calculation, the configuration is

updated to reflect the new position of the material points, as illustrated in Figure 4(d). It

should be noted that the material points follow the integration points rule. Because the

Gaussian quadrature is verified for the numerical weight computation, a computational

cell cannot be empty of a particle. Thus, for the free surface simulation, the empty

volume must be filled with particles possessing negligible mechanical properties, such

as air particles.

For computational efficiency, a multi-grid scheme was used in this study. This

method is most efficient when used with regular mesh. Developed initially for solving

incompressible fluid problems, regular quadrangle elements with bi-linear interpolation

for the velocity field and constant interpolation for the pseudo-pressure field were cho-

sen, to satisfy the Ladyzanskya-Babuska-Brezzi stability condition and prevent locking

problems (Dufour, 2002; Hughes, 1987). The quadrangle elements with bi-linear inter-

polation and constant interpolation were used to calculate the velocity and the water

pressure fields, respectively. This information was subsequently transferred to the mate-

rial points, according to corresponding shape functions. Lastly, the elasto-plastic and

hydraulic variables were calculated and stored in the material points. To ensure calcula-

tion accuracy, the numerical weights of the integration points were refreshed to reflect

position and the number of material points in each element (this step differs from the

previously described MPM).

3.1. Control equations

Deformable partially saturated porous geomaterials are widely considered a three-phase

mixed medium, comprising solid, liquid and gas phases and soil skeleton, water, vapour

and air constituents. To solve multi-phase material problems, mechanical variables for

each phase that reveal constitutive relationships should be defined. This relationship

should consider between phases interaction laws, conservation laws, equilibrium equa-

tions and the energy balance. To simplify the system of equations, several assumptions

were made in this study:

(1) Densities of solid grains and liquid were assumed constant. Therefore, the liquid

and solid phases were incompressible.

(2) Liquid flows obeyed the generalised Darcy’s law in the connected voids of the

medium.

(3) Gas diffusion was negligible under atmospheric air pressure; the pressure of air

and water vapour were considered nil (i.e. pores connected to the outside air).

Figure 4 (a-d). Calculation process of FEMLIP.
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(4) Heat transfer was negligible under isothermal conditions, and the temperature

field was assumed to be constant.

As a result, the control equations consisted of the momentum equilibrium equation for

the whole body and the continuity equation for water flow. The weak form of the equi-

librium equation is expressed as follows:
Z

V

ð@eTrÞdV �
Z

S

@uT f
� 	

dS �
Z

V

@uTb
� 	

dV ¼ 0 (14)

The latter, which is composed by the conservation equation of water mass and the gen-

eralised Darcy’s law, is written as follows:

div � k

g
ruw � bwð Þ þ @

@t
ðqwhÞ

� �
¼ 0 (15)

where S and V are the boundary values subjected to the distributed force f and the con-

sidered volume, respectively, while r is the Cauchy total stress tensor and b is the

volume force vector. The gravity acceleration is g, ρw is the water density, bw is the

body force vector of pore water, uw is the pore water pressure and k is the permeability

matrix for partially saturated soil. In the Equation (14), the inertial term is provisionally

neglected in the considered formulation, which may introduce inaccuracies in the simu-

lation of very fast phenomena. However, they will be taken into account in a further

development of the study. The inertial effect is significant in many dynamic problems.

3.2. Incremental constitutive relations

To solve hydro-mechanical boundary value problems in an FEMLIP framework, an

understanding of the stress–strain and water content–suction relations are necessary.

Because the FEMLIP model was initially developed based on a visco-elastic framework,

the stress–strain relationship can be expressed as: Dr ¼ Dve
_e (Dufour, 2002; Moresi

et al., 2002, 2003), where Dr ¼ r
tþDt � r

t and Dve presents the visco-elastic constitu-

tive tensors. Implementation of the plasticity is performed explicitly based on the visco-

elastic matrix (Prime et al., 2013, 2014). By incorporating the hydro-mechanical cou-

pling, Bishop’s effective stress in Equation (1) can be rewritten as follows:

�rtþDt ¼ Dve
_e
tþDt � vsð ÞtþDt

mþ r
0t (16)

where �rtþDt is the net stress vector defined as: �rtþDt, _etþDt is the strain rate vector, st + Δ

t is the suction. All variables are measured at time t and t + Δt. To obtain a unified form

with the water content–suction relationship, this expression can be rewritten using

stþDt ¼ Dt � _stþDt þ st, as follows:

�r
tþDt ¼ Dve

_e
tþDt � Dtvt _stþDtm� vtstmþ r

0t (17)

It should be noted that χ is assumed constant for a sufficiently small Δt, for the sake of

simplification. Additionally, v is updated at each time step. As a result, a common

stress–strain relationship in the hydro-mechanical visco-elastic framework is derived.

With the water content expressed as h ¼ n � Sr, the water content–suction relationship

can be established using the modified Van Genuchten–Mualem’s WRCs in Equation (9)

as follows:
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dh ¼ Srdnþ ndSr ¼ Sr þ @Sr

@n

� �
dnþ n

@Sr

@s
ds

¼ � 1� nð Þ Sr þ n
@Sr

@n

� �
mTdeþ n

@Sr

@s
ds (18)

The water content is consequently determined using suction and porosity.

Combining Equations (17) and (18), a matrix relation is derived as follows:

�r
tþDt

_htþDt

� �
¼ Dve W

T H

� �
_e
tþDt

_stþDt

� �
þ �vtstmþ r

0t

0

� �
(19)

where

W ¼ �vtmDt

T ¼ � 1� nð ÞðSr þ n @Sr
@n ÞmT

H ¼ n @Sr
@s

In Equation (19), W and T are a six-element column vector and a six-element row

vector, respectively; H is a scalar. According to the modified Van Genuchten–Mualem’s

WRCs in Equation (9), @Sr
@n and @Sr

@s can be determined as follows:

@Sr

@s
¼ Srsat � Srresð Þð1� nvÞ

av

Patm

1þ avs

Patm

� �nv
� � 1

nv
�2

avs

Patm

� �nv�1

(20)

@Sr

@n
¼ k Srsat � Srresð Þ

1þ avs

Patm

� �nv
� � 1

nv
�2

avs

Patm

� �nv�1
s

s2aev

nv � 1

nv

� � 1
nv
�1
saev0

n0

2nv � 1

nv

� �2� 1
nv

�nv

!

(21)

The relationships to be integrated into the FEMLIP framework are now established, with

both the strain rate and suction rate appearing on the right side of the equation. There-

fore, the velocity and the pore water pressure fields can be solved in the corner nodes

and central nodes, respectively. The solution is then transferred to the material points

where the strain, stress, and saturation fields are solved locally using the unified model

with a solid–fluid transition.

3.3. FEMLIP model formulation

With the linear and constant shape functions N and Nw representing the velocity and

water pressure fields, respectively, the discrete finite element equation is as follows,

based on the control equations and Equation (19):

A L

L0 S

� �
_U
tþDt

_U
tþDt

w

 !

þ 0

RU tþDt
w

� �
¼ F tþDt �MU t

w

QtþDt
ext

� �
(22)

where

A ¼
R
V
ðBTDveBÞdV

L ¼ �
R
V
ðBTWNwÞdV

M ¼
PR

V
ðBTvtmNwÞdV

F tþDt ¼
P R

V
NTbtþDt � BT

r
0t� 	
dV þ

R
s
ðNT ttþDtÞdS

� 	
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L0 ¼
PR

V
ðNTTBÞdV

S ¼ �
PR

V
ðNT

wHNwÞdV
R ¼

PR
V
ðBT

w
k

qwg
BwÞdV

QtþDt
ext ¼ �

P R
Sw

NT
wq

tþDt
� 	

dSw�
PR

V
ðBT

w
k

qwg
bwÞdV

� �

In these relationships, B is the gradient matrix of the shape function N, q ¼ nTV k ,

V k is the infiltration velocity, and nT is a unit vector normal to the surface subjected to

water flux. Equation (22) is further detailed by (Li et al., 2016).

By introducing _U tþDt
w ¼ U tþDt

w �U t
w

Dt
, a system of equations for determining the velocity

and the pore water pressure fields can be derived from Equation (22) as follows:

A _U tþDt þ L

Dt
U tþDt

w ¼ F tþDt

L0 _U
tþDt þ S

Dt
þ R

� �
U tþDt

w ¼ QtþDt
ext þ S

Dt
U t

w (23)

This derivation represents the proposed FEMLIP formulation that incorporates hydro-

mechanical coupling.

After transformations, Equation (23) can be rewritten as:

bAU tþDt
w ¼ bF (24)

where
bA ¼ L0A�1 L

Dt
� S

Dt
þ R

� 	

bF ¼ L0A�1F tþDt � QtþDt
ext þ S

Dt
U t

w

� 	

To solve Equation (24), which is a linear equation with a non-symmetric matrix bA, the
BICGSTAB method proposed by Van des Vorst (van der Vorst, 1992) was implanted in

the code as a new solver. This method is developed on the basis of the bi-conjugate gra-

dient method (BiCG) and is able to inverse the non-symmetric matrix with sufficiently

fast and smooth convergence. Additionally, the multi-grid scheme was used to decrease

computational cost.

3.4. FEMLIP model considerations

In complex landslide simulations based on FEMLIP, several material types may coexist

such as hydro-elasto-plastic geomaterials that may become viscous, elastic obstacles in

concrete and low-viscous air that fills the remaining space. The geomaterials naturally

implicate hydro-mechanical coupling; however, other materials (e.g. air) do not physi-

cally implicate any hydro-mechanical coupling. For finite elements filled with HM parti-

cles (soil) and not HM particles (air) as illustrated in Figure 5, the calculation is

frequently disturbed. Water pressure in the central nodes and hydraulic parameters in

the corner nodes must be wholly integrated at the start of each incremental calculation.

At the end of each incremental calculation, the water pressures will be transferred to all

the integration points. Hence, during computation, any non-zero water pressures and

other non-physical parameters will be included in the integration. Error accumulates

with each time step of the calculation and induces a loss of convergence.

One solution is to classify the material points into two types: (1) non hydro-

mechanical and (2) hydro-mechanical. The first classification does not implicate or track
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hydraulic variables. For these material points, water pressure and all other hydraulic

parameters are null during calculation; water pressure transmission between the central

nodes and material points is effectively interrupted. The finite element formulation can

be expressed as A _U ¼F. The second classification implicates hydro-mechanical cou-

pling, in which the water pressures are refreshed and the water content–suction relation-

ship is considered at each time step of the calculation. Note that the water pressure field

is smoothed out by first extrapolating the piecewise constant field to the corner nodes

and then back to the particles using linear shape functions. Water pressures at the

integration points are transmitted using the following equations:

uw ¼ NUw for hydro�mechanical points (25a)

uw ¼ 0 for non hydro�mechanical points (25b)

This two-part classification theoretically ensures that the representative water pressure in

an element Uw (at the central node) is determined only by the water pressures of soil

particles uw in that element. Hence, the stability of the calculation is assured.

However, this approach can give rise to additional problems. Note that the velocity

and the water pressure fields at t are refreshed at the computational nodes based on the

configuration at t − Δt. The velocity and water pressure fields are transferred to each of

the integration points to perform the local calculation. The integration of local data,

including local water pressures, is performed based on the configuration at t − Δt. The

integration points move according to the solved velocity field and a corresponding con-

figuration at t appears. Thus, the integration of local water pressures is performed before

the movement of integration points at each incremental computation. When the integra-

tion points (with non-zero water pressures) enter an element completely filled with non

hydro-mechanical points (with null water pressures in the central node), an error occurs.

As illustrated in Figure 6(a), the element on the left is completely filled with soils

and the one on the right is completely filled with air. Hence, the water pressure of the

right element at t −Δt is U t�Dt
w ¼ 0. Figure 6(b) shows that four soil particles moved

after calculation at t, but U t
w = 0, because the value was determined completely by the

air particles before entry of the soil particles. Consequently, U tþDt
w will be calculated

from an initial null value, even though soil particles are present. These calculations can

also be influenced by other variables, such as velocity, if no other boundary conditions

exist. Because of this, error resolution is not predictable. In any case, the water pres-

sures of entering particles will be undetected. This phenomenon sometimes results in a

loss of convergence during the calculation.

Figure 5 (a, b). Configuration of elements mixed by two types of particles.
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To address this problem, the FE tool checks all elements at the end of each incre-

mental calculation. For elements completely filled with dry particles and into which

hydro-mechanical particles enter, a re-integration at the central nodes is performed to

ensure that the water pressures Uw is effectively controlled by the hydro-mechanical

particles. This relationship is as follows:

Uw ¼
PnHM

i¼1 uwi

nHM
(26)

where Uw and uwi are the water pressures in the central node and at the integration

points, respectively, and nHM is the number of hydro-mechanical particles in an element.

4. FEMLIP simulations and analysis

Mechanical features of partially saturated geomaterials described by the hydro-

elasto-plastic unified model were previously validated by Li et al. (2016). In this study,

a boundary value problem was simulated to show the potentialities of the unified model

in FEMLIP. The effects of partially saturated permeability, effective cohesion and vis-

cosity on the behaviours described by the unified model were assessed, and appeared

reasonable; Quantitative comparisons with analytical and experimental solutions will be

considered in the future.

In this study, an unsaturated, initially stable, 6 × 6 m² slope with a homogeneous ini-

tial suction of 500 kPa, was simulated. Gravity increased linearly for the first 100 time

Figure 6 (a, b). Error induced by entry of hydro-mechanical particles into an air element.
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steps, until a value of 9.81 was reached m=s2. The remaining space was filled with air,

a viscous material with a 2000 Pa s pre-failure viscosity and a 20 Pa s post-failure

viscosity. It is obviously too large comparing the real case and will certainly influence

the results in the post-failure stage, but the ratio of effective viscosity of soil and

viscosity of air must be less than 103, in order to void the loss of convergence due to

ill-conditioned matrix (Prime, 2012).

The soil was discretised by a series of material points. All boundaries were free slip;

the horizontal displacement at the left boundary was constrained while displacement at

the right boundary was free. Rainfall on the top surface (lasting 79 h) induced an infil-

tration from top to bottom under a constant water flux of 1.8 mm/h (5 � 10�7m=s.
In the FEMLIP model, the slope’s permeability tensor was assumed isotropic for the

sake of simplification, and the permeability of the partially saturated soil k was deter-

mined by k ¼ kr � ks, ks is the permeability of saturated soil and kr the relative hydraulic

conductivity. In the paper, kr was determined using relationship previously derived by

Van Genuchten (van Genuchten, 1980) as follows:

kr ¼
1� avsð Þnv�1

1þ avsð Þnvð Þ
1
nv
�1

� �2

1þ avsð Þnvð Þ
1� 1

nv
2

(27)

4.1 Modelling and analysis of suction and permeability

The parameters used in the simulation are enumerated in Tables 1 and 2:

In Table 2, ks is the initial permeability of the saturated soil. The permeability of the

partially saturated soil, which controls the infiltration capacity, was determined using

Equation (27). The gradients of the water pressures and partially saturated permeabilities

induce water infiltration from top to bottom in aporous medium. As shown in Figure 7(a,

b), three locations at the surface (A), middle (B) and bottom (C) of the slope, were

selected for observing permeability effects. The solid–fluid transition was initially dis-

abled.

Figure 8(a, b) shows the suction time histories at A, B and C under two different

initial saturated permeabilities: ks = 1 � 10�3 m/s and 1 � 10�4 m/s. The suctions decrease

over time because of infiltration at different altitudes. The suction was always smaller at

the free surface than at the bottom, because it takes longer for seeping rainwater to

reach greater depths. Moreover, the suction in the inferior layers decreased more quickly

under a greater permeability, while the variations at the surface were identical. The suc-

tion variation at the slope’s surface is determined by the same water flux; however, the

amount of water infiltrating the ground is partially controlled by the permeability of the

partially saturated soil according to Darcy’s law.

Table 1. Elasto-plastic parameters.

Property of
soil E ν φe0 = φc0 φef = φcf c0 cf ψe = ψc Bp Bc ρ η sy

Unit MPa ° ° kPa kPa ° kg/
m³

Pa s kPa

Value 3 .35 15 25 0 0 10 .01 .02 1100 150 5
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Figure 9(a, b) shows the variations in the partially saturated permeabilities with

respect to time. For the higher saturated permeability ks ¼ 1 � 10�3 m/s, the initial

partially saturated permeability of 5 � 10�7 m/s, determined using Equation (27), was

nearly equal to the water flux. This suggests that the water permeated almost completely

into the slope. However, for the lower saturated permeability ks ¼ 1 � 10�4 m/s, the cal-

culated partially saturated permeability was approximately 6 � 10�8 m/s, which is notably

less than the water flux. Thus, in this case, only a portion of water infiltrated the

ground.

4.2. Simulation and analysis of a solid–fluid transition

If a solid–fluid transition is activated, a point of failure can be reached and a mudflow

can occur. The entire mudflow process was simulated with a water flux of 1 � 10�6 m/s

(3.6 mm/h) on the 5 m E-F boundary (shown previously in Figure 7(b)). Initial and final

effective cohesions were c′0 = 0, 10 and 25 kPa, and c′f = 0, 25 and 45 kPa. Tables 3

and 4 list additional parameters used in this simulation.

Figure 10 shows the delayed failure with increasing effective cohesions attributable

to the global second-order work criterion. The increased effective cohesions enhance

material strength as follows:

s ¼ c0 þ r
0tanu0 ¼ c0 þ vstanu0ð Þ þ �rtanu0 (28)

Note that failure cannot be observed for very large cohesion. The FE tool does not

allow for calculation of excessive water pressure; the failure of a clayed soil that has a

large cohesion cannot be reached.

Table 2. Hydraulic and hydro-mechanical coupling parameters.

Hydraulic parameters
Hydro-mechanical
coupling parameters Permeability ks

ad nd aw nw Srsat Srres aχ nχ λ n0 1 � 10�3 and 1 � 10�4 m=s
.802 1.38 .802 1.38 1 0 .6805 1.5847 .5 .39

Figure 7 (a, b). Geometry of the column under different hydraulic boundary conditions.
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When c′0 = 25 kPa and c′f = 45 kPa, failure occurs after a rainfall episode lasting

46 h, corresponding to the disappearance of the global second-order work (i.e. Bingham’s

yield stress is exceeded before the elastic limit is reached). Once failure occurs, the flow-

ing geomaterials obey Bingham’s viscous law. As detailed by Prime et al., (2013) and

(2014), the physical viscosity and yield stress influence the stop time. Considering two

different viscosities of η = 150 and 300 Pa⋅s, Figure 11 shows the horizontal displace-

ments of D (shown previously in Figure 7(b)) over time. Not surprisingly, higher viscosi-

ties induced smaller displacements.

Figure 12(a–f ) includes a series of pre-failure suction field images at various points

in time ranging from 11 to 46 h, and post-failure mudflow images at 2 and 14 s after

failure for a viscosity of η = 150 Pa⋅s. Following initial vertical infiltration at the surface

E-F, horizontal infiltration was observed, due to the water pressure gradient in the

Figure 8. Variations in suctions in the points A, B, and C under the saturated permeability (a) of
1 � 10�3 m=s and (b) 1 � 10�4 m=s.
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horizontal direction and horizontal permeability. As shown in Figure 12(f), the yield

stress sy, exceeded the second invariant of stress tensor J2σ, for the soil particles causing

the mudflow to stop.

Figure 9. Variations of partially saturated permeabilities in the points A, B, and C under the
saturated permeability (a) of 1 � 10�3 m=s and (b) 1 � 10�4 m=s.

Table 3. Elasto-plastic parameters.

Property of soil E ν φe0 = φc0 φef = φcf ψe = ψc Bp Bc ρ η sy

Unit MPa ° ° ° kg/m³ Pa s kPa
Value 5 .35 15 25 10 .01 .02 1100 150 12
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 Table 4. Hydraulic and hydro-mechanical coupling parameters.

Hydraulic parameters
Hydro-mechanical coupling

parameters Permeability ks

ad nd aw nw Srsat Srres aχ nχ λ n0 7 � 10�5 m=s
.802 1.38 .802 1.38 1 0 .6805 1.5847 .5 .39

Figure 10. Influence of effective cohesions on the failure.

Figure 11. Influence of viscosity coefficient on horizontal displacements.
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5. FEMLIP simulation of a real rainfall-induced mudflow

After applying the FEMLIP model to a heuristic partially saturated column, it was next

used to simulate a real mudflow that occurred in China. Figure 13 shows the geological

profile of the affected slope. The slope is situated in southern China where a subtropical

monsoon climate prevails, and precipitation is abundant in June, July and August.

Following multiple years of drying–wetting cycles, a large number of fissures emerged.

This phenomenon is considered accelerating water entry into the soils. During an

intense four-day rainfall, failure occurred on the third day, affecting all layers of the

slope including the bottom gravel layer.

5.1. FEMLIP model

According to the geological profile illustrated in Figure 13, a FEMLIP model was built

to simulate the observed mudflow. As shown in Figure 14, the model used the inclined

boundaries as the bedrock surface. All boundaries were free slip. The length of the

slope was 60 m and the height was 30 m. The mesh was formed using quadrilateral bi-

linear elements: 12 along the z-axis and 60 along the model length, parallel to the

boundaries. Gravity increased from 0 to 9.8 m/s in the first 100 time steps (Δt = .1 s)

and remained constant in the subsequent 100 time steps. After 200 time steps, a water

flux of 53.8 mm/h, induced by the rainfall, was applied to the surface of the slope until

a solid–fluid transition occurred.

(c) Infiltration after 35h (d) Infiltration after 46h 

(e) Flow configuration (2s after failure) (f) Stagnancy of the mudflow (14s after failure)

(a) Infiltration after 11h (b) Infiltration after 20h

Figure 12. (a–d) Reduction of suctions in different layers during the pre-failure stage; and (e, f)
configurations of the mudflow during the post-failure stage.
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5.2. Physical and mechanical parameters

The unified model with a solid–fluid transition and hydro-mechanical coupling required

13 PLASOL model parameters, 2 Bingham’s law parameters, 4 hydro-mechanical cou-

pling parameters and 7 hydraulic parameters (including a saturated permeability that is

assumed isotropic). With dry density and initial suction, 28 total parameters were

required. To minimise the number of parameters determined for the elasto-plastic law,

φc = φe and ψc = ψe were assumed throughout the calculation. The convexity n was set to

−.229, and the two hardening parameters Bp and Bc were set to .01 and .02, respectively

(Prunier, 2008). For the hydraulic model, the effect of hysteresis does not intervene the

monotonous formation of a mudflow. As illustrated in Figure 15, hysteresis was neglected

and the cycle was determined using the two parameters, aw and nw; the infiltration process

was considered a monotonous wetting process. These assumptions reduced the number of

required parameters from 28 to 20 for each geomaterial: 7 elasto-plastic parameters, 2

viscous parameters, 4 hydro-mechanical coupling parameters, 5 hydraulic parameters, the

dry density and the initial suction (or the initial degree of saturation).

Figure 13. Geological profile of the slope.

Figure 14. FEMLIP model of the mudflow.
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Values for the elasto-plastic parameters, the initial degree of saturation, the initial

partially saturated permeability and the initial porosity were obtained from the geotech-

nical data in Table 5.

Only values for the initial degree of saturation, the initial porosity and the initial

partially saturated permeability were provided in the geotechnical data; however, deter-

mination of the WRC required four hydraulic parameters and the hydro-mechanical cou-

pling required three parameters (aχ, nχ and λ). In this study, values proposed by

Fleureau, Verbrugge, Huergo, Gomez Correia, and Kheirbek-Saoud (2002) for seven of

the required parameters were used to describe the silty clay’s hydraulic behaviour.

Table 6 lists these parameters and their associated values.

Using Equation (9) and the hydraulic parameters mentioned above, we estimated an

initial suction of s = 159 kPa with Sr = 78% for the silty clay. The initial partially satu-

rated permeability was estimated using the Equation (27) as k = 1 � 10�7 m/s. This esti-

mate was comparable to the values from the geotechnical data in Table 5. Therefore, the

parameters in Table 6 were considered acceptable. This study was focused on the

Figure 15. Typical water retention curve of clay (Fleureau et al., 2002).

Table 5. Physical parameters of the silty clay proposed from the geotechnical data.

Parameters of silty clay Symbol Unit Value

Natural density ρn kN/m • 1836
Dry density ρd kN/m • 1391
Initial porosity n0 .38
Initial degree of saturation Sr % 78
Initial cohesion c0 kPa 34.6
Final cohesion cf kPa 92
Initial angle of friction φe0 = φc0 ° 11
Final angle of friction φef = φcf ° 31
Angle of dilation ψe = ψc ° 5
Initial partially saturated permeability k cm/s 7 � 10�6

Initial Young’s modulus E MPa 6.4
Poisson’s ratio v .35
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hydro-mechanical coupling in a solid state. The viscous parameters were heuristically

chosen as η = 220 Pa s, and sy = 16 kPa, for the post-failure flow simulation.

6. Results

Figure 16(a, b) shows the increased gravity over time, and the evolution of the global

second-order work, D2W with respect to gravity in first 200 time steps. The D2W repre-

sented in Figure 16(b) decreased but remained positive. Obviously, the initialisation of

gravity did not induce any instability.

Figure 17 shows the evolution of the D2W under rainfall infiltration. In this case, the

D2W was positive and relatively constant at the beginning of infiltration. After approximately

21 h of rainfall, the D2W gradually decreased and eventually assumed a negative value after

more than two days of rainfall (approximately 52 h, as observed in the real case).

Once the failure occurred, the geomaterial exhibited a fluid-like behaviour and began

to flow. Figures 18 and 19 show water infiltration in the soil (decreased suction) and the

entire mudflow process, respectively, for various elapsed times. In Figure 19, unstable

zones (shown in green) initially appear near the top and toe of the slope. The initial slope

suction was homogeneous, but the water pressure gradient in these zones was larger than

the gradient on the surface under identical hydraulic conditions (i.e. a water flux of

53.8 mm/h). This phenomenon accelerated the water infiltration and the decrease in suc-

tion. Figure 18 confirms that the suctions in the unstable zones decreased more rapidly.

Over time, unstable zones appeared on the surface of the slope. Higher suctions in

the top layer reduced cohesion. Unstable zones subsequently spread along the bedrock,

producing a failure zone in the steepest slope.

Table 6. Hydraulic parameters and parameters of hydro-mechanical coupling.

Hydraulic parameters Symbol Value

First parameter of water-retention curves aw 1
Second parameter of water-retention curves nw 1.35
Saturated degree of saturation Srsat 1
Residual degree of saturation Srres .1
Parameters of hydro-mechanical coupling
First parameter of χ av 2
Second parameter of χ nv 2.15

λ .5

Figure 16. (a) Initialisation of the gravity with time, and (b) variation of the global second-order
work. D2W in the initialisation phase.
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Figure 17. Evolution of the global second-order work with the rainfall infiltration before the
failure.

Figure 18. Evolution of the suction field.
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When the global second-order work became negative, the slope was globally unsta-

ble. The soil slipped along the surface of the bedrock, obeying Bingham’s law. At the

end of the simulation, the yield stress sy exceeded the second invariant of stress tensor

J2σ for the soil particles and the mudflow stops.

7. Conclusions

Within the framework of a unified hydro-elasto-plastic model with a solid–fluid transition

(Li et al., 2016), a new FEMLIP formulation for modelling landslides or mudflows was

proposed in this study. The proposed FEMLIP model includes the following assumptions:

Figure 19. Evolution of the unstable zones and the flow configurations.
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(1) liquid and solid phases are incompressible; (2) heat transfer is negligible and the

temperature field is assumed constant; (3) generalised Darcy’s law can be used to describe

the liquid flowing in the connected voids of the medium; and (4) air pressure and water

vapour pressure are nil under atmospheric air pressure. This study additionally imple-

mented a new solver based on the BiCGSTAB for inversing non-symmetric matrices.

To evaluate the proposed FEMLIP model, a heuristic partially saturated column with

a homogeneous initial suction and water flux at the top boundary were initially simu-

lated. Permeability effects of partially saturated soil due to infiltration were assessed.

Water mass conservation effects were observed, and the role of effective cohesion in

failure (due to apparent cohesion variation as stated in Equation (28)) was demonstrated.

Subsequently, a real rainfall-induced mudflow was simulated. The failure induced by

infiltration was observed after 52 h when the global second-order work vanished. This

simulated finding was consistent with observed findings from the real mudflow. An

entire mudflow process was illustrated by analysing the evolution of the suction field

and development of unstable zones. Based on this study’s results, the proposed FEMLIP

model appears to be effective in describing behaviours of partially saturated soil, in both

solid and fluid regimes.

In case of sudden failure, inertial effects can influence the computation of the veloc-

ity field, especially during the beginning and end of landslides. The inertial force can be

considered explicitely as a supplemental nodal force, or implicitly by introducing it into

the stiffness matrix.

This study investigated the initiation and propagation of a landslide in a unified

framework. The elasto-plastic constitutive parameters and Bingham’s viscous parameters

characterise the same material, but in different states. It is reasonable to assume a corre-

lation between the two sets of parameters. However, the lack of reliable experimental

data from international literatures limits further investigation of the correlations. Further

experimentations with mudflow material in both pre-failure and post-failure states would

support determination of any elasto-plastic and viscous parameter correlations. In addi-

tion, such experimentation may reveal additional correlations. For example, viscosity is

also dependent on the fine content of soil.
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