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Hydro-elasto-plastic modelling with a solid/fluid transition 
Zhaohua Li, Frédéric Dufour ⇑, Félix Darve

Grenoble-INP/Univ. Joseph Fourier/CNRS UMR 5521, 3SR Laboratory, Grenoble, France

This paper deals with a new model for solving coupled hydromechanical problems, based on an existing

unified model. Firstly, the unified model for granular media, describing solid and fluid states with the

transition between them, is briefly presented and extended to the unsaturated domain using Bishop’s

effective stress. Secondly, an adapted stress–strain relationship is derived from modified Van Genuchten–

Mualem’s water retention curves. On this basis, a finite element formulation with Lagrangian integration

points in a visco-elasto-plastic framework is proposed and implemented in a FEMLIP tool. Finally, the

formulation is validated with reference to several benchmarks. The results and analysis show its reliability,

and by means of FEMLIP, more complex and realistic problems are expected to be solved in the field of

natural risks.

1. Introduction

In the early history of soil mechanics, researchers generally

focused on the study of dry or saturated soils, so most soil mechan-

ics theories can only apply to these conditions. As knowledge

improved, increasing phenomena were observed related to the

unsaturation of soils. Actually, as is well known, unsaturation gives

soil several significant features such as enhanced strength, increas-

ing fragility and plastic collapse along with wetting processes

under certain stress levels. In the past few decades, there has been

an increasing interest in the study of coupled hydromechanical

problems in geomaterial porous media. Alonso et al. [4] were the

first to provide a complete elasto-plastic framework for unsatu-

rated soil; then a large number of constitutive models, giving more

or less schematized stress–strain relationships, were established

[5–7]. In recent years, more highly developed models have

included suction–saturation relationships [34], such as the models

proposed by Gallipoli et al. [8], Wheeler et al. [11], Tarrantino et al.

[12], and Sheng et al. [35]. All these models have taken into

account the water retention curves with a hydraulic hysteresis.

The above-mentioned constitutive models elaborate the solid-

like behaviour of geomaterials. However, saturated loose geomate-

rials generally exhibit a fluid-like behaviour with a burst of kinetic

energy in the postfailure stage. An example is the onset and prop-

agation of a flow-type landslide. To describe such geomaterials

comprehensively and completely, a unified model that consists of

appropriate solid-like and fluid-like models and a criterion of

solid–fluid transition is required. Recently, a unified model, in

which solid-like behaviour and fluid-like behaviour are described

by the PLASOL elasto-plastic model [9] and the Bingham viscous

model, respectively, while Hill’s second-order work criterion [13]

is chosen as the criterion of transition, has been established

[10,28]. In this paper, this model will be extended to unsaturated

conditions.

A such simulation of complete solid–fluid behaviours requires

solving large transformation problems. Several mesh-free methods

are considered herein, such as smoothed particle hydrodynamics

(SPH) [42] and the material point method (MPM) [43]. Because it

has the advantage of tracking the history of the variables involved

in elasto-plasticity and describing large transformations, the finite

element method with Lagrangian integration points (FEMLIP),

developed from ‘‘Particle-in-Cell” method [33], is used in this

paper.

This paper proceeds as follows. In Section 2 the unified model is

briefly introduced, and the adapted effective stress and modified

Van Genuchten’s water retention curves are specified. Section 3

establishes the derivation of stress–strain relations and the finite

element formulation. The global visco-elasto-plastic constitutive

relation in a hydromechanical framework presents all the informa-

tions for the computations in Ellipsis, the code based on the FEMLIP

method. Section 4 gives three benchmarks to discuss and validates

the readability of Ellipsis for solving hydromechanical problems.

Finally, in Section 5, conclusions are drawn and future prospects

are discussed.
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2. A unified solid–fluid model incorporating hydromechanical

coupling

Fine soils are known to exhibit elasto-plastic behaviour as solids

and viscous behaviour as fluids alternatively. To model an entire

process of the geomaterial loss of stability, an existing unified

model in 3D, describing the solid, fluid states with a transition

between them is taken into account. For greater detail on this

model, the reader can refer to Prime et al. [2,10,28]. To solve

hydromechanical problems, this model is extended here for par-

tially saturated conditions by introducing Bishop’s effective stress

and a water-retention model.

2.1. Elasto-plastic model with a hydromechanical coupling

2.1.1. Bishop’s effective stress

The discussion on the choice of the proper stress variables in

unsaturated conditions is still open. For greater detail, the reader

can refer to [22,23]. In this paper, Bishop’s effective stress,

expressed as follows, is used in the elasto-plastic model to simu-

late the solid behaviour of unsaturated soils:

r
0 ¼ r� uamþ vðua � uwÞm ð1Þ

where r
0 is the effective intergranular stress vector, r the total

stress vector, ua the isotropic air pressure, and uw the isotropic

water pressure. mT ¼ ð1;1;1;0;0;0Þ and s ¼ ua � uw is the suction

component. A six-component vectorial rotation is used for r and r0.

Determining v is a delicate point. Besides the most common for-

mulation v ¼ Sr [24], many researchers have studied and proposed

several expressions for this parameter, such as Khalili and Khabbaz

[25] and Alonso et al. [26]. Arairo et al. [27] proposed the following

expression on the basis of Alonso’s work:

v ¼ 1þ
avs

Patm

� �nv� �

1
nv

�1

ð2Þ

where av and nv are parameters defined to ensure that the value of

v is always located between two boundary water retention curves

for a given suction value. By adjusting the two parameters, many

features of unsaturated soils can be described including plastic col-

lapse in the wetting process [27]. Let us note, however, that the

most recent advances in unsaturated granular media have shown

the tensorial nature of v [38,39].

2.1.2. PLASOL constitutive relation

In the solid stage, the behaviour of unsaturated geomaterials is

described by the PLASOL non-associated elasto-plastic model by

means of Bishop’s effective stress mentioned above. This model,

appropriate to deal with a wide range of diversified soils, was

developed at Liege University; more detailed information is

Nomenclature

Exponents and index

ð:Þ net value

ð:Þ0; ð:Þeff effective value

ð:Þ0; ð:Þ
0 initial value

ð:Þf final value

ð�Þt current value
_ð:Þ temporal differential

ð:ÞT transposition
ð:Þtot total value
ð:Þ

v
viscous value

ð:Þe elastic value
ð:Þp plastic value
ð:Þn numerical value

Scalars
c cohesion
/c mobilised friction angle under triaxial compressionpaths
/e mobilised friction angle under triaxial extension paths
J1r0 ; J2r; J3r effective stress tensor invariants

d
2
w local second-order work

D2W global second-order work
xi numerical weight of integration point i
Ji determinant of Jacobian matrix
sy Bingham yield stress
g dynamic viscosity
v parameter of Bishop’s effective stress
av; nv parameters of v
ua; uw air pressure and water pressure
s suction
saev air entry value
Patm atmospheric pressure
Sr degree of saturation
h water content
av ; nv parameters of Van Genuchten–Mualem’s WRCs
k; k constant material parameters

n porosity
t time
q Darcy’s velocity normal to boundary
S boundary subjected to force
Sw boundary subjected to water flux
V volume considered
g gravity acceleration
q density
qw water density
K bulk modulus
l elastic shear modulus
m Poisson’s coefficient
p total mean pressure
kr relative hydraulic conductivity

Vectors
Vk Darcy’s velocity
f boundary force vector
b body force vector
bw body force vector of pore water
U nodal displacement vector
Uw nodal water pressure vector
Nw water pressure shape function

Tensors

Dep elasto-plastic matrix
Dv viscous matrix
Dve visco-elastic matrix
r total stress tensor
e strain tensor
s deviatoric stress tensor
e deviatoric strain tensor
k unsaturated permeability tensor
ks saturated permeability tensor
N velocity shape function
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provided by Barnichon [9]. Let us introduce its main features

synoptically.

Firstly, a Van Eekelen plastic criterion [14], which is close to the

Mohr–Coulomb plastic criterion but avoids geometric singularities,

is chosen as the plastic limit in this model. In the 3D principal

stress framework, the expression of the Van Eekelen yield criterion

is stated with the three effective stress tensor invariants

J1r0 ¼ trðr0Þ; J2r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

trðs2Þ
p

and J3r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

trðs3Þ3
p

s ¼ r
0 � 1

3
trðr0Þ

� �

as

follows:

f ¼ J2r þm J1r0 �
3c

tanuc

� �

¼ 0 ð3Þ

where c is the cohesion, uc is the mobilised friction angle under tri-

axial compression paths, and m is a coefficient depending on the

Lode angle and the friction angles.

Secondly, PLASOL proposes a way to model the hardening of the

yield surface during loading. With the Von Mises equivalent plastic

strain Ep
eq ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

2
3
epije

p
ij

q

, ep ¼ e
p � I

3
trðepÞ

� �

, three internal variables

(compression, extension friction angles and cohesion), expressed

as follows, evolve between the elastic initial values ðc0;ue0;uc0Þ

and the plastic limit values ðcf ;uef ;ucf Þ during the plastic regime.

uc ¼ uc0 þ
ðucf�uc0ÞE

p
eq

BpþEpeq

ue ¼ ue0 þ
ðuef�ue0ÞE

p
eq

BpþE
p
eq

c ¼ c0 þ
ðcf�c0ÞE

p
eq

BcþE
p
eq

8

>

>

>

>

>

<

>

>

>

>

>

:

ð4Þ

where Bc and Bp are hardening parameters, corresponding to the

values of the equivalent plastic strains for which half of the harden-

ing on friction angles and cohesion is reached.

As illustrated in Fig. 3, the plastic criterion of the Van Eekelen

type represents a conical surface, making it possible to describe

two important features of cohesive–frictional geomaterials: the

increase of strength with confinement and the higher strength

for extension triaxial stress loading compared with the Mohr–

Coulomb criterion. Finally, 13 parameters [15] are required to

describe an elasto-plastic soil using the PLASOL constitutive law.

2.1.3. Water-retention behaviour

The water retention curve (WRC) that links suction to the

degree of saturation or water content is an important aspect of

unsaturated soil properties in the solid state. Generally, the degree

of saturation on the drying curve is always greater than that on the

wetting curve, for a given suction value. This phenomenon (soil

exhibits different suction–degree of saturation relations during

the drying and wetting processes) is considered as hydraulic hys-

teresis. Strictly speaking, the WRCs are made up of four types of

curves as shown in Fig. 1: the boundary drying curve, boundary

wetting curve, wetting scanning curves and drying scanning

curves.

In order to improve the capacity of the unified model to solve

the hydromechanical problems, the WRCs proposed by Van

Genuchten–Mualem are taken into account. According to Van

Genuchten [3], and introducing the atmospheric pressure Patm,

the boundary WRCs are expressed as:

Srv ¼ Srres þ ðSrsat � SrresÞ 1þ
avs

Patm

� �nv� �

1
nv

�1

ð5Þ

where the index v is w in case of a wetting process and becomes d

for the drying process; Srres; Srsat and Srv mean, respectively, the

residual, saturated and current degrees of saturation; av is a param-

eter involving the air entry value (AEV), nv is principally related to

the variation of water content in the soil once the suction value

exceeds the AEV.

In the approach developed by Arairo et al. [27], the Van

Genuchten’s WRC is extended by considering the dependence of

Van Genuchten parameters on porosity. The following expression

is proposed:

saev ¼ saev0 exp k
1

n
�

1

n0

� �� �

ð6Þ

where saev is the AEV, saev0 is a reference AEV for a reference porosity

n0 and k a constant material parameter. Hence, once the AEV has

been refreshed, av is then updated by the expression:

av ¼
Patm

saev

nv �1

nv

� � 1
nv �nv

ðnv �1Þ2
2nv �1

nv

� �2� 1
nv

�
2nv �1

nv

� �

�
ðnv �1Þ2

nv

 !

ð7Þ

Besides, by introducing Mualem’s scanning curves [27,44], the

hysteresis can be considered in our model. A hydro-elasto-plastic

model has thus been established for simulating the solid behaviour

of unsaturated geomaterials.

2.2. Solid–fluid transition

In certain conditions, soils can lose their strength, and an

infinitesimal additional load at an extremum stress leads to a large

response, which means a loss of stability. This phenomenon is con-

sidered to link the solid and fluid states [20]. Besides the classic

plasticity criterion, there are various modes of failure constituting

a potential failure domain called the bifurcation domain [16].

There are two modes classically highlighted: localised and diffuse

modes. The former, leading to a concentration of the plastic strains

in a shear band as shown in Fig. 2(a), has been thoroughly studied.

The latter does not present any localisation phenomenon but gen-

erally causes a global disorganisation in samples, as illustrated in

Fig. 2(b). Fig. 2(c) shows a classical stress path in an undrained tri-

axial test of a loose sand. Along with this stress path, a diffuse fail-

ure occurs at q peak strictly inside the Mohr–Coulomb plastic limit,

if the undrained path is axially force controlled.

The diffuse failure can explain many instability cases, for

instance the most significant, the liquefaction of loose sand.

According to recent studies, diffuse failure can occur without

reaching the plastic limit criterion or the localisation criterion. This

conclusion has been proven theoretically, experimentally, and

numerically [16–20].

Consequently, instead of using a plasticity criterion or a locali-

sation criterion, the loss of stability is checked once the effective

stress state is inspected to overstep the lower limit of the bifurca-

tion domain. The instability leading to localised or diffuse failure is

judged by the Hill’s criterion [13], written as:
Fig. 1. Scheme of WRC with the four families of curves: the two boundary drying

and wetting curves and the scanning curves.
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d
2
w ¼ dr0

ijdeij ð8Þ

The second-order work is checked locally at all integration

points of the domain studied. To improve the readability of the

d
2
w graphs, d

2
w is treated by normalisation:

d
2
wnorm

i ¼
d
2
wi

kdr0
ikkdeik

ð9Þ

where kdr0
ik and kdeik are, respectively, the norms of the stress

increment and the strain increment of the integration point i. In this

way, the d
2
w value is limited between �1 and 1. If d

2
w > 0, the par-

ticle is considered as stable; otherwise, a local diffuse or localised

failure may be reached.

Furthermore, Hill [13] proposed a global second-order work cri-

terion for a boundary value problem. With a global D2W > 0, writ-

ten as follows, the body can be considered globally stable [37], if:

D2W ¼

P

d
2
wixiJi

� �

P

xi Ji
P

kdr0
ikkdeik

> 0 ð10Þ

where xi is the numerical weight of integration point i; Ji corre-

sponds to the determinant of the Jacobian matrix, and D2W is the

normalised global second order work.

2.3. Bingham’s viscous law

For geomaterial particles, once d
2
w 6 0, for at least one loading

direction, the particle is seated in the bifurcation domain. If

d
2
w 6 0 for the current incremental stresses and strains, the parti-

cle is considered to be in a transition state between solid and fluid.

For the present unified model, the non-linearity of the viscous rela-

tion and the dependency of the stress threshold to the confinement

are neglected for the sake of simplicity. Hence, the simulated geo-

materials exhibit a viscous behaviour obeying Bingham’s law. In

three dimensions, considering the expression of Duvaut and Lions

[36] and Balmforth and Craster [21], Bingham’s viscous law can be

written as follows:

if J2r > sy : _eij ¼
1

2g
sij � sy

sij
J2r

� �

¼
J2r � sy

2g
�
sij
J2r

; else : _eij ¼ 0

ð11Þ

where J2r is the second invariant of the stress tensor, sy is the

Bingham yield stress, g is the dynamic viscosity and s and _e are,

respectively, the deviatoric stress and strain rate tensors. It should

be noted that, in our hydromechanical model, it’s the stress deviator

that is used to compare with sy.

In conclusion, the saturated or unsaturated porous medium

considered obeys an elasto-plastic model described by the PLASOL

law, the hydromechanical coupling is considered by means of

Bishop’s effective stress and the modified Van Genuchten–Mualem

model. For appropriate stress levels, it is checked by Hill’s second-

order work criterion and the yield stress of Bingham’s viscous law.

Once failure occurs, the medium behaves as a fluid and large dis-

placements appear. The check by the second-order work is irre-

versible but this is not the case for the yield stress. If J2r < sy in

the fluid state, the medium returns to the solid state, obeying the

elasto-plastic behaviour. The unified model in 3D in the principal

stress frame is illustrated in Fig. 3, and in Fig. 4, a common

framework is illustrated in 1D. This framework consists of three

components: an elasto-plastic model, a viscous model and a failure

criterion of the second-order work in between.

3. Finite element implementation

3.1. Incremental constitutive relations

With given materials, an appropriate incremental stress–strain

relation needs to be developed in order to integrate it using a

numerical method to solve boundary value problems. For unsatu-

rated soils, the incremental relation is summarised in [40]:

dr0

ds

� �

¼
Dep Wep

R G

� �

de

dSr

� �

ð12Þ

Let us note here that, according to multi-phase material

mechanics, the net stress tensor r ¼ r� uam cannot be considered

as a proper constitutive variable, while the effective stress and the

suction are related to the granular skeleton and the isotropic fluid

pressures (water and air), respectively.

As FEMLIP was initially developed based on the viscous frame,

in which the stress–strain relationship is stated as r ¼ Dv
_e, Moresi

extended it into the visco-elasticity framework [30], by introduc-

ing two parameters that contain viscous and elastic moduli:

geff ¼
1

1
gþ

1
lDte

; Keff ¼
1

1
Kv

þ 1
KeDte

ð13Þ

The visco-elastic relationship in FEMLIP is therefore stated as:

Dr ¼ Dve
_e, with a temporal discretisation by Dte. This relation

can be expressed as:

r
0tþDte ¼ Dve

_e
tþDte þ r

0t ð14Þ

Fig. 2. (a) Localised failure in drained triaxial test, (b) diffuse failure in undrained triaxial test, (c) stress path in an undrained triaxial test of a loose sand.
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where Dve is the visco-elastic matrix. In this paper, in consideration

of hydromechanical coupling, Bishop’s effective stress relation (1) is

used. Expression (14) becomes:

r
tþDte ¼ Dve

_e
tþDte � ðvsÞtþDtemþ r

0t ð15Þ

For a unified form with a water content-suction relation, this

relation can be expressed with a transformation

stþDte ¼ Dte _s
tþDte þ st , as follows:

r
tþDte ¼ Dve

_e
tþDte � Dtev_stþDtem� vstmþ r

0t ð16Þ

It should be noted that, for the sake of simplification, v is assumed

to be constant for a sufficiently small Dte, and is effectively updated

in computation at each time step. Consequently, a general stress–

strain relationship in the hydromechanical visco-elastic framework

is established.

With the Van Genuchten–Mualem WRCs introduced in Eq. (5),

the suction–water content relation is given by (knowing that

h ¼ n � Sr):

dh ¼ Srdnþ ndSr ¼ Sr þ n
@Sr

@n

� �

dnþ n
@Sr

@s
ds

¼ �ð1� nÞ Sr þ n
@Sr

@n

� �

mTdeþ n
@Sr

@s
ds ð17Þ

Finally, the incremental stress–strain relationship implemented

in the Ellipsis code can be expressed as:

r
tþDte

_htþDte

� �

¼
Dve W

T H

� �

_e
tþDte

_stþDte

� �

þ
�vstmþ r

0t

0

� �

ð18Þ

where

W ¼ �vmDte

T ¼ �ð1� nÞ Sr þ n @Sr
@n

� �

mT

H ¼ n @Sr
@s

In this relation, Dve is a 6� 6 matrix, W and T are a 6-element

column vector and a 6-element row vector, respectively, and H is a

scalar. It is obvious that H and T are classically derived from the

modified Van Genuchten–Mualem’s WRCs. According to Eqs. (5)–

(7), @Sr
@s

and @Sr
@n

can be derived:

@Sr

@s
¼ ðSrsat � SrresÞð1� nvÞ

av
Patm

1þ
avs

Patm

� �nv� �

1
nv

�2
avs

Patm

� �nv�1

ð19Þ

@Sr

@n
¼
@Sr

@av
�
@av
@saev

�
@saev
@n

¼kðSrsat�SrresÞ 1þ
avs

Patm

� �nv� �

1
nv

�2
avs

Patm

� �nv�1

�
s

s2aev

nv �1

nv

� � 1
nv

�1
saev0
n0

2nv �1

nv

� �2� 1
nv

�nv

!

ð20Þ

The strain rate and the suction rate are both on the right side, so

the velocity field and the porewater pressure can be solved firstly in

the four corner nodes and in the central nodes, and the strain, stress

and saturation field in material points can be determined later.

3.2. Global governing equations

As a three-phase mixed medium, the deformable unsaturated

porous body consists of three phases (solid, liquid and gas) and

four constituents (solid, water, vapour and dry air). To solve a

multi-phase material problem, it is necessary to define the

mechanical variables for each phase, to express the constitutive

relation of each phase, the interaction laws between the phases,

the equilibrium equations, the conservation laws and if necessary

the balance of energy. In this paper, several hypothesis are taken

into account to simplify the system of equations:

(1) The densities of liquid and solid grains are assumed to

be constant. This means that the liquid and solid

material phases are incompressible (but not the solid

skeleton).

(2) The liquid flows in the connected voids of the medium fol-

lowing the generalised Darcy’s law.

(3) Under atmospheric air pressure, the gas diffusion can be

ignored, the air and water vapour pressures are considered

nil (the pores are connected to the outside air).

Fig. 3. Unified model in the principal stress frame (‘‘VE” means Van Eekelen) (a) 3D view and (b) deviatoric stress plane view.

Fig. 4. Common scheme of the unified model in one dimension.
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(4) Under isothermal conditions, the heat transfer can be

ignored, and the temperature field assumed to be constant.

Consequently, the governing equations consist of the equilib-

rium equation of momentum for the whole body, whose weak

form can be written as:
Z

V

ð@eTrÞdV �

Z

S

ð@uT f ÞdS�

Z

V

ð@uTbÞdV ¼ 0 ð21Þ

and the continuity equation of water flow, which contains the con-

servation equation of water mass and the generalised Darcy’s law,

can be written as:

div �
k

g
ðruw � bwÞ

� �

þ
@

@t
ðqwhÞ ¼ 0 ð22Þ

where S and V are the boundary subjected to the distributed force f

and the considered volume, respectively. r is the Cauchy total stress

tensor and b the body force vector. g is the gravity acceleration, qw

is the water density, bw is the body force vector of pore water, uw is

the vector of pore water pressure, and k the unsaturated permeabil-

ity tensor, written as k ¼ kr � ks. ks is the anisotropic saturated per-

meability, and kr the relative hydraulic conductivity. In our

approach, the proposition by Van Genuchten [3] is used:

kr ¼
1� ðavsÞ

nv�1 1þ ðavsÞ
nv

� � 1
nv

�1
� �2

1þ ðavsÞ
nv

� �

1� 1
nv
2

ð23Þ

This expression is derived from the Van Genuchten WRCs, so kr is

obviously influenced by the hydraulic hysteresis of unsaturated

soils.

With appropriate shape functions, the velocity and pore water

pressure fields can be approximated as:

_u ¼ N _U

_uw ¼ Nw
_Uw

(

ð24Þ

where N and Nw are the shape function of velocity and pore water

pressure, respectively.

According to the stress–strain and the water content–suction

relations (18) in Section 3.1 and Eqs. (21), (22), (24):
R

V
BTDveB _UtþDte dV �

R

V
BTWNw

_UtþDte
w dV þ

R

V
BTvmNwU

t
w dV

þ
R

V
BT
r

0t dV ¼
R

S
NT f tþDte dSþ

R

V
NTb

tþDte dV
R

V
BT
w

k
gqw

BwU
tþDte
w dV þ

R

V
NT

wTB
_UtþDte dV �

R

V
NT

wHNw
_UtþDte
w dV

þ
R

Sw
NT

wq
tþDte dSw þ

R

V
BT
w

k
gqw

b
tþDte
w dV ¼ 0

8

>

>

>

>

>

<

>

>

>

>

>

:

ð25Þ

where Sw is the boundary subjected to the water flux, nT is a unit

vector normal to surface Sw; q ¼ nTVk and Vk ¼ � k
qwg

ðruw � bwÞ

is the infiltration velocity. Finally, the discretised finite element

equations are thus written in rate form:

A L

L0 S

� �

_UtþDte

_UtþDte
w

 !

þ
0

RUtþDte
w

� �

¼
FtþDte �MUt

w

Q tþDte
ext

 !

ð26Þ

where

A ¼
P
R

V
ðBTDBÞdV

L ¼ �
P
R

V
ðBTWNwÞdV

M ¼
P
R

V
ðBTvmNwÞdV

F tþDte ¼
P

R

V
NTb

tþDte � BT
r

0t
� �

dV þ
R

S
NTttþDte
� �

dS
� �

L0 ¼
P
R

V
NT

wTB
� �

dV

S ¼ �
P
R

V
NT

wHNw

� �

dV

R ¼
P
R

V
BT
w

k
gqw

Bw

� �

dV

Q tþDte
ext ¼ �

P
R

Sw
NT

wq
tþDte

� �

dSw �
P
R

V
BT
w

k
gqw

b
tþDte
w

� �

dV

The above equations make it possible to compute the velocity

field and the pore water pressure rate.

By introducing _UtþDte
w ¼

UtþDte
w �Ut

w

Dte
, a convenient system of equa-

tions for solving the velocity and the pore water pressure fields

in Ellipsis is obtained:

A _UtþDte þ L
Dte

UtþDte
w ¼ F tþDte

L0 _UtþDte þ S
Dte

þ R
� �

UtþDte
w ¼ Q tþDte

ext þ S
Dte

Ut
w

8

<

:

ð27Þ

Now, a new formulation after the implantation of hydrome-

chanical coupling is developed. With transformations, equation

system (27) can be written as follows:

ÂUtþDte
w ¼ F̂ ð28Þ

where

Â ¼ L0A�1 L
Dte

� S
Dte

þ R
� �

F̂ ¼ L0A�1F tþDte � Q tþDte
ext þ S

Dte
Ut

w

� �

To solve linearised Eq. (28) with a nonsymmetric matrix Â, a

new solver based on the biconjugate gradient stabilised method

(BICGSTAB), instead of the conjugate gradient method, was imple-

mented in the code. Developed by Van der Vorst [41], this method

is based on the biconjugate gradient method (BiCG) but can inverse

the nonsymmetric matrix and has faster and smoother conver-

gence than the original BiCG and other variants.

3.3. Visco-elasto-plastic formulation in hydromechanical framework

Since Ellipsis was initially developed for geophysical problems

involving viscous behaviour, elasticity and plasticity were imple-

mented later. The global formulation was established by Dufour

[1,30,31] and Prime et al. [2,10,28] as follows:

_etot � _ep ¼ _ee þ _ev ¼ ŝ

2l0 þ
s

2gn
þ

J2r�sy
J2r

s

2g

trð _etotÞ � trð _epÞ ¼ trð _eeÞ þ trð _evÞ ¼
_p0

K 0
e
þ p0

Kv

8

<

:

ð29Þ

where _e is the deviatoric strain rate tensor, trð _eÞ is the volumic

strain rate, s is the deviatoric stress tensor, and ŝ its Jaumann

derivative, p0 is the effective pressure, J2r is the second invariant

of the stress tensor, the subscripts tot;v ; e; p mean, respectively,

the total, viscous, elastic and plastic part of the strain tensor, gn is

a numerical viscosity, which is assigned by values large enough to

vanish the viscous term of geomaterials in the solid state, g is the

dynamic viscosity, l0 is the effective elastic shear modulus, and K 0
e

and Kv are the effective elastic and viscous bulk moduli,

respectively.

After the time discretisation of _p0 and ŝ on the time step Dte, the

global formulation is expressed as follows:

s
tþDte ¼2geff

_etot
tþDte � _ep

tþDte
� �

þgeff
s
t

l0Dte
þgeff

Wt
s
t�stW tð Þ
l0 þgeff

sy
g

s
t

Jt2r

p0tþDte ¼ðKvÞeff tr _etot
tþDte

� �

� tr _ep
tþDte

� �

þ p0t

K 0
eDte

� �

8

>

<

>

:

ð30Þ

where geff ¼
1

1
gþ

1
gn
þ 1
l0Dte

[2,10,28], different from the one in expressions

(13), and ðKvÞeff is the above-mentioned visco-elastic volumic
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modulus (13). It should be noted that the plastic terms and the vis-

cous term contributed by Bingham’s yield stress sy are considered

explicitly [10]. Hence, a visco-elasto-plastic formulation is estab-

lished by which problems involving plasticity can be solved by gen-

eralising the visco-elastic framework. Returning to our problem, the

suction in unsaturated soils enhances the elastic moduli and gives

soils greater initial strength. Both will be included, by introducing

p0tþDte ¼ ptþDte þ ðvsÞtþDte and effective elastic moduli depending on

the suction, into the Eq. (30). The latters are expressed as in [27]:

K 0
e ¼

p0
0

kð1�n0Þ

l0 ¼
3ð1�2mÞp0

0

2kð1þmÞð1�n0Þ

8

<

:

ð31Þ

where p0
0 is the initial effective isotropic consolidation pressure, m is

the Poisson’s coefficient, n0 is the initial porosity of the soil, and k a

material parameter.

In the initial state, p0t is assigned by the stress state due to the

initial suction value so that the initial total mean pressure is nil,

thus p00 ¼ v0s0. On one hand, the stress state of every particle is

determined by the formulations at the end of every time step, on

the other hand, it is determined with governing equation

divr ¼ divr0 � gradðvsÞ ¼ divsþ gradp0 � gradðvsÞ ¼ f :

2geff div _etþDte
tot

� �� �

þ ðKvÞeff grad tr _etot
tþDte

� �� �

¼ f 0 ð32Þ

The effective force f 0 is determined at the beginning of every

time step, to compute the velocity field. On the basis of the rela-

tions above, f 0 ¼ f 1 þ f 2 þ f 3 þ f 4 þ f 5, with:

– a term of the external force vector: f 1 ¼ f tþDteext

– a term of the negative elastic force vector at time step t:

f 2 ¼ �geff div
s
t

l0Dte

� �� �

� geff div
W t

s
t � s

tW t

l0

� �� �

� ðKvÞeff grad
p0t

K 0
eDte

� �� �

ð33Þ

– a term of the positive plastic force vector at the previous time

step t, after an explicit simplification:

f 3 ¼ 2geff div _ep
t

� �� �

þ ðKvÞeff grad tr _ep
t

� �� �

ð34Þ

– a term of the force vector owing to Bingham yield stress sy at the

previous time step t:

f 4 ¼ �
geff sy

g
div

s

J2r

� �t

ð35Þ

– a term of the force vector due to suction at the current time step

t þ Dte:

f 5 ¼ gradðvsÞtþDte ð36Þ

Ultimately, the visco-elasto-plastic formulation is resolved in an

Euler-implicit/explicit scheme, implicit for the differential expres-

sion and for taking suction into account, explicit in consideration of

the plasticity and Bingham’s stress threshold.

4. Benchmarks

As an innovative hybrid finite element method, FEMLIP is con-

sidered to be a powerful numerical tool for simulating elasto-

plastic materials with large transformations. The materials studied

are initially discretised by Eulerian mesh and a series of material

points, the latters carry different internal variables. The unknown

quantity, such as the velocity field, is calculated in computational

nodes of the fixed mesh. Since the material points are used as inte-

gration points, the velocity is interpolated from the computational

nodes to the material points at the end of each time step.

Consequently, the material points move according to the velocity

field and the internal variables are refreshed locally. As the

material properties are stored at the material points, and the

numerical weights of integration points are refreshed by means

of a particular algorithm at the end of each step [30], the accurate

description of the material properties during the advection process

is assured.

FEMLIP has been largely validated for various cases of viscous,

visco-elastic and elasto-plastic materials, for instance: (1) linear

visco-elasticity, such as the deflection of a visco-elastic beam

[30]; (2) non-linear visco-elasticity depending on the accumulated

strain, such as the geological evolution of a fold in a non-linear

visco-elastic material [29], and (3) the behaviour of an elasto-

plastic material, such as the isochoric compression of a homoge-

neous confined soil [32]. It has successfully simulated the whole

process of a one-phase mudflow, including the elasto-plastic state

before failure and the visco-elastic state after failure [28].

In this paper, three benchmarks are proposed to test the imple-

mentation of the new hydromechanical coupling in FEMLIP. It

should first be noted that, it is necessary to distinguish material

points in two types. Some do not involve or track hydraulic vari-

ables. For these particles, suction and all the other hydraulic vari-

ables are always nil, by switching off the shape function of water

pressure. This means that the finite element formulation inte-

grated by these particles is expressed as A _U ¼ F . The others involve

hydromechanical coupling, in which the water pressure is

refreshed and the suction–water content relationship is calculated

in every computational time step. The corresponding formulation

is thus Eq. (27).

4.1. Simple compression test

In a 2� 1m2 rectangle meshed by 8� 4 elements, a weightless

unsaturated soil is considered. A visco-elastic weight, whose

dynamic viscosity g is infinitely large to vanish the viscous effect,

with a gravity linearly increasing from 0 to 10 m=s2, is applied

on top to exert the vertical force. ‘‘Air” fills the remaining domain.

The geometry is illustrated in Fig. 5(a).

Consequently, the soil sample has two fixed and free slip

boundaries, one mobile boundary on the right, and is charged by

a vertical force on the upper boundary. The model will be also used

in Section 4.2 to exhibit the effect of imbibition.

Throughout the process of this test, the water flux boundary

conditions maintain inactive. Elasto-plastic and hydraulic parame-

ters are given in Tables 1 and 2.

Since the kinematic field is continuous in FEMLIP, a material

point far enough from the visco-elastic weight on the top is chosen

as a specimen, to avoid the influence of the visco-elastic weight on

the strain. In Fig. 5(b), solid, dotted and dashed curves present the

relation between the horizontal strain e11 and the deviatoric stress

q of this point, under different initial suctions s0 ¼ 0; s0 ¼ 15 kPa

and s0 ¼ 20 kPa, respectively. There are several interesting points

to note:

1. With increasing suction values, the elastic limit is extended.

2. With increasing suction values, the reached maximum of devi-

atoric stress q is increased.

3. The enhancement of the elastic modulus is closely observed,

after the modification of the elastic moduli l0 and K 0
e due to

increasing suction values.

The three phenomena are explained as follows.

According to Bishop’s effective stress expressed by Eq. (1), a

higher initial suction gives a higher initial effective pressure p0
0.
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The yield surface and the Van Eekelen plastic criterion have conical

shapes. Consequently, a higher p0
0 along the hydrostatic line in the

PLASOL model, as in Fig. 3, corresponds to a higher elastic limit and

plastic limit. The PLASOL model using Bishop’s effective stress

describes the two typical features of unsaturated soils in a direct

way. Eq. (30) also explains the increase of the elastic moduli with

p0
0, which is observed in Fig. 5(b).

Furthermore, the increased suction leads to an inter-granular

cementation, which is compatible with increased cohesion due to

the suction, generally expressed on the basis of Bishop’s effective

stress:

s ¼ c0 þ r
0tgu0 ¼ ðc0 þ vstgu0Þ þ rtgu0 ð37Þ

where c0 and u0 are, respectively, effective cohesion and effective

friction angle; c ¼ c0 þ vstgu0 is the apparent cohesion.

4.2. Imbibition test under pressure

The model in Fig. 5(a) is used here to present the influence of

imbibition in the prefailure stage for unsaturated soils. The mesh

is refined in 20� 10 m2, in order to ensure the accuracy of calcula-

tion. Firstly, a vertical force is exerted by increasing the gravity of

the visco-elastic weight from 0 to 10 m=s2 in 1000 dt

(dt ¼ 0:00099 s). Once the elapsed time is longer than 1 s, the ver-

tical force remains constant and a homogeneous imbibition, by

introducing a water flux of 6:24� 10�5 m=s in each element, is

then applied to the soil sample, until the test is finished. The initial

suction value is 20 kPa, Bingham’s yield stress sy is infinitely large

to ensure that the sample always stays in the solid state, and all the

parameters are given in Tables 3 and 4. In Figs. 6 and 7, the dashed,

dotted and solid curves present, respectively, results in a central

soil particle, a soil particle within the fixed boundary and a soil

particle in the free boundary. These three particles are located at

the same level as the material point in Section 4.1.

Fig. 6(a) shows the relation between the effective pressure p0

and J2r. With the increasing vertical force, p0 and J2r vary. p0

reduces with a homogeneous imbibition for a given total pressure

p, after t > 1 s. A slight reduction of suction and a contrary trend in

the degree of saturation before t < 1 s are observed in Fig. 7, due to

the contraction of intergranular voids. Then the suction decreases

rapidly with the imbibition, and the degree of saturation presents

the contrary tendency. In addition, suction and degree of satura-

tion at different points coincide, because of the homogeneous

imbibition and the independence of the degree of saturation on

porosity (k ¼ 0). For this simulation, there is one phenomenon to

point out: the particle near the fixed boundary shows a larger p0

and J2r, and near the free boundary a smaller stress is observed.

Fig. 5. (a) Geometry for the simple compression test and (b) predicted results of a simple compression test for a geomaterial specimen under different suction conditions (0,

15 and 20 kPa).

Table 1

Elasto-plastic parameters of the simple compression test.

Materials E m ue0 ¼ uc0 C0 uef ¼ ucf Cf we ¼ wc Bp Bc q

Unit MPa – � kPa � kPa � – – kg=m3

EP soil 5 0.35 20 2 32 8 10 0.01 0.02 0

Weight 5 0.35 – – – – – – – 4000

Table 2

Hydraulic parameters of the simple compression test.

Parameters of Van Genuchten’s WRCs Hydromechanical coupled

parameters

ad nd aw nw Srsat Srres av nv k n0

1.602 1.38 1.602 1.38 1 0 0.6805 1.5847 0 0.39

Table 3

Elasto-plastic parameters of undrained triaxial test.

E (MPa) m ue0 ¼ uc0 (�) C0 (kPa) uef ¼ ucf (�) Cf (kPa) we ¼ wc (�) Bp Bc

2.5 0.2 1 1 28 10 5 0.01 0.02

Table 4

Viscous parameters of undrained triaxial test.

g (Pa s) sy (kPa)

50 0.1
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Consequently, the stress field shows a continuous reduction from

left to right, because the fixed boundary condition restricts the dis-

placement in the horizontal direction, but on the right, the parti-

cles move freely, so that the development of plastic deformation

is limited. This induces heterogeneous stress and strain fields with

the development of the plastic strain. Fig. 8(a) gives a similar

heterogeneity of d
2
w for the above-mentioned reason. The sharp

drop and the following decrease of d
2
w due to the imbibition are

observed in t ¼ 1 s and afterwards. In Fig. 8(b), the evolution of

global second-order work D2W (the dashed curve) is shown. The

vanishing due to the imbibition observed in t ¼ 3 s, is almost the

same as the vanishing of the local d
2
w in the central particle. In

addition, another simulation, in which the wetting load is not

exerted after t ¼ 1 s and the gravity increases at the same rate

(þ0:01 m=s2 per time step), has been done: the solid curve shows

that D2W decreases without any sharp drop.

4.3. Undrained triaxial test with transition between solid–fluid states

In this simulation, an undrained triaxial test controlled by

boundary wall velocities is modelled. Similar phenomena due to

increasing suction values are surveyed. Moreover, the solid–fluid

transition is activated, and the target behaviours are illustrated.

This model comprises a homogeneous geomaterial sample mea-

suring 1� 1 m2 with 4� 4 elements. The kinematic boundary con-

ditions controlled in two stages are illustrated in Fig. 9. Firstly,

horizontal velocity (x-axis) and vertical velocity (y-axis) are

applied to the sample isotropically (V x ¼ Vy ¼ 0:6 m=s), so that

the sample undergoes the same strains exx ¼ eyy ¼ 0:001 in both

directions. Until net confining pressure p ¼ 3 kPa is attained, the

second stage starts, and the horizontal velocity reverses in order

to maintain an isochoric condition, that is to say: exx þ eyy ¼ 0. As

in the previous test, throughout the process, the water flux bound-

ary conditions remain inactive, meaning that the suction tends to

decrease in the first stage because of the isotropic compression,

and is maintained constant in the second one.

The visco-elasto-plastic and hydraulic parameters are enumer-

ated in Tables 3–5. Fig. 10 shows the relation between the effective

pressure and the second invariant of the stress tensor, with a solid–

fluid transition. In the figure, the curves represent saturated soil

and unsaturated soil under a 10 kPa suction. Initially, the effective

confining pressure and J2r increase in the isotropic consolidation

stage, because of a plane deformation hypothesis (while

q ¼ rxx � ryy remains zero). Then J2r increases rapidly while p0

Fig. 6. (a) Effective stress path of three representative soil particles and (b) variation of J2r over time for the same soil particles.

Fig. 7. (a) Suction and (b) degree of saturation over time.

Fig. 8. (a) Evolution of d
2
w over time in three representative soil particles and (b) evolution of global second-order work in different loading conditions.
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remains constant until the elastic limit is attained, as is expected

from an isotropic elastic behaviour. As a contractant material

according to its physical parameters, once entering the elasto-

plastic domain, p0 starts to decrease. When J2r reaches the peak

value, we have dJ2r ¼ 0 and dev ¼ 0 (isochoric loading). According

to Hill’s second-order work d
2
w and Bingham’s yield stress sy,

respectively:

d
2
w ¼ dJ2rded þ dp

0
dev ¼ 0

J2r > sy

(

ð38Þ

the diffuse failure thus occurs in the bifurcation domain, as illus-

trated by the solid curves. In Fig. 10, obviously, the unsaturated soil

exhibits a higher peak of deviatoric stress and a larger elastic

domain. The diffuse failure comes later due to a larger apparent

cohesion.

Fig. 11 presents the variation of J2r over physical time. As in the

saturated soil, the J2r of the unsaturated soil falls below sy, while

diffuse failure is attained, which corresponds to the fact that fluids

do not support a deviatoric stress beyond the yield stress sy. Fur-

thermore, the properties depending on the suction, such as the lar-

ger elastic domain, the greater strength and failure occurring later

are observed in Fig. 11.

Fig. 9. (a) Isotropic consolidation stage and (b) deviatoric loading stage under isochoric condition.

Table 5

Hydraulic parameters of undrained triaxial test.

Parameters of Van Genuchten’s WRCs Hydromechanical coupled

parameters

ad nd aw nw Srsat Srres av nv k n0

1 1.35 10 1.35 1 0.1 2 2.15 0.5 0.4

Fig. 10. Effective stress paths of saturated and unsaturated soils (s = 10 kPa) with (solid lines) or without (dashed lines) transition.

Fig. 11. Variation of J2r over time in saturated and unsaturated cases.
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5. Conclusions

In this paper, a new finite element formulation for solving fully

coupled hydromechanical problems is developed in the FEMLIP

visco-elasto-plastic framework, by introducing assumptions as fol-

lows: (1) the liquid and solid phases are incompressible; (2) the

heat transfer is neglected and the temperature field is assumed

to be constant; (3) the generalised Darcy’s law is used to describe

the liquid flowing in the connected voids of the medium; (4) the air

pressure and the water vapour pressure are considered nil, under

atmospheric air pressure. On this basis, the stress–strain relation

for unsaturated soils is derived by introducing Bishop’s effective

stress into the PLASOL elasto-plastic model. The modified Van Gen-

uchten’s WRCs linking the degree of saturation to suction and

porosity is implemented, from which the suction–water content

relation is derived. For taking into account the non-symmetry of

the numerical operator, a new solver based on the biconjugate gra-

dient stabilised method has also been implemented.

The capacity of the model to deal with coupled hydromechani-

cal problems has been validated by three benchmarks, focusing on

three aspects: (1) features of unsaturated soil, for instance,

enhancements of the deviatoric stress peak and elastic modulus

in Section 4.1, (2) the diffuse failure due to the imbibition and

the dependence on boundary conditions to integrate the global

second-order work, in Section 4.2, and (3) the sharp drop in devi-

atoric stress and the fluid-like behaviour observed in postfailure

stage in Section 4.3.

In conclusion, the model appears to be reliable to describe

unsaturated soil behaviours both in prefailure and postfailure

stages. Unfortunately, to the author knowledge, there is no exper-

imental results at the Laboratory scale on a sample loaded in plane

strain under hydromechanical conditions. Thus the validation is

only qualitative. By improving essentially the fluid-like model,

and by taking into account inertial forces for rapid flow, more real-

istic cases, for example, unsaturated slopes and rainfall-induced

landslides of the flow type (mudflows, debris flows) can be

simulated.
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