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Description of spontaneous photon emission and local density of states in presence of

a lossy polaritonic inhomogenous medium

Aurélien Drezet 1

(1) Univ. Grenoble Alpes, CNRS, Institut Néel, F-38000 Grenoble, France

We provide a description of spontaneous emission in a dispersive and dissipative linear inhomo-
geneous medium based on the generalized Huttner-Barnett model [Phys. Rev. A 46, 4306 (1992)].
Our discussion considers on an equal footing both the photonic and material fluctuations which
are necessary to preserve unitarity of the quantum evolution. Within this approach we justify the
results obtained in the past using the Langevin noise method that neglects the removal of photonic
fluctuations. We finally discuss the concept of local density of states (LDOS) in a lossy and disper-
sive inhomogeneous environment that provides a basis for theoretical studies of fluorescent emitters
near plasmonic and polaritonic antennas.

PACS numbers: 42.50.Ct, 41.20.Jb, 73.20.Mf

I. INTRODUCTION

In the recent years the theoretical problem of describ-
ing the coupling of single fluorescent quantum emitters
with a metallic nano-particle supporting surface plasmon
(SP) modes has become very urgent due to many applica-
tions envisioned with photonic and quantum information
processing technologies at the nanoscale. In particular
the concept of local density of states (LDOS) [1, 2] is
central since it provides a figure a merit for quantifying
the coupling of quantum emitters to plasmonic systems
and it plays a central role in recent studies using near-
field optical microscopes [1, 3–7]. However, one of the
main issue with plasmonic systems is that they are in-
trinsically dissipative and that a self-consistent quantum
electrodynamics (QED) description of plasmons, i.e. re-
specting rigorously the unitarity of time evolution, in-
volves necessarily the inclusion of additional degrees of
freedom associated with fluctuating currents and dipoles
in the metal. This problem has been generally stud-
ied using the Langevin noise method advocated origi-
nally by Gruner and Welsch [8–10] and it has been in-
tensively used meanwhile in QED in macroscopic me-
dia [11–20], e.g., for calculating the coupling of quantum
fluorescent emitters to fluctuating fields near plasmonic
antennas [21–29]. The justification and consistency of
the approach (which intuitively generalizes earlier fun-
damental results obtained by Rytov and Lifschitz in the
context of Casimir force calculations [30–41]) has been
however the subject of some controversies in the past
and a rigorous mathematical derivation based on a QED
hamiltonian formalism valid for the most general inho-
mogeneous media has been looked for during years. The
main issue is that the Langevin noise approach was origi-
nally motivated by the Huttner-Barnett Hamiltonian for-
malism [42–48] which for a homogeneous dissipative and
dispersive dielectric material, respecting Kramers-Krönig
causality constraints, generalizes the historical Hopfield-
Fano model for polaritons in bulk media [49, 50]. The
Huttner-Barnett formalism leads directly to the results
postulated by Gruner and Welsch in their seminal work

and in particular it was used in the calculation of the
emission rate of fluorescent dipoles imbedded in a lossy
dielectric matrix [42–48]. However, the rigorous equiv-
alence between the two formalisms in the more general
inhomogeneous situation was still lacking for years.
Very recently, based on important calculation by Sut-

torp and coworkers, several works [52–58] proposed a
mathematical justification of the Langevin noise method
based on the direct generalization of the Huttner-Barnett
model for inhomogeneous media. However, we showed in
two publications [59], and [60] that these earlier deriva-
tions overlooked the role of boundary conditions concern-
ing the value taken by dielectric susceptibilities at spatial
infinity. We showed that to preserve the fundamental
unitarity of the quantum evolution one must necessar-
ily add a contribution associated with vacuum photonic
fluctuation to the fluctuating source current terms cal-
culated by Gruner and Welsch [8–10]. Actually, it im-
plies that, rigorously speaking, the formalism introduced
by Gruner and Welsch [8–10] relies on the assumption
that the surrounding dielectric environment is necessar-
ily lossy and this, even at spatial infinity. Contrarily to
a widespread belief this situation is not generally appli-
cable to nanoparticle antennas which are by definition
spatially localized and very often surrounded by vacuum
in the calculations.
The main objective of the present work is to leverage

on the analysis started by us in [59, 60] in order to de-
scribe the coupling of quantum emitters to fluctuating
currents and fields. In the present paper we will consider
specifically the regime of spontaneous emission and the
coupling of transition dipoles to coherent laser sources
(i.e., the derivation of the optical Bloch equations). We
will demonstrate that the most general formalism derived
in [60] actually allows us to generalize the results ob-
tained for spontaneous emission that were only rigorously
derived for a dipole in vacuum. We will show that for this
specific problem the dynamical equations and emission
rates actually agree with previous results obtained using
the Gruner and Welsch method without the assumptions
made in this phenomenological approach.

http://arxiv.org/abs/1702.07127v1
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The layout of this paper is a follows: In section II
we provide a general description of Huttner-Barnett for-
malism [43, 59, 60] using the dual Lagrangian method
given in [59, 60]. We include in the model the inter-
action between a fluorescent molecule and the photonic
and dielectric environment. In section III we analyze the
spatio-temporal evolution of the electric field operator
and separate the contributions associated with free pho-
tons from fluctuating currents (associated with the di-
electric medium and the molecule). In sect IV we study
within the Wigner-Weisskopf method the spontaneous
emission of a two-level atom in a general lossy and dissi-
pative inhomogeneous environment. We conclude with a
discussion in section V about LDOS and photonic wave
functions associated with spontaneously emitted photons
and we derive the dynamics associated with the optical
Bloch equations.

II. THE DYNAMICAL EQUATIONS OF A

TRANSITION DIPOLE IN A FLUCTUATING

PHOTONIC AND DIELECTRIC ENVIRONMENT

We start with the dual-Lagrangian density for the cou-
pled system

L =
B2 −D2

2
+ F ·∇×P− P2

2
+ LM + LΨa (2.1)

where by definition B(x, t) = 1
c∂tF(x, t), and D(x, t) =

∇ × F(x, t) and where we use the Coulomb gauge con-
straint ∇ · F(x, t) = 0 for the electric potential. The
electric potential F(x, t) is the dual of the usual magnetic
potential A(x, t) and we showed that it is a specifically
adapted choice for quantization of electromagnetic prob-
lems involving dipole densities P(x, t) [59, 60]. In this
description the material part associated with the inho-
mogeneous dielectric medium reads

LM =

∫ +∞

0

dω
(∂tXω)

2 − ω2X2
ω

2
. (2.2)

and corresponds to the Huttner-Barnett model [43, 59,
60]. In this model the field Xω(x, t) completely charac-
terizes the fully causal dielectric environment satisfying
Kramers-Krönig relations [43, 59, 60].
The contribution [61]

LΨa = i~Ψ∗
a∂tΨa − VΨ∗

aΨa

− ~
2

2M
∇Ψ∗

a ·∇Ψa (2.3)

is associated with the Schŕ’odinger matter fields Ψa(x, t)
and Ψ∗

a(x, t) which describe the atomic dipole of mass
M in the external potential V (x). In the second quan-
tization formalism we expand the atomic wave function
operator as Ψa(x, t) =

∑
m bm(t)ψm(x) where ψm(x) (la-

beled by m) are energy eigenstates of the time indepen-

dent Schrodinger equation Emψm = (−~
2
∇

2

2m +V )ψm de-
fined for the energy Em and forming a complete orthog-
onal set such that

∫
d3xψ∗

m(x)ψn(x) = δn,m. The usual

second quantization procedure leads to the (fermionic)
anti-commutators

{bn(t), b†m(t)} = δn,m, (2.4)

and {bn(t), b†m(t)} = 0 = {bn(t)†, b†m(t)}. This is
clearly consistent with the usual canonical quantiza-
tion procedure since the Lagrangian function LΨa =∫
d3xLΨa(x, t) = i~

∑
m b†mḃm − ∑

mEmb
†
n, b

†
m implies

the canonical momenta:

Πbm =
∂LΨa

∂ḃm
= i~bn(t)

†,Πb†m
=
∂LΨa

∂ḃ†m
= 0 (2.5)

which together with the canonical anti-commutation
rules {bm,Πbn} = i~δn,m, etc... imply Eq. 2.4.
Moreover, in this model the dipole density P(x, t)

includes contributions from the surrounding dielectric
medium Pdiel.(x, t) and of the Schrodinger field PΨ(x, t).
For the dielectric part we use in agreement with Huttner
and Barnett (see [43, 59, 60]):

Pdiel.(x, t) =

∫ +∞

0

dω

√
2σω(x)

π
Xω(x, t). (2.6)

For the Schrodinger field we here model the dipole den-
sity fluid using the formula:

PΨ(x, t) ≃ e

∫
d3ξΨ∗

a(ξ, t)ξΨa(ξ, t)∆(x − x0)

=
∑

m,n

b†m(t)bn(t)µm,n∆(x − x0) (2.7)

where µm,n = e
∫
d3ξψ∗

m(ξ)ξψn(ξ) = µ∗
n,m denote some

transition dipoles and e < 0 is the electron charge. The
model relies on the Openheimer approximation which
separates the dynamical evolution into a center of mass
motion x(t) (supposed here irrelevant since the atom is
not moving) and a relative motion ξ(t) corresponding ap-
proximately to the electron motion with respect to the
nuclei. Here we introduced ∆(x− x0) which is a narrow
peaked distribution centered on the coordinate x0 asso-
ciated with the center of mass of the atomic system and
normalized as

∫
d3x∆(x−x0) = 1. ∆(x−x0) reduces to

the Dirac distribution δ3(x− x0) in the point-like dipole
limit. Still, in order to avoid singular divergences we will
here keep ∆(x− x0) finite.
Inserting the total dipole density P = PΨ +Pdiel. into

the Lagrangian Eq. 2.1 leads to the Euler-Lagrange equa-
tions [59, 60] corresponding to Maxwell’s equations in the
medium with full polarization P.

∇×B(x, t) =
1

c
∂tD(x, t), ∇ ·D(x, t) = 0

∇×E(x, t) = −1

c
∂tB(x, t), ∇ ·B(x, t) = 0 (2.8)

where E = D−PΨ −Pdiel..
Similarly, we deduce using the Euler-Lagrange method

a dynamical equation for the dielectric field Xω(x, t):

∂2tXω(x, t) + ω2Xω(x, t) =

√
2σω(x)

π
E(x, t) (2.9)
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with here E = D−PΨ −Pdiel..
For the Schrodinger fields we must be more careful.

Indeed by using the Euler-Lagrange classical method we
should deduce the evolution equations

ḃm(t) = −iEm

~
bm(t) +

iĒ(t)

~
·
∑

n

µ∗
n,mbn(t) (2.10)

with Ē(t) =
∫
d3E(x, t)x∆(x − x0) ≃ E(x0, t) the av-

eraged field applied on the atomic dipole. A similar
equation is obtained for the complex conjugate (Her-
mitian) field b†m(t). From this equation we deduce
d(

∑
m b†m(t)bm(t))

dt = 0 which means that the observable

N(t) =
∑

m b†m(t)bm(t) is a constant of motion. How-
ever, at that stage Eq. 2.10 is not fully quantum since in
the present formalism Ē(t) and bn(t) do not commute and
the order of operators must be specified. To derive the
equation of motion for the matter field we should there-
fore introduce the Hamiltonian of the system. Using the
previous Lagrangian we derive the full Hamiltonian H(t)
reads:

H(t) =

∫
d3x :

B(x, t)2 +E(x, t)2

2
: +HM (t) +HΨa(t)

(2.11)

where HM (t) =
∫
d3x

∫ +∞
0 dω~ωf†ω(x, t)fω(x, t) and

HΨa(t) =
∑

mEmb
†
m(t)bm(t). H(t) is clearly an inte-

gral of motion as it can be for instance proven by using
the Poynting theorem discussed in [59] and which reads:

−∂t(B
2+E

2

2 ) = ∇ · (cE×B)+J ·E where J = ∂tP. Inte-

grating the dissipated power
∫
d3xJ ·E leads, after some

simple calculations which will not be repeated here, to
d
dtH(t) = −

∮
Σ∞

dΣ · cE × B → 0. This shows that the

energy E = H(t) is naturally conserved in the limit of an
infinite integration volume and supposing that the field
decays fast enough at infinity (an hypothesis which makes
sense only with some additional physical assumptions).
Moreover, to build a quantized version of this field the-
ory we insert in Eq. 2.11 the usual normal order product
convention : [...] : [59, 60] which removes some infinite
spurious quantities in the energy (here the normal or-
der means that we let bosonic and fermionic operators to
commute or respectively anticommute, additionally the
fermionic and bosonic operators mutually commute). Us-
ing the Heisenberg evolution law i~ d

dtO(t) = [O(t), H(t)]
for any quantum operator O(t) we thus easily deduce
once again Eqs. 2.8 and 2.9. Furthermore, a rigorous
application of commutation and anticommutation rules
shows that Eq. 2.10 is actually correct if the electric field
operator is indeed positioned before the annihilation op-
erator bn (taking into account this constraint it is also
easy to prove the constancy of N(t)).
We will now in the following consider only the case

of the idealized two-level atom. For this we introduce
the ground state m = 1 and the excited state m = 2
such as E2 − E1 = ~ω21 > 0. We have N(t) =

b†1(t)b1(t)+b
†
2(t)b2(t) = N(t0) and we can therefore write

the Schrodinger part of the Hamiltonian HΨa(t) as

HΨa(t) = E1b
†
1(t)b1(t) + E2b

†
2(t)b2(t)

=
E1 + E2

2
N(t) +

~ω21

2
σz(t) (2.12)

with by definition σz(t) = b†2(t)b2(t)− b†1(t)b1(t). We get
for the evolution equation of σz(t):

σ̇z(t) =
−2i(Ē(t) + P̄Ψ(t)) · µ1,2

~
σ(t)

+
2i(Ē(t) + P̄Ψ(t)) · µ∗

1,2

~
σ†(t) (2.13)

with by definition σ(t) = b†1(t)b2(t) and σ†(t) =

b†2(t)b1(t). We emphasize that in this equation it is the
field Ē(t) + P̄Ψ(t) = D̄(t) − P̄diel.(t) which plays a cen-
tral role, with P̄Ψ(t) = (µ1,2σ(t) +µ∗

1,2σ
†(t))∆(0) (since

PΨ(x, t) = (µ1,2σ(t)+µ∗
1,2σ

†(t))∆(x−x0)). Importantly

the field operator Ē(t)+P̄Ψ(t) commutes with atomic op-
erators such as σ(t), σz(t) and this makes the calculation
easier.
We similarly introduce the evolution equation for σ(t)

as :

σ̇(t) = −iω21σ(t) −
i(Ē(t) + P̄Ψ(t)) · µ∗

1,2

~
σz(t) (2.14)

which again involves the field Ē(t) + P̄Ψ(t).

III. DESCRIPTION OF THE FULL ELECTRIC

FIELD OPERATOR IN PRESENCE OF A

POLARIZABLE MEDIUM AND A

FLUORESCENT DIPOLE

At that stage and before to solve the previous dynam-
ical problem we should give a reminding concerning the
formal structure of the fully quantized electric field op-
erator discussed in [59, 60].
We showed in [60] that the total electric field evaluated

at time t and at point x is given by

E(x, t) = E(v)(x, t)

+

∫ t−t0

0

dτ

∫
d3x′∆v(τ,x,x

′) ·P(x′, t− τ). (3.1)

In this equation t0 is an initial time (which can be sent
to the remote past t0 → −∞ if needed), E(v)(x, t) =
D(v)(x, t) denotes the field associated with free-space
propagating photons existing in absence of any dielectric
surrounding medium and atoms [59, 60]. The quantiza-
tion of this free field expanded into plane wave modes
(labeled by the wave-vector kα and the transverse polar-
ization ǫ̂α,j , with j = 1, 2) leads to the following operator
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expressions [60]:

E(v)(x, t) =
∑

α,j

−
√

~ωα

2
c
(v)
α,j(t)k̂α × ǫ̂α,jΦα(x) + hcc.

(3.2)

with Φα(x) = eikα·x/
√
V (V is the infinite box vol-

ume of the Born von Karman modal expansion method)

and where the modal expansion coefficients c
(v)
α,j(t) =

c
(v)
α,j(0)e

−iωαt (with ωα = c|kα|) satisfy the usual com-

mutation relations for bosons (i.e. [c
(v)
α,j(t), c

(v)†
α′,j′(t)] =

δα,α′δj,j′ etc...). Furthermore, as shown in [59, 60] we

have c
(v)
α,j(0) = cα,j(t0)e

−iωαt0 where t0 is the initial time

mentioned before and where cα,j(t0) is an operator asso-
ciated with the total field acting at time t0. In the rest
of this work we will write Eq. 3.2 in the more compact
form

E(v)(x, t) =
∑

α,j

E
(v)
α,j(x)c

(v)
α,j(0)e

−iωαt + hcc. (3.3)

which involves the transverse electric mode profiles

E
(v)
α,j(x). We emphasize that the set of functions E

(v)
α,j(x)

constitute an orthogonal mode basis satisfying the condi-

tion
∫
d3xE

(v)
α,j(x) ·E

(v)∗
α′,j′(x) =

~ωα

2 δα,α′δj,j′ Moreover,

the tensor∆v(τ,x,x
′) seen in Eq. 3.1 is a retarded dyadic

Green propagator which was written −∂2
τUv(τ,x,x

′)
c2 in

[60]. Here it is explicitly obtained as an inverse Fourier
integral [60]:

∆v(τ,x,x
′) =

∫ +∞

−∞

dω

2π
e−iωτ ω

2

c2
Gv(x,x

′, ω) (3.4)

which vanishes for τ < 0 and involves the knowledge of
the usual Green dyadic function [2, 60, 62] Gv(x,x

′, ω)
in vacuum, i.e., solution of the equation

∇×∇×Gv(x,x
′, ω)− ω2

c2
Gv(x,x

′, ω)

= Iδ(x − x′). (3.5)

Using the definition for the Fourier transform Ẽ(x, ω) =∫ +∞
−∞

dt
2πE(x, t)e+iωτ (and an equivalent formula for the

dipole density P̃(x, ω)) it is actually easier to write
Eq. 3.1 as

Ẽ(x, ω) = Ẽ(v)(x, ω) +

∫
d3x′ω

2

c2
Gv(x,x

′, ω · P̃(x′, ω),

(3.6)

where Ẽ(v)(x, ω) =
∑

α,j [E
(v)
α,j(x)c

(v)
α,j(0)δ(ω − ωα) +

E
(v)∗
α,j (x)c

(v)†
α,j (0)δ(ω + ωα). Now in the present problem

involving a polarizable medium with complex permittiv-
ity ε̃(x, ω) = ε̃′(x, ω) + iε̃′′(x, ω) we have

P̃(x, ω) = P̃Ψ(x, ω) + P̃(0)(x, ω)

+(ε̃(x, ω)− 1)Ẽ(x, ω) (3.7)

where P̃(0)(x, ω) is the fluctuating dipole density intro-
duced by Gruner and Welsch [8–10] and given by [60]:

P̃(0)(x, ω) =

√
~ε̃′′(x, ω)

π
f (0)ω (x, 0)Θ(ω)

+

√
~ε̃′′(x,−ω)

π
f
(0)†
−ω (x, 0)Θ(−ω). (3.8)

with f
(0)
ω (x, 0) a fluctuating dipolar term associated

with the dielectric medium (we have f
(0)
ω (x, t) =

f
(0)
ω (x, 0)e−iωt and f

(0)
ω (x, 0) = f

(0)
ω (x, t0)e

iωt0). There-
fore, it is specially convenient to introduce the total
Green dyadic function [2, 60, 62] G(x,x′, ω) in the po-
larizable medium solution of the equation

∇×∇×G(x,x′, ω)− ω2

c2
ε̃(x, ω)G(x,x′, ω)

= Iδ(x − x′). (3.9)

We thus rewrite Eq. 3.6 as

Ẽ(x, ω) = Ẽ(0)(x, ω) +

∫
d3x′ω

2

c2
G(x,x′, ω) · P̃eff.(x

′, ω),

(3.10)

where P̃eff.(x, ω) = P̃Ψ(x, ω) + P̃(0)(x, ω). Here the

new electric field operator Ẽ(0)(x, ω) is a solution of
Maxwell’s equations in the dielectric medium in absence

of P̃eff.(x
′, ω) and we have the integral relation [60]

Ẽ(0)(x, ω) = Ẽ(v)(x, ω) +

∫
d3x

ω2

c2
Gv(x,x

′, ω)

·(ε̃(x, ω)− 1)Ẽ(0)(x′, ω)

= Ẽ(v)(x, ω) +

∫
d3x

ω2

c2
G(x,x′, ω)

·(ε̃(x, ω)− 1)Ẽ(v)(x′, ω)(3.11)

where in the last equality we used the important
Lippman-Schwinger integral relations

G(x,x′, ω) = Gv(x,x
′, ω) +

∫
d3x

ω2

c2
Gv(x,x

′, ω)

·(ε̃(x, ω)− 1)G(x,x′, ω)

= Gv(x,x
′, ω) +

∫
d3x

ω2

c2
G(x,x′, ω)

·(ε̃(x, ω)− 1)Gv(x,x
′, ω).

(3.12)

Therefore, we see that the electric field Ẽ(0)(x, ω) is com-
pletely determined by the knowledge of the vacuum elec-

tric field Ẽ(v)(x, ω) through a linear equation. Clearly

Ẽ(0)(x, ω) can be also rewritten as

Ẽ(0)(x, ω) =
∑

α,j

[E
(0)
α,j(x)c

(v)
α,j(0)δ(ω − ωα)

+E
(0)∗
α,j (x)c

(v)†
α,j (0)δ(ω + ωα) (3.13)
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where the functions E
(0)
α,j(x) are the classical electric

fields which are solutions of the scattering problem of a

plane wave E
(v)
α,j(x) with pulsation ωα by the polarizable

medium. Therefore, we have

Ẽ
(0)
α,j(x) = Ẽ

(v)
α,j(x) +

∫
d3x

ω2
α

c2
Gv(x,x

′, ωα)

·(ε̃(x, ωα)− 1)Ẽ
(0)
α,j(x

′, ω)

= Ẽ
(v)
α,j(x) +

∫
d3x

ω2
α

c2
G(x,x′, ωα)

·(ε̃(x, ωα)− 1)Ẽ
(v)
α,j(x

′). (3.14)

We point out that contrarily to Ẽ
(v)
α,j(x) the fields Ẽ

(0)
α,j(x)

do not constitute in general an orthogonal mode basis but
this does not prevent us to use it for expanding the field

Ẽ(0)(x, ω) as in Eq. 3.13. Before leaving this subsection
it is important to give the field expression in the time
domain which reads [60]:

E(x, t) = E(0)(x, t)

+

∫ t−t0

0

dτ

∫
d3x′∆(τ,x,x′) ·Peff.(x

′, t− τ) (3.15)

where like for the vacuum case the causal propagator
∆(τ,x,x′) is given by the inverse Fourier transform

∆(τ,x,x′) =

∫ +∞

−∞

dω

2π
e−iωτ ω

2

c2
G(x,x′, ω), (3.16)

which vanishes for τ < 0 [60].

IV. THE SIPE APPROACH AND THE

WIGNER-WEISSKOPF APPROXIMATION

In order to solve the system of dynamical equations we
will first use the Wigner-Weisskopf approximation [63]
as analyzed by J. Sipe [64]. For this purpose we first
consider the total Hamiltonian H(t) written as

H(t) =

∫
d3x :

B(x, t)2 +D(x, t)2

2
: +HM (t) +HΨa(t)

−
∫
d3xD(x, t) ·P(x, t)

(4.1)

H(t) can be formally separated into a non-interacting

part H(0) =
∫
d3x : B(x,t)2+D(x,t)2

2 : +HM (t) + HΨa(t)

and a coupling term H(I)(t) = −
∫
d3xD(x, t) · P(x, t).

We now expand the quantum states |Ψ(t)〉 into the mode
basis associated with the non interacting part H(0)(t).
We will consider the problem of spontaneous emission of
light by a two-level system and following Sipe [64] we
postulate that the quantum state at time t0 = 0 reads

|I(0)〉 = |01, 12, 0m, 0P ; t0〉 (4.2)

where 01 means that no electron is in the lower energy
state E1 and 12 implies that there is an electron in the
upper energy state E2 (in the following the notation
|01, 12, 0m, 0P ; t0〉 and other similar ones mean that the
vector is actually an eigenstate of a complete set of oper-
ator at time t0 = 0). Since N(t) = N(0) we see that for
t ≥ 0 the system is in an eigenstate ofN(t) corresponding
to the eigenvalue N = +1. Similarly 0m and 0P mean
that there is no polarization and photon excitation in
the system at the initial time. At time t > t0 the atomic
system evolves to its ground state and we approximately
have:

|I(t)〉 ≃ S(t)e−i
E1
~

t|01, 12, 0m, 0P ; t0〉

+

∫
d3x

∫ +∞

0

dωbω(x, t)fω(x, 0)
†|11, 02, 0m, 0P ; t0〉

+
∑

α,j

bα,j(t)cα,j(0)
†|11, 02, 0m, 0P ; t0〉+ ...

(4.3)

with S(0) = 1 and bα,j(0) = 0, bω(x, 0) = 0. We also
define a second possible state which we call the ground
state of the complete system and that we write neglecting
dressing and following Sipe [64] as:

|G(t)〉 ≃ e−i
E1
~

t|11, 02, 0m, 0P ; t0〉
= e−i

E1
~

t|G(0)〉 (4.4)

which characterizes a system with fundamental energy
E1 (i.e., neglecting dressing).
To solve Eq. 2.14 coupled to Maxwell’s equations we

here consider the matrix elements 〈G(0)|A(t)|I(0)〉 =
〈G(t)|A(0)|I(t)〉 associated with the operator A(t) is ex-
pressed in the Heisenberg picture. We also remind that
if U(t, 0) denotes the unitary evolution operator associ-
ated with the full Hamiltonian H(t), we have |I(t)〉 =
U(t, 0)|I(0)〉, |G(t)〉 = U(t, 0)|G(0)〉 and, therefore we
have A(t) = U−1(t, 0)A(0)U(t, 0). Using Eq. 2.14 we get

d

dt
〈G(0)|σ(t)|I(0)〉 = −iω21〈G(0)|σ(t)|I(0)〉

− iµ
∗
1,2

~
· 〈G(0)|σz(t)(Ē(t) + P̄Ψ(t))|I(0)〉 (4.5)

In order to solve this equation we should evaluate the
different matrix elements involved. First, we have

〈G(0)|σ(t)|I(0)〉 = 〈G(t)|σ(0)|I(t)〉
≃ ei

E1
~

t〈G(0)|σ(0)|I(t)〉
= S(t) (4.6)

where we have used Eq. 4.4.
Second, the matrix element

〈G(0)|σz(t)(Ē(t) + P̄Ψ(t))|I(0)〉
= 〈G(t)|σz(0)(Ē(0) + P̄Ψ(0))|I(t)〉

≃ ei
E1
~

t〈G(0)|σz(0)(Ē(0) + P̄Ψ(0))|I(t)〉
(4.7)
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can be rewritten as −eiE1
~

t〈G(0)|(Ē(0) + P̄Ψ(0))|I(t)〉 ≃
〈G(0)|(Ē(t)+P̄Ψ(t))|I(0)〉 since the quantum state |G(0)〉
corresponds to the eigenvalue σz = −1. Regrouping the
terms we finally get the dynamical equation

d

dt
S(t) = −iω21S(t)

+
iµ∗

1,2

~
· 〈G(0)|(Ē(t) + P̄Ψ(t))|I(0)〉. (4.8)

Now, to evaluate 〈G(0)|Ē(t)|I(0)〉 we need to insert the
electric field solution of Maxwell’s equations evaluated at
the dipole position. As discussed in the previous subsec-
tion the total field is given by Eq. 3.15. By using the form
for 〈G(0)| and |I(t)〉 it is not difficult [65] to show that

we have 〈G(0)|Ē(0)
(t)|I(0)〉 = 0, 〈G(0)|P̄(0)

(t)|I(0)〉 = 0.
Therefore, the only contribution to the electric field ma-
trix element comes out from the field generated by the
atomic dipole itself with:

〈G(0)|P̄Ψ(t)|I(0)〉 = (µ1,2〈G(0)|σ(t)|I(0)〉
+µ∗

1,2〈G(0)|σ†(t)|I(0)〉)∆(0)

≃ µ1,2S(t)∆(0). (4.9)

where we have used

〈G(0)|σ†(t)|I(0)〉 ≃ ei
E1
~

t〈G(0)|σ†(0)|I(t)〉 = 0.

(4.10)

Regrouping all these expressions, Eq. 4.8 finally reads:

d

dt
S(t) = −iω0S(t) +

∫ t

0

dτ
iµ∗

1,2 · ∆̄(τ,x0,x0) · µ1,2

~

·S(t− τ)

(4.11)

where ω0 = ω21 − |µ1,2|2∆(0)

~
is a modified pulsation,

due to the dipole 〈G(0)|P̄Ψ(t)|I(0)〉. This result is cen-
tral for the present analysis since it shows that the
vacuum photon field and the material fluctuating cur-
rents are not playing an effective role in the dynam-
ical equation. Therefore, the transition dynamics is
driven by the self-interaction of the source electromag-
netic field. We emphasize that in Eq. 4.11 the Green
dyadic tensor ∆(τ,x,x0) is actually a highly singular
function both in the spatial (near x0) and in the time
domain (near τ = 0). Actually, we showed in [60], us-
ing the Laplace transform method, that ∆(τ,x,x0) =
[Q(τ,x,x0)− Iδ3(x−x0)δ(τ)]Θ(τ) where Q(τ,x,x0) is a
distribution that is regular in the time domain at τ = 0.
Introducing this definition in Eq. 4.11 shows that the

integral
∫ t

0 dτQ(τ,x,x0)S(t − τ) actually vanishes for

t → 0+ and that the dipole correction to ω21 seen in ω0

compensates exactly for the additional dipole term com-

ing from the equality
∫ t

0 dτ∆̄(τ,x0,x0) · µ1,2S(t − τ) =∫ t

0 dτQ̄(τ,x0,x0) · µ1,2S(t− τ)− 〈G(0)|P̄Ψ(t)|I(0)〉.
Eq. 4.11 can be solved more easily using the Laplace

transform formalism applied to the field S(t). Using
Eq. 4.11 one obtains:

pS(p)− S(0) = −iω0S(p)

−
iµ∗

1,2 · p2

c2 G(x0,x0, ip) · µ1,2

~
S(p) (4.12)

Therefore the following solution holds:

S(t) =

∫ γ+i∞

γ−i∞

idp

2π

eptS(0)

p+ iω0 +
iµ∗

1,2·
p2

c2
G(x0,x0,ip)·µ1,2

~

.

(4.13)

The calculation of this integral is given in the appendix A
using the Wigner-Weisskopf approach. In short, the idea
is to assume for long time t ≫ 0 the exponential decay
law S(t) = S(0)e−iω̃0t, where ω̃0 is a complex frequency
defined as ω̃0 = ω0 − iΓ/2 + δ, where Γ ≥ 0 and δ are
real numbers (we have also S(0) = 1 by definition of the
operator and quantum state). Now if we suppose that to
a good approximation (called the polar approximation)
we have

ω̃0 = ω0 −
µ∗

1,2 · ω2
0

c2 G(x0,x0, ω0 + i0+) · µ1,2

~
(4.14)

which indeed justifies the decay law (see Appendix A).
This allows us to write the decay rate

Γ = 2Im[
µ∗
1,2 · ω2

0

c2 G(x0,x0, ω0 + i0+) · µ1,2

~
] (4.15)

and the lamb shift

−δ = Re[
µ∗

1,2 · ω2
0

c2 G(x0,x0, ω0 + i0+) · µ1,2

~
]

=

∫ +∞

−∞

dω

π
P.V.[

Im[
µ

∗
1,2·ω

2

c2
G(x0,x0,ω)·µ1,2

~
]

ω − ω0
] (4.16)

where we used the Kramers-Kronig relation at the end.
We point out that from the symmetry Im[G(x,x′,−ω)] =
−Im[G(x,x′, ω)] we have:

−δ =
∫ +∞

0

dω

π
P.V.[

Im[
µ

∗
1,2·ω

2

c2
G(x0,x0,ω)·µ1,2

~
]

ω − ω0
]

+

∫ +∞

0

dω

π

Im[
µ

∗
1,2·ω

2

c2
G(x0,x0,ω)·µ1,2

~
]

ω + ω0
]. (4.17)

The first integral term is the correct Lamb shift obtained
in the rotating wave approximation and the Wigner-
Weisskopf theory. The second integral has actually the
wrong sign (see the analysis of the problem in [34]) and
is clearly non resonant. Only a more precise theory go-
ing beyond the Wigner-Weisskopf polar approximation
would justify this erroneous (small) value and this will
not be considered here.
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Moreover, the total field at point x would be in prin-
ciple calculated using:

E(x, t) := 〈G(0)|E(x, t)|I(0)〉

=

∫ +∞

−∞

dω

2πi

ω2

c2 G(x,x0, ω) · µ1,2e
−iωtS(0)

ω0 − ω − i0+ − ω2
0

~c2µ
∗
1,2 ·G(x,x0, ω) · µ1,2

(4.18)

However, the polar approximation allows us to define in
a simpler form this matrix element associated with the
spontaneously emitted photon electric field:

E(x, t) := 〈G(0)|E(x, t)|I(0)〉

=

∫ +∞

−∞

dω

2πi

ω2

c2 G(x,x0, ω)

ω̃0 − ω − i0+
· µ1,2e

−iωtS(0)

(4.19)

The explicit calculation of E(x, t) can only be done
with the same conditions as used for evaluating S(t) in
Eq. 4.13. For Eq. 4.13 it was necessary to suppose t≫ t0.
This is however not sufficient here and we will consider
the far-field far away from the source region where the
propagator reads asymptotically : G(x,x0, ω0 + i0+) ≃
F(x,x0, ω0 + i0+)eiω0

√
ε̃(ω0)R/c where R = |x − x0| ≫

c/ω0 and where F(x,x0, ω0 + i0+) is a smoothly vary-
ing form factor characterizing the emission profile (for
the permittivity we here suppose a background but this
could be vacuum. Using this robust far-field approxima-
tion we have

E(x, t) ≃ ω2
0

c2
F(x,x0, ω0 + i0+) · µ1,2

e−iω̃0(t−
√

ε̃(ω0)R/c)S(0)Θ(t−
√
ε̃(ω0)R/c),

(4.20)

where the Heaviside function is reminiscent of the causal
nature of the single photon emission (since the photon
emission starts at t0 = 0 no light exists outside the
future-oriented light cone with apex located at x0, t0)
and is here justified by the nature of the Bromwich
integral.

V. DISCUSSIONS

A. Local density of states and polaritonic wave

functions

Some important remarks should be done here con-
cerning the above derivation and its meaning. First,
as observed by Sipe, E(x, t) is defining together with
B(x, t) := 〈G(0)|B(x, t)|I(0)〉 a wave function for the
single emitted photon. More precisely, starting from
Maxwell’s quantum equations for operators E(x, t) and

B(x, t) we can define some Maxwell’s equations for the
complex fields E(x, t) and B(x, t) which reads:

∇× B(x, t) = 1

c
∂tD(x, t), ∇ · D(x, t) = 0

∇× E(x, t) = −1

c
∂tB(x, t), ∇ · B(x, t) = 0 (5.1)

In these equations D(x, t) is defined as
〈G(0)|D(x, t)|I(0)〉 and involves the complex polar-
ization field P(x, t) := 〈G(0)|P(x, t)|I(0)〉. From [59, 60]
and Eq. 4.9 we get

P(x, t) = Peff.(x, t) +

∫ t

0

χ(x, τ)dτE(x, t − τ),

(5.2)

where χ(x, τ) is the local linear susceptibility of the in-
homogeneous medium defined in [59]. From Eq. 4.9 we
have

Peff.(x, t) ≃ µ1,2S(t)∆(x − x0). (5.3)

and S(t) = e−iω̃0t is the complex valued dipole amplitude
given in Eq. 4.13. In other words, if we insert the source
term given by Eq. 5.3 in the Maxwell equations Eq. 5.1
we can solve the problem directly using the propagator
∆(τ,x,x′) defined previously for the inhomogeneous di-
electric problem. This solution is essentially classical and
will automatically lead to Eq. 4.20 in the far-field of the
quasi point-like dipole µ1,2S(t) associated with the po-
larization density given by Eq. 5.3. The methods is as-
sociated with the first quantization approach of photon
proposed by Sipe [64] and Bialinicky-Birula [66] in which
D and B define a wave function for the emitted photon.
A second, remark connected to the first one deals with

the energy conservation and the meaning of Γ in Eq. 4.15.
Indeed, the structure of this mathematical expression for
Γ is reminiscent of a classical calculation for the power
radiated by an oscillating point-like dipole [2]. This is
clear since we can write Γ as

Γ =
π

3

ω0

~
|µ1,2|2ρLDOS(x0) (5.4)

where

ρLDOS(x0) =
6ω0

πc2
Im[n̂∗ ·G(x0,x0, ω0 + i0+) · n̂

(5.5)

with µ1,2 = |µ1,2|n̂. This is rigorously equivalent to the
classical formula obtained for the power P0 of a radiating
dipole at the pulsation ω0 which reads

P0 =
π

3
ω2
0 |µ1,2|2ρLDOS(x0). (5.6)

The last expression is identical to Eq. 5.4 if we identify
the radiative power P0 and the rate ~ω0Γ. In order to give
a justification to this identification we start from Eq. 5.1
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and we obtain a complexified version of the Poynting
theorem which reads:

−∂t(|B|2 + |E|2) = 2c∇ · (Re[E × B∗]) + 2Re[J · E∗]

,(5.7)

with J = ∂tP the complex dipolar current associated
with Eq. 5.2:

J (x, t) = ∂tPeff.(x, t) +

∫ t

0

χ(x, τ)dτ∂tE(x, t − τ)

+χ(x, t)dτE(x, 0)
(5.8)

Moreover, by integration over the volume we can de-
fine the dissipated power inside the particle as WΨ(t) :=∫
d3x2Re[∂tP∗

eff.(x, t) · E(x, t)]. Using Eq. 5.3 we get:

WΨ(t) ≃ −2Im[µ∗
1,2 ·

ω3
0

c2
G(x0,x0, ω0 + i0+)

·µ1,2]e
−Γt = −~ω0Γe

−Γt. (5.9)

This is with a minus sign the total radiated power P0 dis-
cussed previously but weighted by the exponential decay
factor e−Γt. Integrating −WΨ(t) over time we get the
total energy emitted by the dipole from the initial time

t0 = 0 to time t: δE = −
∫ t

0 dt
′WΨ(t

′) = ~ω0(1 − e−Γt)
which approaches ~ω0 if t → +∞. In evaluating WΨ(t)
we used the fact that while G(x0,x0, ω0 + i0+) is a
badly mathematically defined quantity this is not so for
Im[G(x0,x0, ω0 + i0+)] which can be easily obtained by
contour integration in the complex plane (see appendix
B) and leads in the homogeneous surrounding medium
case to:

Im[G(x0,x0, ω0 + i0+)] =
ω0

6πc
Re[n0(ω0)]I. (5.10)

where n0(ω0) is the surrounding medium optical index.
This allows us to define the LDOS in the general case and
to justify directly Eq. 5.5. Furthermore, we have also

ρLDOS(x0) =
ω2
0

π2c3
Re[n0(ω0)]

+
6ω0

πc2
Im[n̂∗ ·Gref(x0,x0, ω0 + i0+) · n̂] (5.11)

where we have used a standard separation[62] of the
Green tensor as G = Gref +G0, where G0 is a contribu-
tion of the bulk medium of permittivity ε̃(ω0) = n2

0(ω0)
and Gref is an additional contribution originating from
the inhomogeneities and various interfaces present in the
system.
It is also important for the present study to make a

comment concerning the theory of intensity measurement
proposed by Glauber [34, 68, 69]. We remind that fol-
lowing the theory of Glauber the photon detection rate
I(x, t) at point x and time t should generally be expressed
as a convolution between the temporal response of the

detector M(τ) and the first-order correlation function of

the electric field γ(x, t, τ) = 〈E(−)(x, t)E(+)(x, t − τ)〉,
i.e.,

I(x, t) = 2Re[

∫ +∞

0

M(τ)γ(x, t, τ)]. (5.12)

In the formula for γ(x, t, τ), E(+)(x, t) and E(−)(x, t) are
respectively the positive and negative frequency operator
parts of the electric field containing as usual only annihi-
lation and creation operator for the photon field. In the
broadband detector limit usually considered the formula

simplifies and we get I(x, t) ∝ 〈E(−)(x, t)E(+)(x, t)〉
which is the standard formula of Glauber [68]. We stress
that in order to derive Eq. 5.12 a dipolar coupling with
the detector was taken into account using a Hamiltonian
interaction of the usual form Hint = −p ·E where p is a
dipole operator for the detector. However, from the point
of view of the present dual formalism the principal field
to be coupled to the detector is not the electric field E

but the displacement D = E+P with P the total dipole
density of the medium (which in the interaction picture
does not include the detector dipole contribution). As
we showed in [59, 60] this displacement field is properly
quantized by introducing a plane wave expansion with
the general form (compare with Eq. 3.2):

D(x, t) =
∑

α,j

−
√

~ωα

2
cα,j(t)k̂α × ǫ̂α,jΦα(x) + hcc.

(5.13)

where cα,j(t) and c†α,j(t) are respectively the annihila-
tion and creation operators associated with the photons
in this dual formalism obeying usual commutation rela-
tions for bosons [59, 60]. Comparing with Eq. 3.2 for
E(v)(x, t) we see that the time dependency of cα,j(t) is
not in general harmonic due to the coupling with the
dipolar sources present [59, 60]. Using this description
the positive frequency part D(+)(x, t) of the displace-
ment field operator D(x, t) is clearly defined as

D(+)(x, t) =
∑

α,j

−
√

~ωα

2
cα,j(t)k̂α × ǫ̂α,jΦα(x)

(5.14)

and D(−)(x, t) = D(+)†(x, t) as usual. In the dual for-
malism the interaction Hamiltonian for the detection pro-
cess actually reads Hnew

int = −p · D and therefore the
single photon rate correlation function is still given by
Eq. 5.12 with the correlation function now replaced by

γ(x, t, τ) = 〈D(−)(x, t)D(+)(x, t − τ)〉. For all practical
needs in the laboratory the use of D instead of E will
not change anything since most single photon detectors
are located in the far-field region, i.e., generally speaking
in the air with D ≃ E. Still in the near-field regime the
new formalism is in principle more powerful since it in-
cludes from the ground the lossy and dispersive dielectric
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environment.
Furthermore, for the single photon process considered

before we can write

〈G(0)|D(x, t)|I(0)〉 ≃ 〈G(0)|D(+)(x, t)|I(0)〉 (5.15)

where we used the fact that the ground state is supposed
here to be approximately the same at time t = 0 and
time t. Therefore, the recorded single photon intensity in
the far-field by an idealized broadband detector requires

only the knowledge of I(x, t) ∝ 〈D(−)(x, t)D(+)(x, t)〉 =
|〈G(0)|D(+)(x, t)|I(0)〉|2 which from the previous analy-
sis and Eq. 4.20 is given by |E(x, t)|2. In agreement with
Sipe’s analysis in vacuum [64] we thus finally obtain a
description of photon detection in terms of a single pho-
ton wave function in presence of a dielectric environment.

B. The continuous regime and the optical Bloch

equations

Before to conclude it is here important to study the
continuous excitation regime when a laser mode interacts
with the two-level atom considered previously. In order
to find the optical Bloch equations in this regime we go
back to Eqs. 2.13, 2.14 and study the dynamics of 〈σ(t)〉,
and 〈σz(t)〉 where the average is taken on an arbitrary
initial state for the two-level atom. More specifically,
we are interested in the evolution of 〈σ(t)〉, and 〈σz(t)〉
with time under the influence of a quasi-classical elec-
tromagnetic wave characterized by an harmonic electric

field E
(0)
L (x, t) = E0

L(x)e
−ωLt + cc. (ωL is the pulsation

of the quasi-classical laser field). This electric field is a
solution of the homogeneous classical Maxwell equations
in presence of the dielectric medium. Therefore, from
the point of view of the QED approach considered here
it will be necessary to include a contribution of the vac-
uum electric operator E(0)(x, t) in Eqs. 2.13, 2.14. It is
also clear that without the introduction of the operator
E(0)(x, t) to preserve unitarity it would be also impossi-
ble to describe the excitation by an incident laser mode
considered as a pure photonic state. With our formalism
it is thus possible to describe the interaction process in
complete analogy with what is done in the literature for
an atom excited by a laser beam in vacuum (i.e. without
a dielectric lossy and dispersive surrounding).
Now, lets start with Eq. 2.14 and consider the average

d

dt
〈σ(t)〉 = −iω21〈σ(t)〉 −

i〈(Ē(t) + P̄Ψ(t))σz(t)〉 · µ∗
1,2

~

(5.16)

Here comes a difficulty because to solve this equation
one must specify the operator ordering in 〈(Ē(t) +
P̄Ψ(t))σz(t)〉. This is a central issue which is well doc-
umented in the case of an atom in vacuum [34]. The
usual trick, that we should apply here as well, is to take
a normal ordering in which positive frequency part of

the electric field are positioned to the right of σz while
the negative frequency part of the electric field operator
is positioned to the left of σz . This is allowed because
atomic and field operators defined at the same time com-
mute. If we can do that we will remove the contributions
from E(0)(x, t) associated with vacuum fluctuations and
only study the effect of the (classical) external interact-
ing field and of the radiation-reaction. We mention, that
there are mathematical subtleties in the definition of pos-
itive and negative frequency parts and it exist actually
two ways to define it which are not rigorously equivalent.
On the one side we could be tempted to consider a Fourier
transform Ã(ω) of any operator A(t) and thus define the

positive frequency part as A(+)(t) =
∫ +∞
0

dωÃ(ω)e−iωt

(similarly A(−)(t) =
∫ 0

−∞ dωÃ(ω)e−iωt). This way of

defining A(±)(t) is actually correct if we have no interac-
tion. However, the canonical approach [69, 70] is to use
the separation between annihilation and creation oper-
ators for the fields and to define the positive frequency
part by using only annihilation operators (respectively
the negative frequency part is defined using only the
creation operators for the fields). This is clearly the
definition used for D(+)(x, t) in Eq. 5.14 but now this
should be generalized for taking into account the relation
Ē(t)+P̄Ψ(t) = D̄(t)−P̄diel.(t). We give in Appendix C a
detailed discussion of this important point in the present
dual formalism. We now write:

〈(Ē(t) + P̄Ψ(t))σz(t)〉
= 〈[(Ē(+)

(t) + P̄
(+)
Ψ (t))σz(t)

+〈σz(t)(Ē(−)
(t) + P̄

(−)
Ψ (t))]〉

(5.17)

with for the dipole field operator P̄
(+)
Ψ (t) = µ1,2σ(t) and

P̄
(−)
Ψ (t) = (P̄

(+)
Ψ (t))†. We have also for the electric field

operators

E(±)(x, t) = E(0,±)(x, t)

+

∫ t−t0

0

dτ

∫
d3x′∆(±)(τ,x,x′) ·Peff.(x

′, t− τ).(5.18)

where the field E(0,±)(x, t) = L(±)
t [E(0,±)(x, t)] and the

dyadic ∆(±)(τ,x,x′) = L(±)
τ [∆(τ,x,x′)] are defined by

applying the operator L(±)
t = 1

2 [1 ± i∂t

c
√

−∇2
] (see Ap-

pendix C and [59]). As shown in Appendix D a rigorous

application of the operator L(±)
t is in general difficult and

an exact result is only obtained in the vacuum. Fortu-
nately, here we are interested in the dynamics at long
time and we can use the approximation (see Eqs. 3.11,
and 3.12):

E(0,+)(x, t) ≃
∫ +∞

0

dωẼ(0)(x, ω)e−iωt

∆(+)(τ,x,x′) ≃
∫ +∞

0

dω

2π
e−iωτ ω

2

c2
G(x,x′, ω) (5.19)
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together with the relation E(0,−)(x, t) = (E(0,+)(x, t))†,

∆(−)(τ,x,x′) = (∆(+)(τ,x,x′))∗.
The next step is to remove the excitation from the

initial state at time t0 → −∞. For this we use [71]
for every operator the unitary transformation Anew(t) =
TA(t)T−1 where T is the displacement operator defined

as T =
⊗

α,j e
[f

(v)∗
α,j (t)c

(v)
α,j(t)−f

(v)
α,j(t)c

(v)†
α,j (t)] with f

(v)
α,j(t) =

fα,j(t0)e
−iωα(t−t0) the modal coefficients in the expan-

sion of the free laser field. More precisely, in anal-

ogy with Eq. 3.13 the laser field is written E
(0)
L (x, t) =∫ +∞

−∞ dωẼ
(0)
L (x, ω)e−iωt with

Ẽ
(0)
L (x, ω) =

∑

α,j

[E
(0)
α,j(x)f

(v)
α,j (t0)e

iωαt0δ(ω − ωα) + cc.

(5.20)

and where E
(0)
α,j(x) is defined by Eq. 3.14 from the plane

wave modes E
(v)
α,j(x) (for the particular example used in

this section the laser is monochromatic so that we have
necessarily ωα = ωL). Moreover, within this formal-
ism the application of T on the initial coherent state
|L, t0〉 leads to the photon vacuum: T |L, t0〉 = |0, t0〉
and since T acts only on the operator field E(0)(x, t)

we deduce TE(0,+)(x, t)T−1 = E(0,+)(x, t)+E
(0,+)
L (x, t),

TE(0,−)(x, t)T−1 = E(0,−)(x, t) +E
(0,−)
L (x, t). If we sup-

pose that the initial quantum state is |L, t0〉 ⊗ |atom, t0〉
(where |atom, t0〉 is any coherent superposition of the
atomic states |1, t0〉 and |2, t0〉) then the coherent laser
field can be removed from the quantum state (which now
reads |0, t0〉 ⊗ |atom, t0〉) and we should in turn add a
classical laser field in the dynamical Eq. 5.16. The pre-
vious analysis therefore generalizes the usual method for
removing coherent states. However, here the trick is now
valid in presence of lossy and dispersive media.
The rest of the derivation is more conventional. We

write σ(t) = S(t)e−iωLt and using the rotating wave ap-

proximation we neglect contributions from E
(0,−)
L and σ†.

We get after some calculations:

d

dt
〈S(t)〉 = −i(ω0 − ωL)〈S(t)〉

− iĒ
(0)
L · µ∗

1,2

~
〈σz(t)〉 +N(t) (5.21)

where

N(t) = −i
∫ +∞

0

dω

2π

ω2

c2
µ∗

1,2 ·G(x0,x0, ω) · µ1,2

~

×
∫ t−t0

−∞
ei(ωL−ω)τ 〈σz(t)S(t− τ)〉

≃ +i

∫ +∞

0

dω

2π

ω2

c2
µ∗

1,2 ·G(x0,x0, ω) · µ1,2

~

×
∫ t−t0

−∞
ei(ωL−ω)τ 〈S(t)〉.(5.22)

In the last equality we used the Markovian approx-
imation [34, 70] 〈σz(t)S(t − τ)〉 ≃ 〈σz(t)S(t)〉 =
−〈S(t)〉 (since σz(t)σ(t) = −σ(t) by definition). In
the long time limit with t0 → −∞ we have N(t) =

i
µ

∗
1,2·G(x0,x0,ω)·µ1,2

~
〈S(t)〉 = (−Γ′/2− iδ′) where

Γ′ = 2Im[
µ∗

1,2 · ω2
0

c2 G(x0,x0, ωL + i0+) · µ1,2

~
] (5.23)

is the quantum rate at the laser frequency (compare with
Eq. 4.15) and

−δ′ =
∫ +∞

−∞

dω

π
P.V.[

Im[
µ

∗
1,2·ω

2

c2
G(x0,x0,ω)·µ1,2

~
]

ω − ωL
] (5.24)

is the new Lamb shift. We emphasize that for most appli-
cations the difference between Γ and Γ′, δ and δ′ can be
neglected. Therefore, within the general approach con-
sidered we obtained the first Bloch equation

d

dt
〈S(t)〉 = −i(ω0 − δ − ωL)〈S(t)〉

− iĒ
(0)
L · µ∗

1,2

~
〈σz(t)〉 − Γ/2〈S(t)〉 (5.25)

which is now valid in presence of lossy and dispersive
linear media. It is possible using the same procedure to
deduce the second optical Bloch equation which reads
within tthe same approximations:

d

dt
〈σz(t)〉 =

−2iĒ(0)∗
L · µ1,2

~
〈S(t)〉

+
2iĒ(0)

L · µ∗
1,2

~
〈S†(t)〉 − Γ(1 + 〈σz(t)〉).

(5.26)

Therefore, we can by using the generalized Huttner Bar-
nett model justify the use of optical Bloch equations
which were often introduced with the more phenomeno-
logical Langevin noise approach [21–29].

VI. FINAL REMARKS AND CONCLUSION

To conclude, we provided a description of spontaneous
emission for a fluorescent two level atom using the gener-
alized Hutner-Barnett approach given in [59, 60]. We
showed that within this Hamiltonian description it is
clearly possible to analyze rigorously spontaneous emis-
sion in a lossy and dispersive inhomogeneous dielectric
environment. Importantly, we showed that while our
description used the complete electromagnetic field in-
cluding photon vacuum fluctuations and Langevin’s noise
current associated with the dielectric environment the
spontaneous emission process can be understood as re-
sulting from a self-coupling of the fluorescent dipole. In
this perspective the LDOS appears thus as a consequence
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of the classical radiation reaction (in agreement with
semi-classical approaches neglecting the quantization of
losses [2, 3]). On the one side, spontaneous emission is
thus interpreted rather classically as a radiation reaction
due to the Lorentz force [34]. However, on the other side
the full unitarity of quantum mechanics is respected in
our formalism in order to preserve the canonical equal-
time commutation relations. Therefore, as already dis-
cussed by Milonni in the context of photon/atoms cou-
pling in vacuum [34] the description is not univocal and
depends on the order we introduce operators in the dy-
namical equations. Here, the choice was done in or-
der to favor the classical radiation force interpretation
but other choices are clearly possible and all of them
are equivalent. Furthermore, this fact can be seen as
a direct consequence of the preservation of unitarity in
our description. Without the inclusion of both photon
vacuum and fluctuating currents the alternative repre-
sentations would not exist and the full unitarity would
be broken. The present work justifies semi-classical re-
sults [2, 3, 72] and alternative quantum approaches based
on the Langevin’s noise method [21–29] which neglected
the role of photon vacuum. We think that the present
work will motivate further studies in order to analyze
other regimes of coupling between emitters and dielec-
tric media and will impact our description of quantum
polaritonic an plasmonic physics in the quantum regime
(e.g., with near-field optical microscopes involving single-
photon emitters [6, 7, 73–75].
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Appendix A: The Wigner-Weisskopf approximation

The evaluation of the integral Eq. 4.13 is in general
difficult and we will here use the method proposed by
Wigner and Weisskopf [63]. For this we introduce the

notation β(p) = −µ
∗
1,2·

p2

c2
G(x,x′,ip)·µ1,2

~
and we rewrite

Eq. 4.12 as Ṡ(t) = −iω0S(t) + i
∫ t

0 dτβ(τ)S(t − τ) =

−iω21S(t)+i
∫ t

0 dτq(τ)S(t−τ) where q(τ) = β(τ)+(ω21−
ω0)δ(τ) is regular at time τ = 0. The ansatz made by
Wigner and Weisskopf is to suppose for time t → +∞
an exponential decay S(t) = S(0)e−iω̃0t where ω̃0 is a
complex frequency which is defined as ω̃0 = ω0− iΓ/2+δ
with Γ ≥ 0 and δ real numbers. This leads to the relation

∫ t

0

dτβ(τ)eiω̃0τ = iΓ/2− δ

= eiω̃0t

∫ γ+i∞

γ−i∞

idp

2π

eptβ(p)

p+ iω̃0
(A1)

or equivalently using p = γ−iω and defining B(ω+iγ) :=
β(p):

iΓ/2− δ = eiω̃0t

∫ +∞

−∞

dω

2π

e−iωt)B(ω)

i(ω̃0 − ω)

(A2)

in the limit γ → 0+. This integral is calculated by con-
tour integration in the complex plane and taking into ac-
count that the poles of B(ω) are all located in the lower
frequency half-plane (the derivation is identical to the one
for ε̃(ω) as shown in [60]). Using the residue theorem we
get

iΓ/2− δ = B(ω̃0)−
∑

m

res[B(Ωm)]ei(ω̃0−Ωm)t

ω̃0 − Ωm

(A3)

where the sum is taken over the residues or poles Ωm

of B(ω). This equality cannot be valid at every time
since the left hand side is independent of t while the
right hand side depends explicitly on t. Actually, the
exponential decay law is only valid for long time, i.e.,
t ≫ 0. However, the equality between the right hand

side and
∫ t

0
dτβ(τ)eiω̃0τ is valid at every time t ≥ 0 and

since
∫ t

0 dτq(τ)e
iω̃0τ vanishes for t = 0 we deduce

B(ω̃0) =
∑

m

res[B(Ωm)]

ω̃0 − Ωm
+ ω0 − ω21

(A4)

which allows us to rewrite

iΓ/2− δ = lim
t→∞

∑

m

res[B(Ωm)]

(
1− ei(ω̃0−Ωm)t

ω̃0 − Ωm

)

+ω0 − ω21(A5)

To conclude this evaluation we observe that in the limit
where there is a continuum of poles Ωm we can with a
good approximation [76] write

∑

m

res[B(Ωm)]
ei(ω̃0−Ωm)t

ω̃0 − Ωm

≃ 2πie−iω̃0t
∑

m

res[B(Ωm)]δ(ω0 − Ω′
m) (A6)

Furthermore, in the limit where the poles are near the
real axis and where Γ/2 ≫ −Ω′′

m we have:

B(ω̃0) ≃ B(ω0 − i0+) ≃
∑

m

res[B(Ωm)]P.V.[
1

ω0 − Ω′
m

]

+iπ
∑

m

res[B(Ωm)]δ(ω0 − Ω′
m) + ω0 − ω21

(A7)
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Inserting Eqs. A6 and A7 in Eq. A5 leads to:

iΓ/2− δ ≃
∑

m

res[B(Ωm)]P.V.[
1

ω0 − Ω′
m

]

−iπ
∑

m

res[B(Ωm)]δ(ω0 − Ω′
m) + ω0 − ω21 (A8)

However from the definition of B(z), with z a complex
number, we have B(−z∗) = B∗(z). Therefore, for ω0 ±
i0+ we have after separating the real from the imaginary
part B′(ω0 + i0+) = B′(ω0 − i0+) and B′′(ω0 + i0+) =
−B′′(ω0 − i0+). This implies

B(ω0 + i0+) ≃
∑

m

res[B(Ωm)]P.V.[
1

ω0 − Ω′
m

]

−iπ
∑

m

res[B(Ωm)]δ(ω0 − Ω′
m) + ω0 − ω21 (A9)

(not the difference of sign with Eq. A7) and we get after
comparison wih Eq. A8

iΓ/2− δ ≃ B(ω0 + i0+)

=
µ∗
1,2 · ω2

0

c2 G(x,x′, ω0 + i0+) · µ1,2

~
(A10)

which is the final result.

Appendix B: The radiated power and the LDOS of a

quantum dipole

In order to calculate WΨ(t) we have to consider the
local field in the vicinity of the dipole. Using Eq. 4.19 we
get for x → x0:

E(x, t) ≃ ω2
0

c2
G(x,x0, ω0 + i0+) · µ1,2e

−iω̃0t

(B1)

Moreover, the normed and finite function ∆(x−x0) char-
acterizing the dipole polarization prevents us to obtain
divergence in evaluating WΨ(t). In the case of an ho-
mogeneous medium the Green tensor G(x,x0, ω0 + i0+)
is easily obtained as an integral over polarization states
and wavevectors. We get (see [67]):

G(x0,x0, ω0 + i0+)

=

∫
d3k

(2π)3
1

k2 − ω2
0 ε̃(ω0)
c2

(I− k⊗ k

ω2
0 ε̃(ω0)
c2

)

=

∫ +∞

−∞

kdk

(2π)3
2πIfreg(k)

k − ω0

√
ε̃(ω0)

c

(1− 2

3

k2

ω2
0 ε̃(ω0)

c2

)

(B2)

In the last line we introduced a regularization function
freg(k) such as freg(k) ≃ 1 for value near k ≃ 0 but
freg(k) ≃ 0 si |k| → +∞. This trick prevents the di-
vergence and allows us to calculate the integral along a

contour in the upper part of the complex plane. Using
the residue theorem one get finally

G(x0,x0, ω0 + i0+)

= i
ω0

6πc

√
ε̃(ω0)Ifreg(

ω0

√
ε̃(ω0)

c
). (B3)

At the end we can simplify since freg(
ω0

√
ε̃(ω0)

c ) ≃ 1. We
point out that this result depends on the assumption con-
cerning the convergence of freg(k) at infinity. It is well
known that the Green dyadic propagator is badly defined
at the spatial origin and this is clearly another manifesta-
tion of this fact. Still the result concerning the imaginary
part of G(x0,x0, ω0 + i0+) is very robust and will keep
its absolute meaning since only the real part contains po-
tential divergences. Finally, taking the imaginary part of
Eq. B3 leads directly to the result Eq. 5.10.

Appendix C: Definition of the positive and negative

frequency parts of the electric field operator

As we explained in the Appendix B of [59] (see also
[77]) the positive (respectively negative) frequency part
of the electric displacement operator D(±)(x, t) is given
by:

D(±)(x, t) = L(±)
t [D(x, t)] (C1)

where we have defined [77] the operator L(±)
t = 1

2 [1 ±
i∂t

c
√

−∇2
]. With this definition we get Eq. 5.13 which en-

sures a separation between annihilation and creation op-
erators, i.e., between terms containing cα,j(t) and those

containing c†α,j(t). Similarly, for the electric dipole den-

sity P̄diel.(t) we introduce a separation between posi-
tive and negative frequency part by using the definition

P
(+)
diel.(x, t) = M(±)

t [Pdiel.(x, t)] where the linear opera-

tor M(±)
t act on the material oscillator fields Xω(x, t) in

order to separate the contribution containing annihila-
tion operators fω(x, t) from the contribution containing
only creation operators f†ω(x, t). Moreover, as shown in

[59, 60] we have fω(x, t) =
i∂tXω(x,t)+ωXω(x,t)√

2~ω
and

Pdiel.(x, t) =

∫ +∞

0

dω

√
~σω(x)

πω
[fω(x, t) + f†ω(x, t)].

(C2)

Therefore if we define

P
(+)
diel.(x, t) =

∫ +∞

0

dω′
∫
d3x′fω′(x′, t)

·[fω′(x′, t),Pdiel.(x, t)] (C3)

and use the canonical commutation relations [59] we get:

P
(+)
diel.(x, t) =

∫ +∞

0

dω

√
~σω(x)

πω
fω(x, t)

(C4)
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which defines the positive frequency part P
(+)
diel.(x, t) and

the operator M(±)
t (for the negative frequency part we

simply use P
(−)
diel.(x, t) = (P

(+)
diel.(x, t))

†).
Finally, if we use the definition PΨ(x, t) = (µ1,2σ(t) +

µ∗
1,2σ

†(t))∆(x − x0) we can obtain a separation be-

tween the operators σ(t) and σ†(t) and we thus define

P
(±)
Ψ (x, t) = N (±)

t [PΨ(x, t)] by

P
(+)
Ψ (x, t) = µ1,2σ(t)∆(x − x0) (C5)

and P
(−)
Ψ = P

(+)
Ψ ()†.

Now, for the electric field we have by definition
E(x, t) = D(x, t) − Pdiel.(x, t) − PΨ(x, t). Therefore in
the full Hilbert space we can define the operator

E(±)(x, t) = (L(±)
t +M(±)

t +N (±)
t )[E(x, t)]. (C6)

Finally, from Eq. 3.15 we deduce Eqs. 5.18 and 5.19 which

requires only L(±)
t .

Appendix D: Application of the operator L
(±)
t in the

long time t approximation

We start with the calculation of

∆(±)
v (τ,x,x′) =

∫ +∞

−∞

dω

2π

ω2

c2
L(±)
τ [e−iωτGv(x,x

′, ω)]

(D1)

In [60] we showed that we have the dyadic expansion
Gv(x,x

′, ω) = Gv,⊥(x,x′, ω) + Gv,||(x,x
′, ω) with for

the transverse part

Gv,⊥(x,x
′, ω) =

∑

α,j

c2Φα(x)Φ
∗
α(x

′)ǫ̂α,j ⊗ ǫ̂α,j

ω2
α − (ω + i0+)2

(D2)

and for the longitudinal part

Gv,||(x,x
′, ω) =

−c2∑α k̂α ⊗ k̂αΦ
∗
α(x

′)Φα(x)

(ω + i0+)2
(D3)

A direct application of L(±)
t leads to

L(±)
τ [e−iωτGv,⊥(x,x

′, ω)]

=
∑

α,j

c2Φα(x)Φ
∗
α(x

′)ǫ̂α,j ⊗ ǫ̂α,j

ω2
α − (ω + i0+)2

1

2
(1± ω

ωα
)e−iωτ

(D4)

Moreover, if we use 1
ω2

α−(ω+i0+)2 = 1
2ωα

[ 1
ωα−ω−i0+ +

1
ωα+ω+i0+ ] and

1
x−i0+ = P.V.[ 1x ] + iπδ(x) for x real then

we obtain

L(±)
τ [e−iωτGv,⊥(x,x

′, ω)]

=
∑

α,j

c2Φα(x)Φ
∗
α(x

′)ǫ̂α,j ⊗ ǫ̂α,j

2ωα

1

2
(1 ± ω

ωα
)

×[iπδ(ω − ωα) + P.V.[
1

ωα − ω
]

−iπδ(ω + ωα) + P.V.[
1

ωα + ω
]]e−iωτ (D5)

which is actually equivalent to

L(±)
τ [e−iωτGv,⊥(x,x

′, ω)]

=
∑

α,j

c2Φα(x)Φ
∗
α(x

′)ǫ̂α,j ⊗ ǫ̂α,j

2ωα(ωα ∓ ω ∓ i0+)
e−iωτ .

(D6)

Therefore, after integration in the complex plane we get

∆(+)
v (t− t′,x,x′) =

i

~

∑

α,j

E
(v)
α,j(x) ⊗E

(v)∗
α,j (x′)

×e−iωα(t−t′)Θ(t− t′). (D7)

and ∆(−)
v (t − t′,x,x′) = (∆(+)

v (t − t′,x,x′))∗. We em-
phasize that the longitudinal part Gv,||(x,x

′, ω) doesn’t

contribute to ∆(±)
v (t − t′,x,x′) as it can be shown di-

rectly. Furthermore, if we take the imaginary part of
Eqs. D2 and D3 and use once again the separation

1

ω2
α − (ω + i0+)2

=
1

2ωα
[

1

ωα − ω − i0+
+

1

ωα + ω + i0+
]

=
iπ

2ωα
(δ(ω − ωα)− δ(ω + ωα))

+
1

2ωα
(P.V.[

1

ωα − ω
])− P.V.[

1

ωα + ω
])

(D8)

we can directly demonstrate the rigorous equivalence

∆(+)
v (τ,x,x′) = i

∫ +∞

0

dω

π

ω2

c2
Imag[Gv(x,x

′, ω)]

×e−iωτθ(t− t′), (D9)

in which the contribution of Gv,||(x,x
′, ω) vanishes once

again. We emphasize that, despite some similarities, this
result is different from Eq. 5.19 (in particular due to the
presence of the imaginary part and the Heaviside func-
tion θ(t − t′) in Eq. D9). In order to evaluate asymp-
totically Eq. D9 for long time t − t′ we use the defi-

nition ω2

c2 Gv(x,x
′, ω) = ∇ × ∇ × [Gv(x,x

′, ω)I] where

Gv(x,x
′, ω) = eiω/c|x−x

′ |

4π|x−x′| is the standard scalar Green
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function of the Helmholtz equation in vacuum [60]. Now,
we consider the integral

i

∫ +∞

0

dω

π
Imag[Gv(x,x

′, ω)]e−iωτ

=

∫ +∞

0

dω

2π

e−iω(τ−|x−x
′|/c) − e−iω(τ+|x−x

′|/c)

4π|x− x′| . (D10)

We remind that following Feynman [78] we have also

the integral δ+(x) :=
∫ +∞
0

dω
π e

−iωx = 1
iπ

1
x−i0+ =

1
iπP.V.[1/x]) + δ(x) for x real. Therefore, we deduce

i

∫ +∞

0

dω

π
Imag[Gv(x,x

′, ω)]e−iωτ

=
δ+(τ − |x− x′|/c)− δ+(τ + |x− x′|/c)

8π|x− x′| . (D11)

We are interested in the regime τ → +∞ and from its
definition δ+(τ + |x − x′|/c) can be neglected. We thus
obtain

i

∫ +∞

0

dω

π
Imag[Gv(x,x

′, ω)]e−iωτ

≃ δ+(τ − |x− x′|/c)
8π|x− x′|

=

∫ +∞

0

dω

2π
Gv(x,x

′, ω)e−iωτ . (D12)

Finally, we deduce the asymptotic result

∆(+)
v (τ,x,x′) ≃

∫ +∞

0

dω

2π

ω2

c2
Gv(x,x

′, ω)e−iωτ ,(D13)

which is valid in the limit τ → +∞. In this formula
the absence of a contribution like

∫ 0

−∞ dω[...] clearly
means that such a term is non resonant. Moreover,
from Eq. 3.11 and 3.12 we know that generally speak-

ing Ẽ(0)(x, ω) and G(x,x′, ω), i.e., the relevant fields
for the inhomogeneous problem, can be calculated by
using Lippman-Schwinger integrals which depend on
the knowledge of the dyadic Green function in vac-
uum Gv(x,x

′, ω). Using the previous asymptotic of

L(±)
t [Gv(x,x

′, ω)e−iωτ ] it is thus not difficult to deduce
the generality of Eq. 5.19 in the long time limit τ → +∞.
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