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Chinese syzygies by insertions

Nohra Hage Philippe Malbos

Abstract –We construct a nite convergent semi-quadratic presentation for the Chinese monoid by
adding column generators and using combinatorial properties of insertion algorithms on Chinese
staircases. We extend this presentation into a coherent one whose generators are columns, rewriting
rules are dened by insertion algorithms, and whose syzygies are dened as relations among
insertion algorithms. Such a coherent presentation is used for representations of Chinese monoids,
in particular, it is a way to describe actions of Chinese monoids on categories.
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1. Introduction

The structure of Chinese monoids appeared in the classication of monoids with the growth function
coincidingwith that of placticmonoids, [7]. The lattermonoids emerged from theworks of Schensted [26]
and Knuth [19] on the combinatorial study of Young tableaux and they have found several applications
in algebraic combinatorics, representation theory and probabilistic combinatorics, [6, 8, 23]. One of the
motivations for studying Chinese monoids is that they are also related to Young tableaux, and therefore
they might play a similar role as plactic monoids in the same application areas. Representations of the
Chinese monoid of nite rank are studied in [29] by constructing all its irreducible representations. More
generally, we are interested in the study of the actions of Chinese monoids on categories. One approach
is to make explicit coherent presentations whose relations are described by insertion algorithms and
whose syzygies are dened as relations among these relations. In this article, we compute coherent
presentations for the Chinese monoid by rewriting methods using combinatorial properties of Chinese
staircases.

This work is a part of a broader project that consists of studying, by a rewriting approach, families of
monoids dened from combinatorial objects constructed using insertion algorithms. For instance, plactic
monoids of type A are related to Young tableaux [20], plactic monoids of classical types to symplectic
and orthogonal tableaux, [21, 22], Chinese monoids to Chinese staircases, [4, 7], hypoplactic monoids to
quasi-ribbon tableaux, [24], left and right patience sorting monoids to left and right patience sorting
tableaux, [3, 28], and stalactic monoids to stalactic tableaux [17, 25]. Moreover, binary search trees,
binary search trees with multiplicities and pairs of twin binary search trees are used to describe normal
forms for sylvester monoids, [16], taiga monoids, [25], and Baxter monoids, [10]. We are interested
in the study of the syzygies for the presentations of theses monoids by computing nite coherent



1. Introduction

convergent presentations. Such coherent presentations are constructed for Artin monoids in [9] and for
plactic monoids of type A in [15]. The study of the syzygies in a monoid produces in higher dimensions
free objects that are homotopically equivalent to the original monoid and then allows computation
of its homological invariants. Indeed, this study provides the rst two steps in the computation of a
polygraphic resolution of the monoid, that is, a categorical cobrant replacement of the monoid in a free
(𝜔, 1)-category, whose acyclicity is proved by an iterative construction of a normalization reduction
strategy, [11, 12]. Moreover, coherent presentations are also useful to describe the notion of an action of
the monoid on categories, [9].

The Chinese monoid of rank 𝑛 > 0, denoted by C𝑛 , is generated by [𝑛] := {1 < . . . < 𝑛} and submitted
to the relations 𝑧𝑦𝑥 = 𝑧𝑥𝑦 = 𝑦𝑧𝑥 for all 1 6 𝑥 6 𝑦 6 𝑧 6 𝑛. These relations generate the Chinese
congruence, denoted by ∼C𝑛

, and interpreted in [4] using the notion of Chinese staircases. A Chinese
staircase is a collection of boxes in right-justied rows, lled with non-negative integers, whose rows
and columns are indexed with [𝑛] from top to bottom and from right to left respectively and where the
𝑖-th row contains 𝑖 boxes, for 1 6 𝑖 6 𝑛. We will denote by Ch𝑛 the set of Chinese staircases over [𝑛] and
by R the map on Ch𝑛 that reads a Chinese staircase row by row from right to left and from top to bottom
as dened in Subsection 3.1. A Schensted-like insertion algorithm, denoted by  

𝑟 , is introduced in [4],
and consists in inserting an element of [𝑛] into a Chinese staircase from the right, yielding to a new
Chinese staircase. From a word𝑤 = 𝑥1𝑥2 . . . 𝑥𝑘 on [𝑛], we associate a Chinese staircase È𝑤É𝑟 obtained
by insertion of𝑤 in the empty staircase ∅ by application of  

𝑟 step by step from left to right:

È𝑤É𝑟 := (∅  

𝑟 𝑤) = (. . . ((∅  

𝑟 𝑥1)

 

𝑟 𝑥2)

 

𝑟 . . .)  

𝑟 𝑥𝑘 .

Similarly, a Chinese staircase denoted by È𝑤É𝑙 is computed by inserting the elements of𝑤 from right to
left in the empty staircase ∅ by application of the left insertion 𝑙 introduced in [2] and that inserts
an element of [𝑛] into a Chinese staircase from the left. The set of Chinese staircases satises the
cross-section property for the Chinese congruence ∼C𝑛

, that is, for all words 𝑤,𝑤 ′ on [𝑛], 𝑤 ∼C𝑛
𝑤 ′

if and only if the insertion algorithm yields the same Chinese staircase: È𝑤É𝑟 = È𝑤 ′É𝑟 , [4]. So the
elements of the Chinese monoid can be identied with the Chinese staircases, which therefore also form
a monoid. Moreover, the right and left insertion algorithms allow one to dene two internal products
on Ch𝑛 by setting 𝑡 ★𝑟 𝑡

′ = (𝑡  

𝑟 R(𝑡 ′)) and 𝑡 ★𝑙 𝑡
′ = (R(𝑡 ′)  𝑙 𝑡), for all 𝑡, 𝑡 ′ in Ch𝑛 . Following the

cross-section property, the compositions ★𝑟 and ★𝑙 are associative and the following equality

𝑦  𝑙 (𝑡

 

𝑟 𝑥) = (𝑦  𝑙 𝑡)

 

𝑟 𝑥

holds, for all 𝑡 in Ch𝑛 and 𝑥,𝑦 in [𝑛]. In particular, the following equality È𝑤É𝑟 = È𝑤É𝑙 holds, for any
word𝑤 on [𝑛]. In this way, the products ★𝑟 and ★𝑙 equip the set Ch𝑛 with two monoid structures that
are anti-isomorphic.

We construct in Section 4 a nite semi-quadratic convergent presentation for the monoid C𝑛 , denoted
by R(𝑄𝑛,C𝑛), whose set of generators 𝑄𝑛 is made of columns over [𝑛] of length at most 2 and square
generators and whose rules are

𝛾𝑢,𝑣 : 𝑐𝑢 ·𝑐𝑣 ⇒ 𝑐𝑒 ·𝑐𝑒′

for all 𝑐𝑢, 𝑐𝑣 in 𝑄𝑛 such that 𝑐𝑢 ·𝑐𝑣 does not form a Chinese staircase and 𝑐𝑢 ★𝑟 𝑐𝑣 is equal to the Chinese
staircase composed by the columns 𝑐𝑒 and 𝑐𝑒′ . We show that this rewriting system can be obtained
from the Knuth-like presentation of C𝑛 by applying Tietze transformations that consist in adding or
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2. Preliminaries on rewriting

removing denable generators and in adding or removing derivable relations on a presentation of a
monoid in such a way that they do not change the presented monoid, see [9]. Moreover, we show that
the conuence of the rewriting system R(𝑄𝑛,C𝑛) is a direct consequence of the associativity of the
product ★𝑟 . We deduce that the monoid C𝑛 has nite derivation type FDT∞ and nite homological
type FP∞. Note that the nite convergent presentations of Chinese monoids already obtained in [5, 14],
by completion of Chinese relations, and in [2] by adding column generators, are not semi-quadratic,
and thus it is dicult to extend them into coherent ones.

We extend in Section 5 the rewriting systemR(𝑄𝑛,C𝑛) into a nite coherent convergent presentation
of the Chinese monoid C𝑛 with an explicit description of the Chinese syzygies. We show in Theorem 5.6
that R(𝑄𝑛,C𝑛) extends into a nite convergent coherent presentation of the monoid C𝑛 by adjunction
of generating syzygies with the following decagonal form

𝑐𝑒 ·𝑐𝑒′ ·𝑐𝑡
𝛾
𝑒,𝑒′,𝑡 %9

X𝑢,𝑣,𝑡
��

𝑐𝑒 ·𝑐𝑏 ·𝑐𝑏′
𝛾
𝑒,𝑏,𝑏′ %9 𝑐𝑠 ·𝑐𝑠′ ·𝑐𝑏′

𝛾
𝑠,𝑠′,𝑏′ %9 𝑐𝑠 ·𝑐𝑘 ·𝑐𝑘′ 𝛾

𝑠,𝑘,𝑘′

�0
𝑐𝑢 ·𝑐𝑣 ·𝑐𝑡

𝛾𝑢,𝑣,𝑡 ';

𝛾𝑢,𝑣,𝑡
#7

𝑐𝑙 ·𝑐𝑚 ·𝑐𝑘′

𝑐𝑢 ·𝑐𝑤 ·𝑐𝑤′
𝛾𝑢,𝑤,𝑤′

%9 𝑐𝑎 ·𝑐𝑎′ ·𝑐𝑤′
𝛾
𝑎,�𝑎′,𝑤′

%9 𝑐𝑎 ·𝑐𝑑 ·𝑐𝑑′
𝛾
𝑎,�𝑎′,𝑤′

%9 𝑐𝑙 ·𝑐𝑙 ′ ·𝑐𝑑′ 𝛾
𝑙,𝑙 ′,𝑑′

,@

for all 𝑐𝑢, 𝑐𝑣, 𝑐𝑡 in𝑄𝑛 such that 𝑐𝑢·𝑐𝑣 and 𝑐𝑣·𝑐𝑡 are not normal forms with respect to R(𝑄𝑛,C𝑛), and where
the 2-cells 𝛾−,− denote either a rewriting rule of R(𝑄𝑛,C𝑛) or an identity. We show in Subsection 5.7 how
the generating syzygy of the coherent presentation of the Chinese monoid can be interpreted in terms
of the right and left insertion algorithms. Finally, we use in Subsection 5.8 this coherent presentation in
order to describe the actions of Chinese monoids on categories.

2. Preliminaries on rewriting

This preliminary section recalls the basic notions of rewriting we use in this article. For a fuller account of
the theory, we refer the reader to [1]. We will also recall from [9, 13] the notion of coherent presentation
of a monoid that extends the notion of a presentation by syzygies taking into account all the relations
amongst the relations. We will denote by 𝑋 ∗ the free monoid of words written in the alphabet 𝑋 , the
product being concatenation of words, and the identity being the empty word, denoted by _. We will
denote by 𝑢 = 𝑥1 . . . 𝑥𝑘 a word in 𝑋 ∗ of length 𝑘 , where 𝑥1, . . . , 𝑥𝑘 belong to 𝑋 , and by |𝑢 | its length.

2.1. String rewriting systems. A (string) rewriting system on𝑋 is a subset𝑅 of𝑋 ∗×𝑋 ∗. An element 𝛽 =

(𝑢, 𝑣) of𝑅 is called a rulewith source𝑢 and target 𝑣 , and denoted by 𝛽 : 𝑢 → 𝑣 . Wewill denote respectively
by 𝑠 (𝛽) and 𝑡 (𝛽) the source and target of 𝛽 . A one step reduction is dened by 𝑤𝑢𝑤 ′ → 𝑤𝑣𝑤 ′ for all
words 𝑤,𝑤 ′ in 𝑋 ∗ and rule 𝛽 : 𝑢 → 𝑣 , and will be denoted by 𝑤𝛽𝑤 ′. One step reductions form the
reduction relation on𝑋 ∗ denoted by→𝑅 . A rewriting path with respect to 𝑅 is a nite or innite sequence
𝑢0 →𝑅 𝑢1 →𝑅 𝑢2 →𝑅 · · · . This corresponds to the reexive and transitive closure of the relation→𝑅 ,
that we denote by

∗→𝑅 . A word 𝑢 in 𝑋 ∗ is reduced if there is no reduction with source 𝑢. A normal form
for a word 𝑢 in 𝑋 ∗ is a reduced word 𝑣 such that 𝑢 reduces into 𝑣 . The rewriting system 𝑅 terminates
if it has no innite rewriting path, and it is (weakly) normalizing if every word 𝑢 in 𝑋 ∗ reduces to
some normal form. A rewriting system 𝑅 is reduced if, for every rule 𝛽 : 𝑢 → 𝑣 in 𝑅, the source 𝑢
is (𝑅 \ {𝛽})-reduced and the target 𝑣 is reduced. The reexive, symmetric and transitive closure of→𝑅 is
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2. Preliminaries on rewriting

the congruence on 𝑋 ∗ generated by 𝑅, that we denote by ≈𝑅 . The monoid presented by 𝑅 is the quotient
of the free monoid 𝑋 ∗ by the congruence ≈𝑅 . Two rewriting systems are Tietze equivalent if they present
isomorphic monoids. Recall that a Tietze transformation between two rewriting systems is a sequence of
elementary Tietze transformations, dened on a rewriting system 𝑅 on 𝑋 by the following operations:

i) adjunction or elimination of an element 𝑥 in 𝑋 and of a rule 𝛽 : 𝑢 → 𝑥 , where 𝑢 is an element in 𝑋 ∗

that does not contain 𝑥 ,

ii) adjunction or elimination of a rule 𝛽 : 𝑢 → 𝑣 such that 𝑢 and 𝑣 are equivalent by the congruence
generated by 𝑅 \ {𝛽}.

Two rewriting systems are Tietze equivalent if, and only if, there exists a Tietze transformation between
them, see [9] for more details.

2.2. Conuence. A branching (resp. local branching) of a rewriting system 𝑅 on 𝑋 is a non ordered
pair (𝑓 , 𝑔) of reductions (resp. one step reductions) of 𝑅 on the same word. A branching is aspherical if it
is of the form (𝑓 , 𝑓 ), for a one step reduction 𝑓 and Peier when it is of the form (𝑓 𝑣,𝑢𝑔) for one step
reductions 𝑓 and 𝑔 with source 𝑢 and 𝑣 respectively. The overlapping branchings are the remaining local
branchings. An overlapping local branching is critical when it is minimal for the order v generated
by the relations (𝑓 , 𝑔) v

(
𝑤𝑓𝑤 ′,𝑤𝑔𝑤 ′), given for all local branching (𝑓 , 𝑔) and words𝑤,𝑤 ′ in 𝑋 ∗. A

branching (𝑓 , 𝑔) is conuent if there exist reductions 𝑓 ′ and 𝑔′ reducing to the same word:

𝑣
𝑓 ′

%%

𝑢

𝑓
//

𝑔 ..

𝑤

𝑣 ′
𝑔′
:: (1)

The rewriting system 𝑅 is conuent if all of its branchings are conuent, and convergent if it is both
conuent and terminating. If 𝑅 is convergent, then every word 𝑢 in 𝑋 ∗ has a unique normal form.

2.3. Normalization strategies. Recall that a reduction strategy for a rewriting system 𝑅 on 𝑋 species
a way to apply the rules in a deterministic way. It is dened as a mapping 𝜗 of every word 𝑢 in 𝑋 ∗ to a
one step reduction 𝜗𝑢 with source 𝑢. When 𝑅 is normalizing, a normalization strategy is a mapping 𝜎
of every word 𝑢 to a rewriting path 𝜎𝑢 with source 𝑢 and target a chosen normal form of 𝑢. For a
reduced rewriting system, we distinguish two canonical reduction strategies to reduce words: the
leftmost one and the rightmost one, according to the way we apply rst the rewriting rule that reduces
the leftmost or the rightmost subword. They are dened as follows. For every word 𝑢 of 𝑋 ∗, the set
of one step reductions with source 𝑢 can be ordered from left to right by setting 𝑓 ≺ 𝑔, for one step
reductions 𝑓 = 𝑣𝛾𝑣 ′ and 𝑔 = 𝑤𝛽𝑤 ′ such that |𝑣 | < |𝑤 |. If 𝑅 is nite, then the order ≺ is total and the set
of one step reductions of source 𝑢 is nite. Hence this set contains a smallest element 𝜌𝑢 and a greatest
element [𝑢 , respectively called the leftmost and the rightmost one step reductions on 𝑢. If, moreover, the
rewriting system terminates, the iteration of 𝜌 (resp. [) yields a normalization strategy for 𝑅 called the
leftmost (resp. rightmost) normalization strategy of 𝑅:

𝜎`
𝑢 := 𝜌𝑢 ★1 𝜎

`
𝑡 (𝜌𝑢 ) (resp. 𝜎a

𝑢 := [𝑢 ★1 𝜎
a
𝑡 ([𝑢 ) ) . (2)
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2.4. Coherent presentations

The leftmost (resp. rightmost) rewriting path on a word 𝑢 is the rewriting path obtained by applying
the leftmost (resp. rightmost) normalization strategy 𝜎`

𝑢 (resp. 𝜎a
𝑢 ). We refer the reader to [11] for more

details on rewriting normalization strategies.
A rewriting system 𝑅 on 𝑋 is semi-quadratic if for all 𝛾 in 𝑅 we have |𝑠 (𝛾) | = 2 and |𝑡 (𝛾) | 6 2.

The sources of the critical branchings of a semi-quadratic rewriting system are of length 3. When 𝑅 is
reduced, there are at most two rewriting paths with respect to 𝑅 with source a word of length 3. We will
denote by ℓ𝑙 (𝑤) (resp. ℓ𝑟 (𝑤)) the length of the leftmost (resp. rightmost) rewriting path from𝑤 to its
normal form.

2.4. Coherent presentations. We recall the notion of coherent presentation of monoids formulated
in terms of polygraphs in [9], see also [13]. Rewriting systems can be interpreted as 2-polygraphs with
only one 0-cell. Such a 2-polygraph 𝑃 is a data (𝑃1, 𝑃2), where 𝑃1 is a set and 𝑃2 is a globular extension of
the free monoid 𝑃∗

1 seen as a 1-category. The elements of 𝑃2 are generating 2-cells 𝛽 : 𝑢 ⇒ 𝑣 relating
1-cells in 𝑃∗

1 , with source 𝑢 and target 𝑣 , denoted respectively by 𝑠1(𝛽) and 𝑡1(𝛽). A rewriting system 𝑅

on 𝑋 can be described by such a 2-polygraph where the generating 2-cells are the rules of 𝑅. Recall that
a (2, 1)-category is a category enriched in groupoids. We will denote by 𝑃>

2 the (2, 1)-category freely
generated by the 2-polygraph 𝑃 , see [13] for expanded denitions.

A pair (𝑓 , 𝑔) of 2-cells of 𝑃>
2 such that 𝑠1(𝑓 ) = 𝑠1(𝑔) and 𝑡1(𝑓 ) = 𝑡1(𝑔) is called a 2-sphere of 𝑃>

2 .
A (3, 1)-polygraph is a data (𝑃, 𝑃3) made of a 2-polygraph 𝑃 and a globular extension 𝑃3 of the (2, 1)-
category 𝑃>

2 , that is a set of 3-cells 𝐴 : 𝑓 V 𝑔, where (𝑓 , 𝑔) is a 2-sphere of 𝑃>
2 . The 2-cell 𝑓 (resp. 𝑔) is

called the source (resp. target) of 𝐴, and denoted by 𝑠2(𝐴) (resp. 𝑡2(𝐴)). Such a 3-cell can be represented
with the following globular shape:

·

𝑢

%%

𝑣

99𝑓 �� 𝑔��
𝐴 %9 · or 𝑢

𝑓

�)

𝑔

4H 𝑣𝐴��

where · denotes the unique 0-cell of 𝑃 . We will denote by 𝑃>
3 the free (3, 1)-category generated by the

(3, 1)-polygraph (𝑃, 𝑃3). An extended presentation of a monoidM is a (3, 1)-polygraph whose underlying
2-polygraph is a presentation ofM. A coherent presentation ofM is an extended presentation (𝑃, 𝑃3) ofM
such that the cellular extension 𝑃3 of the (2, 1)-category 𝑃>

2 is acyclic, that is, for every 2-sphere (𝑓 , 𝑔)
of 𝑃>

2 , there exists a 3-cell 𝐴 in the (3, 1)-category 𝑃>
3 such that 𝑠2(𝐴) = 𝑓 and 𝑡2(𝐴) = 𝑔. The elements

in 𝑃>
3 are called syzygies of the presentation 𝑃 .
Recall Squier’s coherence theorem from [27], see also [13], that states that, any convergent rewriting

system 𝑅 on 𝑋 presenting a monoid M can be extended into a coherent presentation of M having a
generating syzygy

𝑣
𝑓 ′

�+
𝐴𝑓 ,𝑔��𝑢

𝑓 $8

𝑔 %9

𝑤

𝑣 ′
𝑔′

3G

for every critical branching (𝑓 , 𝑔) of 𝑅, where 𝑓 ′ and 𝑔′ are chosen conuent rewriting paths.
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3. Insertions on Chinese staircases

3. Insertions on Chinese staircases

In this section, we recall the structure of Chinese staircase and the right and left insertion algorithms on
Chinese staircases. We also recall the structure of Chinese monoid and the cross-section property for
this monoid and we deduce properties of the insertions products on Chinese staircases.

3.1. Chinese staircases. A mirror Young diagram of shape (1, 2, . . . , 𝑛) is a collection of boxes in right-
justied rows, whose rows (resp. columns) are indexed with the totally ordered set [𝑛] := {1 < . . . < 𝑛},
for 𝑛 in Z>0, from top to bottom (resp. from right to left) and where the 𝑖-th row contains 𝑖 boxes
for 1 6 𝑖 6 𝑛. A (Chinese) staircase over [𝑛] is a mirror Young diagram of shape (1, 2, . . . , 𝑛) lled
with non-negative integers. Denote by 𝑡𝑖 𝑗 (resp. 𝑡𝑖 ) the contents of the box in row 𝑖 and column 𝑗

for 𝑖 > 𝑗 (resp. 𝑖 = 𝑗 ). A box lled by 0 is called empty. Denote by Ch𝑛 the set of staircases over [𝑛] and
by R : Ch𝑛 → [𝑛]∗ the map that reads a staircase row by row, from right to left and from top to bottom,
and where the 𝑖-th row is read as follows (𝑖1)𝑡𝑖1 (𝑖2)𝑡𝑖2 . . . (𝑖 (𝑖 − 1))𝑡𝑖 (𝑖−1) (𝑖)𝑡𝑖 , for 1 6 𝑖 6 𝑛. For instance,
for the following staircase 𝑡 over [4]:

𝑡1 1
𝑡2 𝑡21 2

𝑡3 𝑡32 𝑡31 3
𝑡4 𝑡43 𝑡42 𝑡41 4
4 3 2 1

we have R(𝑡) = 1𝑡1 (21)𝑡21 (2)𝑡2 (31)𝑡31 (32)𝑡32 (3)𝑡3 (41)𝑡41 (42)𝑡42 (43)𝑡43 (4)𝑡4 . By removing the bottom row
of a staircase 𝑡 over [𝑛], we obtain a staircase over [𝑛 − 1], denoted by 𝑡 ′, as on the following picture:

𝑡 =

1

𝑛−1

...

𝑛𝑡𝑛 𝑡𝑛1

𝑛 1. . .

. . .

𝑡 ′

According to this, such a staircase can be denoted by (𝑡 ′, 𝑅1), where 𝑅1 is the bottom row of 𝑡 .

3.2. The right insertion algorithm. Recall the right insertion map  

𝑟 : Ch𝑛 ×[𝑛] → Ch𝑛
introduced in [4]. Let 𝑡 be a staircase and 𝑥 an element in [𝑛]. If 𝑥 = 𝑛, then 𝑡  

𝑟 𝑥 = (𝑡 ′, 𝑅′
1), where 𝑅′

1
is obtained from 𝑅1 by adding 1 to 𝑡𝑛 . If 𝑥 < 𝑛, let 𝑦1 be maximal such that the entry in column 𝑦1 of 𝑅1
is non-zero or if such a 𝑦1 does not exist, set 𝑦1 = 𝑥 . Three cases appear:

i) If 𝑥 > 𝑦1, then 𝑡

 

𝑟 𝑥 = (𝑡 ′  

𝑟 𝑥, 𝑅1),

ii) If 𝑥 < 𝑦1 < 𝑛, then 𝑡

 

𝑟 𝑥 = (𝑡 ′  

𝑟 𝑦1, 𝑅
′
1), where 𝑅′

1 is obtained from 𝑅1 by subtracting 1
from 𝑡𝑛𝑦1 and adding 1 to 𝑡𝑛𝑥 ,

iii) If 𝑥 < 𝑦1 = 𝑛, then 𝑡

 

𝑟 𝑥 = (𝑡 ′, 𝑅′
1), where 𝑅′

1 is obtained from 𝑅1 by subtracting 1 from 𝑡𝑛 and
adding 1 to 𝑡𝑛𝑥 .
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3.3. The left insertion algorithm

For example, we compute
( 1 1

1 0 2
0 1 1 3

0 0 2 0 4
4 3 2 1

 

𝑟 1
)
in three steps:

1 1
1 0 2

0 1 1 3
0 0 2 0 4

 

𝑟 1
4 3 2 1

→
1 1

1 0 2
0 1 1 3

 

𝑟 2
0 0 1 1 4
4 3 2 1

→
1 1

1 0 2

 

𝑟 2
0 1 1 3

0 0 1 1 4
4 3 2 1

→
1 1

2 0 2
0 1 1 3

0 0 1 1 4
4 3 2 1

3.3. The left insertion algorithm. A left insertion map  𝑙 : Ch𝑛 ×[𝑛] → Ch𝑛 that inserts an
element 𝑥 in [𝑛] into a staircase 𝑡 , is dened in [2] in two steps as follows. Let 𝑦 be an element
in [𝑛] ∪ {_}, initially set to _.

Step 1. For 𝑖 = 1, . . . , 𝑥 − 1, iterate the following. If every entry in the 𝑖-th row is empty, do nothing.
Otherwise, let 𝑧 be minimal such that 𝑡𝑖𝑧 is non-zero. There are two cases according to the values of 𝑦:

i) Suppose 𝑦 = _. If 𝑧 < 𝑖 , decrement 𝑡𝑖𝑧 by 1, increment 𝑡𝑖 by 1, and set 𝑦 = 𝑧. If 𝑧 = 𝑖 , decrement 𝑡𝑖
by 1, and set 𝑦 = 𝑧.

ii) Suppose 𝑦 ≠ _. If 𝑧 < 𝑦, decrement 𝑡𝑖𝑧 by 1, increment 𝑡𝑖𝑦 by 1, and set 𝑦 = 𝑧. If 𝑧 > 𝑦, do nothing.

Step 2. For 𝑖 = 𝑥 , if 𝑦 = _, then increment 𝑡𝑖 by 1. Otherwise, decrement 𝑡𝑖𝑦 by 1.

For example, we compute
(
4 𝑙

0 1
1 0 2

0 1 1 3
0 0 2 0 4
4 3 2 1

)
in three steps:

4  𝑟 0 1
1 0 2

0 1 1 3
0 0 2 0 4
4 3 2 1

→
0 1

0 0 2
0 1 1 3

0 0 1 1 4
4 3 2 1

→
0 1

1 0 2
0 2 0 3

0 0 1 1 4
4 3 2 1

→
0 1

1 0 2
0 2 0 3

0 0 1 1 4
4 3 2 1

3.4. Insertion products on Chinese staircases. For any word 𝑤 = 𝑥1 . . . 𝑥𝑘 , denote by È𝑤É𝑟
(resp. È𝑤É𝑙 ) the staircase obtained from𝑤 by inserting its letters iteratively from left to right (resp. right
to left) using the right (resp. left) insertion starting from the empty staircase:

È𝑤É𝑟 := (∅  

𝑟 𝑤) = ((. . . (∅  

𝑟 𝑥1)

 

𝑟 . . .)  

𝑟 𝑥𝑘 ),(
resp. È𝑤É𝑙 := (𝑤  𝑙 ∅) = (𝑥1 𝑙 (. . . 𝑙 (𝑥𝑘  𝑙 ∅) . . .))

)
.

Dene now an internal product ★𝑟 (resp. ★𝑙 ) on Ch𝑛 by setting

𝑡 ★𝑟 𝑡
′ := (𝑡  

𝑟 R(𝑡 ′)),
(
resp. 𝑡 ★𝑙 𝑡

′ := (R(𝑡 ′)  𝑙 𝑡)
)

(3)

for all 𝑡, 𝑡 ′ in Ch𝑛 . By denition the relations 𝑡 ★𝑟 ∅ = 𝑡 (resp. 𝑡 ★𝑙 ∅ = 𝑡 ) and ∅ ★𝑟 𝑡 = 𝑡 (resp. ∅ ★𝑙 𝑡 = 𝑡 )
hold, showing that the product ★𝑟 (resp. ★𝑙 ) is unitary with respect to ∅.
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4. Column presentation of the Chinese monoid

3.5. The cross-section property. The Chinese monoid of rank 𝑛 > 0, denoted by C𝑛 , is presented by
the rewriting system on [𝑛], whose rules are the Chinese relations, [7]:

𝑧𝑦𝑥 → 𝑦𝑧𝑥 and 𝑧𝑥𝑦 → 𝑦𝑧𝑥 for all 1 6 𝑥 < 𝑦 < 𝑧 6 𝑛,

𝑦𝑦𝑥 → 𝑦𝑥𝑦 and 𝑦𝑥𝑥 → 𝑥𝑦𝑥 for all 1 6 𝑥 < 𝑦 6 𝑛.
(4)

These relations generate the Chinese congruence, denoted by ∼C𝑛
, which can be also interpreted in

terms of Chinese staircases as follows. The set of Chinese staircases satises the cross-section property for
the monoid C𝑛 , that is, for all words𝑤,𝑤 ′ on [𝑛],𝑤 ∼C𝑛

𝑤 ′ if and only if È𝑤É𝑟 = È𝑤 ′É𝑟 , [4, Theorem
2.1]. As a consequence of the cross-section property, we deduce the following result.

3.6. Corollary. The composition ★𝑟 is associative and the following equality

𝑦  𝑙 (𝑡

 

𝑟 𝑥) = (𝑦  𝑙 𝑡)

 

𝑟 𝑥 (5)

holds in Ch𝑛 , for all 𝑡 in Ch𝑛 and 𝑥,𝑦 in [𝑛]. In particular, the composition ★𝑙 is associative and the
following relation

𝑡 ★𝑟 𝑡
′ = 𝑡 ′ ★𝑙 𝑡 (6)

holds for all 𝑡, 𝑡 ′ in Ch𝑛 .

4. Column presentation of the Chinese monoid

We construct a nite semi-quadratic convergent presentation of the Chinese monoid C𝑛 by adding the
columns over [𝑛] of length at most 2 and square generators to the presentation (4) and by using the
combinatorial properties of the insertion algorithms on the Chinese staircases.

4.1. Column generators. We consider one column generator 𝑐𝑦𝑥 of length 2 for all 1 6 𝑥 < 𝑦 6 𝑛,
one column generator 𝑐𝑥 of length 1 for any 1 6 𝑥 6 𝑛, and one square generator 𝑐𝑥𝑥 for any 1 < 𝑥 < 𝑛,
corresponding to the following three staircases:

1

𝑥...
𝑦1 ...

𝑛
𝑛 𝑥 1𝑦 ...... ...

... ...

...

...

...

...

...

...

...

...

...𝑡𝑥

...
1
...
𝑥...

𝑛
𝑛 1𝑥 ......

... ...

1

1
...
𝑥...

𝑛
𝑛 1𝑥 ......

... ...

2

where the shaded areas represent empty boxes. We will denote by 𝑄𝑛 the set dened by

𝑄𝑛 :=
{
𝑐𝑦𝑥

�� 1 6 𝑥 < 𝑦 6 𝑛
}
∪
{
𝑐𝑥𝑥

�� 1 < 𝑥 < 𝑛
}
∪
{
𝑐1, . . . , 𝑐𝑛

}
.

Let us dene the map 𝑅𝑄𝑛
: Ch𝑛 → 𝑄∗

𝑛 that reads a staircase row by row, from right to left and from
top to bottom, and where the reading of the 𝑖-th row, for 1 6 𝑖 6 𝑛, is the following word in 𝑄∗

𝑛 :
𝑐𝑖1 · . . . ·𝑐𝑖1︸     ︷︷     ︸
𝑡𝑖1 times

·𝑐𝑖2 · . . . ·𝑐𝑖2︸     ︷︷     ︸
𝑡𝑖2 times

·. . . ·𝑐𝑖 · 𝑐𝑖𝑖 · . . . ·𝑐𝑖𝑖︸     ︷︷     ︸
1
2 (𝑡𝑖 − 1) times

when 𝑡𝑖 is an odd number

𝑐𝑖1 · . . . ·𝑐𝑖1︸     ︷︷     ︸
𝑡𝑖1 times

·𝑐𝑖2 · . . . ·𝑐𝑖2︸     ︷︷     ︸
𝑡𝑖2 times

·. . . ·𝑐𝑖𝑖 · . . . ·𝑐𝑖𝑖︸     ︷︷     ︸
1
2 𝑡𝑖 times

when 𝑡𝑖 is an even number.
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4.2. Reduced column presentation

For instance, consider the following staircase over [4]:

𝑡 =

1 1
3 0 2

0 1 3 3
4 0 2 1 4
4 3 2 1

with 𝑅𝑄𝑛
(𝑡) = 𝑐1 ·𝑐2 ·𝑐22 ·𝑐31 ·𝑐31 ·𝑐31 ·𝑐32 ·𝑐41 ·𝑐42 ·𝑐42 ·𝑐44 ·𝑐44.

4.2. Reduced column presentation. We denote by R(𝑄𝑛,C𝑛) the rewriting system on 𝑄𝑛 whose
rules are

𝛾𝑢,𝑣 : 𝑐𝑢 ·𝑐𝑣 → 𝑅𝑄𝑛
(𝑐𝑢 ★𝑟 𝑐𝑣)

for all 𝑐𝑢 and 𝑐𝑣 in 𝑄𝑛 such that 𝑐𝑢 ·𝑐𝑣 ≠ 𝑅𝑄𝑛
(𝑐𝑢 ★𝑟 𝑐𝑣). Normal forms with respect to this rewriting

system are called Chinese normal forms. Note that the leftmost and rightmost reductions are the only
reductions on a word 𝑐𝑢 ·𝑐𝑣 ·𝑐𝑡 in 𝑄∗

𝑛 with respect to R(𝑄𝑛,C𝑛). There will be denoted respectively by

𝛾𝑢,𝑣,𝑡 := 𝛾𝑢,𝑣 ·𝑐𝑡 and 𝛾𝑢,𝑣,𝑡 := 𝑐𝑢 ·𝛾𝑣,𝑡 . (7)

4.3. Theorem. The rewriting system R(𝑄𝑛,C𝑛) is a nite semi-quadratic convergent presentation of the
Chinese monoid C𝑛 .

Theorem 4.3 will be proved later in the section. First, we deduce the following corollary:

4.4. Corollary. The following properties hold:

i) The monoid C𝑛 has nite derivation type FDT∞.

ii) The monoid C𝑛 has nite homological type FP∞.

Proof. In [11] the authors showed that if a monoid admits a nite convergent presentation, then it is of
nite derivation type FDT∞, and the property of nite derivation type implies the property of nite
homological type FP∞. Thus, Conditions i) and ii) are consequences of Theorem 4.3. �

The rest of this section is devoted to the proof of Theorem 4.3. First, prove that R(𝑄𝑛,C𝑛) is a
semi-quadratic presentation of the monoid C𝑛 . We add in Subsection 4.5 the columns generators of
length 2 and the square generators with their dening rules. This forms a non-conuent rewriting
system that we complete into a presentation of C𝑛 , that we call the precolumn presentation. Then we
show in Subsection 4.7 that the rules of R(𝑄𝑛,C𝑛) are obtained from the precolumn presentation by
applying one step of Knuth-Bendix’s completion, [18], on the precolumn presentation. Hence R(𝑄𝑛,C𝑛)
is a presentation of the monoid C𝑛 . Finally, we show in Proposition 4.8 that R(𝑄𝑛,C𝑛) is terminating
and is conuent using the associativity of the product ★𝑟 .

4.5. Precolumn presentation. Consider the rewriting system Ch2(𝑛) on {𝑐1, . . . , 𝑐𝑛} and whose rules
are given by the following four families

Y𝑥,𝑦,𝑧 : 𝑐𝑧 ·𝑐𝑦 ·𝑐𝑥 → 𝑐𝑦 ·𝑐𝑧 ·𝑐𝑥 and [𝑥,𝑦,𝑧 : 𝑐𝑧 ·𝑐𝑥 ·𝑐𝑦 → 𝑐𝑦 ·𝑐𝑧 ·𝑐𝑥 for all 1 6 𝑥 < 𝑦 < 𝑧 6 𝑛,

Y𝑥,𝑦 : 𝑐𝑦 ·𝑐𝑦 ·𝑐𝑥 → 𝑐𝑦 ·𝑐𝑥 ·𝑐𝑦 and [𝑥,𝑦 : 𝑐𝑦 ·𝑐𝑥 ·𝑐𝑥 → 𝑐𝑥 ·𝑐𝑦 ·𝑐𝑥 for all 1 6 𝑥 < 𝑦 6 𝑛,
(8)
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4. Column presentation of the Chinese monoid

corresponding to the Chinese relations (4), hence is a presentation of the monoid C𝑛 . We add to the set
of rules (8) the following set of rules

Γ2(𝑛) = { 𝛾𝑦,𝑥 : 𝑐𝑦 ·𝑐𝑥 → 𝑐𝑦𝑥 | 1 6 𝑥 < 𝑦 6 𝑛 } ∪ { 𝛾𝑥,𝑥 : 𝑐𝑥 ·𝑐𝑥 → 𝑐𝑥𝑥 | 1 < 𝑥 < 𝑛 },

making a rewriting system Ch𝑐2(𝑛) = Γ2(𝑛) ∪ Ch2(𝑛) on 𝑄𝑛 that presents the monoid C𝑛 .

4.6. Lemma. For 𝑛 > 0, the rewriting system PreCol2(𝑛) on 𝑄𝑛 , whose set of rules is Γ2(𝑛) ∪ Δ2(𝑛),
where

Δ2(𝑛) = { 𝛾𝑦,𝑦𝑥 : 𝑐𝑦 ·𝑐𝑦𝑥 → 𝑐𝑦𝑥 ·𝑐𝑦 for 1 6 𝑥 < 𝑦 6 𝑛 and 𝛾𝑦𝑦,𝑥 : 𝑐𝑦𝑦 ·𝑐𝑥 → 𝑐𝑦𝑥 ·𝑐𝑦 for 1 6 𝑥 < 𝑦 < 𝑛}
∪ { 𝛾𝑧𝑦,𝑥 : 𝑐𝑧𝑦 ·𝑐𝑥 → 𝑐𝑦 ·𝑐𝑧𝑥 and 𝛾𝑧,𝑦𝑥 : 𝑐𝑧 ·𝑐𝑦𝑥 → 𝑐𝑦 ·𝑐𝑧𝑥 for 1 6 𝑥 6 𝑦 < 𝑧 6 𝑛 }
∪ { 𝛾𝑧𝑥,𝑦 : 𝑐𝑧𝑥 ·𝑐𝑦 → 𝑐𝑦 ·𝑐𝑧𝑥 for 1 6 𝑥 < 𝑦 < 𝑧 6 𝑛 }.

is a nite semi-quadratic presentation of the Chinese monoid C𝑛 .

Proof. We make explicit a Tietze equivalence between the rewriting systems Ch𝑐2(𝑛) and PreCol2(𝑛).
For 1 6 𝑥 < 𝑦 6 𝑛, consider the following critical branching

𝑐𝑦 ·𝑐𝑥 ·𝑐𝑦
𝛾𝑦,𝑥,𝑦
// 𝑐𝑦𝑥 ·𝑐𝑦

𝑐𝑦 ·𝑐𝑦 ·𝑐𝑥

Y𝑥,𝑦 33

𝛾𝑦,𝑦,𝑥
,, 𝑐𝑦 ·𝑐𝑦𝑥

of the rewriting system Ch𝑐2(𝑛). We consider the Tietze transformation that substitutes the
rule 𝛾𝑦,𝑦𝑥 : 𝑐𝑦 ·𝑐𝑦𝑥 → 𝑐𝑦𝑥 ·𝑐𝑦 for the rule Y𝑥,𝑦 , for every 1 6 𝑥 < 𝑦 6 𝑛. Similarly, we substitute
the rules 𝛾𝑦𝑥,𝑥 , 𝛾𝑦𝑦,𝑥 , 𝛾𝑦,𝑥𝑥 , 𝛾𝑧𝑦,𝑥 , 𝛾𝑧𝑥,𝑦 and 𝛾𝑧,𝑦𝑥 respectively for the rules [𝑥,𝑦 , Y𝑥,𝑦 , [𝑥,𝑦 , Y𝑥,𝑦,𝑧 , [𝑥,𝑦,𝑧
and Y𝑥,𝑦,𝑧 using the following critical branchings of the rewriting system Ch𝑐2(𝑛):

𝑐𝑥 ·𝑐𝑦 ·𝑐𝑥
𝛾𝑥,𝑦,𝑥
// 𝑐𝑥 ·𝑐𝑦𝑥

𝑐𝑦 ·𝑐𝑥 ·𝑐𝑥

[𝑥,𝑦 33

𝛾𝑦,𝑥,𝑥
,, 𝑐𝑦𝑥 ·𝑐𝑥

𝛾𝑦𝑥,𝑥

<<
𝑐𝑦 ·𝑐𝑥 ·𝑐𝑦

𝛾𝑦,𝑥,𝑦
// 𝑐𝑦𝑥 ·𝑐𝑦

𝑐𝑦 ·𝑐𝑦 ·𝑐𝑥

Y𝑥,𝑦 33

𝛾�̂�,𝑦,𝑥
,, 𝑐𝑦𝑦 ·𝑐𝑥

𝛾𝑦𝑦,𝑥

<<
𝑐𝑥 ·𝑐𝑦 ·𝑐𝑥

𝛾𝑥,𝑦,𝑥
// 𝑐𝑥 ·𝑐𝑦𝑥

𝑐𝑦 ·𝑐𝑥 ·𝑐𝑥

[𝑥,𝑦 33

𝛾𝑦,𝑥,𝑥
,, 𝑐𝑦 ·𝑐𝑥𝑥

𝛾𝑦,𝑥𝑥

<<

𝑐𝑦 ·𝑐𝑧 ·𝑐𝑥
𝛾𝑦,𝑧,𝑥
// 𝑐𝑦 ·𝑐𝑧𝑥

𝑐𝑧 ·𝑐𝑦 ·𝑐𝑥

Y𝑥,𝑦,𝑧 33

𝛾𝑧,𝑦,𝑥
,, 𝑐𝑧𝑦 ·𝑐𝑥

𝛾𝑧𝑦,𝑥

<<
𝑐𝑦 ·𝑐𝑧 ·𝑐𝑥

𝛾𝑦,𝑧,𝑥
// 𝑐𝑦 ·𝑐𝑧𝑥

𝑐𝑧 ·𝑐𝑥 ·𝑐𝑦

[𝑥,𝑦,𝑧 33

𝛾𝑧,𝑥,𝑦
,, 𝑐𝑧𝑥 ·𝑐𝑦

𝛾𝑧𝑥,𝑦

<<
𝑐𝑦 ·𝑐𝑧 ·𝑐𝑥

𝛾𝑦,𝑧,𝑥
// 𝑐𝑦 ·𝑐𝑧𝑥

𝑐𝑧 ·𝑐𝑦 ·𝑐𝑥

Y𝑥,𝑦,𝑧 33

𝛾𝑧,𝑦,𝑥
,, 𝑐𝑧 ·𝑐𝑦𝑥

𝛾𝑧,𝑦𝑥

<<

The set of rules𝛾−,− obtained in this way is equal to Δ2(𝑛). This proves that the rewriting systems Ch𝑐2(𝑛)
and PreCol2(𝑛) are Tietze equivalent. �

4.7. Completion of the precolumn presentation. The rewriting system PreCol2(𝑛) is not conu-
ent, it has the following non-conuent critical branchings, that can be completed by Knuth-Bendix
completion, [18], by the dotted arrows as follows:
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4.7. Completion of the precolumn presentation

i) for every 1 6 𝑥 6 𝑦 < 𝑧 < 𝑡 6 𝑛 :

𝑐𝑧 ·𝑐𝑡𝑦 ·𝑐𝑥
𝛾𝑧,𝑡𝑦,𝑥
// 𝑐𝑧 ·𝑐𝑦 ·𝑐𝑡𝑥

𝛾𝑧,𝑦,𝑡𝑥
// 𝑐𝑧𝑦 ·𝑐𝑡𝑥

𝑐𝑡𝑦 ·𝑐𝑧 ·𝑐𝑥

𝛾𝑡𝑦,𝑧,𝑥 33

𝛾𝑡𝑦,𝑧,𝑥
,, 𝑐𝑡𝑦 ·𝑐𝑧𝑥

𝛾𝑡𝑦,𝑧𝑥

55

ii) for every 1 6 𝑥 < 𝑦 < 𝑧 6 𝑛 :

𝑐𝑧𝑥 ·𝑐𝑧 ·𝑐𝑦
𝛾𝑧𝑥,𝑧,𝑦
// 𝑐𝑧𝑥 ·𝑐𝑧𝑦

𝑐𝑧 ·𝑐𝑧𝑥 ·𝑐𝑦

𝛾𝑧,𝑧𝑥,𝑦 22

𝛾𝑧,�𝑧𝑥,𝑦 ,, 𝑐𝑧 ·𝑐𝑦 ·𝑐𝑧𝑥𝛾𝑧,𝑦,𝑧𝑥// 𝑐𝑧𝑦 ·𝑐𝑧𝑥
𝛾𝑧𝑦,𝑧𝑥

OO

iii) for every 1 6 𝑥 < 𝑦 6 𝑧 < 𝑡 6 𝑛 :

𝑐𝑧 ·𝑐𝑡𝑦 ·𝑐𝑥
𝛾𝑧,𝑡𝑦,𝑥
// 𝑐𝑧 ·𝑐𝑦 ·𝑐𝑡𝑥

𝛾𝑧,𝑦,𝑡𝑥
// 𝑐𝑧𝑦 ·𝑐𝑡𝑥

𝑐𝑡𝑧 ·𝑐𝑦 ·𝑐𝑥

𝛾𝑡𝑧,𝑦,𝑥 33

𝛾𝑡𝑧,𝑦,𝑥
,, 𝑐𝑡𝑧 ·𝑐𝑦𝑥

𝛾𝑡𝑧,𝑦𝑥

55
𝑐𝑧 ·𝑐𝑡𝑥 ·𝑐𝑦

𝛾𝑧,𝑡𝑥,𝑦
// 𝑐𝑧 ·𝑐𝑦 ·𝑐𝑡𝑥

𝛾𝑧,𝑦,𝑡𝑥
// 𝑐𝑧𝑦 ·𝑐𝑡𝑥

𝑐𝑡𝑥 ·𝑐𝑧 ·𝑐𝑦

𝛾𝑡𝑥,𝑧,𝑦 33

𝛾𝑡𝑥,𝑧,𝑦
,, 𝑐𝑡𝑥 ·𝑐𝑧𝑦

𝛾𝑡𝑥,𝑧𝑦

55

iv) for every 1 6 𝑥 < 𝑦 6 𝑧 6 𝑛 :

𝑐𝑧𝑧 ·𝑐𝑦𝑥
𝛾𝑧𝑧,𝑦𝑥

**

𝑐𝑧 ·𝑐𝑧 ·𝑐𝑦𝑥

𝛾𝑧,𝑧,𝑦𝑥 11

𝛾𝑧,�𝑧,𝑦𝑥 -- 𝑐𝑧 ·𝑐𝑦 ·𝑐𝑧𝑥 𝛾𝑧,𝑦,𝑧𝑥// 𝑐𝑧𝑦 ·𝑐𝑧𝑥 𝛾𝑧𝑦,𝑧𝑥 // 𝑐𝑧𝑥 ·𝑐𝑧𝑦

v) for every 1 < 𝑥 < 𝑦 < 𝑛 :

𝑐𝑦𝑦 ·𝑐𝑥𝑥
𝛾𝑦𝑦,𝑥𝑥

%%

𝑐𝑦 ·𝑐𝑦 ·𝑐𝑥𝑥

𝛾�̂�,𝑦,𝑥𝑥 11

𝛾𝑦,�𝑦,𝑥𝑥 -- 𝑐𝑦 ·𝑐𝑥 ·𝑐𝑦𝑥𝛾𝑦,𝑥,𝑦𝑥// 𝑐𝑦𝑥 ·𝑐𝑦𝑥
vi) for every 1 6 𝑥 6 𝑦 < 𝑧 6 𝑛 :

𝑐𝑦 ·𝑐𝑧𝑥 ·𝑐𝑥
𝛾𝑦,𝑧𝑥,𝑥

// 𝑐𝑦 ·𝑐𝑥 ·𝑐𝑧𝑥
𝛾𝑦,𝑥,𝑧𝑥

// 𝑐𝑦𝑥 ·𝑐𝑧𝑥
𝑐𝑧𝑦 ·𝑐𝑥 ·𝑐𝑥

𝛾�𝑧𝑦,𝑥,𝑥 11

𝛾𝑧𝑦,𝑥,𝑥
-- 𝑐𝑧𝑦 ·𝑐𝑥𝑥

𝛾𝑧𝑦,𝑥𝑥

44

vii) for every 1 < 𝑦 < 𝑛 :

𝑐𝑦𝑦 ·𝑐𝑦
𝛾𝑦𝑦,𝑦
��

𝑐𝑦 ·𝑐𝑦 ·𝑐𝑦

𝛾�̂�,𝑦,𝑦 22

𝛾𝑦,�̂�,𝑦
,, 𝑐𝑦 ·𝑐𝑦𝑦

The rules of PreCol2(𝑛) together with the family of the dotted rules dened by i)-vii) form the set{
𝛾𝑢,𝑣 : 𝑐𝑢 ·𝑐𝑣 → 𝑅𝑄𝑛

(𝑐𝑢 ★𝑟 𝑐𝑣) | 𝑐𝑢, 𝑐𝑣 ∈ 𝑄𝑛

}
.

That is, the set of rules of R(𝑄𝑛,C𝑛). Finally, by this construction, we prove that 𝑅𝑄𝑛
(𝑐𝑢 ★𝑟 𝑐𝑣) is at

most of length 2 in 𝑄∗
𝑛 , showing the semi-quadraticity of the presentation.

4.8. Proposition. The rewriting system R(𝑄𝑛,C𝑛) is convergent.

Proof. Prove that R(𝑄𝑛,C𝑛) is terminating. Consider the total order 4Ch dened on 𝑄𝑛 by

𝑐𝑥 4Ch 𝑐𝑦 if 𝑥 6 𝑦, 𝑐𝑥 4Ch 𝑐𝑧𝑦 if 𝑥 6 𝑦 6 𝑧,

𝑐𝑦𝑥 4Ch 𝑐𝑧 if 𝑥 < 𝑦 6 𝑧, 𝑐𝑦𝑥 4Ch 𝑐𝑡𝑧 if 𝑦𝑥 6lex 𝑡𝑧,
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5. Chinese syzygies by insertions

where 6lex denotes the lexicographic order on [𝑛]∗ induced by the natural order on [𝑛]. Consider the
map 𝑓 : 𝑄∗

𝑛 → (N, 6) sending a word in 𝑄∗
𝑛 to its number of columns. Dene the length-lexicographic

order ≺ on 𝑄∗
𝑛 with respect to 4Ch by setting, for all 𝑢 and 𝑣 in 𝑄∗

𝑛 :

𝑢 ≺ 𝑣 if and only if
(
𝑓 (𝑢) < 𝑓 (𝑣)

)
or

(
𝑓 (𝑢) = 𝑓 (𝑣) and 𝑢 4lexCh 𝑣

)
,

where 4lexCh denotes the lexicographic order on 𝑄∗
𝑛 induced by 4Ch. Any reduction with respect

to R(𝑄𝑛,C𝑛) decrease a word in 𝑄∗
𝑛 either with respect to 𝑓 or with respect to 4lexCh , showing that

the rewriting system R(𝑄𝑛,C𝑛) is terminating.
Prove that R(𝑄𝑛,C𝑛) is conuent. Any critical pair of R(𝑄𝑛,C𝑛) has the form (𝛾𝑐𝑢 ,𝑐𝑣 ·𝑐𝑡 , 𝑐𝑢 ·𝛾𝑐𝑣,𝑐𝑡 ),

for 𝑐𝑢, 𝑐𝑣, 𝑐𝑡 in 𝑄𝑛 . Note that, by associativity of ★𝑟 , the rewriting path 𝜎`
𝑅𝑄𝑛 (𝑡 ) ·𝑐𝑢 (resp. 𝜎`

𝑐𝑢 ·𝑅𝑄𝑛 (𝑡 ) )
reduces 𝑅𝑄𝑛

(𝑡) · 𝑐𝑢 (resp. 𝑐𝑢 · 𝑅𝑄𝑛
(𝑡)) to 𝑅𝑄𝑛

(𝑡 ★𝑟 𝑐𝑢) (resp. 𝑅𝑄𝑛
(𝑐𝑢 ★𝑟 𝑡)), for all 𝑡 in Ch𝑛 and 𝑐𝑢 in 𝑄𝑛 .

Hence, every critical pair of R(𝑄𝑛,C𝑛) has the following reduction diagram:

𝑅𝑄𝑛
(𝑐𝑢 ★𝑟 𝑐𝑣) ·𝑐𝑡

𝜎`
𝑅𝑄𝑛 (𝑐𝑢★𝑟𝑐𝑣) ·𝑐𝑡

// 𝑅𝑄𝑛
((𝑐𝑢 ★𝑟 𝑐𝑣) ★𝑟 𝑐𝑡 )

𝑐𝑢 ·𝑐𝑣 ·𝑐𝑡

𝛾𝑢,𝑣,𝑡 11

𝛾𝑢,𝑣,𝑡
-- 𝑐𝑢 ·𝑅𝑄𝑛

(𝑐𝑣 ★𝑟 𝑐𝑡 )
𝜎`
𝑐𝑢 ·𝑅𝑄𝑛 (𝑐𝑣★𝑟𝑐𝑡 )

// 𝑅𝑄𝑛
(𝑐𝑢 ★𝑟 (𝑐𝑣 ★𝑟 𝑐𝑡 ))

which is conuent by the associativity of the product★𝑟 . This proves that the rewriting systemR(𝑄𝑛,C𝑛)
is locally conuent and thus conuent by termination hypothesis. �

5. Chinese syzygies by insertions

In this section we extend the rewriting system R(𝑄𝑛,C𝑛) into a nite coherent convergent presentation
of the Chinese monoid C𝑛 with an explicit description of the generating syzygies. By semi-quadraticity
of R(𝑄𝑛,C𝑛), every rewriting path with source 𝑐𝑢 ·𝑐𝑣 ·𝑐𝑡 is an alternated composition of reductions of
the form (7). Moreover, every rewriting rule 𝛾−,− of R(𝑄𝑛,C𝑛) can be written

𝛾𝑦𝑥1,𝑥2𝑥3 : 𝑐𝑦𝑥1 ·𝑐𝑥2𝑥3 → 𝑐𝑥𝜎 (1)𝑥𝜎 (2) ·𝑐𝑦𝑥𝜎 (3) (9)

where 𝑦 ∈ [𝑛], 𝑥1, 𝑥2, 𝑥3 ∈ [𝑛] ∪ {0}, 𝜎 is a permutation on [𝑛] ∪ {0}, and 𝑐𝑥0 denotes the column
generator 𝑐𝑥 for any 1 < 𝑥 < 𝑛.

5.1. Remark. Note that when 𝑐𝑦𝑥1 is not a square generator, then 𝑥𝜎 (1) takes value 𝑦 only if rule (9) is
one of the commutation rules of the form

𝑐𝑦 ·𝑐𝑦𝑥 → 𝑐𝑦𝑥 ·𝑐𝑦, 𝑐𝑧𝑦 ·𝑐𝑧𝑥 → 𝑐𝑧𝑥 ·𝑐𝑧𝑦, 𝑐𝑦𝑦 ·𝑐𝑦 → 𝑐𝑦 ·𝑐𝑦𝑦, 𝑐𝑦𝑦 ·𝑐𝑦𝑥 → 𝑐𝑦𝑥 ·𝑐𝑦𝑦 (10)

for 𝑥 < 𝑦 < 𝑧. When 𝑐𝑦𝑥1 is a square generator, with 𝑦 > 𝑥2, then 𝑥𝜎 (1) takes value 𝑦 only if rule (9) is
one of the form

𝑐𝑦𝑦 ·𝑐𝑥 → 𝑐𝑦𝑥 ·𝑐𝑦, 𝑐𝑦𝑦 ·𝑐𝑥𝑥 → 𝑐𝑦𝑥 ·𝑐𝑦𝑥 , 𝑐𝑧𝑧 ·𝑐𝑦𝑥 → 𝑐𝑧𝑥 ·𝑐𝑧𝑦 . (11)

We obtain the following bounds for the rewriting paths with source a critical branching of R(𝑄𝑛,C𝑛).
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5.1. Remark

5.2. Proposition. For all 𝑐𝑢, 𝑐𝑣, 𝑐𝑡 in 𝑄𝑛 such that 𝑐𝑢 ·𝑐𝑣 and 𝑐𝑣 ·𝑐𝑡 are not Chinese normal forms, the two
following inequalities hold:

ℓ𝑙 (𝑐𝑢 ·𝑐𝑣 ·𝑐𝑡 ) 6 5, and ℓ𝑟 (𝑐𝑢 ·𝑐𝑣 ·𝑐𝑡 ) 6 5. (12)

The proof of this result is based on the two following lemmata 5.3 and 5.4. Let 𝑐𝑢, 𝑐𝑣, 𝑐𝑡 be in𝑄𝑛 such
that 𝑐𝑢 ·𝑐𝑣 and 𝑐𝑣 ·𝑐𝑡 are not Chinese normal forms. The Chinese normal form of the word 𝑐𝑢 ·𝑐𝑣 ·𝑐𝑡 can
be obtained by applying one, two or three steps of reductions of the leftmost normalization strategy
of R(𝑄𝑛,C𝑛). In this case, we have ℓ𝑙 (𝑐𝑢 ·𝑐𝑣 ·𝑐𝑡 ) 6 3. Otherwise, the following lemma shows that
ℓ𝑙 (𝑐𝑢 ·𝑐𝑣 ·𝑐𝑡 ) 6 5.

5.3. Lemma. Let 𝑐𝑢, 𝑐𝑣, 𝑐𝑡 be in 𝑄𝑛 such that 𝑐𝑢 ·𝑐𝑣 and 𝑐𝑣 ·𝑐𝑡 are not Chinese normal forms. Suppose that
the word obtained after three steps of reductions of the leftmost normalization strategy of R(𝑄𝑛,C𝑛) with
source 𝑐𝑢 · 𝑐𝑣 · 𝑐𝑡 is not a Chinese normal form. Then, the Chinese normal form of this word is obtained by
applying at most two steps of reductions, that consist only on the commutation rules (10).

Proof. Let 𝑐𝑦𝑥1 , 𝑐𝑥2𝑥3, 𝑐𝑥4𝑥5 be in 𝑄𝑛 such that 𝑐𝑦𝑥1 ·𝑐𝑥2𝑥3 and 𝑐𝑥2𝑥3 ·𝑐𝑥4𝑥5 are not Chinese normal forms. By
denition of R(𝑄𝑛,C𝑛), we have

𝑐𝑦𝑥1 ·𝑐𝑥2𝑥3 ·𝑐𝑥4𝑥5 → 𝑐𝑥𝜎 (1)𝑥𝜎 (2) ·𝑐𝑦𝑥𝜎 (3) ·𝑐𝑥4𝑥5 → 𝑐𝑥𝜎 (1)𝑥𝜎 (2) ·𝑐𝑥𝜎′ (𝜎 (3) )𝑥𝜎′ (4) ·𝑐𝑦𝑥𝜎′ (5)
→ 𝑐𝑧1𝑧2 ·𝑐𝑥𝜎 (1)𝑧3 ·𝑐𝑦𝑥𝜎′ (5)

(13)

with 𝑧1 = 𝑥𝜎′′ (𝜎 (2)) , 𝑧2 = 𝑥𝜎′′ (𝜎′ (𝜎 (3))) , 𝑧3 = 𝑥𝜎′′ (𝜎′ (4)) , and where 𝜎 , 𝜎 ′, 𝜎 ′′ are permutations on [𝑛] ∪ {0},
and 𝑐𝑥𝜎 (1)𝑥𝜎 (2) ·𝑐𝑦𝑥𝜎 (3) , 𝑐𝑥𝜎′ (𝜎 (3) )𝑥𝜎′ (4) ·𝑐𝑦𝑥𝜎′ (5) , 𝑐𝑧1𝑧2 ·𝑐𝑥𝜎 (1)𝑧3 are Chinese normal forms.

Suppose that 𝑐𝑥𝜎 (1)𝑧3 ·𝑐𝑦𝑥𝜎′ (5) is not a Chinese normal form. Following Remark 5.1, its only possible
reductions are of form (10) or (11). Let us prove that the rules (11) cannot be applied. Suppose the
contrary. Then 𝑥𝜎 (1) = 𝑧3 > 𝑦. Since 𝑐𝑧1𝑧2 ·𝑐𝑥𝜎 (1)𝑧3 is a Chinese normal form, we obtain that 𝑧1 = 𝑧3
and 𝑐𝑥𝜎 (1)𝑥𝜎 (2) ·𝑐𝑥𝜎′ (𝜎 (3) )𝑥𝜎′ (4) ·𝑐𝑦𝑥𝜎′ (5) = 𝑐𝑧3𝑧3 ·𝑐𝑧3𝑧2 ·𝑐𝑦𝑥𝜎′ (5) . Since 𝑧3 > 𝑦, this proves that 𝑐𝑧3𝑧2 ·𝑐𝑦𝑥𝜎′ (5) =

𝑐𝑥𝜎′ (𝜎 (3) )𝑥𝜎′ (4) ·𝑐𝑦𝑥𝜎′ (5) is not a Chinese normal form, which yields a contradiction.
Then we can only apply a commutation rule on 𝑐𝑥𝜎 (1)𝑧3 ·𝑐𝑦𝑥𝜎′ (5) , with 𝑥𝜎 (1) = 𝑦, and we rewrite the

word 𝑐𝑧1𝑧2 ·𝑐𝑥𝜎 (1)𝑧3 ·𝑐𝑦𝑥𝜎′ (5) into 𝑐𝑧1𝑧2 ·𝑐𝑦𝑥𝜎′ (5) ·𝑐𝑥𝜎 (1)𝑧3 . Suppose that 𝑐𝑧1𝑧2 ·𝑐𝑦𝑥𝜎′ (5) is not a Chinese normal
form, then we can apply on it a rule of type (10) or (11). As in the previous step, let us prove that the
rules (11) cannot be applied. Suppose the contrary. Then 𝑧1 = 𝑧2 > 𝑦. Since 𝑐𝑧1𝑧2 ·𝑐𝑥𝜎 (1)𝑧3 is a Chinese
normal form, we obtain that 𝑧1 = 𝑧2 = 𝑥𝜎 (1) = 𝑦, which yields a contradiction. Then we can only apply
a commutation rule on 𝑐𝑧1𝑧2 ·𝑐𝑦𝑥𝜎′ (5) .

We have thus proved that the Chinese normal form of the word 𝑐𝑦𝑥1 ·𝑐𝑥2𝑥3 ·𝑐𝑥4𝑥5 is obtained by
applying at most two steps of reductions that consist only on the commutation rules. �

5.4. Lemma. For all 𝑐𝑢, 𝑐𝑣, 𝑐𝑡 in 𝑄𝑛 such that 𝑐𝑢 is a square generator and the words 𝑐𝑢 ·𝑐𝑣 and 𝑐𝑣 ·𝑐𝑡 are
not Chinese normal forms, the inequality ℓ𝑟 (𝑐𝑢 ·𝑐𝑣 ·𝑐𝑡 ) 6 5 holds.

Proof. By hypotheses, the word 𝑐𝑢 ·𝑐𝑣 ·𝑐𝑡 has the following forms: 𝑐𝑟𝑟 ·𝑐𝑡𝑧 ·𝑐𝑦𝑥 and 𝑐𝑟𝑟 ·𝑐𝑡𝑥 ·𝑐𝑧𝑦 , for
all 𝑥 < 𝑦 < 𝑧 < 𝑡 6 𝑟 , 𝑐𝑡𝑡 ·𝑐𝑧𝑦 ·𝑐𝑧𝑥 , 𝑐𝑡𝑡 ·𝑐𝑧𝑥 ·𝑐𝑦 , 𝑐𝑡𝑡 ·𝑐𝑧𝑦 ·𝑐𝑥 and 𝑐𝑡𝑡 ·𝑐𝑧𝑦 ·𝑐𝑦𝑥 , for all 𝑥 < 𝑦 < 𝑧 6 𝑡 , 𝑐𝑧𝑧 ·𝑐𝑦𝑥 ·𝑐𝑥
and 𝑐𝑧𝑧 ·𝑐𝑦 ·𝑐𝑥 , for all 𝑥 < 𝑦 6 𝑧, 𝑐𝑟𝑟 ·𝑐𝑡𝑦 ·𝑐𝑧𝑥 , for all 𝑥 6 𝑦 < 𝑧 < 𝑡 6 𝑟 , and 𝑐𝑡𝑡 ·𝑐𝑧 ·𝑐𝑦𝑥 for all 𝑥 < 𝑦 6 𝑧 6 𝑡 .
For all these forms, one can check that ℓ𝑟 (𝑐𝑢 ·𝑐𝑣 ·𝑐𝑡 ) 6 5. �
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5. Chinese syzygies by insertions

5.5. Proof of Proposition 5.2. Let 𝑐𝑦𝑥1 , 𝑐𝑥2𝑥3 , 𝑐𝑥4𝑥5 be in𝑄𝑛 such that 𝑐𝑦𝑥1 ·𝑐𝑥2𝑥3 and 𝑐𝑥2𝑥3 ·𝑐𝑥4𝑥5 are not
Chinese normal forms. Let us prove that ℓ𝑙 (𝑐𝑦𝑥1 ·𝑐𝑥2𝑥3 ·𝑐𝑥4𝑥5) 6 5. Suppose that the word obtained after
two steps of reductions of the leftmost normalization strategy of R(𝑄𝑛,C𝑛) with source 𝑐𝑦𝑥1 ·𝑐𝑥2𝑥3 ·𝑐𝑥4𝑥5
is not a Chinese normal form. Consider a reduction as in (13), and suppose that 𝑐𝑥𝜎 (1)𝑧3 ·𝑐𝑦𝑥𝜎′ (5) is not a
Chinese normal form. By Lemma 5.3 its only possible reductions are commutation rules, hence there
is a reduction 𝑐𝑧1𝑧2 ·𝑐𝑥𝜎 (1)𝑧3 ·𝑐𝑦𝑥𝜎′ (5) → 𝑐𝑧1𝑧2 ·𝑐𝑦𝑥𝜎′ (5) ·𝑐𝑥𝜎 (1)𝑧3 . Suppose that 𝑐𝑧1𝑧2 ·𝑐𝑦𝑥𝜎′ (5) is not a Chinese
normal form, then by the same argument there is a reduction 𝑐𝑧1𝑧2 ·𝑐𝑦𝑥𝜎′ (5) ·𝑐𝑥𝜎 (1)𝑧3 → 𝑐𝑦𝑥𝜎′ (5) ·𝑐𝑧1𝑧2 ·𝑐𝑥𝜎 (1)𝑧3 ,
where 𝑐𝑦𝑥𝜎′ (5) ·𝑐𝑥𝜎 (1)𝑧3 and 𝑐𝑦𝑥𝜎′ (5) ·𝑐𝑧1𝑧2 are Chinese normal forms. Since 𝑐𝑧1𝑧2𝑐𝑥𝜎 (1)𝑧3 is a Chinese normal
form, we obtain that 𝑐𝑦𝑥𝜎′ (5)𝑐𝑥𝜎 (1)𝑧3 is a Chinese normal form. This proves the rst inequality in (12).

Let us prove that ℓ𝑟 (𝑐𝑦𝑥1 ·𝑐𝑥2𝑥3 ·𝑐𝑥4𝑥5) 6 5. Suppose that the word obtained after three steps of
reductions of the rightmost normalization strategy of R(𝑄𝑛,C𝑛) with source 𝑐𝑦𝑥1 ·𝑐𝑥2𝑥3 ·𝑐𝑥4𝑥5 is not a
Chinese normal form. By denition of R(𝑄𝑛,C𝑛), we have the following reductions

𝑐𝑦𝑥1 ·𝑐𝑥2𝑥3 ·𝑐𝑥4𝑥5 → 𝑐𝑦𝑥1 ·𝑐𝑥𝜎 (3)𝑥𝜎 (4) ·𝑐𝑥2𝑥𝜎 (5) → 𝑐𝑥𝜎′ (1)𝑦1 ·𝑐𝑦𝑦2 ·𝑐𝑥2𝑥𝜎 (5)

𝑐𝑥𝜎′ (1)𝑦1 ·𝑐𝑦𝑦2 ·𝑐𝑥2𝑥𝜎 (5) → 𝑐𝑥𝜎′ (1)𝑦1 ·𝑐𝑥𝜎”(2)𝑧1 ·𝑐𝑦𝑧2 → 𝑐𝑡1𝑡2 ·𝑐𝑥𝜎′ (1)𝑡3 ·𝑐𝑦𝑧2
(14)

with 𝑦1 = 𝑥𝜎′ (𝜎 (3)) , 𝑦2 = 𝑥𝜎′ (𝜎 (4)) , 𝑧1 = 𝑥𝜎′′ (𝜎′ (𝜎 (4))) , 𝑧2 = 𝑥𝜎′′ (𝜎 (5)) , 𝑡1 = 𝑥𝜎1 (𝜎′ (1)) , 𝑡2 = 𝑥𝜎1 (𝜎′ (𝜎 (3))) ,
𝑡3 = 𝑥𝜎1 (𝜎′′ (𝜎′ (𝜎 (1)))) , and where 𝜎, 𝜎 ′, 𝜎 ′′, 𝜎1 are permutations on [𝑛] ∪ {0}, and 𝑐𝑥𝜎 (3)𝑥𝜎 (4) ·𝑐𝑥2𝑥𝜎 (5) ,
𝑐𝑥𝜎′ (1)𝑦1 ·𝑐𝑦𝑦2 , 𝑐𝑥𝜎”(2)𝑧1 ·𝑐𝑦𝑧2 and 𝑐𝑡1𝑡2 ·𝑐𝑥𝜎′ (1)𝑡3 are Chinese normal forms.

Suppose that the word obtained after applying four steps of reductions of the rightmost normalization
strategywith source 𝑐𝑦𝑥1·𝑐𝑥2𝑥3·𝑐𝑥4𝑥5 is not a Chinese normal form. Then 𝑥𝜎′ (1) = 𝑦 and the second reduction
of (14) is 𝑐𝑦𝑥1 ·𝑐𝑥𝜎 (3)𝑥𝜎 (4) ·𝑐𝑥2𝑥𝜎 (5) → 𝑐𝑦𝑦1 ·𝑐𝑦𝑦2 ·𝑐𝑥2𝑥𝜎 (5) . Following Remark 5.1, the rule 𝛾𝑦𝑥1,𝑥𝜎 (3)𝑥𝜎 (4) is of
form (10) or (11). Let us prove that it cannot be of form (10). Suppose the contrary. Since 𝑐𝑥𝜎 (3)𝑥𝜎 (4) ·𝑐𝑥2𝑥𝜎 (5)
is a Chinese normal form, we obtain 𝑥𝜎 (3) = 𝑦 > 𝑥2. Moreover, since 𝑐𝑦𝑥1 ·𝑐𝑥2𝑥3 is not a Chinese
normal form, the inequality 𝑦 6 𝑥2 holds, hence 𝑦 = 𝑥2. In this way, the rst reduction of (14)
is 𝑐𝑦𝑥1 ·𝑐𝑦𝑥3 ·𝑐𝑦𝑥5 → 𝑐𝑦𝑥3 ·𝑐𝑦𝑥1 ·𝑐𝑦𝑥5 , where 𝑐𝑦𝑥3𝑐𝑦𝑥5 is a Chinese normal form, and its second reduction
is 𝑐𝑦𝑥3 ·𝑐𝑦𝑥1 ·𝑐𝑦𝑥5 → 𝑐𝑦𝑥3 ·𝑐𝑦𝑥5 ·𝑐𝑦𝑥1 . Since the word obtained after three steps of reductions of the
rightmost normalization strategy of R(𝑄𝑛,C𝑛) with source 𝑐𝑦𝑥1 ·𝑐𝑦𝑥3 ·𝑐𝑦𝑥5 is not a Chinese normal form,
the word 𝑐𝑦𝑥3 ·𝑐𝑦𝑥5 is not a Chinese normal form, which yields a contradiction.

Thus, the rule 𝛾𝑦𝑥1,𝑥𝜎 (3)𝑥𝜎 (4) is of form (11) and 𝑐𝑦𝑥1 is a square generator such that 𝑐𝑦𝑥1 · 𝑐𝑥2𝑥3
and 𝑐𝑥2𝑥3 ·𝑐𝑥4𝑥5 are not Chinese normal forms. Hence by Lemma 5.4 we obtain ℓ𝑟 (𝑐𝑦𝑥1 ·𝑐𝑥2𝑥3 ·𝑐𝑥4𝑥5) 6 5.
This proves the second inequality in (12).

5.6. Theorem. The rewriting system R(𝑄𝑛,C𝑛) extends into a nite coherent convergent presentation of
the Chinese monoid C𝑛 by adjunction of a generating syzygy

𝑐𝑒 ·𝑐𝑒′ ·𝑐𝑡
𝛾
𝑒,𝑒′,𝑡 %9

X𝑢,𝑣,𝑡
��

𝑐𝑒 ·𝑐𝑏 ·𝑐𝑏′
𝛾
𝑒,𝑏,𝑏′ %9 𝑐𝑠 ·𝑐𝑠′ ·𝑐𝑏′

𝛾
𝑠,𝑠′,𝑏′ %9 𝑐𝑠 ·𝑐𝑘 ·𝑐𝑘′ 𝛾

𝑠,𝑘,𝑘′

�0
𝑐𝑢 ·𝑐𝑣 ·𝑐𝑡

𝛾𝑢,𝑣,𝑡 ';

𝛾𝑢,𝑣,𝑡
#7

𝑐𝑙 ·𝑐𝑚 ·𝑐𝑘′

𝑐𝑢 ·𝑐𝑤 ·𝑐𝑤′
𝛾𝑢,𝑤,𝑤′

%9 𝑐𝑎 ·𝑐𝑎′ ·𝑐𝑤′
𝛾
𝑎,�𝑎′,𝑤′

%9 𝑐𝑎 ·𝑐𝑑 ·𝑐𝑑′
𝛾
𝑎,�𝑎′,𝑤′

%9 𝑐𝑙 ·𝑐𝑙 ′ ·𝑐𝑑′ 𝛾
𝑙,𝑙 ′,𝑑′

,@

for all 𝑐𝑢, 𝑐𝑣, 𝑐𝑡 in 𝑄𝑛 such that 𝑐𝑢 ·𝑐𝑣 and 𝑐𝑣 ·𝑐𝑡 are not Chinese normal forms, and where the 2-cells 𝛾−,−
denote either a rewriting rule of R(𝑄𝑛,C𝑛) or an identity.
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5.7. Relations among the insertion algorithms

Proof. Any critical branching of R(𝑄𝑛,C𝑛) has the form

𝑅𝑄𝑛
(𝑐𝑢 ★𝑟 𝑐𝑣) ·𝑐𝑡

𝑐𝑢 ·𝑐𝑣 ·𝑐𝑡

𝛾𝑢,𝑣,𝑡 ';

𝛾𝑢,𝑣,𝑡
#7 𝑐𝑢 ·𝑅𝑄𝑛

(𝑐𝑣 ★𝑟 𝑐𝑡 )

for all 𝑐𝑢, 𝑐𝑣, 𝑐𝑡 in 𝑄𝑛 such that 𝑐𝑢 ·𝑐𝑣 and 𝑐𝑣 ·𝑐𝑡 are not Chinese normal forms, that is conuent by
Theorem 4.3. Moreover by Proposition 5.2, ℓ𝑙 (𝑐𝑢 ·𝑐𝑣 ·𝑐𝑡 ) 6 5 and ℓ𝑟 (𝑐𝑢 ·𝑐𝑣 ·𝑐𝑡 ) 6 5. We conclude with
Squier’s coherence theorem recalled in Subsection 2.4. �

Note that some 2-cells 𝛾−,− in the boundary of the generating syzygy X𝑢,𝑣,𝑡 can be identity. However,
following construction given in the proof of Proposition 5.2, if the source (resp. target) of X𝑢,𝑣,𝑡 is of
length 5, then its target (resp. source) is of length at most 4.

5.7. Relations among the insertion algorithms. Note that the generating syzygies of the coherent
presentation of the monoid C𝑛 obtained in Theorem 5.6 can be interpreted in terms of the right and left
insertion algorithms as follows. Consider the rewriting system on 𝑄𝑛 , whose rules are

𝑐𝑢 ·𝑐𝑣 → 𝑅𝑄𝑛
(𝑐𝑣 ★𝑙 𝑐𝑢),

for all 𝑐𝑢, 𝑐𝑣 in 𝑄𝑛 such that 𝑐𝑢 ·𝑐𝑣 ≠ 𝑅𝑄𝑛
(𝑐𝑣 ★𝑙 𝑐𝑢). By Corollary 3.6, the equality 𝑅𝑄𝑛

(𝑐𝑣 ★𝑙 𝑐𝑢) =

𝑅𝑄𝑛
(𝑐𝑢 ★𝑟 𝑐𝑣) holds for all 𝑐𝑢, 𝑐𝑣 in 𝑄𝑛 , and thus this rewriting system coincides with R(𝑄𝑛,C𝑛). Hence,

the generating syzygy of the coherent presentation of Theorem 5.6 has the following form

𝑐𝑢 ·𝑐𝑣 ·𝑐𝑡

𝜎`
𝑐𝑢 ·𝑐𝑣 ·𝑐𝑡

�2

𝜎a
𝑐𝑢 ·𝑐𝑣 ·𝑐𝑡

,@
𝑅𝑄𝑛

(𝑐𝑢 ★𝑟 𝑐𝑣 ★𝑟 𝑐𝑡 )��

for all 𝑐𝑢, 𝑐𝑣, 𝑐𝑡 in 𝑄𝑛 such that 𝑐𝑢 ·𝑐𝑣 ≠ 𝑅𝑄𝑛
(𝑐𝑢 ★𝑟 𝑐𝑣) and 𝑐𝑣 ·𝑐𝑡 ≠ 𝑅𝑄𝑛

(𝑐𝑣 ★𝑟 𝑐𝑡 ), where the application of
the leftmost (resp. rightmost) normalization strategy 𝜎` (resp. 𝜎a) on the word 𝑐𝑢 ·𝑐𝑣 ·𝑐𝑡 corresponds to
the application of the right (resp. left) insertion

𝑅𝑄𝑛

(
∅  

𝑟 R(𝑐𝑢) R(𝑐𝑣) R(𝑐𝑡 )
) (

resp. 𝑅𝑄𝑛
(R(𝑐𝑢) R(𝑐𝑣) R(𝑐𝑡 )  ∅)

)
.

5.8. Actions of Chinese monoids on categories. A monoid M can be seen as a 2-category with
exactly one 0-cell •, with the elements of the monoid M as 1-cells and with identity 2-cells only.
The category of actions of M on categories is the category Act(M) of 2-representations of M in the
category Cat of categories. The full subcategory of Act(M) whose objects are the 2-functors is denoted
by 2Cat(M,Cat). We refer the reader to [9] for a full introduction on the category of 2-representations
of 2-categories. More explicitly, an action 𝐴 of the monoidM is specied by a category C = 𝐴(•), an
endofunctor 𝐴(𝑢) : C → C for every 𝑢 in M, a natural isomorphism 𝐴𝑢,𝑣 : 𝐴(𝑢)𝐴(𝑣) ⇒ 𝐴(𝑢𝑣) for every
elements 𝑢 and 𝑣 ofM, and a natural isomorphism 𝐴• : 1C ⇒ 𝐴(1) such that:
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i) for every triple (𝑢, 𝑣,𝑤) of elements of the monoidM, the following diagram commutes

𝐴(𝑢𝑣)𝐴(𝑤) 𝐴𝑢𝑣,𝑤

�/
=𝐴(𝑢)𝐴(𝑣)𝐴(𝑤)

𝐴𝑢,𝑣𝐴(𝑤) ';

𝐴(𝑢)𝐴𝑣,𝑤
#7

𝐴(𝑢𝑣𝑤)

𝐴(𝑢)𝐴(𝑣𝑤) 𝐴𝑢,𝑣𝑤

/C

ii) for every element 𝑢 of the monoidM, the following diagrams commute

𝐴(1)𝐴(𝑢) 𝐴1,𝑢
�)

𝐴(𝑢)

𝐴•𝐴(𝑢) )=

𝐴(𝑢)
=

𝐴(𝑢)𝐴(1) 𝐴𝑢,1

�.
𝐴(𝑢)

𝐴(𝑢)𝐴• &:

𝐴(𝑢)
=

Let M be a monoid and let Σ be an extended presentation of M. The (3, 1)-polygraph Σ is a
coherent presentation of M if, and only if, for every 2-category C, there is an equivalence of categories
between Act(M) and 2Cat(Σ∗

1/Σ2, C), that is natural in C, [9]. In this way, up to equivalence, the actions
of a monoid M on categories are the same as the 2-functors from Σ∗

1/Σ2 to Cat.
Using this description, Theorem 5.6 allows us to present actions of Chinese monoids on categories

as follows:

5.9. Theorem. The category Act(C𝑛) of actions of the Chinese monoidC𝑛 on categories is equivalent to the
category of 2-functors from the free (2, 1)-categoryR(𝑄𝑛,C𝑛)> generated by the rewriting systemR(𝑄𝑛,C𝑛)
to the category Cat of categories, that sends any generating syzygy X𝑢,𝑣,𝑡 to commutative diagrams in the
category Cat.
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