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We construct a nite convergent semi-quadratic presentation for the Chinese monoid by adding column generators and using combinatorial properties of insertion algorithms on Chinese staircases. We extend this presentation into a coherent one whose generators are columns, rewriting rules are de ned by insertion algorithms, and whose syzygies are de ned as relations among insertion algorithms. Such a coherent presentation is used for representations of Chinese monoids, in particular, it is a way to describe actions of Chinese monoids on categories.

1. Introduction convergent presentations. Such coherent presentations are constructed for Artin monoids in [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF] and for plactic monoids of type A in [START_REF] Hage | Knuth's coherent presentations of plactic monoids of type A[END_REF]. The study of the syzygies in a monoid produces in higher dimensions free objects that are homotopically equivalent to the original monoid and then allows computation of its homological invariants. Indeed, this study provides the rst two steps in the computation of a polygraphic resolution of the monoid, that is, a categorical co brant replacement of the monoid in a free (𝜔, 1)-category, whose acyclicity is proved by an iterative construction of a normalization reduction strategy, [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF][START_REF] Guiraud | Identities among relations for higher-dimensional rewriting systems[END_REF]. Moreover, coherent presentations are also useful to describe the notion of an action of the monoid on categories, [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF].

The Chinese monoid of rank 𝑛 > 0, denoted by C 𝑛 , is generated by [𝑛] := {1 < . . . < 𝑛} and submitted to the relations 𝑧𝑦𝑥 = 𝑧𝑥𝑦 = 𝑦𝑧𝑥 for all 1 𝑥 𝑦 𝑧 𝑛. These relations generate the Chinese congruence, denoted by ∼ C 𝑛 , and interpreted in [START_REF] Cassaigne | The Chinese monoid[END_REF] using the notion of Chinese staircases. A Chinese staircase is a collection of boxes in right-justi ed rows, lled with non-negative integers, whose rows and columns are indexed with [𝑛] from top to bottom and from right to left respectively and where the 𝑖-th row contains 𝑖 boxes, for 1 𝑖 𝑛. We will denote by Ch 𝑛 the set of Chinese staircases over [𝑛] and by R the map on Ch 𝑛 that reads a Chinese staircase row by row from right to left and from top to bottom as de ned in Subsection 3.1. A Schensted-like insertion algorithm, denoted by 𝑟 , is introduced in [START_REF] Cassaigne | The Chinese monoid[END_REF], and consists in inserting an element of [𝑛] into a Chinese staircase from the right, yielding to a new Chinese staircase. From a word 𝑤 = 𝑥 1 𝑥 2 . . . 𝑥 𝑘 on [𝑛], we associate a Chinese staircase 𝑤 𝑟 obtained by insertion of 𝑤 in the empty staircase ∅ by application of 𝑟 step by step from left to right:

𝑤 𝑟 := (∅ 𝑟 𝑤) = (. . . ((∅ 𝑟 𝑥 1 ) 𝑟 𝑥 2 ) 𝑟 . . .) 𝑟 𝑥 𝑘 .
Similarly, a Chinese staircase denoted by 𝑤 𝑙 is computed by inserting the elements of 𝑤 from right to left in the empty staircase ∅ by application of the left insertion 𝑙 introduced in [START_REF] Cain | Rewriting systems and biautomatic structures for Chinese, hypoplactic, and Sylvester monoids[END_REF] and that inserts an element of [𝑛] into a Chinese staircase from the left. The set of Chinese staircases satis es the cross-section property for the Chinese congruence ∼ C 𝑛 , that is, for all words 𝑤, 𝑤 on [𝑛], 𝑤 ∼ C 𝑛 𝑤 if and only if the insertion algorithm yields the same Chinese staircase: 𝑤 𝑟 = 𝑤 𝑟 , [START_REF] Cassaigne | The Chinese monoid[END_REF]. So the elements of the Chinese monoid can be identi ed with the Chinese staircases, which therefore also form a monoid. Moreover, the right and left insertion algorithms allow one to de ne two internal products on Ch 𝑛 by setting 𝑡 ★ 𝑟 𝑡 = (𝑡 𝑟 R(𝑡 )) and 𝑡 ★ 𝑙 𝑡 = (R(𝑡 ) 𝑙 𝑡), for all 𝑡, 𝑡 in Ch 𝑛 . Following the cross-section property, the compositions ★ 𝑟 and ★ 𝑙 are associative and the following equality

𝑦 𝑙 (𝑡 𝑟 𝑥) = (𝑦 𝑙 𝑡) 𝑟 𝑥
holds, for all 𝑡 in Ch 𝑛 and 𝑥, 𝑦 in [𝑛]. In particular, the following equality 𝑤 𝑟 = 𝑤 𝑙 holds, for any word 𝑤 on [𝑛]. In this way, the products ★ 𝑟 and ★ 𝑙 equip the set Ch 𝑛 with two monoid structures that are anti-isomorphic. We construct in Section 4 a nite semi-quadratic convergent presentation for the monoid C 𝑛 , denoted by R (𝑄 𝑛 , C 𝑛 ), whose set of generators 𝑄 𝑛 is made of columns over [𝑛] of length at most 2 and square generators and whose rules are 𝛾 𝑢,𝑣 : 𝑐 𝑢 •𝑐 𝑣 ⇒ 𝑐 𝑒 •𝑐 𝑒 for all 𝑐 𝑢 , 𝑐 𝑣 in 𝑄 𝑛 such that 𝑐 𝑢 •𝑐 𝑣 does not form a Chinese staircase and 𝑐 𝑢 ★ 𝑟 𝑐 𝑣 is equal to the Chinese staircase composed by the columns 𝑐 𝑒 and 𝑐 𝑒 . We show that this rewriting system can be obtained from the Knuth-like presentation of C 𝑛 by applying Tietze transformations that consist in adding or removing de nable generators and in adding or removing derivable relations on a presentation of a monoid in such a way that they do not change the presented monoid, see [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF]. Moreover, we show that the con uence of the rewriting system R (𝑄 𝑛 , C 𝑛 ) is a direct consequence of the associativity of the product ★ 𝑟 . We deduce that the monoid C 𝑛 has nite derivation type FDT ∞ and nite homological type FP ∞ . Note that the nite convergent presentations of Chinese monoids already obtained in [START_REF] Chen | Gröbner-Shirshov basis for the Chinese monoid[END_REF][START_REF] Güzel | Complete rewriting system for the Chinese monoid[END_REF], by completion of Chinese relations, and in [START_REF] Cain | Rewriting systems and biautomatic structures for Chinese, hypoplactic, and Sylvester monoids[END_REF] by adding column generators, are not semi-quadratic, and thus it is di cult to extend them into coherent ones. We extend in Section 5 the rewriting system R (𝑄 𝑛 , C 𝑛 ) into a nite coherent convergent presentation of the Chinese monoid C 𝑛 with an explicit description of the Chinese syzygies. We show in Theorem 5.6 that R (𝑄 𝑛 , C 𝑛 ) extends into a nite convergent coherent presentation of the monoid C 𝑛 by adjunction of generating syzygies with the following decagonal form 

𝑐 𝑒 •𝑐 𝑒 •𝑐 𝑡 𝛾 𝑒, 𝑒 ,𝑡 7 9 X 𝑢,𝑣,𝑡 Õ 𝑐 𝑒 •𝑐 𝑏 •𝑐 𝑏 𝛾 𝑒,𝑏,𝑏

P

This preliminary section recalls the basic notions of rewriting we use in this article. For a fuller account of the theory, we refer the reader to [START_REF] Book | String-rewriting systems[END_REF]. We will also recall from [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF][START_REF] Guiraud | Polygraphs of nite derivation type[END_REF] the notion of coherent presentation of a monoid that extends the notion of a presentation by syzygies taking into account all the relations amongst the relations. We will denote by 𝑋 * the free monoid of words written in the alphabet 𝑋 , the product being concatenation of words, and the identity being the empty word, denoted by 𝜆. We will denote by 𝑢 = 𝑥 

The rewriting system 𝑅 is con uent if all of its branchings are con uent, and convergent if it is both con uent and terminating. If 𝑅 is convergent, then every word 𝑢 in 𝑋 * has a unique normal form.

Normalization strategies.

Recall that a reduction strategy for a rewriting system 𝑅 on 𝑋 speci es a way to apply the rules in a deterministic way. It is de ned as a mapping 𝜗 of every word 𝑢 in 𝑋 * to a one step reduction 𝜗 𝑢 with source 𝑢. When 𝑅 is normalizing, a normalization strategy is a mapping 𝜎 of every word 𝑢 to a rewriting path 𝜎 𝑢 with source 𝑢 and target a chosen normal form of 𝑢. For a reduced rewriting system, we distinguish two canonical reduction strategies to reduce words: the leftmost one and the rightmost one, according to the way we apply rst the rewriting rule that reduces the leftmost or the rightmost subword. They are de ned as follows. For every word 𝑢 of 𝑋 * , the set of one step reductions with source 𝑢 can be ordered from left to right by setting 𝑓 ≺ 𝑔, for one step reductions 𝑓 = 𝑣𝛾𝑣 and 𝑔 = 𝑤 𝛽𝑤 such that |𝑣 | < |𝑤 |. If 𝑅 is nite, then the order ≺ is total and the set of one step reductions of source 𝑢 is nite. Hence this set contains a smallest element 𝜌 𝑢 and a greatest element 𝜂 𝑢 , respectively called the leftmost and the rightmost one step reductions on 𝑢. If, moreover, the rewriting system terminates, the iteration of 𝜌 (resp. 𝜂) yields a normalization strategy for 𝑅 called the leftmost (resp. rightmost) normalization strategy of 𝑅:

𝜎 𝑢 := 𝜌 𝑢 ★ 1 𝜎 𝑡 (𝜌 𝑢 ) (resp. 𝜎 𝑢 := 𝜂 𝑢 ★ 1 𝜎 𝑡 (𝜂 𝑢 ) ). (2) 

Coherent presentations

The leftmost (resp. rightmost) rewriting path on a word 𝑢 is the rewriting path obtained by applying the leftmost (resp. rightmost) normalization strategy 𝜎 𝑢 (resp. 𝜎 𝑢 ). We refer the reader to [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF] for more details on rewriting normalization strategies.

A rewriting system 𝑅 on 𝑋 is semi-quadratic if for all 𝛾 in 𝑅 we have |𝑠 (𝛾)| = 2 and |𝑡 (𝛾)| 2. The sources of the critical branchings of a semi-quadratic rewriting system are of length 3. When 𝑅 is reduced, there are at most two rewriting paths with respect to 𝑅 with source a word of length 3. We will denote by ℓ 𝑙 (𝑤) (resp. ℓ 𝑟 (𝑤)) the length of the leftmost (resp. rightmost) rewriting path from 𝑤 to its normal form.

Coherent presentations.

We recall the notion of coherent presentation of monoids formulated in terms of polygraphs in [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF], see also [START_REF] Guiraud | Polygraphs of nite derivation type[END_REF]. Rewriting systems can be interpreted as 2-polygraphs with only one 0-cell. Such a 2-polygraph 𝑃 is a data (𝑃 1 , 𝑃 2 ), where 𝑃 1 is a set and 𝑃 2 is a globular extension of the free monoid 𝑃 * 1 seen as a 1-category. The elements of 𝑃 2 are generating 2-cells 𝛽 : 𝑢 ⇒ 𝑣 relating 1-cells in 𝑃 * 1 , with source 𝑢 and target 𝑣, denoted respectively by 𝑠 1 (𝛽) and 𝑡 1 (𝛽). A rewriting system 𝑅 on 𝑋 can be described by such a 2-polygraph where the generating 2-cells are the rules of 𝑅. Recall that a (2, 1)-category is a category enriched in groupoids. We will denote by 𝑃 2 the (2, 1)-category freely generated by the 2-polygraph 𝑃, see [START_REF] Guiraud | Polygraphs of nite derivation type[END_REF] for expanded de nitions.

A pair

(𝑓 , 𝑔) of 2-cells of 𝑃 2 such that 𝑠 1 (𝑓 ) = 𝑠 1 (𝑔) and 𝑡 1 (𝑓 ) = 𝑡 1 (𝑔) is called a 2-sphere of 𝑃 2 . A (3, 1)-polygraph is a data (𝑃, 𝑃 3 ) made of a 2-polygraph 𝑃 and a globular extension 𝑃 3 of the (2, 1)- category 𝑃 2 , that is a set of 3-cells 𝐴 : 𝑓 𝑔, where (𝑓 , 𝑔) is a 2-sphere of 𝑃 2 .
The 2-cell 𝑓 (resp. 𝑔) is called the source (resp. target) of 𝐴, and denoted by 𝑠 2 (𝐴) (resp. 𝑡 2 (𝐴)). Such a 3-cell can be represented with the following globular shape:

• 𝑢 % % 𝑣 9 9 𝑓 Õ 𝑔 Õ 𝐴 7 9 • or 𝑢 𝑓 ! ) 𝑔 R H 𝑣 𝐴 Õ
where • denotes the unique 0-cell of 𝑃. We will denote by 𝑃 3 the free (3, 1)-category generated by the (3, 1)-polygraph (𝑃, 𝑃 3 ). An extended presentation of a monoid M is a (3, 1)-polygraph whose underlying 2-polygraph is a presentation of M. A coherent presentation of M is an extended presentation (𝑃, 𝑃 3 ) of M such that the cellular extension 𝑃 3 of the (2, 1)-category 𝑃 2 is acyclic, that is, for every 2-sphere (𝑓 , 𝑔) of 𝑃 2 , there exists a 3-cell 𝐴 in the (3, 1)-category 𝑃 3 such that 𝑠 2 (𝐴) = 𝑓 and 𝑡 2 (𝐴) = 𝑔. The elements in 𝑃 3 are called syzygies of the presentation 𝑃.

Recall Squier's coherence theorem from [START_REF] Squier | A niteness condition for rewriting systems[END_REF], see also [START_REF] Guiraud | Polygraphs of nite derivation type[END_REF], that states that, any convergent rewriting system 𝑅 on 𝑋 presenting a monoid M can be extended into a coherent presentation of M having a generating syzygy

𝑣 𝑓 # + 𝐴 𝑓 ,𝑔 Õ 𝑢 𝑓 6 8 𝑔 7 9 𝑤 𝑣 𝑔 Q G
for every critical branching (𝑓 , 𝑔) of 𝑅, where 𝑓 and 𝑔 are chosen con uent rewriting paths.

Insertions on Chinese staircases

I C

In this section, we recall the structure of Chinese staircase and the right and left insertion algorithms on Chinese staircases. We also recall the structure of Chinese monoid and the cross-section property for this monoid and we deduce properties of the insertions products on Chinese staircases. * the map that reads a staircase row by row, from right to left and from top to bottom, and where the 𝑖-th row is read as follows (𝑖1) 𝑡 𝑖1 (𝑖2) 𝑡 𝑖2 . . . (𝑖 (𝑖 -1)) 𝑡 𝑖 (𝑖-1) (𝑖) 𝑡 𝑖 , for 1 𝑖 𝑛. For instance, for the following staircase 𝑡 over [START_REF] Cassaigne | The Chinese monoid[END_REF]: 𝑡 4 . By removing the bottom row of a staircase 𝑡 over [𝑛], we obtain a staircase over [𝑛 -1], denoted by 𝑡 , as on the following picture:

𝑡 1 1 𝑡 2 𝑡 21 2 𝑡 3 𝑡 32 𝑡 31 3 𝑡 4 𝑡 43 𝑡 42 𝑡 41 4 4 3 2 1 we have R(𝑡) = 1 𝑡 1 (21) 𝑡 21 (2) 𝑡 2 (31) 𝑡 31 (32) 𝑡 32 (3) 𝑡 3 (41) 𝑡 41 (42) 𝑡 42 (43) 𝑡 43 (4)
𝑡 = 1 𝑛-1 . . . 𝑛 𝑡 𝑛 𝑡 𝑛1 𝑛 1 . . . . . .

𝑡

According to this, such a staircase can be denoted by (𝑡 , 𝑅 1 ), where 𝑅 1 is the bottom row of 𝑡.

The right insertion algorithm. Recall the right insertion map

𝑟 : Ch 𝑛 ×[𝑛] → Ch 𝑛 introduced in [4]. Let 𝑡 be a staircase and 𝑥 an element in [𝑛]. If 𝑥 = 𝑛, then 𝑡 𝑟 𝑥 = (𝑡 , 𝑅 1 )
, where 𝑅 1 is obtained from 𝑅 1 by adding 1 to 𝑡 𝑛 . If 𝑥 < 𝑛, let 𝑦 1 be maximal such that the entry in column 𝑦 1 of 𝑅 1 is non-zero or if such a 𝑦 1 does not exist, set 𝑦 1 = 𝑥. Three cases appear:

i) If 𝑥 𝑦 1 , then 𝑡 𝑟 𝑥 = (𝑡 𝑟 𝑥, 𝑅 1 ), ii) If 𝑥 < 𝑦 1 < 𝑛, then 𝑡 𝑟 𝑥 = (𝑡 𝑟 𝑦 1 , 𝑅 1 )
, where 𝑅 1 is obtained from 𝑅 1 by subtracting 1 from 𝑡 𝑛𝑦 1 and adding 1 to 𝑡 𝑛𝑥 , iii) If 𝑥 < 𝑦 1 = 𝑛, then 𝑡 𝑟 𝑥 = (𝑡 , 𝑅 1 ), where 𝑅 1 is obtained from 𝑅 1 by subtracting 1 from 𝑡 𝑛 and adding 1 to 𝑡 𝑛𝑥 .

The left insertion algorithm

For example, we compute

1 1 1 0 2 0 1 1 3 0 0 2 0 4 4 3 2 1
𝑟 1 in three steps: [START_REF] Cain | Rewriting systems and biautomatic structures for Chinese, hypoplactic, and Sylvester monoids[END_REF] in two steps as follows. Let 𝑦 be an element in [𝑛] ∪ {𝜆}, initially set to 𝜆.

1 1 1 0 2 0 1 1 3 0 0 2 0 4 𝑟 1 4 3 2 1 → 1 1 1 0 2 0 1 1 3 𝑟 2 0 0 1 1 4 4 3 2 1 → 1 1 1 0 2 𝑟 2 0 1 1 3 0 0 1 1 4 4 3 2 1 → 1 1 2 0 2 0 1 1 3 0 0 1 1 4 4 3 2 1

The left insertion algorithm. A left insertion map

𝑙 : Ch 𝑛 ×[𝑛] → Ch 𝑛 that inserts an element 𝑥 in [𝑛] into a staircase 𝑡, is de ned in
Step 1. For 𝑖 = 1, . . . , 𝑥 -1, iterate the following. If every entry in the 𝑖-th row is empty, do nothing. Otherwise, let 𝑧 be minimal such that 𝑡 𝑖𝑧 is non-zero. There are two cases according to the values of 𝑦: Step 2. For 𝑖 = 𝑥, if 𝑦 = 𝜆, then increment 𝑡 𝑖 by 1. Otherwise, decrement 𝑡 𝑖𝑦 by 1.

i) Suppose 𝑦 = 𝜆. If 𝑧 < 𝑖,
For example, we compute 4 𝑙 0 1 1 0 2 0 1 1 3 0 0 2 0 4 4 3 2 1 in three steps:

4 𝑟 0 1 1 0 2 0 1 1 3 0 0 2 0 4 4 3 2 1 → 0 1 0 0 2 0 1 1 3 0 0 1 1 4 4 3 2 1 → 0 1 1 0 2 0 2 0 3 0 0 1 1 4 4 3 2 1 → 0 1 1 0 2 0 2 0 3 0 0 1 1 4 4 3 2 1
3.4. Insertion products on Chinese staircases. For any word 𝑤 = 𝑥 1 . . . 𝑥 𝑘 , denote by 𝑤 𝑟 (resp. 𝑤 𝑙 ) the staircase obtained from 𝑤 by inserting its letters iteratively from left to right (resp. right to left) using the right (resp. left) insertion starting from the empty staircase:

𝑤 𝑟 := (∅ 𝑟 𝑤) = ((. . . (∅ 𝑟 𝑥 1 ) 𝑟 . . .) 𝑟 𝑥 𝑘 ), resp. 𝑤 𝑙 := (𝑤 𝑙 ∅) = (𝑥 1 𝑙 (. . . 𝑙 (𝑥 𝑘 𝑙 ∅) . . .)) .
De ne now an internal product ★ 𝑟 (resp. ★ 𝑙 ) on Ch 𝑛 by setting

𝑡 ★ 𝑟 𝑡 := (𝑡 𝑟 R(𝑡 )), resp. 𝑡 ★ 𝑙 𝑡 := (R(𝑡 ) 𝑙 𝑡) (3) 
for all 𝑡, 𝑡 in Ch 𝑛 . By de nition the relations 𝑡 ★ 𝑟 ∅ = 𝑡 (resp. 𝑡 ★ 𝑙 ∅ = 𝑡) and ∅ ★ 𝑟 𝑡 = 𝑡 (resp. ∅ ★ 𝑙 𝑡 = 𝑡) hold, showing that the product ★ 𝑟 (resp. ★ 𝑙 ) is unitary with respect to ∅. 

These relations generate the Chinese congruence, denoted by ∼ C 𝑛 , which can be also interpreted in terms of Chinese staircases as follows. The set of Chinese staircases satis es the cross-section property for the monoid C 𝑛 , that is, for all words 𝑤, 𝑤 on [𝑛], 𝑤 ∼ C 𝑛 𝑤 if and only if 𝑤 𝑟 = 𝑤 𝑟 , [4, Theorem 2.1]. As a consequence of the cross-section property, we deduce the following result.

3.6. Corollary. The composition ★ 𝑟 is associative and the following equality

𝑦 𝑙 (𝑡 𝑟 𝑥) = (𝑦 𝑙 𝑡) 𝑟 𝑥 (5) 
holds in Ch 𝑛 , for all 𝑡 in Ch 𝑛 and 𝑥, 𝑦 in [𝑛]. In particular, the composition ★ 𝑙 is associative and the following relation

𝑡 ★ 𝑟 𝑡 = 𝑡 ★ 𝑙 𝑡 (6) 
holds for all 𝑡, 𝑡 in Ch 𝑛 .

C C

We construct a nite semi-quadratic convergent presentation of the Chinese monoid C 𝑛 by adding the columns over [𝑛] of length at most 2 and square generators to the presentation (4) and by using the combinatorial properties of the insertion algorithms on the Chinese staircases.

4.1. Column generators. We consider one column generator 𝑐 𝑦𝑥 of length 2 for all 1 𝑥 < 𝑦 𝑛, one column generator 𝑐 𝑥 of length 1 for any 1 𝑥 𝑛, and one square generator 𝑐 𝑥𝑥 for any 1 < 𝑥 < 𝑛, corresponding to the following three staircases: where the shaded areas represent empty boxes. We will denote by 𝑄 𝑛 the set de ned by

𝑄 𝑛 := 𝑐 𝑦𝑥 1 𝑥 < 𝑦 𝑛 ∪ 𝑐 𝑥𝑥 1 < 𝑥 < 𝑛 ∪ 𝑐 1 , . . . , 𝑐 𝑛 .
Let us de ne the map 𝑅 𝑄 𝑛 : Ch 𝑛 → 𝑄 * 𝑛 that reads a staircase row by row, from right to left and from top to bottom, and where the reading of the 𝑖-th row, for 1 𝑖 𝑛, is the following word in 𝑄 * 𝑛 :

               𝑐 𝑖1 •. . .•𝑐 𝑖1 𝑡 𝑖1 times •𝑐 𝑖2 •. . .•𝑐 𝑖2 𝑡 𝑖2 times •. . .•𝑐 𝑖 • 𝑐 𝑖𝑖 •. . .•𝑐 𝑖𝑖 1 2 (𝑡 𝑖 -1) times
when 𝑡 𝑖 is an odd number

𝑐 𝑖1 •. . .•𝑐 𝑖1 𝑡 𝑖1 times •𝑐 𝑖2 •. . .•𝑐 𝑖2 𝑡 𝑖2 times •. . .•𝑐 𝑖𝑖 •. . .•𝑐 𝑖𝑖 1 2 𝑡 𝑖 times
when 𝑡 𝑖 is an even number.

Reduced column presentation

For instance, consider the following staircase over [START_REF] Cassaigne | The Chinese monoid[END_REF]: Theorem 4.3 will be proved later in the section. First, we deduce the following corollary:

𝑡 = 1 1 3 0 2 0 1 3 3 4 0 2 1 4 4 3 2 1 with 𝑅 𝑄 𝑛 (𝑡) = 𝑐 1 •𝑐 2 •𝑐
4.4. Corollary. The following properties hold:

i) The monoid C 𝑛 has nite derivation type FDT ∞ .

ii) The monoid C 𝑛 has nite homological type FP ∞ .

Proof. In [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF] the authors showed that if a monoid admits a nite convergent presentation, then it is of nite derivation type FDT ∞ , and the property of nite derivation type implies the property of nite homological type FP ∞ . Thus, Conditions i) and ii) are consequences of Theorem 4.3.

The rest of this section is devoted to the proof of Theorem 4.3. First, prove that R (𝑄 𝑛 , C 𝑛 ) is a semi-quadratic presentation of the monoid C 𝑛 . We add in Subsection 4.5 the columns generators of length 2 and the square generators with their de ning rules. This forms a non-con uent rewriting system that we complete into a presentation of C 𝑛 , that we call the precolumn presentation. Then we show in Subsection 4.7 that the rules of R (𝑄 𝑛 , C 𝑛 ) are obtained from the precolumn presentation by applying one step of Knuth-Bendix's completion, [START_REF] Knuth | Simple word problems in universal algebras[END_REF], on the precolumn presentation. Hence R (𝑄 𝑛 , C 𝑛 ) is a presentation of the monoid C 𝑛 . Finally, we show in Proposition 4.8 that R (𝑄 𝑛 , C 𝑛 ) is terminating and is con uent using the associativity of the product ★ 𝑟 . 4.5. Precolumn presentation. Consider the rewriting system Ch 2 (𝑛) on {𝑐 1 , . . . , 𝑐 𝑛 } and whose rules are given by the following four families

𝜀 𝑥,𝑦,𝑧 : 𝑐 𝑧 •𝑐 𝑦 •𝑐 𝑥 → 𝑐 𝑦 •𝑐 𝑧 •𝑐 𝑥 and 𝜂 𝑥,𝑦,𝑧 : 𝑐 𝑧 •𝑐 𝑥 •𝑐 𝑦 → 𝑐 𝑦 •𝑐 𝑧 •𝑐 𝑥 for all 1 𝑥 < 𝑦 < 𝑧 𝑛, 𝜀 𝑥,𝑦 : 𝑐 𝑦 •𝑐 𝑦 •𝑐 𝑥 → 𝑐 𝑦 •𝑐 𝑥 •𝑐 𝑦 and 𝜂 𝑥,𝑦 : 𝑐 𝑦 •𝑐 𝑥 •𝑐 𝑥 → 𝑐 𝑥 •𝑐 𝑦 •𝑐 𝑥 for all 1 𝑥 < 𝑦 𝑛, (8) 
corresponding to the Chinese relations (4), hence is a presentation of the monoid C 𝑛 . We add to the set of rules (8) the following set of rules 

Γ 2 (𝑛) = { 𝛾 𝑦,𝑥 : 𝑐 𝑦 •𝑐 𝑥 → 𝑐 𝑦𝑥 | 1 𝑥 < 𝑦 𝑛 } ∪ { 𝛾 𝑥,𝑥 : 𝑐 𝑥 •𝑐 𝑥 → 𝑐 𝑥𝑥 | 1 < 𝑥 < 𝑛 },
𝑐 𝑧 •𝑐 𝑦𝑥 → 𝑐 𝑦 •𝑐 𝑧𝑥 for 1 𝑥 𝑦 < 𝑧 𝑛 } ∪ { 𝛾 𝑧𝑥,𝑦 : 𝑐 𝑧𝑥 •𝑐 𝑦 → 𝑐 𝑦 •𝑐 𝑧𝑥 for 1 𝑥 < 𝑦 < 𝑧 𝑛 }.
is a nite semi-quadratic presentation of the Chinese monoid C 𝑛 .

Proof. We make explicit a Tietze equivalence between the rewriting systems Ch 𝑐 2 (𝑛) and PreCol 2 (𝑛). For 1 𝑥 < 𝑦 𝑛, consider the following critical branching

𝑐 𝑦 •𝑐 𝑥 •𝑐 𝑦 𝛾 𝑦,𝑥,𝑦 / / 𝑐 𝑦𝑥 •𝑐 𝑦 𝑐 𝑦 •𝑐 𝑦 •𝑐 𝑥 𝜀 𝑥,𝑦 3 3 𝛾 𝑦, 𝑦,𝑥
, , 𝑐 𝑦 •𝑐 𝑦𝑥 of the rewriting system Ch 𝑐 2 (𝑛). We consider the Tietze transformation that substitutes the rule 𝛾 𝑦,𝑦𝑥 : 𝑐 𝑦 •𝑐 𝑦𝑥 → 𝑐 𝑦𝑥 •𝑐 𝑦 for the rule 𝜀 𝑥,𝑦 , for every 1 𝑥 < 𝑦 𝑛. Similarly, we substitute the rules 𝛾 𝑦𝑥,𝑥 , 𝛾 𝑦𝑦,𝑥 , 𝛾 𝑦,𝑥𝑥 , 𝛾 𝑧𝑦,𝑥 , 𝛾 𝑧𝑥,𝑦 and 𝛾 𝑧,𝑦𝑥 respectively for the rules 𝜂 𝑥,𝑦 , 𝜀 𝑥,𝑦 , 𝜂 𝑥,𝑦 , 𝜀 𝑥,𝑦,𝑧 , 𝜂 𝑥,𝑦,𝑧 and 𝜀 𝑥,𝑦,𝑧 using the following critical branchings of the rewriting system Ch 𝑐 2 (𝑛):

𝑐 𝑥 •𝑐 𝑦 •𝑐 𝑥 𝛾 𝑥, 𝑦,𝑥 / / 𝑐 𝑥 •𝑐 𝑦𝑥 𝑐 𝑦 •𝑐 𝑥 •𝑐 𝑥 𝜂 𝑥,𝑦 3 3 𝛾 𝑦,𝑥,𝑥 , , 𝑐 𝑦𝑥 •𝑐 𝑥 𝛾 𝑦𝑥,𝑥 < < 𝑐 𝑦 •𝑐 𝑥 •𝑐 𝑦 𝛾 𝑦,𝑥,𝑦 / / 𝑐 𝑦𝑥 •𝑐 𝑦 𝑐 𝑦 •𝑐 𝑦 •𝑐 𝑥 𝜀 𝑥,𝑦 3 3 𝛾 𝑦,𝑦,𝑥 , , 𝑐 𝑦𝑦 •𝑐 𝑥 𝛾 𝑦𝑦,𝑥 < < 𝑐 𝑥 •𝑐 𝑦 •𝑐 𝑥 𝛾 𝑥, 𝑦,𝑥 / / 𝑐 𝑥 •𝑐 𝑦𝑥 𝑐 𝑦 •𝑐 𝑥 •𝑐 𝑥 𝜂 𝑥,𝑦 3 3 𝛾 𝑦, 𝑥,𝑥 , , 𝑐 𝑦 •𝑐 𝑥𝑥 𝛾 𝑦,𝑥𝑥 < < 𝑐 𝑦 •𝑐 𝑧 •𝑐 𝑥 𝛾 𝑦, 𝑧,𝑥 / / 𝑐 𝑦 •𝑐 𝑧𝑥 𝑐 𝑧 •𝑐 𝑦 •𝑐 𝑥 𝜀 𝑥,𝑦,𝑧 3 3 𝛾 𝑧,𝑦,𝑥 , , 𝑐 𝑧𝑦 •𝑐 𝑥 𝛾 𝑧𝑦,𝑥 < < 𝑐 𝑦 •𝑐 𝑧 •𝑐 𝑥 𝛾 𝑦, 𝑧,𝑥 / / 𝑐 𝑦 •𝑐 𝑧𝑥 𝑐 𝑧 •𝑐 𝑥 •𝑐 𝑦 𝜂 𝑥,𝑦,𝑧 3 3 𝛾 𝑧,𝑥,𝑦 , , 𝑐 𝑧𝑥 •𝑐 𝑦 𝛾 𝑧𝑥,𝑦 < < 𝑐 𝑦 •𝑐 𝑧 •𝑐 𝑥 𝛾 𝑦, 𝑧,𝑥 / / 𝑐 𝑦 •𝑐 𝑧𝑥 𝑐 𝑧 •𝑐 𝑦 •𝑐 𝑥 𝜀 𝑥,𝑦,𝑧 3 3 𝛾 𝑧, 𝑦,𝑥 , , 𝑐 𝑧 •𝑐 𝑦𝑥 𝛾 𝑧,𝑦𝑥 < <
The set of rules 𝛾 -,-obtained in this way is equal to Δ 2 (𝑛). This proves that the rewriting systems Ch 𝑐 2 (𝑛) and PreCol 2 (𝑛) are Tietze equivalent. 4.7. Completion of the precolumn presentation. The rewriting system PreCol 2 (𝑛) is not con uent, it has the following non-con uent critical branchings, that can be completed by Knuth-Bendix completion, [START_REF] Knuth | Simple word problems in universal algebras[END_REF], by the dotted arrows as follows: 4.7. Completion of the precolumn presentation i) for every 1 𝑥 𝑦 < 𝑧 < 𝑡 𝑛 :

𝑐 𝑧 •𝑐 𝑡 𝑦 •𝑐 𝑥 𝛾 𝑧, 𝑡 𝑦,𝑥 / / 𝑐 𝑧 •𝑐 𝑦 •𝑐 𝑡𝑥 𝛾 𝑧,𝑦,𝑡𝑥 / / 𝑐 𝑧𝑦 •𝑐 𝑡𝑥 𝑐 𝑡 𝑦 •𝑐 𝑧 •𝑐 𝑥 𝛾 𝑡 𝑦,𝑧,𝑥 3 3 𝛾 𝑡 𝑦, 𝑧,𝑥 , , 𝑐 𝑡 𝑦 •𝑐 𝑧𝑥 𝛾 𝑡 𝑦,𝑧𝑥 5 
ii) for every 1 𝑥 < 𝑦 < 𝑧 𝑛 : 

𝑐 𝑧𝑥 •𝑐 𝑧 •𝑐 𝑦 𝛾 𝑧𝑥,
iv) for every 1 𝑥 < 𝑦 𝑧 𝑛 : 

𝑐 𝑧𝑧 •𝑐 𝑦𝑥 𝛾 𝑧𝑧,𝑦𝑥 * * 𝑐 𝑧 •𝑐 𝑧 •𝑐 𝑦𝑥 𝛾 𝑧,𝑧,𝑦𝑥 1 1 𝛾 𝑧, 𝑧,𝑦𝑥 --𝑐 𝑧 •𝑐 𝑦 •𝑐 𝑧𝑥 𝛾 𝑧,𝑦,𝑧𝑥 / / 𝑐 𝑧𝑦 •𝑐 𝑧𝑥 𝛾 𝑧𝑦,𝑧𝑥 / / 𝑐 𝑧𝑥 •𝑐 𝑧𝑦 v) for every 1 < 𝑥 < 𝑦 < 𝑛 : 𝑐 𝑦𝑦 •𝑐 𝑥𝑥 𝛾 𝑦𝑦,𝑥𝑥 % % 𝑐 𝑦 •𝑐 𝑦 •𝑐 𝑥𝑥 𝛾 𝑦,𝑦,𝑥𝑥 1 1 𝛾 𝑦, 𝑦,𝑥𝑥 --𝑐 𝑦 •𝑐 𝑥 •𝑐 𝑦𝑥 𝛾 𝑦,
𝑅 𝑄 𝑛 (𝑐 𝑢 ★ 𝑟 𝑐 𝑣 ) •𝑐 𝑡 𝜎 𝑅 𝑄𝑛 (𝑐 𝑢 ★ 𝑟 𝑐 𝑣 ) •𝑐 𝑡 / / 𝑅 𝑄 𝑛 ((𝑐 𝑢 ★ 𝑟 𝑐 𝑣 ) ★ 𝑟 𝑐 𝑡 ) 𝑐 𝑢 •𝑐 𝑣 •𝑐 𝑡 𝛾 𝑢,𝑣,𝑡 1 1 𝛾 𝑢, 𝑣,𝑡 --𝑐 𝑢 •𝑅 𝑄 𝑛 (𝑐 𝑣 ★ 𝑟 𝑐 𝑡 ) 𝜎 𝑐 𝑢 •𝑅 𝑄𝑛 (𝑐 𝑣 ★ 𝑟 𝑐 𝑡 ) / / 𝑅 𝑄 𝑛 (𝑐 𝑢 ★ 𝑟 (𝑐 𝑣 ★ 𝑟 𝑐 𝑡 ))
which is con uent by the associativity of the product ★ 𝑟 . This proves that the rewriting system R (𝑄 𝑛 , C 𝑛 ) is locally con uent and thus con uent by termination hypothesis.

C

In this section we extend the rewriting system R (𝑄 𝑛 , C 𝑛 ) into a nite coherent convergent presentation of the Chinese monoid C 𝑛 with an explicit description of the generating syzygies. By semi-quadraticity of R (𝑄 𝑛 , C 𝑛 ), every rewriting path with source 𝑐 𝑢 •𝑐 𝑣 •𝑐 𝑡 is an alternated composition of reductions of the form [START_REF] Duchamp | Plactic-growth-like monoids[END_REF]. Moreover, every rewriting rule 𝛾 -,-of R (𝑄 𝑛 , C 𝑛 ) can be written

𝛾 𝑦𝑥 1 ,𝑥 2 𝑥 3 : 𝑐 𝑦𝑥 1 •𝑐 𝑥 2 𝑥 3 → 𝑐 𝑥 𝜎 (1) 𝑥 𝜎 (2) •𝑐 𝑦𝑥 𝜎 (3) (9) 
where

𝑦 ∈ [𝑛], 𝑥 1 , 𝑥 2 , 𝑥 3 ∈ [𝑛] ∪ {0}, 𝜎 is a permutation on [𝑛] ∪ {0}
, and 𝑐 𝑥0 denotes the column generator 𝑐 𝑥 for any 1 < 𝑥 < 𝑛.

5.1. Remark. Note that when 𝑐 𝑦𝑥 1 is not a square generator, then 𝑥 𝜎 (1) takes value 𝑦 only if rule ( 9) is one of the commutation rules of the form

𝑐 𝑦 •𝑐 𝑦𝑥 → 𝑐 𝑦𝑥 •𝑐 𝑦 , 𝑐 𝑧𝑦 •𝑐 𝑧𝑥 → 𝑐 𝑧𝑥 •𝑐 𝑧𝑦 , 𝑐 𝑦𝑦 •𝑐 𝑦 → 𝑐 𝑦 •𝑐 𝑦𝑦 , 𝑐 𝑦𝑦 •𝑐 𝑦𝑥 → 𝑐 𝑦𝑥 •𝑐 𝑦𝑦 (10) 
for 𝑥 < 𝑦 < 𝑧. When 𝑐 𝑦𝑥 1 is a square generator, with 𝑦 > 𝑥 2 , then 𝑥 𝜎 (1) takes value 𝑦 only if rule ( 9) is one of the form

𝑐 𝑦𝑦 •𝑐 𝑥 → 𝑐 𝑦𝑥 •𝑐 𝑦 , 𝑐 𝑦𝑦 •𝑐 𝑥𝑥 → 𝑐 𝑦𝑥 •𝑐 𝑦𝑥 , 𝑐 𝑧𝑧 •𝑐 𝑦𝑥 → 𝑐 𝑧𝑥 •𝑐 𝑧𝑦 . (11) 
We obtain the following bounds for the rewriting paths with source a critical branching of R (𝑄 𝑛 , C 𝑛 ). 

ℓ 𝑙 (𝑐 𝑢 •𝑐 𝑣 •𝑐 𝑡 ) 5, and 
ℓ 𝑟 (𝑐 𝑢 •𝑐 𝑣 •𝑐 𝑡 ) 5. (12) 
The proof of this result is based on the two following lemmata 5.3 and 5.4. Let 𝑐 𝑢 , 𝑐 𝑣 , 𝑐 𝑡 be in 𝑄 𝑛 such that 𝑐 𝑢 •𝑐 𝑣 and 𝑐 𝑣 •𝑐 𝑡 are not Chinese normal forms. The Chinese normal form of the word 𝑐 𝑢 •𝑐 𝑣 •𝑐 𝑡 can be obtained by applying one, two or three steps of reductions of the leftmost normalization strategy of R (𝑄 𝑛 , C 𝑛 ). In this case, we have ℓ 𝑙 (𝑐 𝑢 •𝑐 𝑣 •𝑐 𝑡 )

3. Otherwise, the following lemma shows that ℓ 𝑙 (𝑐 𝑢 •𝑐 𝑣 •𝑐 𝑡 ) 5.

Lemma.

Let 𝑐 𝑢 , 𝑐 𝑣 , 𝑐 𝑡 be in 𝑄 𝑛 such that 𝑐 𝑢 •𝑐 𝑣 and 𝑐 𝑣 •𝑐 𝑡 are not Chinese normal forms. Suppose that the word obtained after three steps of reductions of the leftmost normalization strategy of R (𝑄 𝑛 , C 𝑛 ) with source 𝑐 𝑢 • 𝑐 𝑣 • 𝑐 𝑡 is not a Chinese normal form. Then, the Chinese normal form of this word is obtained by applying at most two steps of reductions, that consist only on the commutation rules [START_REF] Giraudo | Algebraic and combinatorial structures on pairs of twin binary trees[END_REF].

Proof. Let 𝑐 𝑦𝑥 1 , 𝑐 𝑥 2 𝑥 3 , 𝑐 𝑥 4 𝑥 5 be in 𝑄 𝑛 such that 𝑐 𝑦𝑥 1 •𝑐 𝑥 2 𝑥 3 and 𝑐 𝑥 2 𝑥 3 •𝑐 𝑥 4 𝑥 5 are not Chinese normal forms. By de nition of R (𝑄 𝑛 , C 𝑛 ), we have 𝑐 𝑦𝑥 1 •𝑐 𝑥 2 𝑥 3 •𝑐 𝑥 4 𝑥 5 → 𝑐 𝑥 𝜎 (1) 𝑥 𝜎 (2) •𝑐 𝑦𝑥 𝜎 (3) •𝑐 𝑥 4 𝑥 5 → 𝑐 𝑥 𝜎 (1) 𝑥 𝜎 (2) •𝑐 𝑥 𝜎 (𝜎 (3) ) 𝑥 𝜎 (4) •𝑐 𝑦𝑥 𝜎 (5) → 𝑐 𝑧 1 𝑧 2 •𝑐 𝑥 𝜎 (1) 𝑧 3 •𝑐 𝑦𝑥 𝜎 (5) (13) 
with Suppose that 𝑐 𝑥 𝜎 (1) 𝑧 3 •𝑐 𝑦𝑥 𝜎 (5) is not a Chinese normal form. Following Remark 5.1, its only possible reductions are of form [START_REF] Giraudo | Algebraic and combinatorial structures on pairs of twin binary trees[END_REF] or [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF]. Let us prove that the rules (11) cannot be applied. Suppose the contrary. Then 𝑥 𝜎 (1) = 𝑧 3 > 𝑦. Since 𝑐 𝑧 1 𝑧 2 •𝑐 𝑥 𝜎 (1) 𝑧 3 is a Chinese normal form, we obtain that 𝑧 1 = 𝑧 3 and [START_REF] Chen | Gröbner-Shirshov basis for the Chinese monoid[END_REF] . Since 𝑧 3 > 𝑦, this proves that 𝑐 𝑧 3 𝑧 2 •𝑐 𝑦𝑥 𝜎 (5) = 𝑐 𝑥 𝜎 (𝜎 (3) ) 𝑥 𝜎 (4) •𝑐 𝑦𝑥 𝜎 (5) is not a Chinese normal form, which yields a contradiction.

𝑧 1 = 𝑥 𝜎 (𝜎 ( 2 
𝑐 𝑥 𝜎 (1) 𝑥 𝜎 (2) •𝑐 𝑥 𝜎 (𝜎 (3) ) 𝑥 𝜎 (4) •𝑐 𝑦𝑥 𝜎 (5) = 𝑐 𝑧 3 𝑧 3 •𝑐 𝑧 3 𝑧 2 •𝑐 𝑦𝑥 𝜎
Then we can only apply a commutation rule on 𝑐 𝑥 𝜎 (1) 𝑧 3 •𝑐 𝑦𝑥 𝜎 (5) , with 𝑥 𝜎 (1) = 𝑦, and we rewrite the word

𝑐 𝑧 1 𝑧 2 •𝑐 𝑥 𝜎 (1) 𝑧 3 •𝑐 𝑦𝑥 𝜎 (5) into 𝑐 𝑧 1 𝑧 2 •𝑐 𝑦𝑥 𝜎 (5) •𝑐 𝑥 𝜎 (1) 𝑧 3 . Suppose that 𝑐 𝑧 1 𝑧 2 •𝑐 𝑦𝑥 𝜎 (5)
is not a Chinese normal form, then we can apply on it a rule of type [START_REF] Giraudo | Algebraic and combinatorial structures on pairs of twin binary trees[END_REF] or [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF]. As in the previous step, let us prove that the rules (11) cannot be applied. Suppose the contrary. Then 𝑧 1 = 𝑧 2 > 𝑦. Since 𝑐 𝑧 1 𝑧 2 •𝑐 𝑥 𝜎 (1) 𝑧 3 is a Chinese normal form, we obtain that 𝑧 1 = 𝑧 2 = 𝑥 𝜎 (1) = 𝑦, which yields a contradiction. Then we can only apply a commutation rule on 𝑐 𝑧 1 𝑧 2 •𝑐 𝑦𝑥 𝜎 [START_REF] Chen | Gröbner-Shirshov basis for the Chinese monoid[END_REF] .

We have thus proved that the Chinese normal form of the word 𝑐 𝑦𝑥 

𝑐 𝑦𝑥 1 •𝑐 𝑥 2 𝑥 3 •𝑐 𝑥 4 𝑥 5 → 𝑐 𝑦𝑥 1 •𝑐 𝑥 𝜎 (3) 𝑥 𝜎 (4) •𝑐 𝑥 2 𝑥 𝜎 (5) → 𝑐 𝑥 𝜎 (1) 𝑦 1 •𝑐 𝑦𝑦 2 •𝑐 𝑥 2 𝑥 𝜎 (5) 𝑐 𝑥 𝜎 (1) 𝑦 1 •𝑐 𝑦𝑦 2 •𝑐 𝑥 2 𝑥 𝜎 (5) → 𝑐 𝑥 𝜎 (1) 𝑦 1 •𝑐 𝑥 𝜎"(2) 𝑧 1 •𝑐 𝑦𝑧 2 → 𝑐 𝑡 1 𝑡 2 •𝑐 𝑥 𝜎 (1) 𝑡 3 •𝑐 𝑦𝑧 2 (14) with 𝑦 1 = 𝑥 𝜎 (𝜎 (3)) , 𝑦 2 = 𝑥 𝜎 (𝜎 (4)) , 𝑧 1 = 𝑥 𝜎 (𝜎 (𝜎 (4))) , 𝑧 2 = 𝑥 𝜎 (𝜎 (5)) , 𝑡 1 = 𝑥 𝜎 1 (𝜎 (1)) , 𝑡 2 = 𝑥 𝜎 1 (𝜎 (𝜎 (3))) , 𝑡 3 = 𝑥 𝜎 1 (𝜎 (𝜎 (𝜎 (1))))
, and where 𝜎, 𝜎 , 𝜎 , 𝜎 1 are permutations on [𝑛] ∪ {0}, and

𝑐 𝑥 𝜎 (3) 𝑥 𝜎 (4) •𝑐 𝑥 2 𝑥 𝜎 (5) , 𝑐 𝑥 𝜎 (1) 𝑦 1 •𝑐 𝑦𝑦 2 , 𝑐 𝑥 𝜎"(2) 𝑧 1 •𝑐 𝑦𝑧 2 and 𝑐 𝑡 1 𝑡 2 •𝑐 𝑥 𝜎 (1) 𝑡 3 are Chinese normal forms.
Suppose that the word obtained after applying four steps of reductions of the rightmost normalization strategy with source 𝑐 𝑦𝑥 1 • 𝑐 𝑥 2 𝑥 3 • 𝑐 𝑥 4 𝑥 5 is not a Chinese normal form. Then 𝑥 𝜎 (1) = 𝑦 and the second reduction of ( 14) is [START_REF] Chen | Gröbner-Shirshov basis for the Chinese monoid[END_REF] . Following Remark 5.1, the rule 𝛾 𝑦𝑥 1 ,𝑥 𝜎 (3) 𝑥 𝜎 (4) is of form [START_REF] Giraudo | Algebraic and combinatorial structures on pairs of twin binary trees[END_REF] or [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF]. Let us prove that it cannot be of form [START_REF] Giraudo | Algebraic and combinatorial structures on pairs of twin binary trees[END_REF] Note that some 2-cells 𝛾 -,-in the boundary of the generating syzygy X 𝑢,𝑣,𝑡 can be identity. However, following construction given in the proof of Proposition 5.2, if the source (resp. target) of X 𝑢,𝑣,𝑡 is of length 5, then its target (resp. source) is of length at most 4. 𝐴(𝑢)

𝑐 𝑦𝑥 1 •𝑐 𝑥 𝜎 (3) 𝑥 𝜎 (4) •𝑐 𝑥 2 𝑥 𝜎 (5) → 𝑐 𝑦𝑦 1 •𝑐 𝑦𝑦 2 •𝑐 𝑥 2 𝑥 𝜎

=

Let M be a monoid and let Σ be an extended presentation of M. The (3, 1)-polygraph Σ is a coherent presentation of M if, and only if, for every 2-category C, there is an equivalence of categories between Act(M) and 2Cat(Σ * 1 /Σ 2 , C), that is natural in C, [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF]. In this way, up to equivalence, the actions of a monoid M on categories are the same as the 2-functors from Σ * 1 /Σ 2 to Cat. Using this description, Theorem 5.6 allows us to present actions of Chinese monoids on categories as follows: 5.9. Theorem. The category Act(C 𝑛 ) of actions of the Chinese monoid C 𝑛 on categories is equivalent to the category of 2-functors from the free (2, 1)-category R (𝑄 𝑛 , C 𝑛 ) generated by the rewriting system R (𝑄 𝑛 , C 𝑛 ) to the category Cat of categories, that sends any generating syzygy X 𝑢,𝑣,𝑡 to commutative diagrams in the category Cat. 

3. 1 .

 1 Chinese staircases. A mirror Young diagram of shape (1, 2, . . . , 𝑛) is a collection of boxes in rightjusti ed rows, whose rows (resp. columns) are indexed with the totally ordered set [𝑛] := {1 < . . . < 𝑛}, for 𝑛 in Z >0 , from top to bottom (resp. from right to left) and where the 𝑖-th row contains 𝑖 boxes for 1 𝑖 𝑛. A (Chinese) staircase over [𝑛] is a mirror Young diagram of shape (1, 2, . . . , 𝑛) lled with non-negative integers. Denote by 𝑡 𝑖 𝑗 (resp. 𝑡 𝑖 ) the contents of the box in row 𝑖 and column 𝑗 for 𝑖 > 𝑗 (resp. 𝑖 = 𝑗). A box lled by 0 is called empty. Denote by Ch 𝑛 the set of staircases over [𝑛] and by R : Ch 𝑛 → [𝑛]

4 .

 4 Column presentation of the Chinese monoid 3.5. The cross-section property. The Chinese monoid of rank 𝑛 > 0, denoted by C 𝑛 , is presented by the rewriting system on [𝑛], whose rules are the Chinese relations,[START_REF] Duchamp | Plactic-growth-like monoids[END_REF]:𝑧𝑦𝑥 → 𝑦𝑧𝑥 and 𝑧𝑥𝑦 → 𝑦𝑧𝑥 for all 1 𝑥 < 𝑦 < 𝑧 𝑛, 𝑦𝑦𝑥 → 𝑦𝑥𝑦 and 𝑦𝑥𝑥 → 𝑥𝑦𝑥 for all 1 𝑥 < 𝑦 𝑛.

  )) , 𝑧 2 = 𝑥 𝜎 (𝜎 (𝜎 (3))) , 𝑧 3 = 𝑥 𝜎 (𝜎 (4)) , and where 𝜎, 𝜎 , 𝜎 are permutations on [𝑛] ∪ {0}, and 𝑐 𝑥 𝜎 (1) 𝑥 𝜎 (2) •𝑐 𝑦𝑥 𝜎 (3) , 𝑐 𝑥 𝜎 (𝜎 (3) ) 𝑥 𝜎 (4) •𝑐 𝑦𝑥 𝜎 (5) , 𝑐 𝑧 1 𝑧 2 •𝑐 𝑥 𝜎 (1) 𝑧 3 are Chinese normal forms.

5. 7 . 2 𝜎. 5 . 8 . 7

 72587 Relations among the insertion algorithms. Note that the generating syzygies of the coherent presentation of the monoid C 𝑛 obtained in Theorem 5.6 can be interpreted in terms of the right and left insertion algorithms as follows. Consider the rewriting system on 𝑄 𝑛 , whose rules are𝑐 𝑢 •𝑐 𝑣 → 𝑅 𝑄 𝑛 (𝑐 𝑣 ★ 𝑙 𝑐 𝑢 ), for all 𝑐 𝑢 , 𝑐 𝑣 in 𝑄 𝑛 such that 𝑐 𝑢 •𝑐 𝑣 ≠ 𝑅 𝑄 𝑛 (𝑐 𝑣 ★ 𝑙 𝑐 𝑢 ). By Corollary 3.6, the equality 𝑅 𝑄 𝑛 (𝑐 𝑣 ★ 𝑙 𝑐 𝑢 ) = 𝑅 𝑄 𝑛 (𝑐 𝑢 ★ 𝑟 𝑐 𝑣 ) holds for all 𝑐 𝑢 , 𝑐 𝑣 in 𝑄 𝑛 , and thus this rewriting system coincides with R (𝑄 𝑛 , C 𝑛 ). Hence, the generating syzygy of the coherent presentation of Theorem 5.6 has the following form𝑐 𝑢 •𝑐 𝑣 •𝑐 𝑡 𝜎 𝑐 𝑢 •𝑐 𝑣 •𝑐 𝑡 0 𝑐 𝑢 •𝑐 𝑣 •𝑐 𝑡 D @ 𝑅 𝑄 𝑛 (𝑐 𝑢 ★ 𝑟 𝑐 𝑣 ★ 𝑟 𝑐 𝑡 ) Õ for all 𝑐 𝑢 , 𝑐 𝑣 , 𝑐 𝑡 in 𝑄 𝑛 such that 𝑐 𝑢 •𝑐 𝑣 ≠ 𝑅 𝑄 𝑛 (𝑐 𝑢 ★ 𝑟 𝑐 𝑣 ) and 𝑐 𝑣 •𝑐 𝑡 ≠ 𝑅 𝑄 𝑛 (𝑐 𝑣 ★ 𝑟 𝑐 𝑡 ), where the application of the leftmost (resp. rightmost) normalization strategy 𝜎 (resp. 𝜎 ) on the word 𝑐 𝑢 •𝑐 𝑣 •𝑐 𝑡 corresponds to the application of the right (resp. left) insertion𝑅 𝑄 𝑛 ∅ 𝑟 R(𝑐 𝑢 ) R(𝑐 𝑣 ) R(𝑐 𝑡 ) resp. 𝑅 𝑄 𝑛 (R(𝑐 𝑢 ) R(𝑐 𝑣 ) R(𝑐 𝑡 ) ∅)Actions of Chinese monoids on categories. A monoid M can be seen as a 2-category with exactly one 0-cell •, with the elements of the monoid M as 1-cells and with identity 2-cells only. The category of actions of M on categories is the category Act(M) of 2-representations of M in the category Cat of categories. The full subcategory of Act(M) whose objects are the 2-functors is denoted by 2Cat(M, Cat). We refer the reader to[START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF] for a full introduction on the category of 2-representations of 2-categories. More explicitly, an action 𝐴 of the monoid M is speci ed by a category C = 𝐴(•), an endofunctor 𝐴(𝑢) : C → C for every 𝑢 in M, a natural isomorphism 𝐴 𝑢,𝑣 : 𝐴(𝑢)𝐴(𝑣) ⇒ 𝐴(𝑢𝑣) for every elements 𝑢 and 𝑣 of M, and a natural isomorphism 𝐴 • : 1 C ⇒ 𝐴(1) such that: i) for every triple (𝑢, 𝑣, 𝑤) of elements of the monoid M, the following diagram commutes 𝐴(𝑢𝑣)𝐴(𝑤) 𝐴 𝑢𝑣,𝑤 ' / = 𝐴(𝑢)𝐴(𝑣)𝐴(𝑤) 𝐴 𝑢,𝑣 𝐴(𝑤) 9 ; 𝐴(𝑢)𝐴 𝑣,𝑤 5 𝐴(𝑢𝑣𝑤) 𝐴(𝑢)𝐴(𝑣𝑤) 𝐴 𝑢,𝑣𝑤 G C ii) for every element 𝑢 of the monoid M, the following diagrams commute 𝐴(1)𝐴(𝑢) 𝐴 1,𝑢 ! ) 𝐴(𝑢) 𝐴 • 𝐴(𝑢) A = 𝐴(𝑢)

  𝑅 . A rewriting path with respect to 𝑅 is a nite or in nite sequence 𝑢 0 → 𝑅 𝑢 1 → 𝑅 𝑢 2 → 𝑅 • • • . This corresponds to the re exive and transitive closure of the relation → 𝑅 , that we denote by * → 𝑅 . A word 𝑢 in 𝑋 * is reduced if there is no reduction with source 𝑢. A normal form for a word 𝑢 in 𝑋 * is a reduced word 𝑣 such that 𝑢 reduces into 𝑣. The rewriting system 𝑅 terminates if it has no in nite rewriting path, and it is (weakly) normalizing if every word 𝑢 in 𝑋 * reduces to some normal form. A rewriting system 𝑅 is reduced if, for every rule 𝛽 : 𝑢 → 𝑣 in 𝑅, the source 𝑢 is (𝑅 \ {𝛽})-reduced and the target 𝑣 is reduced. The re exive, symmetric and transitive closure of → 𝑅 is the congruence on 𝑋 * generated by 𝑅, that we denote by ≈ 𝑅 . The monoid presented by 𝑅 is the quotient of the free monoid 𝑋 * by the congruence ≈ 𝑅 . Two rewriting systems are Tietze equivalent if they present isomorphic monoids. Recall that a Tietze transformation between two rewriting systems is a sequence of elementary Tietze transformations, de ned on a rewriting system 𝑅 on 𝑋 by the following operations: i) adjunction or elimination of an element 𝑥 in 𝑋 and of a rule 𝛽 : 𝑢 → 𝑥, where 𝑢 is an element in 𝑋 * that does not contain 𝑥,ii) adjunction or elimination of a rule 𝛽 : 𝑢 → 𝑣 such that 𝑢 and 𝑣 are equivalent by the congruence generated by 𝑅 \ {𝛽}. Con uence. A branching (resp. local branching) of a rewriting system 𝑅 on 𝑋 is a non ordered pair (𝑓 , 𝑔) of reductions (resp. one step reductions) of 𝑅 on the same word. A branching is aspherical if it is of the form (𝑓 , 𝑓 ), for a one step reduction 𝑓 and Pei er when it is of the form (𝑓 𝑣, 𝑢𝑔) for one step reductions 𝑓 and 𝑔 with source 𝑢 and 𝑣 respectively. The overlapping branchings are the remaining local branchings. An overlapping local branching is critical when it is minimal for the order generated by the relations (𝑓 , 𝑔) 𝑤 𝑓 𝑤 , 𝑤𝑔𝑤 ), given for all local branching (𝑓 , 𝑔) and words 𝑤, 𝑤 in 𝑋 * . A branching (𝑓 , 𝑔) is con uent if there exist reductions 𝑓 and 𝑔 reducing to the same word:

	Two rewriting systems are Tietze equivalent if, and only if, there exists a Tietze transformation between
	them, see [9] for more details.		
	2.2. 𝑣 𝑓 / / 𝑢 𝑣 𝑔 . .	𝑓 𝑔	% % 𝑤 : :

1 . . . 𝑥 𝑘 a word in 𝑋 * of length 𝑘, where 𝑥 1 , . . . , 𝑥 𝑘 belong to 𝑋 , and by |𝑢 | its length.

2.1. String rewriting systems. A (string) rewriting system on 𝑋 is a subset 𝑅 of 𝑋 * ×𝑋 * . An element 𝛽 = (𝑢, 𝑣) of 𝑅 is called a rule with source 𝑢 and target 𝑣, and denoted by 𝛽 : 𝑢 → 𝑣. We will denote respectively by 𝑠 (𝛽) and 𝑡 (𝛽) the source and target of 𝛽. A one step reduction is de ned by 𝑤𝑢𝑤 → 𝑤𝑣𝑤 for all words 𝑤, 𝑤 in 𝑋 * and rule 𝛽 : 𝑢 → 𝑣, and will be denoted by 𝑤 𝛽𝑤 . One step reductions form the reduction relation on 𝑋 * denoted by →

  decrement 𝑡 𝑖𝑧 by 1, increment 𝑡 𝑖 by 1, and set 𝑦 = 𝑧. If 𝑧 = 𝑖, decrement 𝑡 𝑖 by 1, and set 𝑦 = 𝑧.

ii) Suppose 𝑦 ≠ 𝜆. If 𝑧 < 𝑦, decrement 𝑡 𝑖𝑧 by 1, increment 𝑡 𝑖𝑦 by 1, and set 𝑦 = 𝑧. If 𝑧 𝑦, do nothing.

  [START_REF] Lecouvey | Schensted-type correspondences and plactic monoids for types 𝐵 𝑛 and 𝐷 𝑛[END_REF] 

  •𝑐 31 •𝑐 31 •𝑐 31 •𝑐 32 •𝑐 41 •𝑐 42 •𝑐 42 •𝑐 44 •𝑐 44 . 4.2. Reduced column presentation. We denote by R (𝑄 𝑛 , C 𝑛 ) the rewriting system on 𝑄 𝑛 whose rules are 𝛾 𝑢,𝑣 : 𝑐 𝑢 •𝑐 𝑣 → 𝑅 𝑄 𝑛 (𝑐 𝑢 ★ 𝑟 𝑐 𝑣 ) for all 𝑐 𝑢 and 𝑐 𝑣 in 𝑄 𝑛 such that 𝑐 𝑢 •𝑐 𝑣 ≠ 𝑅 𝑄 𝑛 (𝑐 𝑢 ★ 𝑟 𝑐 𝑣 ). Normal forms with respect to this rewriting system are called Chinese normal forms. Note that the leftmost and rightmost reductions are the only reductions on a word 𝑐 𝑢 •𝑐 𝑣 •𝑐 𝑡 in 𝑄 * 𝑛 with respect to R (𝑄 𝑛 , C 𝑛 ). There will be denoted respectively by 𝛾 𝑢,𝑣,𝑡 := 𝛾 𝑢,𝑣 •𝑐 𝑡 and 𝛾 𝑢, 𝑣,𝑡 := 𝑐 𝑢 •𝛾 𝑣,𝑡 .

[START_REF] Duchamp | Plactic-growth-like monoids[END_REF] 

4.3. Theorem. The rewriting system R (𝑄 𝑛 , C 𝑛 ) is a nite semi-quadratic convergent presentation of the Chinese monoid C 𝑛 .

  making a rewriting system Ch 𝑐 2 (𝑛) = Γ 2 (𝑛) ∪ Ch 2 (𝑛) on 𝑄 𝑛 that presents the monoid C 𝑛 . 4.6. Lemma. For 𝑛 > 0, the rewriting system PreCol 2 (𝑛) on 𝑄 𝑛 , whose set of rules is Γ 2 (𝑛) ∪ Δ 2 (𝑛), where Δ 2 (𝑛) = { 𝛾 𝑦,𝑦𝑥 : 𝑐 𝑦 •𝑐 𝑦𝑥 → 𝑐 𝑦𝑥 •𝑐 𝑦 for 1 𝑥 < 𝑦 𝑛 and 𝛾 𝑦𝑦,𝑥 : 𝑐 𝑦𝑦 •𝑐 𝑥 → 𝑐 𝑦𝑥 •𝑐 𝑦 for 1 𝑥 < 𝑦 < 𝑛} ∪ { 𝛾 𝑧𝑦,𝑥 : 𝑐 𝑧𝑦 •𝑐 𝑥 → 𝑐 𝑦 •𝑐 𝑧𝑥 and 𝛾 𝑧,𝑦𝑥 :

  𝑧,𝑦 / / 𝑐 𝑧𝑥 •𝑐 𝑧𝑦 𝑐 𝑧 •𝑐 𝑧𝑥 •𝑐 𝑦 𝛾 𝑧,𝑧𝑥,𝑦 2 2 𝛾 𝑧, 𝑧𝑥,𝑦 , , 𝑐 𝑧 •𝑐 𝑦 •𝑐 𝑧𝑥 𝛾 𝑧,𝑦,𝑧𝑥 / / 𝑐 𝑧𝑦 •𝑐 𝑧𝑥 𝑥 < 𝑦 𝑧 < 𝑡 𝑛 : 𝑐 𝑧 •𝑐 𝑡 𝑦 •𝑐 𝑥 𝛾 𝑧, 𝑡 𝑦,𝑥 / / 𝑐 𝑧 •𝑐 𝑦 •𝑐 𝑡𝑥 𝛾 𝑧,𝑦,𝑡𝑥 / / 𝑐 𝑧𝑦 •𝑐 𝑡𝑥 𝑐 𝑡𝑧 •𝑐 𝑦 •𝑐 𝑥 𝛾 𝑡𝑧,𝑦,𝑥 3 3 𝑐 𝑧 •𝑐 𝑡𝑥 •𝑐 𝑦 𝛾 𝑧, 𝑡𝑥,𝑦 / / 𝑐 𝑧 •𝑐 𝑦 •𝑐 𝑡𝑥 𝛾 𝑧,𝑦,𝑡𝑥 / / 𝑐 𝑧𝑦 •𝑐 𝑡𝑥 𝑐 𝑡𝑥 •𝑐 𝑧 •𝑐 𝑦 𝛾 𝑡𝑥,𝑧,𝑦 3 3

				O O
				𝛾 𝑧𝑦,𝑧𝑥
	iii) for every 1 𝛾 𝑡𝑧, 𝑦,𝑥	, , 𝑐 𝑡𝑧 •𝑐 𝑦𝑥	𝛾 𝑡𝑧,𝑦𝑥	5 5

𝛾 𝑡𝑥, 𝑧,𝑦 , , 𝑐 𝑡𝑥 •𝑐 𝑧𝑦 𝛾 𝑡𝑥,𝑧𝑦

  𝑐 𝑢 •𝑐 𝑣 → 𝑅 𝑄 𝑛 (𝑐 𝑢 ★ 𝑟 𝑐 𝑣 ) | 𝑐 𝑢 , 𝑐 𝑣 ∈ 𝑄 𝑛 .That is, the set of rules of R (𝑄 𝑛 , C 𝑛 ). Finally, by this construction, we prove that 𝑅 𝑄 𝑛 (𝑐 𝑢 ★ 𝑟 𝑐 𝑣 ) is at most of length 2 in 𝑄 * 𝑛 , showing the semi-quadraticity of the presentation. 4.8. Proposition. The rewriting system R (𝑄 𝑛 , C 𝑛 ) is convergent. Proof. Prove that R (𝑄 𝑛 , C 𝑛 ) is terminating. Consider the total order Ch de ned on 𝑄 𝑛 by 𝑐 𝑥 Ch 𝑐 𝑦 if 𝑥 𝑦, 𝑐 𝑥 Ch 𝑐 𝑧𝑦 if 𝑥 𝑦 𝑧, 𝑐 𝑦𝑥 Ch 𝑐 𝑧 if 𝑥 < 𝑦 𝑧, 𝑐 𝑦𝑥 Ch 𝑐 𝑡𝑧 if 𝑦𝑥 lex 𝑡𝑧, where lex denotes the lexicographic order on [𝑛] * induced by the natural order on [𝑛]. Consider the map 𝑓 : 𝑄 * 𝑛 → (N, ) sending a word in 𝑄 * 𝑛 to its number of columns. De ne the length-lexicographic order ≺ on 𝑄 * 𝑛 with respect to Ch by setting, for all 𝑢 and 𝑣 in 𝑄 * 𝑛 : 𝑢 ≺ 𝑣 if and only if 𝑓 (𝑢) < 𝑓 (𝑣) or 𝑓 (𝑢) = 𝑓 (𝑣) and 𝑢 lex Ch 𝑣 , where lex Ch denotes the lexicographic order on 𝑄 * 𝑛 induced by Ch . Any reduction with respect to R (𝑄 𝑛 , C 𝑛 ) decrease a word in 𝑄 * 𝑛 either with respect to 𝑓 or with respect to lex Ch , showing that the rewriting system R (𝑄 𝑛 , C 𝑛 ) is terminating. Prove that R (𝑄 𝑛 , C 𝑛 ) is con uent. Any critical pair of R (𝑄 𝑛 , C 𝑛 ) has the form (𝛾 𝑐 𝑢 ,𝑐 𝑣 •𝑐 𝑡 , 𝑐 𝑢 •𝛾 𝑐 𝑣 ,𝑐 𝑡 ), for 𝑐 𝑢 , 𝑐 𝑣 , 𝑐 𝑡 in 𝑄 𝑛 . Note that, by associativity of ★ 𝑟 , the rewriting path 𝜎 𝑅 𝑄𝑛 (𝑡 ) •𝑐 𝑢 (resp. 𝜎 𝑐 𝑢 •𝑅 𝑄𝑛 (𝑡 ) ) reduces 𝑅 𝑄 𝑛 (𝑡) • 𝑐 𝑢 (resp. 𝑐 𝑢 • 𝑅 𝑄 𝑛 (𝑡)) to 𝑅 𝑄 𝑛 (𝑡 ★ 𝑟 𝑐 𝑢 ) (resp. 𝑅 𝑄 𝑛 (𝑐 𝑢 ★ 𝑟 𝑡)), for all 𝑡 in Ch 𝑛 and 𝑐 𝑢 in 𝑄 𝑛 . Hence, every critical pair of R (𝑄 𝑛 , C 𝑛 ) has the following reduction diagram:

𝑥,𝑦𝑥 / / 𝑐 𝑦𝑥 •𝑐 𝑦𝑥 vi) for every 1 𝑥 𝑦 < 𝑧 𝑛 :

𝑐 𝑦 •𝑐 𝑧𝑥 •𝑐 𝑥 𝛾 𝑦, 𝑧𝑥,𝑥 / / 𝑐 𝑦 •𝑐 𝑥 •𝑐 𝑧𝑥 𝛾 𝑦,𝑥,𝑧𝑥 / / 𝑐 𝑦𝑥 •𝑐 𝑧𝑥 𝑐 𝑧𝑦 •𝑐 𝑥 •𝑐 𝑥 𝛾 𝑧𝑦,𝑥,𝑥 1 1 𝛾 𝑧𝑦, 𝑥,𝑥 --𝑐 𝑧𝑦 •𝑐 𝑥𝑥 𝛾 𝑧𝑦,𝑥𝑥
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vii) for every 1 < 𝑦 < 𝑛 :

𝑐 𝑦𝑦 •𝑐 𝑦 𝛾 𝑦𝑦,𝑦 𝑐 𝑦 •𝑐 𝑦 •𝑐 𝑦 𝛾 𝑦,𝑦,𝑦 2 2 𝛾 𝑦, 𝑦,𝑦 , , 𝑐 𝑦 •𝑐 𝑦𝑦

The rules of PreCol 2 (𝑛) together with the family of the dotted rules de ned by i)-vii) form the set 𝛾 𝑢,𝑣 :

  For all 𝑐 𝑢 , 𝑐 𝑣 , 𝑐 𝑡 in 𝑄 𝑛 such that 𝑐 𝑢 •𝑐 𝑣 and 𝑐 𝑣 •𝑐 𝑡 are not Chinese normal forms, the two following inequalities hold:

	5.1. Remark
	5.2. Proposition.

  1 •𝑐 𝑥 2 𝑥 3 •𝑐 𝑥 4 𝑥 5 is obtained by applying at most two steps of reductions that consist only on the commutation rules. 5.4. Lemma. For all 𝑐 𝑢 , 𝑐 𝑣 , 𝑐 𝑡 in 𝑄 𝑛 such that 𝑐 𝑢 is a square generator and the words 𝑐 𝑢 •𝑐 𝑣 and 𝑐 𝑣 •𝑐 𝑡 are not Chinese normal forms, the inequality ℓ 𝑟 (𝑐 𝑢 •𝑐 𝑣 •𝑐 𝑡 ) 5 holds. Proof. By hypotheses, the word 𝑐 𝑢 •𝑐 𝑣 •𝑐 𝑡 has the following forms: 𝑐 𝑟𝑟 •𝑐 𝑡𝑧 •𝑐 𝑦𝑥 and 𝑐 𝑟𝑟 •𝑐 𝑡𝑥 •𝑐 𝑧𝑦 , for all 𝑥 < 𝑦 < 𝑧 < 𝑡 𝑟 , 𝑐 𝑡𝑡 •𝑐 𝑧𝑦 •𝑐 𝑧𝑥 , 𝑐 𝑡𝑡 •𝑐 𝑧𝑥 •𝑐 𝑦 , 𝑐 𝑡𝑡 •𝑐 𝑧𝑦 •𝑐 𝑥 and 𝑐 𝑡𝑡 •𝑐 𝑧𝑦 •𝑐 𝑦𝑥 , for all 𝑥 < 𝑦 < 𝑧 𝑡, 𝑐 𝑧𝑧 •𝑐 𝑦𝑥 •𝑐 𝑥 and 𝑐 𝑧𝑧 •𝑐 𝑦 •𝑐 𝑥 , for all 𝑥 < 𝑦 𝑧, 𝑐 𝑟𝑟 •𝑐 𝑡 𝑦 •𝑐 𝑧𝑥 , for all 𝑥 𝑦 < 𝑧 < 𝑡 𝑟 , and 𝑐 𝑡𝑡 •𝑐 𝑧 •𝑐 𝑦𝑥 for all 𝑥 < 𝑦 𝑧 𝑡. For all these forms, one can check that ℓ 𝑟 (𝑐 𝑢 •𝑐 𝑣 •𝑐 𝑡 ) 5. 5.5. Proof of Proposition 5.2. Let 𝑐 𝑦𝑥 1 , 𝑐 𝑥 2 𝑥 3 , 𝑐 𝑥 4 𝑥 5 be in 𝑄 𝑛 such that 𝑐 𝑦𝑥 1 •𝑐 𝑥 2 𝑥 3 and 𝑐 𝑥 2 𝑥 3 •𝑐 𝑥 4 𝑥 5 are not Chinese normal forms. Let us prove that ℓ 𝑙 (𝑐 𝑦𝑥 1 •𝑐 𝑥 2 𝑥 3 •𝑐 𝑥 4 𝑥 5 ) 5. Suppose that the word obtained after two steps of reductions of the leftmost normalization strategy of R (𝑄 𝑛 , C 𝑛 ) with source 𝑐 𝑦𝑥 1 •𝑐 𝑥 2 𝑥 3 •𝑐 𝑥 4 𝑥 5 is not a Chinese normal form. Consider a reduction as in[START_REF] Guiraud | Polygraphs of nite derivation type[END_REF], and suppose that 𝑐 𝑥 𝜎 (1) 𝑧 3 •𝑐 𝑦𝑥 𝜎 (5) is not a Chinese normal form. By Lemma 5.3 its only possible reductions are commutation rules, hence there is a reduction𝑐 𝑧 1 𝑧 2 •𝑐 𝑥 𝜎 (1) 𝑧 3 •𝑐 𝑦𝑥 𝜎 (5) → 𝑐 𝑧 1 𝑧 2 •𝑐 𝑦𝑥 𝜎 (5) •𝑐 𝑥 𝜎 (1) 𝑧 3 . Suppose that 𝑐 𝑧 1 𝑧 2 •𝑐 𝑦𝑥 𝜎 (5)is not a Chinese normal form, then by the same argument there is a reduction𝑐 𝑧 1 𝑧 2 •𝑐 𝑦𝑥 𝜎 (5) •𝑐 𝑥 𝜎 (1) 𝑧 3 → 𝑐 𝑦𝑥 𝜎 (5) •𝑐 𝑧 1 𝑧 2 •𝑐 𝑥 𝜎 (1) 𝑧 3 ,where 𝑐 𝑦𝑥 𝜎 (5) •𝑐 𝑥 𝜎 (1) 𝑧 3 and 𝑐 𝑦𝑥 𝜎 (5) •𝑐 𝑧 1 𝑧 2 are Chinese normal forms. Since 𝑐 𝑧 1 𝑧 2 𝑐 𝑥 𝜎 (1) 𝑧 3 is a Chinese normal form, we obtain that 𝑐 𝑦𝑥 𝜎 (5) 𝑐 𝑥 𝜎 (1) 𝑧 3 is a Chinese normal form. This proves the rst inequality in (12). Let us prove that ℓ 𝑟 (𝑐 𝑦𝑥 1 •𝑐 𝑥 2 𝑥 3 •𝑐 𝑥 4 𝑥 5 ) 5. Suppose that the word obtained after three steps of reductions of the rightmost normalization strategy of R (𝑄 𝑛 , C 𝑛 ) with source 𝑐 𝑦𝑥 1 •𝑐 𝑥 2 𝑥 3 •𝑐 𝑥 4 𝑥 5 is not a Chinese normal form. By de nition of R (𝑄 𝑛 , C 𝑛 ), we have the following reductions

  . Suppose the contrary. Since 𝑐 𝑥 𝜎 (3) 𝑥 𝜎 (4) •𝑐 𝑥 2 𝑥 𝜎 (5) is a Chinese normal form, we obtain 𝑥 𝜎 (3) = 𝑦 𝑥 2 . Moreover, since 𝑐 𝑦𝑥 1 • 𝑐 𝑥 2 𝑥 3 is not a Chinese normal form, the inequality 𝑦 𝑥 2 holds, hence 𝑦 = 𝑥 2 . In this way, the rst reduction of (14) is 𝑐 𝑦𝑥 1 •𝑐 𝑦𝑥 3 •𝑐 𝑦𝑥 5 → 𝑐 𝑦𝑥 3 •𝑐 𝑦𝑥 1 •𝑐 𝑦𝑥 5 , where 𝑐 𝑦𝑥 3 𝑐 𝑦𝑥 5 is a Chinese normal form, and its second reduction is 𝑐 𝑦𝑥 3 •𝑐 𝑦𝑥 1 •𝑐 𝑦𝑥 5 → 𝑐 𝑦𝑥 3 •𝑐 𝑦𝑥 5 •𝑐 𝑦𝑥 1 . Since the word obtained after three steps of reductions of the rightmost normalization strategy of R (𝑄 𝑛 , C 𝑛 ) with source 𝑐 𝑦𝑥 1 •𝑐 𝑦𝑥 3 •𝑐 𝑦𝑥 5 is not a Chinese normal form, the word 𝑐 𝑦𝑥 3 •𝑐 𝑦𝑥 5 is not a Chinese normal form, which yields a contradiction. Thus, the rule 𝛾 𝑦𝑥 1 ,𝑥 𝜎 (3) 𝑥 𝜎 (4) is of form (11) and 𝑐 𝑦𝑥 1 is a square generator such that 𝑐 𝑦𝑥 1 • 𝑐 𝑥 2 𝑥 3 and 𝑐 𝑥 2 𝑥 3 •𝑐 𝑥 4 𝑥 5 are not Chinese normal forms. Hence by Lemma 5.4 we obtain ℓ 𝑟 (𝑐 𝑦𝑥 1 •𝑐 𝑥 2 𝑥 3 •𝑐 𝑥 4 𝑥 5 ) 5. This proves the second inequality in (12). 5.6. Theorem. The rewriting system R (𝑄 𝑛 , C 𝑛 ) extends into a nite coherent convergent presentation of the Chinese monoid C 𝑛 by adjunction of a generating syzygy 𝑐 𝑒 •𝑐 𝑒 •𝑐 𝑡 𝑐 𝑒 •𝑐 𝑏 •𝑐 𝑏 𝛾 𝑒,𝑏,𝑏 7 9 𝑐 𝑠 •𝑐 𝑠 •𝑐 𝑏 𝛾 𝑠, 𝑠 ,𝑏 7 9 𝑐 𝑠 •𝑐 𝑘 •𝑐 𝑘 𝛾 𝑐 𝑙 •𝑐 𝑚 •𝑐 𝑘 𝑐 𝑢 •𝑐 𝑤 •𝑐 𝑤 𝛾 𝑢,𝑤,𝑤 7 9 𝑐 𝑎 •𝑐 𝑎 •𝑐 𝑤 𝛾 𝑐 𝑎 •𝑐 𝑑 •𝑐 𝑑 𝛾 for all 𝑐 𝑢 , 𝑐 𝑣 , 𝑐 𝑡 in 𝑄 𝑛 such that 𝑐 𝑢 •𝑐 𝑣 and 𝑐 𝑣 •𝑐 𝑡 are not Chinese normal forms, and where the 2-cells 𝛾 -,- denote either a rewriting rule of R (𝑄 𝑛 , C 𝑛 ) or an identity. 5.7. Relations among the insertion algorithms Proof. Any critical branching of R (𝑄 𝑛 , C 𝑛 ) has the form 𝑅 𝑄 𝑛 (𝑐 𝑢 ★ 𝑟 𝑐 𝑣 ) •𝑐 𝑡 𝑐 𝑢 •𝑐 𝑣 •𝑐 𝑡 𝑐 𝑢 •𝑅 𝑄 𝑛 (𝑐 𝑣 ★ 𝑟 𝑐 𝑡 ) for all 𝑐 𝑢 , 𝑐 𝑣 , 𝑐 𝑡 in 𝑄 𝑛 such that 𝑐 𝑢 •𝑐 𝑣 and 𝑐 𝑣 •𝑐 𝑡 are not Chinese normal forms, that is con uent by Theorem 4.3. Moreover by Proposition 5.2, ℓ 𝑙 (𝑐 𝑢 •𝑐 𝑣 •𝑐 𝑡 ) 5 and ℓ 𝑟 (𝑐 𝑢 •𝑐 𝑣 •𝑐 𝑡 ) 5. We conclude with Squier's coherence theorem recalled in Subsection 2.4.
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