Coherence of monoids by insertions and Chinese syzygies
 Nohra Hage, Philippe Malbos

To cite this version:

Nohra Hage, Philippe Malbos. Coherence of monoids by insertions and Chinese syzygies. 2019. hal-02015084v1

HAL Id: hal-02015084 https://hal.science/hal-02015084v1

Preprint submitted on 12 Feb 2019 (v1), last revised 21 Nov 2021 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Coherence of monoids by insertions and Chinese syzygies

Nohra Hage Philippe Malbos

Abstract

A data structure describes a way to organize and store a collection of data. It defines primitive efficient functions and operations that can be applied to the data such as constructors, modifications and access maps on the data. In this work, we consider data structures on strings as combinatorial descriptions of structured words having a theory of normal forms defined by insertion algorithms. We show that an insertion map of a string data structure induces a product on data and we give necessary conditions making this product associative. Our construction allows us to give a rewriting description of the cross-section property for the structure monoid of a string data structure. We show how to compute a coherent presentation of the structure monoid made of rewriting rules defined by insertion on words and whose syzygies are defined as relations among the insertion algorithms. As an illustration, we show how our constructions can be applied to Chinese monoids by making explicit the shape of syzygies of the Chinese congruence.

Keywords - String rewriting systems, data structure, normal forms, plactic monoids, Chinese monoids.
M.S.C. 2010 - Primary: 20M35, 68Q42. Secondary: 20M05, 18D05.
1 Introduction 2
2 Preliminaries on rewriting 6
2.1 String rewriting systems 7
2.2 Coherent presentations 8
3 String data structures, cross-section and confluence 9
3.1 String data structures 10
3.2 Commutation of insertions 14
3.3 Example: plactic monoids of classical types 15
3.4 Other examples 17
4 Coherent presentations by insertion 20
4.1 Generating set of a string data structure 20
4.2 Coherent presentations and string data structures 25
$5 \quad$ String data structures for Chinese monoids 28
5.1 Presentation of Chinese monoids by string data structures 28
5.2 Semi-quadratic convergent presentations for Chinese monoids 34
5.3 Coherent presentations for Chinese monoids 38

1. Introduction

String data structures and syzygies

A data structure describes a way to organize, manage and store a collection of structured data. It defines primitive efficient functions and operations that can be applied to the data such as constructors, modifications and access maps on the data. In this article, we introduce the notion of string data structure as a combinatorial description of structured words on ordered alphabets. Such data structures appear in many contexts in combinatorial algebra, combinatorics and fundamental computer science through combinatorial data structures, such as arrays, tableaux, staircases or binary search trees. For instance, array data structures can be used to describe normal forms for plactic monoids of type A with Young tableaux [15, 33, 38, 45], plactic monoids of classical types with symplectic and orthogonal tableaux, [35, 36], Chinese monoids with staircases, [10, 14], hypoplactic monoids with quasi-ribbon tableaux, [40], left and right patience sorting monoids with left and right patience sorting tableaux, [9, 44], and stalactic monoids with stalactic tableaux [26, 41]. Binary search trees, binary search trees with multiplicities and pairs of twin binary search trees can be respectively used to describe normal forms for sylvester monoids, [25], taiga monoids, [41], and Baxter monoids, [17].

Cross-section by insertion. In all of these situations, structured data are constructed using insertion algorithms, and give interpretations of congruence relations by a characterization of a cross-section property for the presented monoids. Explicitly, given a string data structure \mathbb{S} over an alphabet A defined by a right insertion algorithm I, to each word $w=x_{1} x_{2} \ldots x_{k}$ on A it is associated a structured data $C_{\mathbb{S}}(w)$ obtained by insertion of the word w in the empty data \emptyset by application of insertion I step by step:

$$
\left.\mathcal{C}_{\mathbb{S}}(w):=\left(\emptyset \sim \sim_{I} w\right)=\left(\left(\left((\emptyset) \sim_{I} x_{1}\right) \sim \sim_{I} x_{2}\right) \sim I \ldots\right) \sim_{I} x_{k-1}\right) \sim \sim_{I} x_{k}
$$

Structured data form a cross-section property for a congruence relation \approx on the free monoid A^{*} : for any words w, w^{\prime} on $A, w \approx w^{\prime}$ if and only if the insertion algorithm yields the same structured data: $C_{\mathbb{S}}(w)=C_{\mathbb{S}}\left(w^{\prime}\right)$.

In this work, we explain how insertion algorithms define a product on the structured data, and we give necessary conditions on the insertion to induce an associative product. We relate the cross-section property of the string data structure to a confluence property of a string rewriting system whose rewriting rules are defined by insertion. Finally, using this construction, we show how to compute an economic coherent presentation of the monoid presented by the data structure, made of generators, rewriting rules describing the insertion of letters in words and syzygies of the presentation interpreted in terms of relations among the insertion algorithms. This is the first step in an explicit construction of free resolutions of these monoids by extending a coherent resolution in a polygraphic resolution, that is cofibrant objects in the category of $(\infty, 1)$-categories, [19, 20], whose acyclicity is proved by an iterative construction of a normalisation strategy.

Tableaux and plactic congruence. These constructions are well known for the plactic congruence $\approx_{\mathrm{P}_{n}}$ of type A on the free monoid over $[\mathrm{n}]:=\{1, \ldots, n\}$, generated by the Knuth relations $z x y=x z y$ for all $1 \leqslant x \leqslant y<z \leqslant n$ and $y z x=y x z$ for all $1 \leqslant x<y \leqslant z \leqslant n$, that emerged from the works of Schensted [42] and Knuth [29] on the combinatorial study of Young tableaux. The structure of plactic monoid of type A of rank n, denoted by \mathbf{P}_{n}, was introduced by Lascoux and Schützenberger in [33] as the
monoid generated on $[n]$ and submitted to the plactic congruence. Knuth proved in [29] that the set Yt_{n} of Young tableaux over $[\mathrm{n}]$ satisfies the cross-section property for the plactic congruence $\approx_{\mathbf{P}_{n}}$. Schensted introduced two algorithms to insert an element x of $[\mathrm{n}]$ into a tableau t of Yt_{n}, [42]: the right insertion algorithm S_{r}, we denote $\mathrm{t} \mathrm{m}_{\mathrm{S}_{\mathrm{r}}} x$ and the left insertion algorithm S_{l}, we denote $\mathrm{x} \leadsto \mathrm{s}_{l} \mathrm{t}$, see 3.3.3. Denote by $\mathrm{R}_{\mathrm{col}}: \mathrm{Yt}_{\mathrm{n}} \rightarrow[\mathrm{n}]^{*}$ the map that reads a tableau column by column from left to right and from bottom to top. The insertion algorithms allow to define two internal products on Yt_{n} by setting

$$
t \star s_{r} t^{\prime}=\left(t \backsim s_{r} R_{c o l}\left(t^{\prime}\right)\right), \quad t \star s_{l} t^{\prime}=\left(R_{\text {col }}\left(t^{\prime}\right) \rightsquigarrow s_{l} t\right)
$$

for all tableaux t, t^{\prime} in Yt_{n}. Knuth showed in [29] that these products define on Yt_{n} a structure of monoid that is isomorphic to the plactic monoid \mathbf{P}_{n}, see also [34] for explicit description. In fact, as we will show in Section 3, the associativity of these products is an immediate consequence of the commutation of the two insertion algorithms, that is

$$
y \rightsquigarrow s_{l}\left(t \backsim \sim s_{r} x\right)=\left(y \rightsquigarrow s_{l} t\right) \rightsquigarrow s_{r} x
$$

holds for all tableau t and x, y in $[n$], as shown by Schensted in [42], see 3.3.4. We will show that these insertion algorithms define string data structures on the set of Young tableaux. We explain how the cross-section property is a consequence of these structures and how to relate this property to the confluence property of a rewriting system defined on the set of Young tableaux. The study of plactic monoids of type A using string rewriting systems on Knuth generators is not straightforward, in particular in rank greater than 4 they do not admit finite completion with respect the lexicographic order, [31]. Finite completions can be obtained by adding new generators in the quasi-center of the monoid. In particular, by adding column generators or row generators, the completion procedure ends producing a convergent presentation of plactic monoids, [2, 4], see also [4, 6, 23] for classical types. Such convergent presentations can be used to explicit coherent presentations of plactic monoids giving all the relations among the relations of the presentations, [24]. In Section 4, we will explain that the confluence of the column or row presentations for plactic monoids are in fact a consequence of the commutation of Schensted's insertion algorithms.

Main results and organization of the article

Let us present the main results of this article. Section 2 gives some preliminaries on presentations of monoids by string rewriting systems and coherent presentation.

String data structures. In Section 3 we introduce the notion of string data structure over a totally ordered alphabet as a set of combinatorial data describing structured words equipped with insertion and reading maps. Explicitly, a string data structure \mathbb{S} over an alphabet A is quadruple (D, ℓ, I, R) made of a set D of data, a reading map ℓ of words in A^{*}, a reading map $R: D \rightarrow A^{*}$ of the data and a one-element insertion map I : $\mathrm{D} \times \mathrm{A} \rightarrow \mathrm{D}$ satisfying conditions given by Definition 3.1.1. The map I extends into a map $\mathrm{I}_{\ell}: \mathrm{D} \times \mathrm{A}^{*} \rightarrow \mathrm{D}$ defined by

$$
I_{\ell}(d, u)=I_{\ell}\left(I\left(d, x_{1}\right), x_{2} \ldots x_{k}\right) \quad \text { and } \quad I_{\ell}(d, \lambda)=d
$$

for all d in D and u in A^{*} with $x_{1} \ldots x_{k}=\ell(u)$. The map $C_{\mathbb{S}}:=I_{\ell}(\emptyset,-): A^{*} \rightarrow D$ is called the constructor of \mathbb{S}. We say that \mathbb{S} is right (resp. left) if the insertion map I_{ℓ} is defined with respect to the left-to-right reading ℓ_{1} (resp. right-to-left reading ℓ_{r}). In that case, $I_{\ell_{1}}(\mathrm{~d}, \mathfrak{u})$ (resp. $I_{\ell_{r}}(\mathrm{~d}, \mathrm{u})$) will be denoted by $d{ }^{\sim} I_{\ell_{1}} u$ (resp. $u \rightsquigarrow I_{e_{r}}$ d).

Structure monoid. We define an internal product \star_{I} on D by setting $d \star_{I} d^{\prime}:=I_{\ell}\left(d, R\left(d^{\prime}\right)\right)$ for all d, d^{\prime} in D . By definition the product \star_{1} is unitary, and the string data structure \mathbb{S} is called associative if \star_{I} is associative. The set D with the product \star_{I} is a monoid called the structure monoid of \mathbb{S}, denoted by $\mathbf{M}(\mathrm{D}, \mathrm{I})$. We say that an associative string data structure presents a monoid \mathbf{M} if its structure monoid is isomorphic to \mathbf{M}. We will denote by $\mathcal{R}(\mathrm{D}, \mathbb{S})$ the rewriting system on D , whose rules are

$$
\gamma_{\mathrm{d}, \mathrm{~d}^{\prime}}: \mathrm{d} \cdot \mathrm{~d}^{\prime} \rightarrow \mathrm{d} \star_{\mathrm{I}} \mathrm{~d}^{\prime}
$$

for any d, d^{\prime} in D. The rewriting system $\mathcal{R}(D, \mathbb{S})$ is terminating, moreover it is confluent when \mathbb{S} is associative. It is thus a convergent presentation of the structure monoid $\mathbf{M}(\mathrm{D}, \mathrm{I})$, and the set of $\mathcal{R}(\mathrm{D}, \mathbb{S})$ normal forms satisfies the cross-section property for $\mathbf{M}(\mathrm{D}, \mathrm{I})$. An associative string data structure \mathbb{S} over A satisfies the cross-section property for a congruence relation \approx on A^{*}, if $u \approx v$ holds if and only if $C_{\mathbb{S}}(u)=C_{\mathbb{S}}(v)$ holds for all u, v in A^{*}. A string data structure \mathbb{S} is compatible with a congruence relation \approx on \mathcal{A}^{*}, if for all d in D and \mathfrak{u}, v in $\mathcal{A}^{*}, \mathfrak{u} \approx v$ implies $\mathrm{I}_{\ell}(\mathrm{d}, \mathfrak{u})=\mathrm{I}_{\ell}(\mathrm{d}, v)$, and $\mathrm{RC}_{\mathbb{S}}(\mathfrak{u}) \approx \mathfrak{u}$, see 3.1.11 Theorem 3.1.13 states that when \mathbb{S} is right (resp. left) associative, \mathbb{S} is compatible with a congruence relation \approx on A^{*} if, and only if, it satisfies the cross-section property for $\approx \mathrm{if}$, and only if, it presents the quotient monoid A^{*} / \approx (resp. the opposite of the quotient monoid $\left.A^{*} / \approx\right)$.

Moreover, Proposition 3.1 .18 states that when \mathbb{S} is right (resp. left) associative, the rewriting system $\mathcal{R}(R)$ on A, whose rules are defined by

$$
\gamma_{d, d^{\prime}}: R(d) R\left(d^{\prime}\right) \rightarrow R\left(d \star_{I} d^{\prime}\right)
$$

for all d, d^{\prime} in D such that $R\left(d \star_{I} d^{\prime}\right) \neq R(d) R\left(d^{\prime}\right)$, is convergent, and that \mathbb{S} presents the monoid (resp. opposite monoid) presented by $\mathcal{R}(R)$. It follows that $\mathcal{R}(R)$ is a convergent presentation of the structure monoid $\mathbf{M}(\mathrm{D}, \mathrm{I})$. As a consequence, one can prove that an associative string data structure \mathbb{S} satisfies the cross-section property for a congruence relation \approx by showing that $\mathcal{R}(\mathrm{R})$ presents the quotient monoid A^{*} / \approx.

Commutation of insertions. One defines in 3.2.1 a string data bistructure over \mathcal{A} as a quadruple ($\mathrm{D}, \mathrm{I}, \mathrm{J}, \mathrm{R}$) such that the one-element insertions I and J define on D a right and left string data structure over A respectively and commute, that is the following condition

$$
\left(x \rightsquigarrow_{I} d\right) \sim_{J} y=x \rightsquigarrow_{I}\left(d \sim_{J} y\right)
$$

holds for all d in D and x, y in A . Theorem 3.2.3 proves that commutation of insertion induces the associativity of products \star_{I} and \star_{J} and the commutation relation $d \star_{I} d^{\prime}=d^{\prime} \star_{J} d$ for all d, d^{\prime} in D. Moreover, the structure monoids $\mathbf{M}(\mathrm{D}, \mathrm{I})$ and $\mathbf{M}(\mathrm{D}, \mathrm{J})$ are anti-isomorphic. As an example, we show in Subsection 3.3, that right and left Schensted's insertion algorithms equip the set of Young tableaux with a string data bistructure that presents the plactic monoid \mathbf{P}_{n}. In 3.3 .6 we illustratre that Lecouvey's left insertion algorithms define left string data structures on symplectic tableaux, [35] and orthogonal tableaux, [36] used to characterize cross-section properties for plactic monoids of classical type C, B and D respectively. However, the existence of a right insertion algorithm on symplectic and orthogonal tableaux that commutes with Lecouvey's left insertion, and thus a string data bistructure on these tableaux is still an open problem. In Subsection 3.4 we give other instances of string data bistructures: with hypoplactic monoids and quasi-ribbon tableaux, [30, 40], sylvester monoids and binary search trees, [25], patience sorting monoids and patience sorting tableaux, [9, 44]. Note that the existence of a string data bistructure on quasi-ribbon tableaux, binary search trees, and patience sorting tableaux are still open problems.

Generating string data structures and coherence by insertion. In general the rewriting system $\mathcal{R}(\mathrm{D}, \mathbb{S})$ is infinite. In some situations, we can reduce the set of generators to a finite subset Q of D in order to define a finite string rewriting system $\mathcal{R}(\mathrm{Q}, \mathbb{S})$ that is Tietze equivalent to $\mathcal{R}(\mathrm{D}, \mathbb{S})$. In Subsection 4.1 we define generating set Q of a string data structure \mathbb{S} as a subset Q of D such that any element d in D can be decomposed as $d=c_{1} \star_{I} c_{2} \star_{I} \ldots \star_{I} c_{k}$, where $c_{1}, \ldots, c_{k} \in Q$, and that there exists a unique decomposition $d=c_{1} \star_{1} \ldots \star_{1} c_{l}$, with c_{1}, \ldots, c_{l} in Q satisfying $c_{i} \star_{1} c_{i+1} \notin Q$ for all $1 \leqslant i \leqslant l-1$, and $R(d)=R\left(c_{1}\right) \ldots R\left(c_{l}\right)$ holds in A^{*}. For instance, the set of columns over $[n]$ and the set of rows over $[n]$ generate the set of Young tableaux Yt_{n} equipped with Schensted's insertions. We define the rewriting system $\mathcal{R}(\mathrm{Q}, \mathbb{S})$ on Q whose rules are

$$
\gamma_{c, c^{\prime}}: c \cdot c^{\prime} \rightarrow R_{Q}\left(c \star_{I} c^{\prime}\right)
$$

for all c, c^{\prime} in Q, whenever $c \cdot c^{\prime} \neq R_{Q}\left(c \star_{I} c^{\prime}\right)$. In most applications, the termination of $\mathcal{R}(Q, \mathbb{S})$ can be showed by introducing a well-founded order on the free monoid Q^{*} as shown in 4.1.7. A generating set Q of \mathbb{S} is called well-founded if the rewriting system $\mathcal{R}(\mathrm{Q}, \mathbb{S})$ is terminating. When \mathbb{S} is right associative and Q is a well-founded generating set, Proposition 4.1 .8 states that $\mathcal{R}(\mathrm{Q}, \mathbb{S})$ is a convergent presentation of the structure monoid $\mathbf{M}(\mathrm{D}, \mathrm{I})$. As a consequence, the set of $\mathcal{R}(\mathrm{Q}, \mathbb{S})$-normal forms satisfies the cross-section property for $\mathbf{M}(\mathrm{D}, \mathrm{I})$. The last result of Section 4 . Theorem 4.2.1. shows how to extend $\mathcal{R}(\mathrm{Q}, \mathbb{S})$ into a coherent presentation of the monoid $\mathbf{M}(\mathrm{D}, \mathrm{I})$ when \mathbb{S} is a right associative string data structure, and Q is a well-founded generating set. In that case, $\mathcal{R}(\mathrm{Q}, \mathbb{S})$ extends into a coherent convergent presentation of the monoid $\mathbf{M}(\mathrm{D}, \mathrm{I})$ by adjunction of a generating 3-cell

for any $c, c^{\prime}, c^{\prime \prime}$ in Q such that $c \cdot c^{\prime} \neq R_{Q}\left(c \star_{I} c^{\prime}\right)$ and $c^{\prime} \cdot c^{\prime \prime} \neq R_{Q}\left(c^{\prime} \star_{I} c^{\prime \prime}\right)$. In particular, we show that when D is equipped by a bistructure (D, I, J, R) and it is generated by a well-founded set Q, then the generating 3-cells $A_{c, c^{\prime}, c^{\prime \prime}}$ can be written

where $\sigma^{\top}, \mathrm{Q}$ and $\sigma^{\perp, \mathrm{Q}}$ are the leftmost and rightmost normalisation strategy corresponding to the application of the insertions I and J respectively.

String data structures on Chinese staircases. As an illustration we construct in Section 5 a string data bistructure that presents the Chinese monoid introduced in [14] by Duchamp and Krob in their classification of monoids with growth similar to that of the plactic monoid. The Chinese monoid of
rank n, denoted by \mathbf{C}_{n}, is the monoid generated by $[\mathrm{n}]$ and submitted to the relations $z y x=z x y=y z x$ for all $1 \leqslant x \leqslant y \leqslant z \leqslant n$. This Chinese congruence was interpreted in [10] by Chinese staircases and the authors prove that the set Ch_{n} of Chinese staircases over [n] satisfies the cross-section property for the monoid \mathbf{C}_{n}. We recall in Subsection 5.1 the structure of Chinese staircase and the right insertion algorithm C_{r} in Chinese staircases introduced in [10], and we recall also the left insertion algorithm C_{l} introduced in [5]. Theorem 5.1.4, shows that these two insertions commute: for all staircase t in Ch_{n} and x, y in $[n]$, the following equality holds in Ch_{n} :

$$
y \leadsto c_{l}\left(t \leadsto c_{r} x\right)=\left(y \leadsto c_{l} t\right) \leadsto c_{r} x .
$$

As a consequence, the right and left insertions with the row reading R_{r} defined in 5.1.1 induce a string data bistructure on Chinese staircases over [n], that implies, by Theorem 3.2.3. that the compositions ${ }^{\star} \mathrm{C}_{\mathrm{r}}$ and ${ }^{C_{l}}$ are associative.

In Subsection 5.2 we construct a finite semi-quadratic convergent presentation $\mathcal{R}\left(\mathrm{Q}_{n}, \mathbb{C}_{n}\right)$ of the monoid \mathbf{C}_{n} induced by the right string data structure $\mathbb{C}_{n}:=\left(\mathrm{Ch}_{n}, \mathrm{C}_{\mathrm{r}}, \ell_{1}, \mathrm{R}_{r}\right)$, and whose set of generators Q_{n} is made of columns over $[n]$ of length at most 2 and square generators. We deduce that the set of normal forms with respect to $\mathcal{R}\left(\mathrm{Q}_{\mathrm{n}}, \mathbb{C}_{n}\right)$, called Chinese normal forms, satisfies the cross-section property for the monoid \mathbf{C}_{n}. Note that finite convergent presentations of Chinese monoids were already obtained in [11, 22], by completion of Chinese relations, and in [5] by adding column generators. However, these presentations are not semi-quadratic, and thus it is difficult to extend these presentations into coherent presentations of the Chinese monoid.

Finally, Theorem 5.3.11 extends the rewriting system $\mathcal{R}\left(\mathrm{Q}_{\mathrm{n}}, \mathbb{C}_{n}\right)$ into a finite coherent convergent presentation of the monoid \mathbf{C}_{n} by adjunction of generating 3-cells with the following degagonal form

for any c_{u}, c_{v}, c_{t} in Q_{n} such that $c_{u} \cdot c_{v}$ and $c_{v} \cdot c_{t}$ are not Chinese normal forms, and where the 2-cells $\gamma_{-,-}$ denote either a rewriting rule of $\mathcal{R}\left(\mathrm{Q}_{n}, \mathbb{C}_{n}\right)$ or an identity.

2. Preliminaries on rewriting

In this work we deal with presentations of monoids by string rewriting systems. In this preliminary section we recall the basic notions of rewriting we use in this article. For a fuller account of the theory, we refer the reader to [3]. In Subsection 2.2] we will recall from [16, 21] the notion of coherent presentation of a monoid that extends the notion of a presentation by globular homotopy generators taking into account all the relations amongst the relations.

We will denote by X^{*} the free monoid of words written in the alphabet X, the product being concatenation of words, and the identity being the empty word, denoted by λ. Elements of X^{*} are called words. We will denote by $u=x_{1} \ldots x_{k}$ a word in X^{*} of length k, where x_{1}, \ldots, x_{k} belong in X. The length of a word u will be denoted by $|\mathfrak{u}|$.

2.1. String rewriting systems

2.1.1. String rewriting systems. A (string) rewriting system on X is a subset R of $X^{*} \times X^{*}$. Each element (u, v) of R is called a rule and will be denoted by $u \rightarrow v$. A one step reduction is defined by $w u w^{\prime} \rightarrow w \nu w^{\prime}$ for all words w, w^{\prime} in X^{*} and rule $\beta: u \rightarrow \nu$ in R, and will be denoted by $w \beta w^{\prime}$. One step reductions form the reduction relation on X^{*} denoted by \rightarrow_{R}. A rewriting path with respect to R is a finite or infinite sequence $u_{0} \rightarrow_{R} u_{1} \rightarrow_{R} u_{2} \rightarrow_{R} \cdots$. This corresponds to the reflexive and transitive closure of the relation \rightarrow_{R}, that we denote by \rightarrow_{R}^{*}. A word u in X^{*} is R-reduced if there is no reduction with source u. A R-normal form for a word u in X^{*} is a R-reduced word v such that u reduces into v. The rewriting system R terminates if it has no infinite rewriting path, and it is (weakly) normalizing if every word u in X^{*} reduces to some R-normal form. A rewriting system R is reduced if, for every rule $\beta: u \rightarrow v$ in R, the source u is $(R \backslash\{\beta\})$-reduced and the target v is R-reduced. The reflexive, symmetric and transitive closure of \rightarrow_{R} is the congruence on X^{*} generated by R, that we denote by \approx_{R}. The monoid presented by R is the quotient of the free monoid X^{*} by the congruence \approx_{R}. A presentation of a monoid \mathbf{M} is a rewriting system whose presented monoid is isomorphic to \mathbf{M}. Two rewriting systems are Tietze equivalent if they present isomorphic monoids. Recall that a Tietze transformation between two rewriting systems is a sequence of elementary Tietze transformations, defined on a rewriting system R on an alphabet X by the following operations:
i) adjunction or elimination of an element x in X and of a rule $\beta: u \rightarrow x$, where u is an element in X^{*} that does not contain x,
ii) adjunction or elimination of a rule $\beta: u \rightarrow v$ such that u and v are equivalent by the congruence generated by $R \backslash\{\beta\}$.

One shows that two rewriting systems are Tietze equivalent if, and only if, there exists a Tietze transformation between them. We refer the reader to [16, Subsection 2.1] for more details on Tietze transformations.
2.1.2. Confluence. A branching (resp. local branching) of a rewriting system R on an alphabet X is a non ordered pair (f, g) of reductions (resp. one step reductions) of R on the same word. A branching is aspherical if it is of the form (f, f), for a rewriting step f and Peiffer when it is of the form (fv, ug) for rewriting steps f and g with source u and v respectively. The overlapping branchings are the remaining local branchings. An overlapping local branching is critical if it is minimal for the order \sqsubseteq generated by the relations $(\mathrm{f}, \mathrm{g}) \sqsubseteq\left(w f w^{\prime}, w g w^{\prime}\right)$, given for all local branching (f, g) and words w, w^{\prime} in X^{*}. A branching (f, g) is confluent if there exist reductions f^{\prime} and g^{\prime} reducing to the same word:

The rewriting system R is confluent if all of its branchings are confluent, and convergent if it is both confluent and terminating. If R is convergent, then every word u of X^{*} has a unique normal form.
2.1.4. Normalization strategies. Recall that a reduction strategy for a rewriting system R on X specifies a way to apply the rules in a deterministic way. It is defined as a mapping ϑ of every word u in X^{*} to a rewriting step ϑ_{u} with source u. When R is normalizing, a normalization strategy is a mapping σ of every word u to a rewriting path σ_{u} with source u and target a chosen normal form of u. For a reduced rewriting system, we distinguish two canonical reduction strategies to reduce words: the leftmost one and the rightmost one, according to the way we apply first the rewriting rule that reduces the leftmost or the rightmost subword, and defined as follows. For every word u of X^{*}, the set of rewriting steps with source u can be ordered from left to right as follows. For two rewriting steps $f=v \gamma v^{\prime}$ and $g=w \beta w^{\prime}$ with source u, we have $f \prec g$ if the length of v is strictly smaller than the length of w. If R is finite, then the order \prec is total and the set of rewriting steps of source u is finite. Hence this set contains a smallest element $\rho_{\mathfrak{u}}$ and a greatest element $\eta_{\mathcal{u}}$, respectively called the leftmost and the rightmost rewriting steps on u. If, moreover, the rewriting system terminates, the iteration of ρ (resp. η) yields a normalization strategy for R called the leftmost (resp. rightmost) normalization strategy of R :

$$
\begin{equation*}
\sigma_{\mathfrak{u}}^{\top}=\rho_{\mathfrak{u}} \star_{1} \sigma_{\mathfrak{t}\left(\rho_{\mathfrak{u}}\right)}^{\top} \quad\left(\text { resp. } \sigma_{\mathfrak{u}}^{\perp}=\eta_{\mathfrak{u}} \star_{1} \sigma_{\mathfrak{t}\left(\eta_{\mathfrak{u}}\right)}^{\perp}\right) \tag{2.1.5}
\end{equation*}
$$

The leftmost (resp. rightmost) rewriting path on a word u is the rewriting path obtained by applying the leftmost (resp. rightmost) normalization strategy $\sigma_{\mathfrak{u}}^{\top}$ (resp. $\sigma_{\mathfrak{u}}^{\perp}$). We refer the reader to [19] for more details on rewriting normalization strategies.
2.1.6. Semi-quadratic rewriting systems. A rewriting system R on X is semi-quadratic (resp. quadratic) if for all γ in R we have $|\mathrm{s}(\gamma)|=2$ and $|\mathrm{t}(\gamma)| \leqslant 2$ (resp. $|\mathrm{s}(\gamma)|=|\mathrm{t}(\gamma)|=2$). By definition, the sources of the critical branchings of a semi-quadratic rewriting system are of length 3 . When R is reduced, there are at most two rewriting paths with respect to R with source a word of length 3 . We will denote by $\rho_{l, p}(w)$ (resp. $\sigma_{r, p}(w)$) the word obtained by the rewriting path of length p with source a word w starting with the leftmost (resp. rightmost) reduction strategy. Given a word w, we will denote by $\ell_{l}(w)$ (resp. $\ell_{\mathrm{r}}(w)$) the length of the leftmost (resp. rightmost) rewriting path from w to its normal form.
2.1.7. Cross-section property. Given a congruence \approx on the free monoid X^{*}, we recall that a subset Y of X^{*} satisfies the cross-section property for the quotient monoid X^{*} / \approx if each equivalence class with respect to \approx contains exactly one element of Y. If R is a convergent rewriting system that presents the quotient monoid X^{*} / \approx, then the set of normal forms for R satisfies the cross-section property for \approx.

2.2. Coherent presentations

We recall the notion of coherent presentation of monoids formulated in terms of polygraphs in [16], and we refer the reader to [21] for a deeper presentation.
2.2.1. Two-dimensional polygraphs. Rewriting systems can be interpreted as 2-polygraphs with only 0 -cell. Such a 2-polygraph P is given by a pair $\left(P_{1}, P_{2}\right)$, where P_{1} is a set and P_{2} is a globular extension of the free monoid P_{1}^{*} seen as a 1-category, that is a set of generating 2-cells $\beta: u \Rightarrow \nu$ relating 1-cells in P_{1}^{*}, where u and v denote the source and the target of β, respectively denoted by $s_{1}(\beta)$ and $t_{1}(\beta)$. A rewriting system R on an alphabet X can be described by such a 2-polygraph whose generating 1-cells are given by X, and having a generating 2-cell $u \Rightarrow v$ for every rule $u \rightarrow v$ in R. Recall that a (2,1)-category is a category enriched in groupoids. We will denote by P_{2}^{\top} the $(2,1)$-category freely generated by the 2-polygraph P, see [21, Section 2.4.] for expanded definitions.
2.2.2. Coherent presentations. A (3,1)-polygraph is a pair $\left(P, P_{3}\right)$ made of a 2-polygraph P and a globular extension P_{3} of the $(2,1)$-category P_{2}^{\top}, that is a set of 3-cells $A: f \Rightarrow g$ relating 2-cells f and g in P_{2}^{\top}, respectively denoted by $s_{2}(A)$ and $t_{2}(A)$ and satisfying the globular relations $s_{1} s_{2}(A)=s_{1} t_{2}(A)$ and $t_{1} s_{2}(A)=t_{1} t_{2}(A)$. Such a 3-cell can be represented with the following globular shape:

where • denotes the unique 0 -cell of P. We will denote by P_{3}^{\top} the free $(3,1)$-category generated by the $(3,1)$-polygraph $\left(P, P_{3}\right)$. A pair (f, g) of 2-cells of P_{2}^{\top} such that $s_{1}(f)=s_{1}(g)$ and $t_{1}(f)=t_{1}(g)$ is called a 2-sphere of P_{2}^{\top}. An extended presentation of a monoid \mathbf{M} is a $(3,1)$-polygraph whose underlying 2-polygraph is a presentation of \mathbf{M}. A coherent presentation of \mathbf{M} is an extended presentation (P, P_{3}) of \mathbf{M} such that the cellular extension P_{3} of the $(2,1)$-category P_{2}^{\top} is acyclic, that is, for every 2-sphere (f, g) of P_{2}^{\top}, there exists a 3-cell A in P_{3}^{\top} such that $s_{2}(A)=f$ and $t_{2}(A)=g$.
2.2.3. Coherence from convergence. Recall coherent Squier's theorem from [43, Theorem 5.2], see also [21, Section 4.3], that states that, any convergent rewriting system R on X presenting a monoid \mathbf{M} can be extended into a coherent presentation of the monoid \mathbf{M} having a generating 3-cell

for every critical branching (f, g) of R, where f^{\prime} and g^{\prime} are chosen confluent rewriting paths.

3. String data structures, cross-section and confluence

In this section we define the notion of string data structure. In Subsection 3.2 we introduce the notion of string data bistructure and we give necessary conditions making the corresponding string data structure associative. In Subsection 3.3 we apply our constructions to the presentations of plactic monoids of type A, by considering a string data bistructure that presents these monoids, defined by Young tableaux and Schensted's insertions. Finally, Subsection 3.4 presents several examples of string data structures.

Throughout the article A denotes a totally ordered alphabet. For a natural number $\mathfrak{n} \geqslant 0$, we will denote the finite set $\{1, \ldots, n\}$ with the natural order by $[n]$. A reading of words on A is a map $\ell: A^{*} \rightarrow A^{*}$ sending a word $x_{1} \ldots x_{k}$ in A^{*} on a word $x_{\sigma_{(1)}} \ldots x_{\sigma_{(k)}}$ in A^{*}, where σ is a permutation on $[k]$. The identity on A^{*} will be called a left-to-right reading, denoted by ℓ_{1}. The right-to-left reading is the map, denoted by ℓ_{r}, that sends a word $x_{1} x_{2} \ldots x_{k}$ to its mirror image $x_{k} \ldots x_{2} x_{1}$.

3.1. String data structures

3.1.1. String data structures. A string data structure \mathbb{S} over an alphabet \mathcal{A} is a quadruple (D, ℓ, I, R) made of a set D with a distinguished element \emptyset, a reading map ℓ of words on A and two maps $R: D \rightarrow A^{*}$ and $\mathrm{I}: \mathrm{D} \times A \rightarrow \mathrm{D}$ satisfying the four following conditions:
i) $\mathrm{R}(\mathrm{I}(\emptyset, x))=x$ for all x in A,
ii) the relation $\mathrm{I}_{\ell}(\emptyset,-) \mathrm{R}=\mathrm{Id}_{\mathrm{D}}$ holds, where $\mathrm{I}_{\ell}: \mathrm{D} \times A^{*} \rightarrow \mathrm{D}$ is the map defined by

$$
I_{\ell}(d, u)=I_{\ell}\left(I\left(d, x_{1}\right), x_{2} \ldots x_{k}\right)
$$

for all d in D and u in A^{*}, with $x_{1} \ldots x_{k}=\ell(u)$, and $I_{\ell}(d, \lambda)=d$ for all $d \in D$,
iii) the map $I_{\ell}(\emptyset,-): A^{*} \rightarrow D$ is surjective,
iv) the map R is injective and $R(\emptyset)=\lambda$.

One says that R is the reading map of \mathbb{S}, and that I inserts an element of A into an element of D . The map I_{ℓ} is called the insertion map of words of A^{*} into elements of D with respect to ℓ. The map

$$
\mathrm{C}_{\mathbb{S}}:=\mathrm{I}_{\ell}(\emptyset,-): A^{*} \rightarrow \mathrm{D}
$$

is called the constructor of \mathbb{S} from words in A^{*}. We will denote by $\iota_{D}: A \rightarrow D$ the map that sends a letter x in A on the single element data $\iota_{D}(x)=I(\emptyset, x)$, that we will write simply x when no confusion can arise.

A string data structure is called right (resp. left) if its insertion map is defined with respect to the reading ℓ_{1} (resp. ℓ_{r}). For u in A^{*} and d in D, we will denote $I_{\ell_{1}}(d, u)$ (resp. $I_{\ell_{r}}(d, u)$) by $d{ }^{\sim} I_{\ell_{1}} u$ (resp. $u \rightsquigarrow_{\ell_{\ell_{\mathrm{r}}}}$ d). The relations

$$
\begin{align*}
& \left(d \sim_{I_{\ell_{1}}} u v\right)=\left(d d_{I_{\ell_{1}}} u\right) \overbrace{I_{\ell_{1}}} v, \tag{3.1.2}\\
& \left(u v \rightsquigarrow I_{\ell_{\mathrm{r}}} d\right)=u \rightsquigarrow I_{\ell_{\mathrm{r}}}\left(v \rightsquigarrow I_{\ell_{\mathrm{e}}} d\right), \tag{3.1.3}
\end{align*}
$$

hold for all d in D and u, v in A^{*}.
3.1.4. Associative insertion. Given a string data structure $\mathbb{S}=(D, \ell, I, R)$ we define an internal product \star_{I} on D by setting

$$
\begin{equation*}
d \star_{I} d^{\prime}:=I_{\ell}\left(d, R\left(d^{\prime}\right)\right) \tag{3.1.5}
\end{equation*}
$$

for all d, d^{\prime} in D. By definition the relations $d \star_{I} \emptyset=d$ and $\emptyset \star_{I} d=d$ hold. Hence, the product \star_{I} is unitary with respect to \emptyset. A string data structure \mathbb{S} is called associative if the product \star_{I} is associative. In that case, for all word $w=x_{1} x_{2} \ldots x_{k}$ in A^{*}, we write $C_{\mathbb{S}}(w)=x_{1} \star_{I} x_{2} \star_{I} \ldots \star_{I} x_{k}$.
3.1.6. Structure monoid. The set D with the product \star_{I} is a monoid called the structure monoid of the string data structure \mathbb{S}, and denoted by $\mathbf{M}(\mathrm{D}, \mathrm{I})$. We will denote $u=_{\mathrm{I}} v$ the equality of two words u and v in the structure monoid. We say that an associative string data structure presents a monoid \mathbf{M} if its structure monoid is isomorphic to \mathbf{M}. Two string data structures are said to be Tietze equivalent if they present isomorphic monoids. We will denote by $\mathcal{R}(\mathrm{D}, \mathbb{S})$ the rewriting system on D , whose rules are

$$
\begin{equation*}
\gamma_{\mathrm{d}, \mathrm{~d}^{\prime}}: \mathrm{d} \cdot \mathrm{~d}^{\prime} \rightarrow \mathrm{d} \star_{\mathrm{I}} \mathrm{~d}^{\prime} \tag{3.1.7}
\end{equation*}
$$

for all $\mathrm{d}, \mathrm{d}^{\prime}$ in D . Every application of a rewriting rule is strictly decreasing in the number of generators, hence the rewriting system $\mathcal{R}(\mathrm{D}, \mathbb{S})$ is terminating. Moreover, when \mathbb{S} is associative, the rewriting system $\mathcal{R}(\mathrm{D}, \mathbb{S})$ is confluent. It is thus a convergent presentation of the structure monoid $\mathbf{M}(\mathrm{D}, \mathrm{I})$. We will denote by $\operatorname{Nf}(\mathrm{D}, \mathbb{S})$ the set of $\mathcal{R}(\mathrm{D}, \mathbb{S})$-normal forms.
3.1.8. Proposition. Let $\mathbb{S}=(\mathrm{D}, \ell, \mathrm{I}, \mathrm{R})$ be an associative string data structure. The rewriting system $\mathcal{R}(\mathrm{D}, \mathbb{S})$ is Tietze equivalent to the rewriting system on D whose rules are

$$
\begin{equation*}
\gamma_{\mathrm{d}, \mathrm{~L}_{\mathrm{D}}(x)}: \mathrm{d} \cdot \operatorname{l}_{\mathrm{D}}(\mathrm{x}) \rightarrow \mathrm{d} \star_{\mathrm{I}} \mathrm{l}_{\mathrm{D}}(\mathrm{x}) \tag{3.1.9}
\end{equation*}
$$

for all d in D and x in A .
Proof. Any rule (3.1.9) is a rule of $\mathcal{R}(\mathrm{D}, \mathbb{S})$. Conversely, by definition of \star_{I}, the equality $\mathrm{d} \star_{\mathrm{I}} \mathrm{d}^{\prime}=$ $\mathrm{d} \star_{\mathrm{I}} x_{1} \star_{\mathrm{I}} \ldots \star_{\mathrm{I}} x_{\mathrm{k}}$ holds in D , where $\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{k}}=\ell(\mathrm{R}(\mathrm{d}))$. We have $\mathrm{d} \cdot \mathrm{d}^{\prime}=\mathrm{d} \cdot\left(\mathrm{x}_{1} \star_{\mathrm{I}} \ldots \star_{\mathrm{I}} x_{k}\right)$. Moreover, there exist the following rewriting paths with respect to the rules of 3.1.9):

$$
\begin{gathered}
d \cdot\left(x_{1} \cdot x_{2} \cdot \ldots \cdot x_{k}\right) \xrightarrow{\gamma_{x_{1}, x_{2}}} d \cdot\left(x_{1} \star_{1} x_{2} \cdot \ldots \cdot x_{k}\right) \xrightarrow{\gamma_{x_{1} \star_{1} x_{2}, x_{3}}} \ldots l \xrightarrow{\gamma_{x_{1} \star_{1} \ldots *_{1} x_{k-1}, x_{k}}} d . d^{\prime} \\
d \cdot x_{1} \cdot x_{2} \ldots \ldots \cdot x_{k} \xrightarrow{\gamma_{d, x_{1}}}\left(d \star x_{1}\right) \cdot x_{2} \ldots \cdot x_{k} \xrightarrow{\gamma_{d \star_{1} x_{1}, x_{2}}} \ldots{ }^{\gamma_{d \star_{1} x_{1} \star_{1} \ldots *_{1} x_{k-1}, x_{k}}} d \star_{I} d^{\prime}
\end{gathered}
$$

Hence, for any rule $\gamma_{d, d^{\prime}}$ in $\mathcal{R}(D, \mathbb{S})$, with d, d^{\prime} in D, the source $d \cdot d^{\prime}$ and the target $d \star_{I} d^{\prime}$ are related by a zigzag sequence of rewriting paths with respect to rules 3.1.9.
3.1.10. Cross-section property. We say that an associative string data structure \mathbb{S} over A satisfies the cross-section property for a congruence relation \approx on A^{*}, if $u \approx v$ holds if and only if $C_{\mathbb{S}}(u)=C_{\mathbb{S}}(v)$ holds for all u, v in A^{*}. That is, to each equivalence class with respect to \approx it corresponds exactly one element in $\operatorname{Im}\left(\mathrm{C}_{\mathbb{S}}\right)$.
3.1.11. Compatibility with an equivalence relation. A string data structure $\mathbb{S}=(D, \ell, I, R)$ over A is said to be compatible with a congruence relation \approx on A^{*}, if it satisfies the following two conditions:
i) for all $\mathrm{d} \in \mathrm{D}$ and $\mathfrak{u}, v \in \mathrm{~A}^{*}, \mathfrak{u} \approx v$ implies $\mathrm{I}_{\ell}(\mathrm{d}, \mathfrak{u})=\mathrm{I}_{\ell}(\mathrm{d}, v)$,
ii) $R C_{\mathbb{S}}$ is equivalent to the identity with respect to the congruence \approx, that is,

$$
\begin{equation*}
\mathrm{RC}_{\mathbb{S}}(u) \approx u \quad \text { for all } u \text { in } A^{*} \tag{3.1.12}
\end{equation*}
$$

Denote by \mathbf{M} the quotient of the free monoid A^{*} by the congruence \approx, and by \bar{u} the image of a word u in A^{*} by the quotient morphism $\pi: A^{*} \rightarrow \mathbf{M}$. If \mathbb{S} is compatible with the relation \approx, then the insertion map I_{ℓ} induces a unique map $\widetilde{\mathrm{I}}_{\ell}: \mathrm{D} \times \mathbf{M} \rightarrow \mathrm{D}$ such that the following diagram commutes:

3.1.13. Theorem. Let \mathbb{S} be an associative right (resp. left) string data structure over \mathcal{A} and let \approx be a congruence relation on A^{*}. The following conditions are equivalent
i) \mathbb{S} satisfies the cross-section property for the congruence relation \approx,
ii) \mathbb{S} is compatible with the congruence relation \approx,
iii) \mathbb{S} presents the quotient monoid $A^{*} / \approx\left(\right.$ resp. the opposite of the quotient monoid $\left.A^{*} / \approx\right)$.

Proof. We prove the result for a right string data structure $\mathbb{S}=(D, \ell, I, R)$, the proof is similar for a left one. Prove i) $\Rightarrow \mathbf{i i}$. For all $u, v \in A^{*}, u \approx v$ if and only if $C_{\mathbb{S}}(u)=C_{\mathbb{S}}(v)$. The string data structure \mathbb{S} being right and associative, the equality

$$
\begin{equation*}
I_{\ell}(d, u)=d \star_{I} \iota_{D}\left(x_{1}\right) \star_{I} \ldots \star_{I} \iota_{D}\left(x_{k}\right)=d \star_{I} C_{\mathbb{S}}(u) \tag{3.1.14}
\end{equation*}
$$

holds in D, for all $d \in D$ and $u=x_{1} \ldots x_{k} \in A^{*}$. Then, for all $d \in D$ and $u, v \in A^{*}, u \approx v$ implies $I_{\ell}(d, u)=I_{\ell}(d, v)$. Moreover, for all $u \in A^{*}$, we have $C_{\mathbb{S}} R C_{\mathbb{S}}(u)=C_{\mathbb{S}}(u)$. Then $R\left(C_{\mathbb{S}}(u)\right) \approx u$, showing (3.1.12). That proves ii).

Prove ii) \Rightarrow iii). The map $C_{\mathbb{S}}: A^{*} \rightarrow D$ induces a map $\bar{C}_{\mathbb{S}}: A^{*} / \approx \rightarrow D$ defined by $\bar{C}_{\mathbb{S}}(\bar{w})=\widetilde{I}_{\ell}(\emptyset, \bar{w})$ for all w in A^{*}. Let us prove that this map is bijective, whose inverse is the map $\overline{\mathrm{R}}:=\pi \circ \mathrm{R}$. We have $C_{\mathbb{S}}(w)=\bar{C}_{\mathbb{S}}(\bar{w})$ for all w in A^{*}. Hence $\bar{C}_{\mathbb{S}} \bar{R}(d)=\bar{C}_{\mathbb{S}}(\bar{R}(d))=C_{\mathbb{S}}(R(d))=d$ for all d in D. On the other hand, following 3.1 .12 , we have $\bar{R} \bar{C}_{\mathbb{S}}(\bar{w})=\overline{\mathrm{R}}\left(\mathrm{C}_{\mathbb{S}}(w)\right)=\overline{\mathrm{RC}_{\mathbb{S}}(w)}=\bar{w}$ for every $w \in A^{*}$. This proves that the map $\overline{\mathrm{C}}_{\mathbb{S}}$ is bijective. By definition $\overline{\mathrm{C}}_{\mathbb{S}}(\lambda)=\emptyset$, let us prove that we have

$$
\begin{equation*}
\overline{\mathrm{C}}_{\mathbb{S}}(\bar{u} \bar{v})=\overline{\mathrm{C}}_{\mathbb{S}}(\bar{u}) \star_{\mathrm{I}} \overline{\mathrm{C}}_{\mathbb{S}}(\bar{v}) \tag{3.1.15}
\end{equation*}
$$

for all \bar{u}, \bar{v} in A^{*} / \approx. We have

$$
\begin{aligned}
& \overline{\mathrm{C}}_{\mathbb{S}}(\bar{u}) \star_{\mathrm{I}}{\overline{\mathrm{C}_{\mathbb{S}}}(\bar{v})}=\mathrm{C}_{\mathbb{S}}(u) \star_{\mathrm{I}} \mathrm{C}_{\mathbb{S}}(v) \\
&=\mathrm{I}_{\ell}\left(\mathrm{C}_{\mathbb{S}}(u), \mathrm{RC}_{\mathbb{S}}(v)\right) \\
&=\widetilde{\mathrm{I}}_{\ell}\left(\mathrm{C}_{\mathbb{S}}(u), \overline{\mathrm{RC}_{\mathbb{S}}(v)}\right)
\end{aligned}
$$

From 3.1.12 it follows that $\overline{\mathrm{C}}_{\mathbb{S}}(\bar{u}) \star_{\mathrm{I}} \overline{\mathrm{C}}_{\mathbb{S}}(\bar{v})=\widetilde{\mathrm{I}}_{\ell}\left(\mathrm{C}_{\mathbb{S}}(u), \bar{v}\right)$. Moreover, the reading map ℓ being left-to-right, we have $C_{\mathbb{S}}(u v)=\left(C_{\mathbb{S}}(u) \sim_{I_{\ell}} v\right)$. This proves relation (3.1.15).

Prove iii) $\Rightarrow \mathbf{i}$). The structure monoids $\mathbf{M}(\mathrm{D}, \mathrm{I})$ and the quotient monoid A^{*} / \approx are isomorphic. That is, $u \approx v$ if and only if $C_{\mathbb{S}}(u)={ }_{I} C_{\mathbb{S}}(v)$ for all u, v in A^{*}. This is our claim.
3.1.16. Congruence generated by a string data structure. Let $\mathbb{S}=(D, \ell, I, R)$ be an associative string data structure over A. We denote by $\mathcal{R}(R)$ the rewriting system on A, whose rules are defined by

$$
\begin{equation*}
\gamma_{d, d^{\prime}}: R(d) R\left(d^{\prime}\right) \rightarrow R\left(d \star_{I} d^{\prime}\right) \tag{3.1.17}
\end{equation*}
$$

for all d, d^{\prime} in D such that $R\left(d \star_{I} d^{\prime}\right) \neq R(d) R\left(d^{\prime}\right)$. We will denote by $\approx_{\mathbb{S}}$ the congruence relation on the free monoid \mathcal{A}^{*} generated by the rules 3.1.17. The map \bar{R} defined in the proof of Theorem 3.1.13 is a monoid morphism from the structure monoid $\mathbf{M}(D, I)$ to A^{*} / \approx_{s}. Indeed, for all d, d^{\prime} in D the equality $\bar{R}\left(d \star_{I} d^{\prime}\right)=\bar{R}(d) \bar{R}\left(d^{\prime}\right)$ holds in $A^{*} / \approx_{\mathbb{S}}$ and by definition we have $\bar{R}(\emptyset)=\lambda$. However, note that the map $\overline{\mathrm{R}}$ is not in general a morphism of monoids for an arbitrary congruence \approx.
3.1.18. Proposition. For a right (resp. left) associative string data structure \mathbb{S}, the following conditions hold
i) the rewriting system $\mathcal{R}(R)$ on A is convergent,
ii) \mathbb{S} presents the quotient monoid $\mathrm{A}^{*} / \approx_{\mathbb{S}}$ (resp. the opposite of the quotient monoid $\mathrm{A}^{*} / \approx_{\mathbb{S}}$).

Proof. Consider a right string data structure $\mathbb{S}=(\mathrm{D}, \ell, \mathrm{I}, \mathrm{R})$, the proof is similar for a left one.
i) The termination of the rewriting system $\mathcal{R}(R)$ is a consequence of the termination of $\mathcal{R}(\mathrm{D}, \mathbb{S})$. Indeed, any rewriting sequence with respect to $\mathcal{R}(R)$ gives rise to a rewriting sequence with respect to $\mathcal{R}(D, \mathbb{S})$. Hence if $\mathcal{R}(R)$ has an infinite rewriting path, so does for $\mathcal{R}(D, \mathbb{S})$. As $\mathcal{R}(D, \mathbb{S})$ is terminating this proves that $\mathcal{R}(R)$ is terminating. According to Newman's lemma, [39], we prove confluence from local confluence. It follows from the confluence of critical branchings of $\mathcal{R}(R)$. They have the form:

for all $d, d^{\prime}, d^{\prime \prime}$ in D such that $R(d) R\left(d^{\prime}\right) \neq R\left(d \star_{I} d^{\prime}\right)$ and $R\left(d^{\prime}\right) R\left(d^{\prime \prime}\right) \neq R\left(d^{\prime} \star_{I} d^{\prime \prime}\right)$. These critical branching are confluent by associativity of \star_{I}.
ii) Following Theorem 3.1.13, it suffices to prove that \mathbb{S} is compatible with the congruence relation $\approx \mathbb{S}$. Suppose that $u \approx_{\mathbb{S}} v$, for \mathfrak{u}, v in \mathcal{A}^{*} and prove that

$$
\left(\mathrm{d} \sim_{I_{\mathrm{e}_{1}}} u\right)=\left(\mathrm{d} \sim_{I_{\mathrm{I}_{1}}} v\right)
$$

holds for all d in D . The string data structure \mathbb{S} being right, following 3.1.2), we have

$$
C_{\mathbb{S}}(R(d) u)=\left(d \sim_{I_{e_{1}}} u\right)
$$

for all $u \in A^{*}$ and $d \in D$. Since $u \approx_{s} v$, we have $R(d) u \approx_{s} R(d) v$, and by the unique normal form property of $\mathcal{R}(R)$, we have $R C_{\mathbb{S}}(R(d) u)=R C_{\mathbb{S}}(R(d) v)$ for all d in D. The map R being injective, we deduce that $\mathrm{C}_{\mathbb{S}}(\mathrm{R}(\mathrm{d}) \mathfrak{u})=\mathrm{C}_{\mathbb{S}}(\mathrm{R}(\mathrm{d}) \boldsymbol{v})$. That proves condition $\left.\mathbf{i}\right)$ of 3.1.11. Now consider a word $w=x_{1} \ldots x_{p}$ in \mathcal{A}^{*}. It can be written $w=\operatorname{Rı}_{D}\left(x_{1}\right) \ldots R \iota_{D}\left(x_{p}\right)$. Following i), the rewriting system $\mathcal{R}(R)$ is convergent, hence any $\mathcal{R}(R)$-reduction on w ends at the normal form $R\left(\iota_{D}\left(x_{1}\right) \star \ldots \star \mathbb{s} \iota_{D}\left(x_{p}\right)\right)$, that is equal to $R C_{\mathbb{S}}(w)$ by associativity of \mathbb{S}. It follows that $R C_{\mathbb{S}}(w) \approx_{\mathbb{S}} w$, which proves condition ii) of 3.1.11
3.1.19. Remark. Condition ii) of Proposition 3.1 .18 shows that the rewriting system $\mathcal{R}(R)$ is a presentation of the structure monoid $\mathbf{M}(\mathrm{D}, \mathrm{I})$. Thus, one can prove that an associative string data structure \mathbb{S} satisfies the cross-section property for a congruence relation \approx on A^{*} by showing that $\mathcal{R}(R)$ is a presentation of the quotient monoid A^{*} / \approx. Indeed, in that case we have $u \approx v$ if and only if $u \approx_{\mathbb{S}} v$ if and only if $C_{\mathbb{S}}(u)=C_{\mathbb{S}}(v)$ for all u, v in A^{*}.

3.2. Commutation of insertions

3.2.1. Commutation of insertions. A string data bistructure over A is a quadruple (D, I, J, R) such that $\left(D, \ell_{1}, I, R\right)\left(\right.$ resp. $\left.\left(D, \ell_{r}, J, R\right)\right)$ is a right (resp. left) string data structure over A and such that the one-element insertion maps I and J commute, that is the following condition

$$
\begin{equation*}
y \rightsquigarrow \rightsquigarrow_{J}\left(d \sim_{I} x\right)=\left(y \rightsquigarrow_{J} d\right) \sim_{I} x \tag{3.2.2}
\end{equation*}
$$

holds for all d in D and x, y in A.
3.2.3. Theorem. If $(\mathrm{D}, \mathrm{I}, \mathrm{J}, \mathrm{R})$ is a string data bistructure over A, then the compositions \star_{I} and \star_{J} are associative and the following relation

$$
\begin{equation*}
d \star_{\mathrm{I}} \mathrm{~d}^{\prime}=\mathrm{d}^{\prime} \star_{\mathrm{J}} \mathrm{~d} \tag{3.2.4}
\end{equation*}
$$

holds for all $\mathrm{d}, \mathrm{d}^{\prime}$ in D . Moreover, the structure monoids $\mathbf{M}(\mathrm{D}, \mathrm{I})$ and $\mathbf{M}(\mathrm{D}, \mathrm{J})$ are anti-isomorphic.
Proof. Let $\mathbb{S}=\left(\mathrm{D}, \ell_{1}, \mathrm{I}, \mathrm{R}\right)$ and $\mathbb{T}=\left(\mathrm{D}, \ell_{\mathrm{r}}, \mathrm{J}, \mathrm{R}\right)$ be the right and left string data structures associated to (D, I, J, R). Let us first show by induction on the length of w that

$$
\begin{equation*}
\mathrm{C}_{\mathbb{S}}(w)=\mathrm{C}_{\mathbb{T}}(w) \tag{3.2.5}
\end{equation*}
$$

holds for all w in A^{*}. By definition, $C_{\mathbb{S}}(x)=C_{\mathbb{T}}(x)$ holds for all x in A. Suppose that 3.2 .5) holds for words of length $n \geqslant 1$ and consider $w y$ a word in A^{*}, where $w=x v$ with x in A and $|v|=n-1$. By induction hypothesis, we have $\mathrm{C}_{\mathbb{S}}(w y)=\mathrm{I}\left(\mathrm{C}_{\mathbb{S}}(w), y\right)=\mathrm{I}\left(\mathrm{C}_{\mathbb{T}}(w), y\right)$, and by commutation of I and J , we have $\mathrm{I}\left(\mathrm{J}\left(\mathrm{C}_{\mathbb{T}}(v), x\right), y\right)=\mathrm{J}\left(\mathrm{I}\left(\mathrm{C}_{\mathbb{T}}(v), y\right), x\right)$. As a consequence, we have

$$
\mathrm{I}\left(\mathrm{C}_{\mathbb{T}}(w), y\right)=\mathrm{I}\left(\mathrm{~J}\left(\mathrm{C}_{\mathbb{T}}(v), x\right), y\right)=\mathrm{J}\left(\mathrm{I}\left(\mathrm{C}_{\mathbb{S}}(v), y\right), x\right)=\mathrm{J}\left(\mathrm{C}_{\mathbb{S}}(v y), x\right)
$$

By induction, we deduce that $\mathrm{I}\left(\mathrm{C}_{\mathbb{T}}(w), y\right)=J\left(\mathrm{C}_{\mathbb{T}}(v y), x\right)$. This proves the equality $\mathrm{C}_{\mathbb{S}}(w y)=\mathrm{C}_{\mathbb{T}}(w y)$. Having $d \star_{I} d^{\prime}=C_{\mathbb{S}}\left(R(d) R\left(d^{\prime}\right)\right)=C_{\mathbb{T}}\left(R(d) R\left(d^{\prime}\right)\right)=d^{\prime} \star_{J} d$ for all d, d^{\prime} in D, the commutation relation (3.2.4) is an immediate consequence of relation 3.2.5).

Prove associativity of \star_{I} and \star_{J}. From 3.2.5) we have $\mathrm{C}_{\mathbb{S}}\left(R(d) R\left(d^{\prime}\right) R\left(d^{\prime \prime}\right)\right)=C_{\mathbb{T}}\left(R(d) R\left(d^{\prime}\right) R\left(d^{\prime \prime}\right)\right)$ for all $d, d^{\prime}, d^{\prime \prime} \in D$. But

$$
C_{\mathbb{S}}\left(R(d) R\left(d^{\prime}\right) R\left(d^{\prime \prime}\right)\right)=\left(d \star_{I} d^{\prime}\right) \star_{I} d^{\prime \prime} \quad \text { and } \quad C_{\mathbb{T}}\left(R(d) R\left(d^{\prime}\right) R\left(d^{\prime \prime}\right)\right)=\left(d^{\prime \prime} \star_{J} d^{\prime}\right) \star_{J} d
$$

by definition, hence we have $\left(d \star_{I} d^{\prime}\right) \star_{I} d^{\prime \prime}=\left(d^{\prime \prime} \star_{J} d^{\prime}\right) \star_{J} d$ for all $d, d^{\prime}, d^{\prime \prime}$ in D. By commutation of I and J we obtain

$$
\left(d^{\prime \prime} \star_{\mathrm{J}} \mathrm{~d}^{\prime}\right) \star_{\mathrm{J}} \mathrm{~d}=\mathrm{d} \star_{\mathrm{I}}\left(\mathrm{~d}^{\prime \prime} \star_{\mathrm{J}} \mathrm{~d}^{\prime}\right)=\mathrm{d} \star_{\mathrm{I}}\left(\mathrm{~d}^{\prime} \star_{\mathrm{I}} \mathrm{~d}^{\prime \prime}\right) .
$$

We deduce that the product \star_{I} is associative. The proof of the associativity of \star_{J} is similar.
Finally, the anti-isomorphism between monoids $\mathbf{M}(D, I)$ and $\mathbf{M}(D, J)$ is a consequence of the fact that the rewriting systems $\mathcal{R}(\mathrm{D}, \mathbb{S})$ and $\mathcal{R}(\mathrm{D}, \mathbb{T})$ are presentations of these monoids and the commutation of \star_{I} with \star_{J}.

As consequence of this result, when (D, I, J, R) is a string data bistructure over A, for all d in D and x in A, we can relate the definition of the insertions algorithm from each other using the following relations:

$$
\begin{align*}
& \left(d \rightsquigarrow_{I} x\right)=\left(R(d) \rightsquigarrow_{J} \iota_{D}(x)\right), \tag{3.2.6}\\
& \left(x \rightsquigarrow_{J} d\right)=\left(\iota_{D}(x) \rightsquigarrow_{I} R(d)\right) . \tag{3.2.7}
\end{align*}
$$

3.3. Example: plactic monoids of classical types

3.3.1. Plactic monoids of type A. Recall that the plactic monoid of type A of rank \mathfrak{n} introduced in [33], denoted by \mathbf{P}_{n}, is presented by the rewriting system on [n] whose rules are the Knuth relations, [29]:

$$
\begin{align*}
& \xi_{x, y, z}: z x y \rightarrow x z y \text { for } 1 \leqslant x \leqslant y<z \leqslant n \tag{3.3.2}\\
& \zeta_{x, y, z}: y z x \rightarrow y x z \text { for } 1 \leqslant x<y \leqslant z \leqslant n
\end{align*}
$$

We will denote by $\approx_{\mathbf{P}_{n}}$ the congruence relation of $[\mathrm{n}]^{*}$ generated by this presentation.
3.3.3. String data bistructures on Young tableaux. Knuth in [29] described the congruence $\approx_{\mathbf{P}_{n}}$ using the notion of Young tableau. Recall from [45] that a (Young) tableau over [n] is a collection of boxes in left-justified rows

filled with elements of $[n]$, where the entries weakly increase along each row, i.e. $x_{k}^{i} \leqslant x_{k}^{i+1}$ for all $k, i \geqslant 1$, and strictly increase down each column, i.e. $x_{k}^{i}<x_{k+1}^{i}$ for all $k, i \geqslant 1$. Denote by Yt_{n} the set of tableaux over [n]. A column (resp. row) over [n] is a tableau such that every row (resp. column) contains exactly one box. Denote by $\operatorname{Col}(n)$ the set of columns over $[n]$.

Schensted introduced two algorithms to insert an element x of $[n]$ into a tableau t of Yt_{n}, [42]. The right (or row) insertion algorithm S_{r} computes a tableau ($t \sim s_{r} x$) as follows. If x is at least as large as the last element of the top row of t, then put x to the right of this row. Otherwise, let y be the smallest element of the top row of t such that $y>x$. Then x replaces y in this row and y is bumped into the next row where the process is repeated. The algorithm terminates when the element which is bumped is at least as large as the last element of the next row. Then it is placed at the right of that row. For example, the four steps to compute $\left(\frac{T_{\frac{13}{3}}^{\frac{2}{6}}{ }^{35}}{\sim} \sim S_{r}\right.$ 2) are:

The left (or column) insertion algorithm S_{l} computes a tableau ($x \rightsquigarrow s_{l} t$) as follows. If x is larger than the first element of the leftmost column of t, then put x to the bottom of this column. Otherwise, let y be the smallest element of the leftmost column of t such that $y \geqslant x$. Then x replaces y in this column
and y is bumped into the next column where the process is repeated. The algorithm terminates when the element which is bumped is greater than all the elements of the next column. Then it is placed at the bottom of that column. Note that the left insertion algorithm can be deduce from the right one by the relation (3.2.7). Indeed, we have:

$$
\left(x \leadsto s_{l} t\right)=\left(x \sim s_{r} R(t)\right)
$$

Denote by $\mathrm{R}_{\mathrm{col}}: \mathrm{Yt}_{\mathrm{n}} \rightarrow[\mathrm{n}]^{*}$ the map that reads tableaux column by column, from left to right and from bottom to top. Schensted's algorithms induce two string data structures on Yt_{n} : a right one $\mathbb{Y}_{n}^{r}:=\left(\mathrm{Yt}_{\mathrm{n}}, \ell_{1}, S_{r}, \mathrm{R}_{\mathrm{col}}\right)$ and a left one $\mathbb{Y}_{n}^{c}:=\left(\mathrm{Yt}_{n}, \ell_{\mathrm{r}}, S_{l}, \mathrm{R}_{\mathrm{col}}\right)$. Note that the insertion S_{r} with the readings ℓ_{r} and $R_{\text {col }}$ does not induce an associative structure on Yt_{n} as shown by the following example:

Finally, note that we can show that the following equalities hold, see [29. Theorem 5],

$$
\begin{aligned}
& C_{\mathbb{Y}_{n}^{r}}(z x y)=C_{\mathbb{Y}_{n}^{r}}(x z y) \text { for } 1 \leqslant x \leqslant y<z \leqslant n \\
& C_{\mathbb{Y}_{n}^{r}}(y z x)=C_{\mathbb{Y}_{n}^{r}}(y x z) \text { for } 1 \leqslant x<y \leqslant z \leqslant n
\end{aligned}
$$

More generally, Knuth showed that for any word w, w^{\prime} in $[n]^{*}, \mathrm{C}_{\mathbb{Y}_{n}^{r}}(w)=\mathrm{C}_{\mathbb{Y}_{n}^{r}}\left(w^{\prime}\right)$ holds if and only if $w \approx_{\mathbf{P}_{n}} w^{\prime}$ holds, [29, Theorem 6], that is the string data structure \mathbb{Y}_{n}^{r} satisfies the cross-section property for $\approx_{\mathbf{P}_{n}}$.
3.3.4. Commutation of Schensted's insertions. Schensted showed that S_{r} and S_{l} commute, [42, Lemma 6]. Hence we have a string data bistructure ($\mathrm{Yt}_{n}, S_{r}, S_{l}, R_{\text {col }}$) over [n]. From Theorem 3.2.3, we deduce that the string data structures \mathbb{Y}_{n}^{r} and \mathbb{Y}_{n}^{c} are associative and the structure monoids $\mathbf{M}\left(\mathbb{Y}_{n}^{r}, S_{r}\right)$ and $\mathbf{M}\left(\mathbb{Y}_{n}^{c}, S_{l}\right)$ are anti-isomorphic. Note that \mathbb{Y}_{n}^{r} being compatible with $\approx_{\mathbf{P}_{n}}$, by Theorem 3.1.13 the monoid $\mathbf{M}\left(Y_{n}^{r}, S_{r}\right)$ is isomorphic to \mathbf{P}_{n}. Let $R_{c o l}^{o}$ be the reading map on Yt_{n} obtained by reading the columns from right to left and from top to bottom. The string data structure $\left(\mathrm{Yt}_{n}, \ell_{l}, S_{l}, R_{c o l}^{o}\right)$ is compatible with the congruence generated by the following rules

$$
\begin{align*}
& z x y \rightarrow x z y \text { for } 1 \leqslant x<y \leqslant z \leqslant n \tag{3.3.5}\\
& y z x \rightarrow y x z \text { for } 1 \leqslant x \leqslant y<z \leqslant n
\end{align*}
$$

as pointed out by Knuth in [29, Section 6]. Note that these relations are used to present the plactic monoid of type A in the theory of crystal graphs, [12, 32, 37].
3.3.6. The plactic monoids of classical types. In Subsection 3.3 we have given a string data bistructure that presents plactic monoids of type A. Using Kashiwara's theory of crystal bases, the plactic congruence of plactic monoids of type A generated by the relations 3.3 .5 characterizes the representations of the general Lie algebra $\mathfrak{g l}_{n}$ of n by n matrices, [12, 32]. We refer the reader to [27] for details on crystal bases theory and to [35--37] for characterizations of representations of Lie algebras by plactic congruences. More generally, since Kashiwara's theory of crystal bases also exists for all classical semisimple Lie algebras, a plactic monoid was introduced for each of these algebras using a case-by-case analysis, [35-37]. To each semisimple Lie algebra it is associated a finite alphabet A indexing a basis of the vector representation of the algebra and a congruence $\approx_{\mathbf{P}_{n}(A)}$ on the free monoid A^{*} is defined using the crystal graph of the standard representation. In this way, to each semisimple Lie algebra it corresponds a plactic monoid defined as the quotient of A^{*} by the congruence $\approx_{\mathbf{P}_{n}(\mathcal{A})}$. In particular, the plactic monoid of type C, B and D corresponds respectively to the representations of the symplectic Lie algebra, the odd-dimensional orthogonal Lie algebra and the even-dimensional orthogonal Lie algebra. Lecouvey in [35, 36] introduced the notion of admissible columns generalizing the notion of columns in type A, and the notions of symplectic tableaux for type C and orthogonal tableaux for type B and D generalizing the notion of tableaux for type A. He also introduced a Schensted-like left insertion on symplectic tableaux, see [35, Section 4] and orthogonal tableaux, see [36, Section 3.3]. These insertion algorithms define a left string data structure on the set of symplectic and orthogonal tableaux for type C, B, D. However, the existence of a right insertion algorithm on symplectic and orthogonal tableaux that commutes with Lecouvey's left insertion, and thus a string data bistructure on these tableaux is still an open problem.

3.4. Other examples

3.4.1. The hypoplactic monoid. Recall that the hypoplactic monoid of rank n introduced in [30, 40], is the monoid presented by the rewriting system on $[\mathrm{n}]$ and whose rules are the Knuth relations 3.3.2), together with the following rules

$$
z x t y \rightarrow x z y t \quad \text { for } 1 \leqslant x \leqslant y<z \leqslant t \leqslant n \quad \text { and } \quad t y z x \rightarrow y t x z \quad \text { for } 1 \leqslant x<y \leqslant z<t \leqslant n
$$

The congruence generated by this presentation can be described by using quasi-ribbon tableaux, [40], and in terms of Kashiwara's theory of crystal bases, [7]. Recall that a quasi-ribbon tableau over [n] is a collection of boxes filled with elements of [n], where the entries weakly increase along each row and strictly increase down each column, and where the columns are arranged from left to right so that the bottom box in each column aligns with the top box of the next column. We will denote by Qr_{n} the set of quasi-ribbon tableaux over $[\mathrm{n}]$. Let denote by R_{c} the reading map on Qr_{n} obtained by reading the columns from left to right and from bottom to top. For instance, the following diagram

is a quasi-ribbon tableau over [9] and its reading is 1165687689. Novelli proved in [40, Theorem 4.7] that the set Qr_{n} satisfies the cross-section property for the hypoplactic monoid.

A right insertion algorithm $\mathrm{H}^{r}: \mathrm{Qr}_{n} \times[\mathrm{n}] \rightarrow \mathrm{Qr}_{n}$ that inserts an element x in $[n]$ into a quasi-ribon tableau t is introduced in [40, Algorithm 4.4] as follows. If x is smaller than each element of t, create a
new box filled by x and attach t to the bottom of this box by its topmost and leftmost box. Otherwise, let y be the rightmost and the bottommost element of t that is smaller or equal to x. Create a new box filled by x to the right of the box containing y and attach the other boxes of t situated to the right and below of y onto the bottom of \boxtimes. This algorithm defines a right string data structure $\mathbb{Q}_{n}^{r}=\left(\mathrm{Qr}_{n}, \ell_{1}, H^{r}, R_{c}\right)$ over [n]. For instance the five steps to compute $C_{\mathbb{Q}_{n}^{r}}(142215)$ by insertion produce the following tableaux

A left insertion algorithm $\mathrm{H}^{l}: \mathrm{Qr}_{n} \times[\mathrm{n}] \rightarrow \mathrm{Qr}_{n}$ that inserts an element x in [n] into a quasi-ribon tableau t is also introduced in [5] Algorithm 4.4] as follows. If x is bigger than each element of t, create a new box filled by x and attach t to the top of this box by its bottommost and rightmost box. Otherwise, let y be the leftmost and the topmost element of t that is bigger or equal to x. Create a new box filled by x to the left of the box containing y and attach the other boxes of t situated to the left and above of y onto the top of x. This algorithm defines a left string data structure $\mathbb{Q}_{n}^{l}=\left(\mathrm{Qr}_{n}, \ell_{r}, H_{l}, R_{c}\right)$ over [$\left.n\right]$. For instance the five steps to compute $C_{\mathbb{Q}_{n}^{l}}(142215)$ by insertion are

However, the commutation of the right insertion algorithm H^{r} and the left insertion algorithm H^{l}, and thus the existence of a string data bistructure on quasi-ribbon tableaux is still an open problem.
3.4.2. The sylvester monoid. The structure of sylvester monoids appeared in the combinatorial study of Loday-Ronco's algebra of planar binary trees related to non-commutative symmetric functions and free symmetric functions, [25]. Recall from [25, Definition 8] that the sylvester monoid of rank n is the monoid presented by the rewriting system on $[n]$ and whose rules are

$$
z x w y \rightarrow x z w y \quad \text { for all } 1 \leqslant x \leqslant y<z \leqslant n \text { and } w \in[n]^{*}
$$

The sylvester monoid can be constructed using the notion of binary search trees and a Schensted-like left insertion on these trees, [25, Definition 7], and also by using the theory of crystal bases, [8]. Recall that a (right strict) binary search tree is a labelled rooted binary tree where the label of each node is greater than or equal to the label of every node in its left sub-tree, and strictly less than every node in its right sub-tree. We will denote by Bt_{n} the set of binary search trees on $[\mathrm{n}]$. Denote by L_{l} the reading map on Bt_{n} by recursively performing the right to left postfix reading of the right sub-tree of a tree, then recursively performing the right to left postfix reading of its left sub-tree and finally add the root of the tree. For instance, the following tree

is a binary search tree on [8] and its reading is 78746 . Note that the set Bt_{n} satisfies the cross-section property for the sylvester monoid, [25]. The left insertion algorithm $\mathrm{I}_{\mathrm{Bt}_{n}}$ introduced in [25], Subsection 3.3]
inserts an element x in [n] into a binary search tree t as follows. If t is empty, create a node and label it by x. If t is non-empty, then if x is strictly greater than the label of the root node, then recursively insert x into the right sub-tree of t. Otherwise recursively insert x into its right sub-tree. This algorithm defines a left string data structure $\mathbb{B}_{n}^{l}=\left(\mathrm{Bt}_{n}, \ell_{r}, I_{B t_{n}}, L_{l}\right)$ over $[n]$. For instance, the four steps to compute $C_{\mathbb{B}_{n}^{l}}(87476)$ are

Note that the existence of a string data bistructure on Bt_{n} is still an open problem.
3.4.3. The patience sorting monoids. Recall from [9, Section 3] that the left (resp. right) patience sorting monoid, or lPS (resp. rPS) monoid for short, of rank n is the monoid presented by the rewriting system on $[\mathrm{n}]$ and whose rules are

$$
y x_{p} \ldots x_{1} x \rightarrow y x x_{p} \ldots x_{1} \quad \text { for } x<y \leqslant x_{1}<\ldots<x_{p} \quad\left(\text { resp. } x \leqslant y<x_{1} \leqslant \ldots \leqslant x_{p}\right)
$$

Recall that an lPS (resp. rPS) tableau over [n] is a collection of boxes in bottom-justified columns, filled with elements of [n], where the entries weakly (resp. strictly) increase along each row from left to right and strictly (resp. weakly) decrease along each column from top to bottom. Denote by Pl_{n} (resp. Pr_{n}) the set of lPS (resp. rPS) tableaux over [n], and by R^{c} the reading map on $P l_{n}$ (resp. Pr_{n}) obtained by reading the columns of an IPS (resp. rPS) tableau from left to right and from top to bottom. For instance, the following tableaux

are respectively an IPS and an rPS tableaux over [5] and their readings are respectively 1421324 and 1422445.

A right insertion algorithm $P_{l}^{r}: \mathrm{Pl}_{n} \times[n] \rightarrow \mathrm{Pl}_{n}$ (resp. $\mathrm{P}_{r}^{r}: \mathrm{Pr}_{n} \times[n] \rightarrow \mathrm{Pr}_{n}$) that inserts an element x in [n] into an IPS (resp. rPS) tableau t is introduced in [44, Subsection 3.2] as follows. If x is greater or equal (resp. greater) to every element of the bottom row of t, create a box filled by x to the right of this row. Otherwise, let y be the leftmost element of the bottom row of t that is greater than (resp. greater or equal to) x, replace y by x and attach the column containing y to to the top of the box filled by x. This algorithm defines a right string data structure $\mathbb{P L}_{n}^{r}=\left(\mathrm{Pl}_{n}, \ell_{1}, \mathrm{P}_{\mathrm{l}}^{\mathrm{r}}, \mathrm{R}^{\mathrm{c}}\right)\left(\right.$ resp. $\left.\mathbb{P R}_{n}^{r}=\left(\operatorname{Pr}_{n}, \ell_{1}, P_{r}^{r}, R^{c}\right)\right)$ over [n]. For instance, the six steps to compute the IPS tableau $\mathcal{C}_{\mathbb{P L}}^{r}{ }_{n}^{r}(1423241)$ are

$$
\begin{array}{|ll|l|l|l|l|l|l|l|}
\hline 1 & \begin{array}{lll}
4 \\
\hline 1 & 4 & 4 \\
\hline 1 & 2 \\
\hline
\end{array} & \begin{array}{|l|l|l|}
\hline 1 & 2 & 3 \\
\hline
\end{array} & 2 & 2 \\
\hline
\end{array}
$$

and the six steps to compute the rPS tableau $\mathrm{C}_{\mathbb{P} R_{n}^{r}}(1423241)$ are

Note that a left insertion algorithm that inserts an element of [n] into an IPS (resp. rPS) tableau is also introduced in [9, Algorithm 3.14], yielding a left string data structure over [n]. The commutation of this algorithm with the right insertion algorithm $\mathrm{P}_{\mathrm{l}}^{\mathrm{r}}$ (resp. $\mathrm{P}_{\mathrm{r}}^{\mathrm{r}}$), and thus the existence of a string data bistructure on these tableaux is still an open problem.

4. Coherent presentations by insertion

4. Coherent presentations by insertion

In this section we show how to generate a string data structure (D, ℓ, I, R) by a subset Q of D. This allows us to consider an associated rewriting system $\mathcal{R}(\mathrm{Q}, \mathbb{S})$ that presents the structure monoid $\mathbf{M}(\mathrm{D}, \mathrm{I})$ with a more economic set of rules than $\mathcal{R}(\mathrm{D}, \mathbb{S})$. Finally, we explain in Subsection 4.2 how to extend such a rewriting system $\mathcal{R}(Q, \mathbb{S})$ into a coherent presentation of the monoid $\mathbf{M}(D, I)$, whose generating 3-cells are interpreted in terms of strategy among insertions.

4.1. Generating set of a string data structure

In this subsection $\mathbb{S}=(\mathrm{D}, \ell, \mathrm{I}, \mathrm{R})$ denotes a right associative string data structure over A. Note that all definitions and results remain valid when \mathbb{S} is a left associative string data structure.
4.1.1. Generating set of a string data structure. A generating set for \mathbb{S} is a subset Q of D such that the three following conditions hold:
i) $l_{D}(x) \in Q$ for all x in A,
ii) any element d in D can be decomposed as $d=c_{1} \star_{I} c_{2} \star_{I} \ldots \star_{I} c_{k}$, where $c_{1}, \ldots, c_{k} \in Q$,
iii) there exists a unique decomposition $d=c_{1} \star_{I} \ldots \star_{I} c_{l}$, with c_{1}, \ldots, c_{l} in Q satisfying the two following conditions:

$$
-c_{i} \star_{I} c_{i+1} \notin Q \text { for all } 1 \leqslant i \leqslant l-1
$$

$-R\left(c_{1} \star_{\mathrm{I}} \ldots \star_{\mathrm{I}} c_{l}\right)=R\left(c_{1}\right) \ldots R\left(c_{l}\right)$ holds in A^{*}.
We suppose that the empty element \emptyset in D is decomposed into an empty product. The decomposition $c_{1} \star_{I} \ldots \star_{I} c_{l}$ in iii) will be denoted by $[d]_{Q}$. For example, the set D is a generating set for \mathbb{S} by considering trivial decomposition in conditions ii) and iii), with $[d]_{D}=d$ for all d in D. As an other trivial example, the set $\iota_{D}(A)$ is a generating set for \mathbb{S}. Indeed, following condition iii) of 3.1.1, any d in D can be decomposed into a product for \star_{I} of elements $\iota_{D}(x)$ with x in A. Moreover, we have $[d]_{l_{D}(A)}=\iota_{D}\left(x_{1}\right) \star_{I} \ldots \star_{I} \iota_{D}\left(x_{l}\right)$ for all d in D with $R(d)=x_{1} \ldots x_{l}$. The unicity of the decomposition follows from the injectivity of the reading map R.
4.1.2. Given a generating set Q of \mathbb{S} one defines a string data structure $\mathbb{S}_{Q}:=\left(D, \ell_{Q}, I_{Q}, R_{Q}\right)$ over Q by setting
i) ℓ_{Q} is the left-to-right reading of words on Q,
ii) $\mathrm{I}_{\mathrm{Q}}: \mathrm{D} \times \mathrm{Q} \rightarrow \mathrm{D}$ is defined by $\mathrm{I}_{\mathrm{Q}}(\mathrm{d}, \mathrm{c})=\mathrm{d} \star_{\mathrm{I}} \mathrm{c}$ for all c in Q and d in D , and it induces an insertion $\operatorname{map} I_{\ell_{\mathrm{Q}}}: \mathrm{D} \times \mathrm{Q}^{*} \rightarrow \mathrm{D}$ defined by

$$
\mathrm{I}_{\ell_{\mathrm{Q}}}\left(\mathrm{~d}, \mathrm{c}_{1} \cdot \ldots \cdot \mathrm{c}_{\mathrm{k}}\right)=\mathrm{I}_{\ell_{\mathrm{Q}}}\left(\mathrm{~d} \star_{\mathrm{I}} \mathrm{c}_{1}, \mathrm{c}_{2} \cdot \ldots \cdot \mathrm{c}_{\mathrm{k}}\right)
$$

for all d in D and c_{1}, \ldots, c_{k} in Q, where \cdot denotes the product in Q^{*}, and $I_{\ell_{Q}}(d, \lambda)=d$,
iii) $R_{Q}: D \rightarrow Q^{*}$ is defined by $R_{Q}(d)=c_{1} \cdot c_{2} \ldots c_{k}$, for any d in D, with $[d]_{Q}=c_{1} \star_{I} c_{2} \star_{I} \ldots \star_{I} c_{k}$, and $c_{1}, c_{2}, \ldots, c_{k}$ in Q.

4.1.3. Proposition. The string data structures \mathbb{S} and \mathbb{S}_{Q} are Tietze equivalent.

Proof. By definition, the equality $c \star_{I_{Q}} c^{\prime}=c \star_{I} c^{\prime}$ holds in D for all c, c^{\prime} in Q. Hence for any word $w=c_{1} \cdot c_{2} \ldots c_{k}$ in Q^{*} we have $C_{\mathbb{S}_{Q}}(w)=c_{1} \star_{I} c_{2} \star_{I} \ldots \star_{I} c_{k}$. Now consider d, d^{\prime} in D. We have $d \star_{I_{Q}} d^{\prime}=I_{\ell_{Q}}\left(d, R_{Q}\left(d^{\prime}\right)\right)$. Moreover there exists a unique decomposition $\left[d^{\prime}\right]_{Q}=c_{1}^{\prime} \star_{I} \ldots \star_{I} c_{l}^{\prime}$ such that $R\left(d^{\prime}\right)=R\left(c_{1}^{\prime}\right) \ldots R\left(c_{l}^{\prime}\right)$ and $c_{i}^{\prime} \star_{I} c_{i+1}^{\prime} \notin Q$ for all $1 \leqslant i \leqslant l-1$. Hence

$$
I_{\ell_{\mathrm{Q}}}\left(\mathrm{~d}, \mathrm{R}_{\mathrm{Q}}\left(\mathrm{~d}^{\prime}\right)\right)=\mathrm{I}_{\ell_{\mathrm{Q}}}\left(\mathrm{~d}, \mathrm{c}_{1}^{\prime} \cdot \ldots \cdot \mathrm{c}_{l}^{\prime}\right)=\mathrm{I}_{\ell}\left(\mathrm{d}, \mathrm{R}\left(\mathrm{~d}^{\prime}\right)\right)=\mathrm{d} \star_{\mathrm{I}} \mathrm{~d}^{\prime}
$$

Hence the compositions \star_{I} and $\star_{I_{\mathrm{Q}}}$ coincide on D , that proves the Tietze equivalence of \mathbb{S} and \mathbb{S}_{Q}.
4.1.4. Given a generating set Q of \mathbb{S}, we denote by $\mathcal{R}(Q, \mathbb{S})$ the rewriting system on Q whose rules are

$$
\begin{equation*}
\gamma_{c, c^{\prime}}: c \cdot c^{\prime} \rightarrow R_{Q}\left(c \star_{I} c^{\prime}\right) \tag{4.1.5}
\end{equation*}
$$

for all c, c^{\prime} in Q, whenever $c \cdot c^{\prime} \neq R_{Q}\left(c \star_{I} c^{\prime}\right)$, and where \cdot denotes the product in the free monoid on Q. We will denote by $\operatorname{Nf}(Q, \mathbb{S})$ the set of $\mathcal{R}(Q, \mathbb{S})$-normal forms. Note that when $Q=D$, we recover the rewriting system $\mathcal{R}(D, \mathbb{S})$ defined in 3.1.7) and that presents the structure monoid $\mathbf{M}(D, I)$.
4.1.6. Well-founded generating set. A generating set Q of \mathbb{S} is called well-founded (resp. quadratic) if the rewriting system $\mathcal{R}(\mathrm{Q}, \mathbb{S})$ is terminating (resp. quadratic). When Q is well-founded, we denote by $\sigma^{\top}, \mathrm{Q}$ the leftmost reduction strategy on $\mathcal{R}(\mathrm{Q}, \mathbb{S})$. Given d in D and c in Q, by associativity of \star_{I}, the rewriting path $\sigma_{R_{Q}(d) c}^{\top, Q}$ reduces $R_{Q}(d) \cdot c$ to $R_{Q}\left(d \star_{I} c\right)$. More generally, the strategy $\sigma^{\top, Q}$ reduces any word w in Q^{*} to $\mathrm{R}_{\mathrm{Q}} \mathrm{C}_{\mathbb{S}_{\mathrm{Q}}}(w)$, that is, it defines a rewriting path

$$
\sigma_{w}^{\top, Q}: w \rightarrow^{*} \mathrm{R}_{\mathrm{Q}} \mathrm{C}_{\mathbb{S}_{\mathrm{Q}}}(w)
$$

for all w in Q^{*}. Note that, the rewriting system $\mathcal{R}(D, \mathbb{S})$ being convergent, any normalization strategy σ on $\mathcal{R}(D, \mathbb{S})$ reduces any word w in Q^{*} to $R_{Q} C_{\mathbb{S}_{Q}}(w)$.
4.1.7. Termination of $\mathcal{R}(Q, \mathbb{S})$. In most applications, the termination of $\mathcal{R}(Q, \mathbb{S})$ can be showed by introducing a well-founded order on the free monoid Q^{*} defined as follows. Given two well-founded ordered sets $\left(X_{1}, \leqslant\right)$ and $\left(X_{2}, \preceq\right)$, and two maps $g: Q \rightarrow X_{1}$ and $f: Q^{*} \rightarrow X_{2}$, one defines a lexicographic order $\prec_{f, g}$ on Q^{*} by setting

$$
u \prec_{f, g} v \text { if and only if }(f(u)<f(v)) \text { or }\left(f(u)=f(v) \text { and } g\left(c_{1}\right) \prec g\left(c_{1}^{\prime}\right)\right)
$$

for all $u=c_{1} \cdot \ldots \cdot c_{k}$ and $v=c_{1}^{\prime} \cdot \ldots \cdot c_{l}^{\prime}$ in Q^{*}. The order $\prec_{f, g}$ is well-founded, and we can prove the termination of the rewriting system $\mathcal{R}(\mathrm{Q}, \mathbb{S})$ by using such an order compatible with rules 4.1.5), that is the inequalities $f\left(R_{Q}\left(c \star_{I} c^{\prime}\right)\right) \leqslant f\left(c \cdot c^{\prime}\right)$ and $g\left(c_{1}\right) \prec g(c)$ hold, where c_{1} is the first element in the decomposition of $R_{Q}\left(c \star_{I} c^{\prime}\right)$ in Q^{*}. Then a reduction with respect to $\mathcal{R}(Q, \mathbb{S})$ must decrease a word in Q^{*} either with respect to f or with respect to g . In particular, this method is used to prove the termination of the column presentation for the plactic monoids of type C in [6, 23], and for other classical types A, B and D in [6], by introducing a well-founded order on the set of column generators corresponding to each type and where the map f counts the number of columns and g is the length of each column. Note that for the plactic monoid of type G_{2}, the termination of the column presentation cannot be proved by using the lexicographic order of the form $\prec_{f, g}$ since the Lecouvey insertion of one column into another one can produce a tableau with three columns as shown in [6].
4.1.8. Proposition. Let $\mathbb{S}=(\mathrm{D}, \ell, \mathrm{I}, \mathrm{R})$ be a right associative string data structure, and let Q be a wellfounded generating set of \mathbb{S}. Then $\mathcal{R}(\mathrm{Q}, \mathbb{S})$ is a convergent presentation of the structure monoid $\mathbf{M}(\mathrm{D}, \mathrm{I})$, and the set $\mathrm{Nf}(\mathrm{Q}, \mathbb{S})$ satisfies the cross-section property for the structure monoid $\mathbf{M}(\mathrm{D}, \mathrm{I})$.

Proof. Prove that $\mathcal{R}(Q, \mathbb{S})$ is confluent. Any critical pair of $\mathcal{R}(Q, \mathbb{S})$ has the form $\left(\gamma_{c, c^{\prime}} \cdot c^{\prime \prime}, c \cdot \gamma_{c^{\prime}, c^{\prime \prime}}\right)$, for $c, c^{\prime}, c^{\prime \prime}$ in Q. By 4.1.6, the target of the rewriting path $\sigma_{R_{Q}\left(c \star_{I} c^{\prime}\right) \cdot c^{\prime \prime}}^{\top, Q}$ is $R_{Q} C_{\mathbb{S}_{Q}}\left(R_{Q}\left(c \star_{I} c^{\prime}\right) \cdot c^{\prime \prime}\right)$. Suppose $R_{Q}\left(c \star_{I} c^{\prime}\right)=c_{1} \cdot \ldots \cdot c_{k}$, with c_{1}, \ldots, c_{k} in Q. The map ℓ_{Q} being a left-to-right reading, we have

$$
\mathrm{C}_{\mathbb{S}_{\mathrm{Q}}}\left(R_{\mathrm{Q}}\left(\mathrm{c} \star_{\mathrm{I}} c^{\prime}\right) \cdot c^{\prime \prime}\right)=\mathrm{I}_{\ell_{\mathrm{Q}}}\left(c_{1} \star_{\mathrm{I}} c_{2} \star_{\mathrm{I}} \ldots \star_{\mathrm{I}} c_{k}, c^{\prime \prime}\right)
$$

Moreover, the equality $c_{1} \star_{I} c_{2} \star_{I} \ldots \star_{I} c_{k}=c \star_{\mathrm{I}} c^{\prime}$ holds in D. Hence $C_{\mathbb{S}_{\mathrm{Q}}}\left(R_{\mathrm{Q}}\left(c \star_{\mathrm{I}} c^{\prime}\right) \cdot c^{\prime \prime}\right)=\left(c \star_{\mathrm{I}} c^{\prime}\right) \star_{\mathrm{I}} c^{\prime \prime}$. Similarly, one shows that the target of $\sigma_{c \cdot R_{Q}\left(c^{\prime} \star_{I} c^{\prime \prime}\right)}^{\top, Q}$ is $R_{Q}\left(c \star_{I}\left(c^{\prime} \star_{I} c^{\prime \prime}\right)\right)$. Then any critical pair of $\mathcal{R}(Q, \mathbb{S})$ has the following reduction diagram:

which is confluent by the associativity of the product \star_{I}. This proves that the rewriting system $\mathcal{R}(\mathrm{Q}, \mathbb{S})$ is locally confluent and thus confluent by termination hypothesis.

Prove that \mathbb{S}_{Q} is compatible with the congruence relation $\approx_{\mathcal{R}(\mathrm{Q}, \mathbb{S})}$. Consider a word w in Q^{*}. The rewriting system $\mathcal{R}(\mathrm{Q}, \mathbb{S})$ being terminating, the reduction strategy $\sigma^{\top}, \mathrm{Q}$ reduces w to $\mathrm{R}_{\mathrm{Q}} \mathrm{C}_{\mathbb{S}_{\mathrm{Q}}}(w)$ which proves that $\mathrm{R}_{\mathrm{Q}} \mathrm{C}_{\mathbb{S}_{\mathrm{Q}}}(w) \approx_{\mathcal{R}(\mathrm{Q}, \mathbb{S})} w$, showing condition ii) of 3.1.11. Suppose now that $u \approx_{\mathcal{R}(\mathrm{Q}, \mathbb{S})} v$, for u, v in Q^{*} and prove that $\mathrm{I}_{\ell_{\mathrm{Q}}}(\mathrm{d}, u)=\mathrm{I}_{\ell_{\mathrm{Q}}}(\mathrm{d}, v)$ holds for all d in D . The string data structure \mathbb{S}_{Q} being right associative, we have $I_{\ell_{Q}}(d, u)=d \star_{I_{Q}} C_{S_{Q}}(u)$, for all $u \in A^{*}$ and $d \in D$. Since $u \approx_{\mathcal{R}(Q, S)} v$, by the unique normal form property of $\mathcal{R}(Q, \mathbb{S})$, the equality $R_{Q} C_{\mathbb{S}_{Q}}(u)=R_{Q} C_{\mathbb{S}_{Q}}(v)$ holds. The map R_{Q} being injective, we obtain that $\mathrm{C}_{\mathbb{S}_{\mathrm{Q}}}(u)=\mathrm{C}_{\mathbb{S}_{\mathrm{Q}}}(v)$. We deduce that $\mathrm{d} \star_{\mathrm{I}_{\mathrm{Q}}} \mathrm{C}_{\mathbb{S}_{\mathrm{Q}}}(u)=\mathrm{d} \star_{\mathrm{I}_{\mathrm{Q}}} \mathrm{C}_{\mathbb{S}_{\mathrm{Q}}}(v)$, for all d in D . That proves condition \mathbf{i}) of 3.1 .11 . Then by Theorem 3.1.13 \mathbb{S}_{Q} presents the quotient monoid $\mathrm{Q}^{*} / \approx_{\mathcal{R}(\mathrm{Q}, \mathbb{S})}$. Hence, by Proposition 4.1.3 the rewriting system $\mathcal{R}(\mathrm{Q}, \mathbb{S})$ is a presentation of the structure monoid $\mathbf{M}(\mathrm{D}, \mathrm{I})$.

The fact that $\operatorname{Nf}(Q, \mathbb{S})$ satisfies the cross-section property for the monoid $\mathbf{M}(D, I)$ is an immediate consequence of the confluence of $\mathcal{R}(\mathrm{Q}, \mathbb{S})$ as explained in 3.1.10.

As a consequence of Proposition 4.1.8, when the generating set Q is well-founded, the rewriting systems $\mathcal{R}(R)$ and $\mathcal{R}(Q, \mathbb{S})$ are Tietze-equivalent. Indeed, by this result the rewriting systems $\mathcal{R}(Q, \mathbb{S})$ is Tietze-equivalent to $\mathcal{R}(\mathrm{D}, \mathbb{S})$, that is Tietze-equivalent to $\mathcal{R}(R)$ by Proposition 3.1.18.
4.1.9. Corollary. Let $\mathbb{S}=(\mathrm{D}, \ell, \mathrm{I}, \mathrm{R})$ be a right associative string data structure.
i) If \mathbb{S} has a finite well-founded generating set Q , then the structure monoid $\mathbf{M}(\mathrm{D}, \mathrm{I})$ has finite derivation type and thus finite homological type.
ii) If \mathbb{S} has a quadratic well-founded generating set Q , then the structure monoid $\mathbf{M}(\mathrm{D}, \mathrm{I})$ is Koszul.

Proof. In [43] the authors showed that if a monoid admits a finite convergent presentation, then it is of finite derivation type. Moreover, the property finite derivation type implies the property finite homological type. If \mathbb{S} has a finite well-founded generating set Q, then by Proposition 4.1 .8 the monoid $\mathbf{M}(D, I)$ admits $\mathcal{R}(\mathrm{Q}, \mathbb{S})$ as a finite convergent presentation, and thus it has finite derivation type.

The assertion ii) is a consequence of the fact that a monoid having a quadratic convergent presentation is Koszul, see [1, 18]. If \mathbb{S} has a quadratic well-founded generating set Q , by Proposition 4.1.8 the rewriting system $\mathcal{R}(\mathrm{Q}, \mathbb{S})$ is a quadratic convergent presentation of the structure monoid $\mathbf{M}(\mathrm{D}, \mathrm{I})$, and thus $\mathbf{M}(D, I)$ is Koszul.

For instance, the plactic monoid of type A has finite derivation type, but it is not Koszul, [13]. As a consequence, there is no quadratic well-founded generating set for Young structures of type A.
4.1.10. Example: column presentation of plactic monoids of type A. As an illustration, we prove that the set of columns $\operatorname{Col}(n)$ defined in Example 3.3 is a generating set for the associative string data structure \mathbb{Y}_{n}^{r}. For all x in $[n], C_{\mathbb{S}}(x)$ is a Young tableau with only one box filled by x, hence a column in $\operatorname{Col}(n)$. Every d in Yt_{n} can be uniquely decomposed into a sequence $\left(c_{1}, \ldots, c_{k}\right)$ of columns in $\operatorname{Col}(n)$:

where c_{1}, \ldots, c_{k} are the columns of d from left to right. By definition of the tableau, we have $d=c_{1} * s_{r} \ldots \star s_{r} c_{k}$, and $c_{i} \star s_{r} c_{i+1} \notin \operatorname{Col}(n)$ for all $1 \leqslant i \leqslant k-1$. Moreover, by definition of the reading map, the equality $R_{c o l}(d)=R_{c o l}\left(c_{1}\right) \ldots R_{c o l}\left(c_{k}\right)$ holds in $[n]^{*}$.

The rules of the rewriting system $\mathcal{R}\left(\operatorname{Col}(n), \mathbb{Y}_{n}^{r}\right)$ are of the form

$$
\gamma_{c, c^{\prime}}: c \cdot c^{\prime} \rightarrow R_{\operatorname{Col}(\mathfrak{n})}\left(c * \star_{s_{r}} c^{\prime}\right)
$$

for all c, c^{\prime} in $\operatorname{Col}(n)$ such that $c \cdot c^{\prime} \neq R_{\operatorname{Col}(\mathfrak{n})}\left(c \star{ }_{s_{r}} c^{\prime}\right)$, where the reading map $R_{\operatorname{Col}(n)}: \mathrm{Yt}_{n} \rightarrow \operatorname{Col}(n)^{*}$ sends a tableau to the product of its columns from left to right. By using a lexicographic order as defined in 4.1.7, one shows that the rewriting system $\mathcal{R}\left(\operatorname{Col}(n), \mathbb{Y}_{n}^{r}\right)$ is terminating. Following Proposition 4.1.8 the rewriting system $\mathcal{R}\left(\operatorname{Col}(n), \mathbb{Y}_{n}^{r}\right)$ is convergent and Tietze-equivalent to $\mathcal{R}\left(\mathrm{Yt}_{n}, \mathbb{Y}_{n}^{r}\right)$.

Note that Schensted's insertion S_{r} corresponds to the application of the leftmost normalisation strategy $\sigma^{\top}, \operatorname{Col}(n)$. For instance, consider the word 453126 in [6] ${ }^{*}$. To compute the tableau $C_{\mathbb{Y}_{6}^{r}}(453126)$, one applies the following successive rules of $\mathcal{R}\left(\operatorname{Col}_{6}, \mathbb{Y}_{6}^{\mathrm{r}}\right)$:

producing $\mathrm{C}_{\mathbb{Y}}^{\mathrm{c}}(453126)=$| 1 | 2 | 6 |
| :--- | :--- | :--- |
| 3 | 5 | |
| 4 | | |.

Moreover, the readings of the source and the target of any rule of $\mathcal{R}\left(\operatorname{Col}(n), \mathbb{Y}_{n}^{r}\right)$ are related by Knuth's relations 3.3.2, that is $R_{\text {col }}(c) R_{c o l}\left(c^{\prime}\right) \approx_{\mathbf{P}_{n}} R_{c o l}\left(c \star s_{r} c^{\prime}\right)$, for all c, c^{\prime} in $\operatorname{Col}(n)$ such that $c \cdot c^{\prime} \neq R_{\operatorname{Col}(n)}\left(c * s_{r} c^{\prime}\right)$. Indeed, it is sufficient to show that

$$
\begin{equation*}
R_{\operatorname{col}}\left(d \star_{S_{r}} l_{\mathbb{Y}_{n}^{r}}(x)\right) \approx_{\mathbf{P}_{n}} R_{\operatorname{col}}(d) x \tag{4.1.11}
\end{equation*}
$$

for all d in Yt_{n} and x in $[\mathrm{n}]$. By definition of Schensted's insertion, the process that occurs on the first row of a tableau, is repeated on the next rows of the same tableau. Then, it is sufficient to show the equivalence (4.1.11) in the case where d is a row on $[n]$. Since $R_{\text {col }}(u)$ and $R_{\text {col }}(v)$ are strictly decreasing words, the rows of the tableau $u{ }_{S_{r}} v$ are of length at most 2 . Then it is also sufficient to show the equivalence 4.1.11 in the case where d is a row of length at most 2. Suppose that $R_{\text {col }}(d)=x_{1} x_{2}$ with $x_{1} \leqslant x_{2}$ and let x be in $[n]$ such that $x_{2}>x$. There are two cases: $x_{1} \leqslant x<x_{2}$ or $x<x_{1} \leqslant x_{2}$. In the first case, $R_{c o l}(d) x=x_{1} x_{2} x \approx_{P_{n}} x_{2} x_{1} x$ by applying $\xi_{x_{1}, x, x_{2}}$, and $R_{\text {col }}\left(d \star_{S_{r}} l_{\mathbb{Y}_{n}^{r}}(x)\right)=x_{2} x_{1} x$. In the second case, $R_{\text {col }}(d) x=x_{1} x_{2} x \approx_{\mathbf{P}_{n}} x_{1} x x_{2}$ by applying $\zeta_{x, x_{1}, x_{2}}$, and $R_{\text {col }}\left(d \star_{s_{r}} l_{\mathbb{Y}_{n}^{r}}(x)\right)=x_{1} x x_{2}$. Then, in the two cases, we obtain $R_{c o l}(d) x \approx_{\mathbf{P}_{n}} R_{c o l}\left(d \star_{s_{r}} l_{\mathbb{Y}_{n}^{r}}(x)\right)$.

Finally, let us show that the string data structure \mathbb{Y}_{n}^{r} presents the plactic monoid \mathbf{P}_{n} by using the properties of the string rewriting system $\mathcal{R}\left(\operatorname{Col}(n), \mathbb{Y}_{n}^{r}\right)$, recovering then Knuth's Theorem, [29, Theorem 6]. Following Theorem 3.1.13, it suffices to prove that \mathbb{Y}_{n}^{r} is compatible with the plactic congruence $\approx_{\mathbf{P}_{n}}$. Suppose that $u \approx_{\mathbf{P}_{n}} v$, for u, v in A^{*} and prove that $\left(d \sim s_{r} u\right)=\left(d \sim s_{r} v\right)$ holds for all d in D. The string data structure \mathbb{Y}_{n}^{r} being right, following $\left(3.1 .14\right.$, we have $\left(d \sim_{I_{S_{r}}} u\right)=d \star s_{r} C_{\mathbb{Y}_{n}^{r}}(u)$, for all $u \in A^{*}$ and $d \in D$. Moreover, for any $1 \leqslant x \leqslant y<z \leqslant n$ (resp. $1 \leqslant x<y \leqslant z \leqslant n$), the rules $\xi_{x, y, z}\left(\right.$ resp. $\left.\zeta_{x, y, z}\right)$ can be decomposed by rules in $\mathcal{R}\left(\operatorname{Col}(n), \mathbb{Y}_{n}^{r}\right)$ as follows:

Then, since $u \approx_{\mathbf{P}_{n}} v$, the words u and v are also related by the rules of $\mathcal{R}\left(\operatorname{Col}(n), \mathbb{Y}_{n}^{r}\right)$, and by the unique normal form property of $\mathcal{R}\left(\operatorname{Col}(n), \mathbb{Y}_{n}^{r}\right)$, we obtain $C_{\mathbb{Y}_{n}^{r}}(u)=C_{\mathbb{Y}_{n}^{r}}(v)$. We deduce that $d \star_{\mathbb{Y}_{n}^{r}} C_{\mathbb{Y}_{n}^{r}}(u)=d \star_{\mathbb{Y}_{n}^{r}} C_{\mathbb{Y}_{n}^{r}}(v)$, for all d in D. That proves condition $\left.\mathbf{i}\right)$ of 3.1.11. Now consider a word $w=x_{1} \ldots x_{p}$ in A^{*}. To compute the tableau $C_{\mathbb{Y}_{n}^{r}}(w)$, one applies the leftmost normalisation strategy $\sigma^{\top}, \operatorname{Col}(\mathfrak{n})$ on w. Then $C_{\mathbb{Y}_{n}^{r}}(w)$ and w are related by the rules of $\mathcal{R}\left(\operatorname{Col}(n), \mathbb{Y}_{n}^{r}\right)$. The readings of the source and the target of any rule of $\mathcal{R}\left(\operatorname{Col}(n), \mathbb{Y}_{n}^{r}\right)$ being related by Knuth's relations (3.3.2), it follows that $\mathrm{R}_{\mathrm{col}} \mathrm{C}_{\mathbb{Y}_{n}^{r}}(w) \approx_{\mathbf{P}_{n}} w$, which proves condition $\mathbf{i i}$) of 3.1.11.

As a consequence, we obtain that the rewriting system $\mathcal{R}\left(\operatorname{Col}(n), \mathbb{Y}_{n}^{r}\right)$ is a finite convergent presentation of the monoid \mathbf{P}_{n}. By this way, we recover the results of [4, Theorem 3.4] and [2], Theorem 4.5].
4.1.12. Example: row presentation of plactic monoids of type A. Let consider the string data structure $\mathbb{Y}_{n}^{R o w}=\left(\mathrm{Yt}_{n}, \ell_{1}, S_{r}, R_{\text {row }}\right)$, where S_{r} is Schensted's insertion recalled in 3.3.3. and $R_{\text {row }}$ is the reading map on Yt_{n} that reads a tableau row by row, from left to right and from bottom to top. We denote by $\operatorname{Row}(n)$ the set of rows on $[n]$. The set $\operatorname{Row}(n)$ forms a generating set for $\mathbb{Y}_{n}^{\operatorname{Row}}$. Indeed, for all x in $[n]$ the tableau $C_{\mathbb{Y}_{n}^{\text {Row }}}(x)$ belongs to $\operatorname{Row}(n)$. Every tableau d in Yt_{n} can be uniquely decomposed as $d=r_{1} \star s_{r} \ldots \star s_{r} r_{k}$, where r_{1}, \ldots, r_{k} are the rows of d from bottom to top. By definition of the tableau, $r_{i} \star_{S_{r}} r_{i+1} \notin \operatorname{Row}(n)$ for all $1 \leqslant i \leqslant k-1$, and by definition of the reading map, the equality $R_{\text {row }}(d)=R_{\text {row }}\left(r_{1}\right) \ldots R_{\text {row }}\left(r_{k}\right)$ holds in $[n]^{*}$.

The rules of the rewriting system $\mathcal{R}\left(\operatorname{Row}(n), \mathbb{Y}_{n}^{\text {Row }}\right)$ are of the form

$$
\gamma_{r, r^{\prime}}: r \cdot r^{\prime} \rightarrow R_{\operatorname{Row}(n)}\left(r \star s_{r} r^{\prime}\right)
$$

for all r, r^{\prime} in $\operatorname{Row}(n)$ such that $r \cdot r^{\prime} \neq R_{\operatorname{Row}(n)}\left(r \star s_{r} r^{\prime}\right)$, and where $R_{\operatorname{Row}(n)}: Y_{n} \rightarrow \operatorname{Row}(n)^{*}$ is the reading map sending a tableau to the product of its rows from bottom to top. Using the arguments of 4.1.10, one proves that the string data structure $\mathbb{Y}_{n}^{\text {Row }}$ presents the plactic monoid \mathbf{P}_{n}. Using a lexicographic order as defined in 4.1.7 one proves that $\mathcal{R}\left(\operatorname{Row}(n), \mathbb{Y}_{n}^{R o w}\right)$ is terminating. Then by Proposition 4.1.8 the rewriting system $\mathcal{R}\left(\operatorname{Row}(n), \mathbb{Y}_{n}^{R o w}\right)$ is a convergent presentation of the monoid \mathbf{P}_{n}, that is infinite contrary to the column presentation that is finite. By this way, we recover the result of [2, Theorem 3.2].

4.2. Coherent presentations and string data structures

4.2.1. Theorem. Let \mathbb{S} be a right associative string data structure, and let Q be a well-founded generating set of \mathbb{S}. Then $\mathcal{R}(Q, \mathbb{S})$ extends into a coherent convergent presentation of the structure monoid $\mathbf{M}(D, I)$ by adjunction of a generating 3-cell

for any $c, c^{\prime}, c^{\prime \prime}$ in Q such that $c \cdot c^{\prime} \neq R_{Q}\left(c \star_{I} c^{\prime}\right)$ and $c^{\prime} \cdot c^{\prime \prime} \neq R_{Q}\left(c^{\prime} \star_{I} c^{\prime \prime}\right)$.
Proof. Any critical branching of $\mathcal{R}(\mathrm{Q}, \mathbb{S})$ has the form

with $c, c^{\prime}, c^{\prime \prime}$ in Q such that $c \cdot c^{\prime} \neq R_{Q}\left(c \star_{I} c^{\prime}\right)$ and $c^{\prime} \cdot c^{\prime \prime} \neq R_{Q}\left(c^{\prime} \star_{I} c^{\prime \prime}\right)$. By Proposition 4.1.8. $\mathcal{R}(Q, \mathbb{S})$ is confluent, hence such a critical branching is confluent with a confluence diagram as in 4.2.2. We conclude with coherent Squier's theorem recalled in 2.2.3.
4.2.3. Coherent presentations and insertion. Let (D, I, J, R) be a string data bistructure over A and let $\mathbb{S}($ resp. $\mathbb{T})$ be the corresponding right (resp. left) string data structure. Given a well-founded generating set Q of \mathbb{S}, we consider the rewriting system $\mathcal{R}(\mathrm{Q}, \mathbb{T})^{\text {op }}$ on Q , whose rules are

$$
c \cdot c^{\prime} \rightarrow R_{Q}\left(c^{\prime} \star_{\mathrm{J}} c\right)
$$

for any c, c^{\prime} in Q such that $c \cdot c^{\prime} \neq R_{Q}\left(c^{\prime} \star_{J} c\right)$. By definition, we have $R_{Q}\left(c^{\prime} \star_{J} c\right)=R_{Q}\left(c \star_{I} c^{\prime}\right)$ for all c, c^{\prime} in Q, thus the rewriting systems $\mathcal{R}(Q, \mathbb{T})^{\text {op }}$ and $\mathcal{R}(Q, \mathbb{S})$ coincide. If the rewriting system $\mathcal{R}(Q, \mathbb{S})$ is convergent, by Theorem 4.2.1 it can be extended into a coherent convergent presentation of the

4. Coherent presentations by insertion

monoid $\mathbf{M}(\mathrm{D}, \mathrm{I})$ by adjunction of a generating 3-cell

for any $c, c^{\prime}, c^{\prime \prime}$ in Q such that $c \cdot c^{\prime} \neq R_{Q}\left(c \star_{I} c^{\prime}\right)$ and $c^{\prime} \cdot c^{\prime \prime} \neq R_{Q}\left(c^{\prime} \star_{I} c^{\prime \prime}\right)$ and where $\sigma^{\top, Q}\left(\right.$ resp. $\left.\sigma^{\perp, Q}\right)$ is the leftmost (resp. rightmost) normalisation strategy with respect to the rewriting system $\mathcal{R}(\mathrm{Q}, \mathbb{S})$ (resp. $\mathcal{R}(\mathrm{Q}, \mathbb{T})^{\mathrm{op}}$). In this way, the application of the leftmost (resp. rightmost) normalisation strategy $\sigma^{\top}, \mathrm{Q}$ (resp. $\sigma^{\perp, Q}$) on the word $c \cdot c^{\prime} \cdot c^{\prime \prime}$ corresponds to the application of the right (resp. left) insertion

$$
\emptyset \sim_{I} R(c) R\left(c^{\prime}\right) R\left(c^{\prime \prime}\right) \quad\left(\text { resp. } R(c) R\left(c^{\prime}\right) R\left(c^{\prime \prime}\right) \rightsquigarrow J \emptyset\right)
$$

4.2.4. Example. As an illustration, consider the string data bistructure $\left(\mathrm{Yt}_{n}, S_{r}, S_{l}, R_{c o l}\right)$ and the convergent presentation $\mathcal{R}\left(\operatorname{Col}(\mathrm{n}), \mathbb{Y}_{n}^{r}\right)$ of the plactic monoid \mathbf{P}_{n} given in Example 4.1.10. Let

$$
\mathrm{c}=\begin{aligned}
& 1 \\
& \frac{1}{3} \\
& \frac{5}{5}
\end{aligned}, \quad \mathrm{c}^{\prime}=\begin{aligned}
& \frac{1}{3} \\
& \frac{3}{4} \\
& 5
\end{aligned}, \quad \mathrm{c}^{\prime \prime}=\begin{aligned}
& \frac{1}{2} \\
& \hline \frac{3}{3} \\
& \hline
\end{aligned}
$$

be columns in $\operatorname{Col}(n)$. We have

$$
\left(\emptyset \sim_{S_{r}} R_{\operatorname{Col}}(c) R_{\operatorname{Col}}\left(c^{\prime}\right) R_{\operatorname{Col}}\left(c^{\prime \prime}\right)\right)=\begin{array}{|l|l|l}
\hline & 1 & 1 \\
\hline & 3 & 3 \\
\hline 3 & 5 & \\
\hline 4 & & \\
\hline 5 & & \left.R_{\operatorname{Col}}(c) R_{\operatorname{Col}}\left(c^{\prime}\right) R_{\operatorname{Col}}\left(c^{\prime \prime}\right) \rightsquigarrow s_{l} \emptyset\right) . .
\end{array}
$$

Moreover, the leftmost normalisation strategy $\sigma^{\top, \operatorname{Col}(n)}$ with respect to $\mathcal{R}\left(\operatorname{Col}(n), \mathbb{Y}_{n}^{r}\right)$ reduces the word $c \cdot c^{\prime} \cdot c^{\prime \prime}$ into $R_{\operatorname{Col}(n)}\left(C_{\mathbb{Y}_{n}^{r}}\left(R_{\operatorname{Col}}(c) R_{\operatorname{Col}}(c) R_{\operatorname{Col}}(c)\right)\right)$ and the rightmost normalisation strategy $\sigma^{\perp, C o l}(n)$ with respect to $\mathcal{R}\left(\operatorname{Col}(n), \mathbb{Y}_{n}^{c}\right)^{\text {op }}$ reduces the word $c \cdot c^{\prime} \cdot c^{\prime \prime}$ into $R_{\operatorname{Col}(n)}\left(C_{\mathbb{Y}_{n}^{c}}\left(R_{\operatorname{Col}}(c) R_{\operatorname{Col}}(c) R_{C o l}(c)\right)\right)$, as shown in the following diagram:

4.2.5. Example: coherent column presentations of plactic monoids of type A. By definition of Schensted's algorithms, the leftmost (resp. rightmost) normalization strategy with respect to $\mathcal{R}\left(\mathrm{Col}_{n}, \mathbb{Y}_{n}^{r}\right)$ (resp. $\mathcal{R}\left(\mathrm{Col}_{\mathfrak{n}}, \mathbb{Y}_{\mathfrak{n}}^{\mathrm{c}}\right)^{\mathrm{op}}$) on the sources of its critical branchings, leads to the normal form, after applying three steps of reductions rules. Then, by Theorem4.2.1 the rewriting system $\mathcal{R}\left(\operatorname{Col}_{n}, \mathbb{Y}_{n}^{r}\right)$ can be extended into a coherent convergent presentation by adjunction of the following generating 3-cells:

such that $c \cdot c^{\prime} \neq R_{\operatorname{Col}(n)}\left(c \star s_{r} c^{\prime}\right)$, and $c^{\prime} \cdot c^{\prime \prime} \neq R_{\operatorname{Col}(n)}\left(c^{\prime} \star S_{r} c^{\prime \prime}\right)$, and where $R_{\operatorname{Col}_{n}}\left(c * s_{r} c^{\prime}\right)=c_{1} \cdot c_{2}$, $R_{\operatorname{Col}_{n}}\left(c_{2} \star s_{r} c^{\prime \prime}\right)=c_{3} \cdot c_{4}, R_{\operatorname{Col}_{n}}\left(c_{1} \star s_{r} c_{3}\right)=c_{3}^{\prime} \cdot c_{5}, R_{C_{01}^{n}}\left(c^{\prime \prime} \star s_{l} c^{\prime}\right)=c_{1}^{\prime} \cdot c_{2}^{\prime}, R_{\operatorname{Col}_{n}}\left(c_{1}^{\prime} \star s_{l} c\right)=c_{3}^{\prime} \cdot c_{4}^{\prime}$, and $R_{C o l_{n}}\left(c_{2}^{\prime} \star s_{l} c_{4}^{\prime}\right)=c_{5} \cdot c_{4}$. By this way, we recover the result in [24, Theorem 1].
4.2.6. Remark. In previous example, the shape of the generating 3-cell can be deduced from the Schützenberger involution, as shown in [24, Remark 3.2.7]. More generally, for a well-founded generating set Q of \mathbb{S}, one shows that such an involution transforms the leftmost reduction strategy $\sigma^{\top,} \mathrm{Q}$ of $\mathcal{R}(\mathrm{Q}, \mathbb{S})$ into the rightmost reduction strategy $\sigma^{\perp, Q}$ of $\mathcal{R}(Q, \mathbb{T})^{\text {op }}$, and conversely. We call involution on \mathbb{S} with respect to Q a map ${ }^{\star}: \mathrm{Q} \rightarrow \mathrm{Q}$, that we extend into a map ${ }^{\star}: \mathrm{Q}^{*} \rightarrow \mathrm{Q}^{*}$ by setting $\left(\mathrm{c}_{1} \cdot \ldots \cdot \mathrm{c}_{\mathrm{k}}\right)^{\star}=\mathrm{c}_{\mathrm{k}}^{\star} \cdot \ldots \cdot \mathrm{c}_{1}^{\star}$ for all $c_{1}, \ldots, c_{k} \in Q$, and satisfying the following conditions:
i) for $u, v \in \mathrm{Q}^{*}$, if $u \approx_{\mathcal{R}(\mathrm{Q}, \mathbb{S})} v$ then $u^{\star} \approx_{\mathcal{R}(\mathrm{Q}, \mathbb{S})} v^{\star}$,
ii) if u is a $\mathcal{R}(Q, \mathbb{S})$-normal form in Q^{*}, then u^{\star} is a $\mathcal{R}(Q, \mathbb{S})$-normal form.

As a consequence, for all $u \in Q^{*}$, the equality $R_{Q} C_{\mathbb{S}_{Q}}\left(u^{\star}\right)=\left(R_{Q} C_{\mathbb{S}_{Q}}(u)\right)^{\star}$ holds. Indeed, the rewriting system $\mathcal{R}(Q, \mathbb{S})$ being terminating, the reduction strategy $\sigma^{\top, Q}$ reduces u^{\star} to $R_{Q} C_{\mathbb{S}_{Q}}\left(u^{\star}\right)$, proving that $R_{Q} C_{\mathbb{S}_{Q}}\left(u^{\star}\right) \approx_{\mathcal{R}(\mathrm{Q}, \mathbb{S})} u^{\star}$. By condition $\left.\mathbf{i}\right)$, we obtain $\left(R_{Q} C_{\mathbb{S}_{Q}}\left(u^{\star}\right)\right)^{\star} \approx_{\mathcal{R}(\mathrm{Q}, \mathbb{S})} u$. Moreover, by condition ii), the word $\left(R_{Q} C_{\mathbb{S}_{Q}}\left(u^{\star}\right)\right)^{\star}$ is a $\mathcal{R}(Q, \mathbb{S})$-normal form. Then, by the unique normal form property of $\mathcal{R}(\mathrm{Q}, \mathbb{S})$, the equality $\left(R_{Q} C_{\mathbb{S}_{Q}}\left(u^{\star}\right)\right)^{\star}=R_{Q} C_{\mathbb{S}_{Q}}(u)$ holds, showing that $R_{Q} C_{\mathbb{S}_{Q}}\left(u^{\star}\right)=\left(R_{Q} C_{\mathbb{S}_{Q}}(u)\right)^{\star}$.

Moreover, by applying the involution on the sources and the targets of the rules 4.1.5 of $\mathcal{R}(\mathrm{Q}, \mathbb{S})$, these rules turn into

$$
\gamma_{c^{\prime \star}, c^{\star}}: c^{\prime \star} \cdot c^{\star} \rightarrow\left(R_{Q} C_{\mathbb{S}_{Q}}\left(c \cdot c^{\prime}\right)\right)^{\star}=R_{Q} C_{\mathbb{S}_{Q}}\left(c^{\prime \star} \cdot c^{\star}\right)
$$

for all c, c^{\prime} in Q, whenever $c \cdot c^{\prime} \neq R_{Q}\left(c \star_{I} c^{\prime}\right)$. In this way, by applying the involution on the sources and the targets of the reductions of the rightmost normalisation strategy $\sigma^{\perp, Q}$, we transform it into the leftmost normalisation strategy $\sigma^{\top}, \mathrm{Q}$, and conversely.

In particular for the string data structure \mathbb{Y}_{n}^{r}, the Schützenberger involution * is defined on Col_{n} by sending each column to its complement in Col_{n}. That is, for a column u in Col_{n} containing p boxes, u^{\star} is the column containing $n-p$ boxes filled by the complements of the elements of u. Moreover, one shows that the Schützenberger involution satisfies the conditions \mathbf{i}) and $\mathbf{i i}$).

5. String data structures for Chinese monoids

In this section we construct string data bistructures that present Chinese congruences. The Chinese monoid of rank $\mathrm{n}>0$, introduced in [14], and denoted by \mathbf{C}_{n}, is presented by the rewriting system on [n], whose rules are the Chinese relations:

$$
\begin{align*}
& z y x \rightarrow y z x \quad \text { and } \quad z x y \rightarrow y z x \quad \text { for all } \quad 1 \leqslant x<y<z \leqslant n \tag{5.0.1}\\
& y y x \rightarrow y x y \quad \text { and } \quad y x x \rightarrow x y x \quad \text { for all } \quad 1 \leqslant x<y \leqslant n
\end{align*}
$$

We recall in Subsection 5.1 the structure of Chinese staircase and the right insertion algorithm in Chinese staircases introduced in [10], we recall also the right insertion algorithm introduced in [5]. The main result of this section, Theorem 5.1.4. states that these two algorithms commute. In Subsection 5.2 we give a construction of a semi-quadratic convergent presentation of the Chinese monoid, that we extend in Subsection 5.3 into a coherent one.

5.1. Presentation of Chinese monoids by string data structures

We recall from [10] the notion of Chinese monoid and the representation of the Chinese monoid by Chinese staircases that satisfy the cross-section property for the Chinese monoid.
5.1.1. Chinese staircases. A Ferrers diagram of shape $(1,2, \ldots, n)$ is a collection of boxes in rightjustified rows, whose rows (resp. columns) are indexed with [n] from top to bottom (resp. from right to left) and where every i-th row contains i boxes for $1 \leqslant i \leqslant n$. A (Chinese) staircase over [n] is a Ferrers diagram of shape $(1,2, \ldots, n)$ filled with non-negative integers. Denote by $t_{i j}$ (resp. t_{i}) the contents of the box in row i and column j for $i>j$ (resp. $\mathfrak{i}=\mathfrak{j}$). A box filled by 0 is called empty. Denote by Ch_{n} the set of staircases over $[n]$ and by $R_{r}: \mathrm{Ch}_{n} \rightarrow[n]^{*}$ the map that reads a staircase row by row, from right to left and from top to bottom, and where the i-th row is read as follows $(i 1)^{t_{i 1}}(i 2)^{t_{i 2}} \ldots(i(i-1))^{t_{i(i-1)}}(i)^{t_{i}}$, for $1 \leqslant \mathfrak{i} \leqslant \mathfrak{n}$. For instance, for the following staircase t over [4]:

we have $R_{r}(t)=1^{t_{1}}(21)^{t_{21}}(2)^{t_{2}}(31)^{t_{31}}(32)^{t_{32}}(3)^{t_{3}}(41)^{t_{41}}(42)^{t_{42}}(43)^{t_{43}}(4)^{t_{4}}$. Given a staircase over [n]

by removing the bottom row, we obtain a staircase over $[n-1]$, denoted by t^{\prime} on the picture. According to this, a staircase t over $[n]$ can be denoted by $\left(t^{\prime}, R_{1}\right)$, where R_{1} is the bottom row of t, and t^{\prime} is the staircase over $[n-1]$ obtained by removing the row R_{1}.
5.1.2. The right insertion algorithm. Recall the right insertion map $\mathrm{C}_{\mathrm{r}}: \mathrm{Ch}_{\mathrm{n}} \times[\mathrm{n}] \rightarrow \mathrm{Ch}_{\mathrm{n}}$ introduced in [10, Subsection 2.2]. Let t be a staircase and x an element in [n]. If $x=n$, then $C_{r}(t, x)=\left(t^{\prime}, R_{1}^{\prime}\right)$, where R_{1}^{\prime} is obtained from R_{1} by adding 1 to t_{n}. If $x<n$, let y_{1} be maximal such that the entry in column y_{1} of R_{1} is non-zero or if such a y_{1} does not exist, set $y_{1}=x$. Three cases appear:
i) If $x \geqslant y_{1}$, then $C_{r}(t, x)=\left(C_{r}\left(t^{\prime}, x\right), R_{1}\right)$,
ii) If $x<y_{1}<n$, then $C_{r}(t, x)=\left(C_{r}\left(t^{\prime}, y_{1}\right), R_{1}^{\prime}\right)$, where R_{1}^{\prime} is obtained from R_{1} by subtracting 1 from $t_{n y_{1}}$ and adding 1 to $t_{n x}$,
iii) If $x<y_{1}=n$, then $C_{r}(t, x)=\left(t^{\prime}, R_{1}^{\prime}\right)$, where R_{1}^{\prime} is obtained from R_{1} by substracting 1 from t_{n} and adding 1 to $t_{n x}$.

5.1.3. The left insertion algorithm. A left insertion map $C_{l}: \mathrm{Ch}_{n} \times[n] \rightarrow \mathrm{Ch}_{n}$ that insets an element x in [n] into a staircase t , is defined in [5, Algorithm 3.5] as follows. Let y be an element in $[\mathrm{n}] \cup\{\lambda\}$, initially set to λ. There are two steps. In the first step, for $i=1, \ldots, x-1$, iterate the following. If every entry in the i-th row is empty, do nothing. Otherwise, let z be minimal such that $t_{i z}$ is non-zero. There are two cases according to the values of y :
i) Suppose $y=\lambda$. If $z<i$, decrement $t_{i z}$ by 1 , increment t_{i} by 1 , and set $y=z$. If $z=i$, decrement t_{i} by 1 , and set $y=z$.
ii) Suppose $y \neq \lambda$. If $z<y$, decrement $t_{i z}$ by 1 , increment $t_{i y}$ by 1 , and set $y=z$. If $z \geqslant y$, do nothing. In the second step, for $i=x$, if $y=\lambda$, then increment t_{i} by 1 . Otherwise, decrement $t_{i y}$ by 1 .

5.1.4. Theorem. For all staircase t in Ch_{n} and x, y in $[\mathrm{n}]$, the following equality

$$
\begin{equation*}
y \rightsquigarrow c_{l}\left(t \leadsto c_{r} x\right)=\left(y \rightsquigarrow c_{l} t\right) \leadsto c_{r} x \tag{5.1.5}
\end{equation*}
$$

holds in Ch_{n}.
By this result we deduce a string data bistructure $\left(\mathrm{Ch}_{n}, \mathrm{C}_{\mathrm{r}}, \mathrm{C}_{l}, \mathrm{R}_{\mathrm{r}}\right)$ on staircases over [n], and following Theorem 3.2.3 the compositions ${ }^{C_{r}}$ and ${ }^{2} C_{l}$ are associative. Moreover, the insertions maps C_{r} and C_{l} can be deduced to each other by formulas (3.2.6) and (3.2.7).

The rest of this section is devoted to the proof of Theorem 5.1.4 We consider a staircase $t=\left(t^{\prime}, R_{1}\right)$ and x, y in $[n]$. We prove the commutation relation 5.1.5] by considering four cases according to the values of x and y.
5.1.6. Case 1: $x=y=n$. The staircase $t \sim c_{r} n$ is obtained from t by adding 1 to t_{n}.

Case 1. A. Suppose that any box in t^{\prime} is empty. The staircase $n \rightsquigarrow c_{1} t$ is obtained from t by adding 1 to t_{n}. Similarly, the staircase $n \leadsto C_{l}\left(t \sim C_{r} n\right)$ is obtained from $t \sim C_{r} n$ by adding 1 to t_{n}. Then $n \rightsquigarrow c_{l}\left(t \sim c_{r} n\right)$ is obtained from t by adding 2 to t_{n}. Moreover, the staircase $\left(n \rightsquigarrow c_{l} t\right) \sim c_{r} n$ is obtained from $n \rightsquigarrow c_{l} t$ by adding 1 to t_{n}, and thus it is obtained from t by adding 2 to t_{n}. Hence

$$
\begin{aligned}
n \rightsquigarrow c_{l}\left(t \leadsto c_{r} n\right)=\begin{array}{ccc}
\\
& t^{\prime} \\
\begin{array}{ccc}
t_{n}+2 & \cdots & t_{n 1} \\
n & \cdots & 1
\end{array} \\
n-1
\end{array}
\end{aligned}
$$

Case 1. B. Suppose that t^{\prime} contains at least one non-empty box. The bottom row of the staircase $n \leadsto C_{l}\left(t \sim C_{r} n\right)$ is obtained from the bottom one of $t \sim C_{r} n$ by adding 1 to $t_{n l}$ where the l-th column is the last one in which we have eliminating 1 after applying the first step of 5.1.3 on the remaining rows of $t \sim c_{r} n$. Then the staircase $n \leadsto C_{l}\left(t \sim c_{r} n\right)$ is obtained from t by adding 1 to $t_{n l}$ and t_{n} after performing the first step of 5.1 .3 on the remaining rows of t. Similarly, the bottom row of $n \rightsquigarrow c_{l} t$ is obtained from the bottom one of t by adding 1 to $t_{n l}$. Then $\left(n \rightsquigarrow C_{l} t\right) \leadsto c_{r} n$ is obtained from t by adding 1 to $t_{n l}$ and t_{n} after performing the first step of 5.1.3 on t^{\prime}. Hence
where $t^{\prime \prime}$ is the staircase obtained from t^{\prime} by applying the first step of 5.1 .3 on t^{\prime} when computing $n \rightsquigarrow c_{l} t$.
5.1.7. Case 2: $y<n$ and $x=n$. The staircase $t \sim c_{r} n$ is obtained from t by adding 1 to t_{n}. Since $y<n$, by definition of C_{l}, when computing $y \leadsto C_{l}\left(t \sim C_{r} n\right)$ we only change the contents of the boxes in t^{\prime} and no operations are performed in the bottom row of $t \sim c_{r} n$. Similarly, when computing $y \rightsquigarrow c_{l} t$, we only change the contents of the boxes in t^{\prime} and no operations are done in R_{1}. Moreover, the staircase $\left(y \rightsquigarrow c_{l} t\right){ }_{\sim}^{\sim} c_{r} n$ is obtained from $y \rightsquigarrow c_{l} t$ by adding 1 to t_{n}. Hence

where $t^{\prime \prime}$ is the staircase obtained from t^{\prime} by applying the first step of 5.1 .3 on t^{\prime} when computing $y \rightsquigarrow C_{l} t$.
5.1.8. Case 3: $y=n$ and $x<n$. There are two subcases.

Case 3. A. Suppose that all the contents of the boxes in t^{\prime} are zero. In this case, the staircase $n \rightsquigarrow c_{1} t$ is obtained from t by adding 1 to t_{n}. Then $\left(n \rightsquigarrow c_{l} t\right) \leadsto c_{r} x$ is obtained from $n \rightsquigarrow c_{l} t$ by eliminating 1 from t_{n} and by adding 1 to $t_{n x}$ in its bottom row. Hence $\left(n \rightsquigarrow c_{l} t\right) \leadsto c_{r} x$ is obtained from t by adding 1 to $t_{n x}$. Let us compute the staircase $n \rightsquigarrow c_{1}\left(t \sim_{c} c_{r} x\right)$. Let y_{1} be maximal such that the entry in column y_{1} of R_{1} is non-zero. Three new subcases appear.
Case 3. A. 1. $x \geqslant y_{1}$. We have $\mathrm{t}{ }^{\sim} \mathrm{C}_{\mathrm{r}} \mathrm{x}=\left(\mathrm{t}^{\prime}{ }_{\sim} \mathrm{C}_{\mathrm{r}} x, \mathrm{R}_{1}\right)$. Since all the boxes of t^{\prime} are empty, the staircase $t^{\prime} \sim c_{r} x$ is obtained from t^{\prime} by adding 1 to t_{x}. We obtain

where the shaded area denotes empty boxes. Then the staircase $n \rightsquigarrow C_{l}\left(t \sim c_{r} x\right)$ is obtained from $t \leadsto c_{r} x$ by eliminating 1 from t_{x} and by adding 1 to $t_{n x}$. Hence the staircase $n \rightsquigarrow c_{l}\left(t \sim c_{r} x\right)$ is obtained from t by adding 1 to $t_{n x}$ in R_{1}.
Case 3. A. 2. $\mathrm{x}<\mathrm{y}_{1}=\mathrm{n}$. We have $\mathrm{t}{ }^{\sim} \mathrm{c}_{\mathrm{r}} \mathrm{x}=\left(\mathrm{t}^{\prime}, \mathrm{R}_{1}^{\prime}\right)$, where R_{1}^{\prime} is obtained from R_{1} by eliminating 1 from t_{n} and by adding 1 to $t_{n x}$. Moreover, the staircase $n \rightsquigarrow c_{l}\left(t \sim c_{r} x\right)$ is obtained from $t{ }^{\sim} c_{r} x$ by adding 1 to t_{n}. Hence the staircase $n \rightsquigarrow c_{1}\left(t{ }^{\sim} c_{r} x\right)$ is obtained from t by adding 1 to $t_{n x}$ in R_{1}.
Case 3. A. 3. $x<y_{1}<n$. We have $t{ }^{\sim} C_{r} x=\left(t^{\prime} \sim \sim C_{r} y_{1}, R_{1}^{\prime}\right)$, where R_{1}^{\prime} is obtained from R_{1} by eliminating 1 from $t_{n y_{1}}$ and by adding 1 to $t_{n x}$, and $t^{\prime} \sim c_{r} y_{1}$ is obtained from t^{\prime} by adding 1 to $t_{y_{1}}$. Then, we obtain

where the shaded area denotes empty boxes. Moreover, the staircase $n \rightsquigarrow c_{1}\left(t \sim c_{r} x\right)$ is obtained from $t{ }^{\sim} C_{r} x$ by eliminating 1 from $t_{y_{1}}$ and $t_{n y_{1}}$. Hence it is obtained from t by adding 1 to $t_{n x}$ in R_{1}.

As a consequence, in the three subcases above we obtain:

5. String data structures for Chinese monoids

where the shaded area denotes empty boxes.
Case 3. B. Suppose that t^{\prime} contains at least one non-empty box. Let y_{1} be maximal such that the entry in column y_{1} of R_{1} in non-zero. There are two subcases.

Case 3. B. 1. $x<y_{1}=n$. We have $t \sim c_{r} x=\left(t^{\prime}, R_{1}^{\prime}\right)$, where R_{1}^{\prime} is obtained from R_{1} by eliminating 1 from t_{n} and by adding 1 to $t_{n x}$. The bottom row of $n \rightsquigarrow c_{l}\left(t \leadsto C_{r} x\right)$ is obtained from the bottom one of $t \sim C_{r} x$ by adding 1 to $t_{n l}$, where the l-th column is the last one in which we have eliminating 1 after applying the first step of 5.1 .3 on the remaining rows of $t \leadsto c_{r} x$. Then the staircase $n \rightsquigarrow c_{l}\left(t \sim c_{r} x\right)$ is obtained from t by adding 1 to $t_{n l}$ and $t_{n x}$ and by eliminating 1 from t_{n} after performing the first step of 5.1 .3 on the remaining rows of t. On the other hand, the staircase $n \rightsquigarrow c_{l} t$ is obtained from t by applying the first step of 5.1 .3 on t^{\prime} and by adding 1 to $t_{n l}$. Moreover, the staircase ($n \rightsquigarrow c_{l} t$) ${ }^{\sim} c_{r} x$ is obtained from $n \rightsquigarrow c_{l}$ t by eliminating 1 from t_{n} and by adding 1 to $t_{n x}$. That proves 5.1 .5 in this case.

Case 3. B. 2. $x \geqslant y_{1}$ or $x<y_{1}<n$. The other cases being similar, we study the case $x<y_{1}<l<n$, where the l-th column is the last one in which we have eliminating 1 after applying the first step of 5.1.3, when computing $n \rightsquigarrow c_{l} t$. We have

where the shaded area represents empty boxes and the symbols $+\mathbf{1}$ and $-\mathbf{1}$ denote respectively adding 1 and eliminating 1 on the corresponding box. Then, the staircase $\left(n \rightsquigarrow C_{l} t\right) \leadsto C_{r} x$ is obtained from $n \rightsquigarrow c_{l} t$ by eliminating 1 from $t_{n l}$, by adding 1 to $t_{n x}$, by eliminating 1 from $t_{(n-1) j}$ where j is maximal such that $t_{(n-1) j}$ is non-zero, by adding 1 to $t_{(n-1) \iota}$ and by performing the operations \mathbf{i}), ii) and $\mathbf{i i i}$) of 5.1 .2 on the remaining rows of $n \rightsquigarrow c_{l} t$ in the area that is not hashed.

On the other hand, the staircase $t \sim_{\sim} c_{r} x$ is obtained from t by eliminating 1 from $t_{n y_{1}}$, by adding 1 to $t_{n x}$, by eliminating 1 from $t_{(n-1) j}$, by adding 1 to $t_{(n-1) y_{1}}$ and by performing the operations $\left.\mathbf{i}\right)$, ii) and iii) of 5.1 .2 on the remaining rows of t in the area that is not hashed, as shown in the following diagram:

where the shaded area represents empty boxes and the symbols $+\mathbf{1}$ and $\mathbf{- 1}$ denote respectively adding $\mathbf{1}$ and eliminating 1 on the corresponding box. Then, the staircase $n \leadsto c_{l}\left(t \sim c_{r} x\right)$ is obtained from $t{ }^{\sim} c_{r} x$ by performing the first step of 5.1 .3 in the above area that is not hashed, by eliminating 1 from $t_{(n-1) y_{1}}$ and by adding 1 to $\mathrm{t}_{\mathrm{ny}_{1}}$. That proves (5.1.5) in this case.
5.1.9. Case 4: $x<n$ and $y<n$. Let y_{1} be maximal such that the entry in column y_{1} of R_{1} in non-zero. Case 4. A. Suppose $x<y_{1}=n$. In this case, $t \sim c_{r} x=\left(t^{\prime}, R_{1}^{\prime}\right)$, where R_{1}^{\prime} is obtained from R_{1} by substracting 1 from t_{n} and by adding 1 to $t_{n x}$. Since $y<n$, when computing $y \rightsquigarrow c_{l}\left(t \sim c_{r} x\right)$ we only modify the contents of the boxes in t^{\prime}. Then we obtain

$$
y \rightsquigarrow c_{l}\left(t \rightsquigarrow c_{r} x\right)=y \rightsquigarrow c_{l}\left(t^{\prime}, R_{1}^{\prime}\right)=\left(y \rightsquigarrow c_{l} t^{\prime}, R_{1}^{\prime}\right) .
$$

Moreover, we have $y \rightsquigarrow c_{1} t=\left(y \rightsquigarrow c_{1} t^{\prime}, R_{1}\right)$. Then $\left(y \rightsquigarrow c_{1} t\right) \not c_{r} x=\left(y \rightsquigarrow c_{1} t^{\prime}, R_{1}^{\prime}\right)$. That proves $(5.1 .5)$ in this case.
Case 4. B. Suppose $x \geqslant y_{1}$ or $x<y_{1}<n$. In this case, we have

$$
t \sim c_{r} x=\left(t^{\prime} \sim c_{r} s, K_{1}\right),
$$

where $s=x$ and $K_{1}=R_{1}$ for $x \geqslant y_{1}$, and $s=y_{1}$ and K_{1} is obtained from R_{1} by substracting 1 from $t_{n y_{1}}$ and by adding 1 to $t_{n x}$, for $x<y_{1}<n$. Let us show the commutation relation (5.1.5) by induction on [n]. Suppose that t is a staircase over [2] of the form:

$$
\mathrm{t}=\frac{\mathrm{t}_{1}}{\frac{\mathrm{t}_{2} \mathrm{t} 212^{2}}{21} 2}
$$

We prove (5.1.5) for $x=y=1$, by considering four cases according to the values of $t_{1}, t_{2}, t_{21} \in[n] \cup\{0\}$. In the following staircases over [2], the symbols $+\mathbf{1},+\mathbf{2}$ and $\mathbf{- 1}$ denote respectively adding 1 , adding 2 and eliminating 1 in the corresponding box.

	$t \sim C_{r} 1$	$1 \rightsquigarrow c_{l} \mathrm{t}$	$1 \rightsquigarrow c_{l}\left(t \sim c_{r} 1\right)=\left(1 \rightsquigarrow c_{l} t\right) \sim c_{r} 1$
$\mathrm{t}_{1}=\mathrm{t}_{2}=0$ and $\mathrm{t}_{21} \in[\mathrm{n}] \cup\{0\}$	$\begin{array}{ll} \boxed{1} & 1 \\ 0 \begin{array}{l} 0 t_{21} \\ 2 \end{array} \\ \hline 2 \end{array}$	0 1 $1 \mathrm{t}_{21}$ 2 l	1 0 +1 2 2
$\mathrm{t}_{1}, \mathrm{t}_{2} \neq 0$ and $\mathrm{t}_{21} \in[\mathrm{n}] \cup\{0\}$	t_{1} 1 $-\mathbf{1}+\mathbf{1}$ 2 2×1	$-\mathbf{1}$ $\mathrm{t}_{2}+\mathbf{1}$ 2 2 ra	$-\mathbf{1}$ 1 $-\mathbf{1}+\mathbf{2}$ 2 2 1 20
$\mathrm{t}_{1} \neq 0, \mathrm{t}_{2}=0$ and $\mathrm{t}_{21} \in[\mathrm{n}] \cup\{0\}$		$-\mathbf{1}$ 1 0 $+\mathbf{1}$ 2 2 1	
$\mathrm{t}_{2} \neq 0, \mathrm{t}_{1}=0$ and $\mathrm{t}_{21} \in[\mathrm{n}] \cup\{0\}$	0 1 $-\mathbf{1}+\mathbf{1}$ 2		

Suppose now that the commutation relation 5.1 .5 is verified for staircases over $[n-1]$, and prove it for a staircase t over $[n]$. By hypothesis, the equality $y \rightsquigarrow c_{l}\left(t \leadsto c_{r} x\right)=y \rightsquigarrow c_{l}\left(t^{\prime} \leadsto C_{r} s, K_{1}\right)$ holds. Since $y<n$, by definition of C_{l}, when computing $y \leadsto C_{l}\left(t^{\prime} \leadsto C_{r} s, K_{1}\right)$ we do not change the contents of the boxes in K_{1} and all the modifications are performed in $t^{\prime} \sim_{r} C_{r} s$. Then

$$
y \rightsquigarrow c_{l}\left(t^{\prime} \leadsto c_{r} s, K_{1}\right)=\left(y \rightsquigarrow c_{l}\left(t^{\prime} \leadsto c_{r} s\right), K_{1}\right) .
$$

The staircase t^{\prime} being a staircase over $[n-1]$, the following equality holds by induction hypothesis

$$
\left(y \rightsquigarrow c_{l}\left(t^{\prime} \leadsto c_{r} s\right), K_{1}\right)=\left(\left(y \rightsquigarrow c_{l} t^{\prime}\right) \leadsto c_{r} s, K_{1}\right) .
$$

On the other hand, since $y<n$, the equality $y \rightsquigarrow c_{l} t=\left(y \rightsquigarrow c_{l} t^{\prime}, R_{1}\right)$ holds. Then

$$
\left(y \rightsquigarrow c_{l} t\right) \leadsto c_{r} x=\left(\left(y \rightsquigarrow c_{l} t^{\prime}\right) \leadsto c_{r} s, K_{1}\right) .
$$

That proves 5.1.5 in this case.

5.2. Semi-quadratic convergent presentations for Chinese monoids

In this subsection we construct a finite semi-quadratic convergent presentation of the Chinese monoid \mathbf{C}_{n} by adding the columns in $[n]^{*}$ of length at most 2 and square generators to the presentation 5.0.1). We will denote by \mathbb{C}_{n} the right string data structure $\left(\mathrm{Ch}_{n}, \mathrm{C}_{\mathrm{r}}, \ell_{1}, \mathrm{R}_{\mathrm{r}}\right)$.
5.2.1. Reduced column presentation. We consider one column generator $c_{y x}$ of length 2 for all $1 \leqslant$ $x<y \leqslant n$, one column generator c_{x} of length 1 for all $1 \leqslant x \leqslant n$, and one square generator $c_{x x}$ for all $1<x<n$, corresponding to the following three staircases:

where the dashed area in each staircase represents empty boxes. We will denote by Q_{n} the set defined by

$$
Q_{n}:=\left\{c_{y x} \mid 1 \leqslant x<y \leqslant n\right\} \cup\left\{c_{x x} \mid 1<x<n\right\} \cup\left\{c_{1}, \ldots, c_{n}\right\} .
$$

Let us define a map $\mathrm{R}_{\mathrm{Q}_{n}}: \mathrm{Ch}_{n} \rightarrow \mathrm{Q}_{n}^{*}$ that reads a staircase row by row, from right to left and from top to bottom, and where the reading of the i-th row, for $1 \leqslant i \leqslant n$, is the word

$$
\underbrace{c_{i 1} \cdot \ldots \cdot c_{i 1}}_{t_{i 1} \text { times }} \cdot \underbrace{c_{i 2} \cdot \ldots \cdot c_{i 2}}_{t_{i 2} \text { times }} \cdots \cdot c_{i} \cdot \underbrace{c_{i j} \cdot \ldots \cdot c_{i i}}_{\frac{1}{2}\left(t_{i}-1\right) \text { times }}
$$

in Q^{*}, when t_{i} is an odd number, or the word

$$
\underbrace{c_{i 1} \cdot \ldots \cdot c_{i 1}}_{t_{i 1} \text { times }} \cdot \underbrace{c_{i 2} \cdots \cdots \cdot c_{i 2} 2 \cdots \cdot \underbrace{c_{i j} \cdots \cdot c_{i i}}_{\frac{1}{2} t_{i} \text { times }}}_{t_{i 2} \text { times }}
$$

in Q^{*}, when t_{i} is an even number. For instance, consider the following staircase t over [4]:

we have $\mathrm{R}_{\mathrm{Q}_{\mathrm{n}}}(\mathrm{t})=\mathrm{c}_{1} \cdot \mathrm{c}_{2} \cdot \mathrm{c}_{22} \cdot \mathrm{c}_{31} \cdot \mathrm{c}_{31} \cdot \mathrm{c}_{31} \cdot \mathrm{c}_{32} \cdot \mathrm{c}_{41} \cdot \mathrm{c}_{42} \cdot \mathrm{c}_{42} \cdot \mathrm{c}_{44} \cdot \mathrm{c}_{44}$.
5.2.2. Lemma. The set Q_{n} is a well-founded generating set of the string data structure \mathbb{C}_{n}.

Proof. By definition $\mathrm{t}_{\mathrm{Ch}_{n}}(x)=\mathrm{c}_{x}$ belongs to Q_{n} for all x in $[n]$. For c in $Q_{n} \backslash\left\{c_{1}, \ldots, c_{n}\right\}$, then $c \star c_{r} c$ is the staircase whose all boxes are empty except the box corresponding to c that is filled by 2 (resp. 4) if c is a column generator of length 2 (resp. a square generator). For any c, c^{\prime} in Q_{n} such that the non-empty box of c is located above or to the right of the non-empty one of c^{\prime}, then $c \not{ }_{c_{r}} c^{\prime}$ is the staircase whose all boxes are empty expect the two boxes corresponding to those of c and c^{\prime}. As a consequence, for any c in $Q_{n} \backslash\left\{c_{1}, \ldots, c_{n}\right\}$ (resp. c, c^{\prime} in Q_{n}), the staircase $c * c_{r} c$ (resp. $c * c_{r} c^{\prime}$) does not belong to Q_{n}. Moreover, following the reading $\mathrm{R}_{\mathrm{Q}_{n}}$ any staircase t in Ch_{n} can be uniquely decomposed as $t=c_{\mathfrak{u}_{1}} * c_{r} \ldots * c_{c_{r}} c_{\mathfrak{u}_{\mathfrak{l}}}$, where $\mathfrak{c}_{\mathfrak{u}_{1}}, \ldots, \mathfrak{c}_{\mathfrak{u}_{\mathfrak{l}}}$ belong to Q_{n}, and the non-empty box of $c_{\mathfrak{u}_{\mathfrak{i}}}$ is located above or to the right of the non-empty one of $\mathfrak{c}_{\mathfrak{u}_{i+1}}$ for all $1 \leqslant i \leqslant l-1$. By remark above and property of the decomposition of t with respect the reading $R_{Q_{n}}$, we have $\mathcal{c}_{\mathfrak{u}_{i}} *{ }_{c_{r}} \mathcal{c}_{\mathfrak{u}_{i+1}} \notin Q_{n}$. Finally, by definition of R_{r}, we have $R_{r}(t)=R_{r}\left(c_{u_{1}}\right) \ldots R_{r}\left(c_{\mathfrak{u}_{1}}\right)$ in $[n]^{*}$. This proves that Q_{n} is a generating set of \mathbb{C}_{n}.

Following 4.1.7, the termination of $\mathcal{R}\left(\mathrm{Q}_{n}, \mathbb{C}_{n}\right)$ can be proved using a lexicographic order induced by the total order $\preccurlyeq_{\mathrm{Ch}}$ defined on Q_{n} by $\mathrm{c}_{\mathrm{u}} \preccurlyeq \mathrm{Ch}_{\mathrm{ch}} \mathrm{c}_{v}$ if

$$
(u=y x \text { and } v=y \quad \text { for } 1 \leqslant x<y \leqslant n) \quad \text { or } \quad|u|<|v| \quad \text { or } \quad\left(|u|=|v| \text { and } u<_{\text {lex }} v\right)
$$

where $<_{\text {lex }}$ denotes the lexicographic order on $[n]^{*}$ induced by the natural order on $[n]$.

We consider the rewriting system $\mathcal{R}\left(\mathrm{Q}_{n}, \mathbb{C}_{n}\right)$ on Q_{n} defined in 4.1.4. Its rules are

$$
\gamma_{u, v}: c_{u} \cdot c_{v} \rightarrow R_{Q_{n}}\left(c_{u} \star c_{r} c_{v}\right)
$$

5. String data structures for Chinese monoids

such that $c_{u} \cdot c_{v} \neq R_{Q_{n}}\left(c_{u} \star c_{r} c_{v}\right)$. By definition of $\mathcal{R}\left(Q_{n}, \mathbb{C}_{n}\right)$, the leftmost anf rightmost reductions are the only reductions on a word $c_{u} \cdot c_{v} \cdot c_{t}$ in Q_{n}^{*}. There will be denoted respectively by

$$
\begin{equation*}
\gamma_{\widehat{u}, v, t}:=\gamma_{\mathrm{u}, v} \cdot \mathrm{c}_{\mathrm{t}} \quad \text { and } \quad \gamma_{\mathrm{u}, \widehat{v, t}}:=\mathrm{c}_{\mathrm{u}} \cdot \gamma_{v, \mathrm{t}} \tag{5.2.3}
\end{equation*}
$$

5.2.4. Theorem. The rewriting system $\mathcal{R}\left(\mathrm{Q}_{n}, \mathbb{C}_{n}\right)$ on Q_{n} is a finite semi-quadratic convergent presentation of the Chinese monoid \mathbf{C}_{n}.

As a consequence of this result, the set of $\mathcal{R}\left(\mathrm{Q}_{\mathrm{n}}, \mathbb{C}_{n}\right)$-normal forms, that we call Chinese normal forms, satisfies the cross-section property for the monoid \mathbf{C}_{n}. Note that this result is proved in [10, Theorem 2.1], using combinatorial properties of the right insertion algorithm C_{r} on Chinese staircases.

The rest of this section is devoted to the proof of Theorem5.2.4. The confluence of $\mathcal{R}\left(\mathrm{Q}_{n}, \mathbb{C}_{n}\right)$ follows from Proposition 4.1.8 and Theorem 5.1.4. Let us prove that $\mathcal{R}\left(\mathrm{Q}_{n}, \mathbb{C}_{n}\right)$ is a semi-quadratic presentation of the monoid \mathbf{C}_{n}. We first add the columns generators of length 2 and their defining rules. This forms a non-confluent rewriting system that we complete into a presentation of \mathbf{C}_{n}, that we call the precolumn presentation. Then we show that the rules of $\mathcal{R}\left(\mathrm{Q}_{\mathrm{n}}, \mathbb{C}_{n}\right)$ are obtained from the precolumn presentation by applying one step of Knuth-Bendix's completion, [28], on the precolumn presentation. Hence $\mathcal{R}\left(Q_{n}, \mathbb{C}_{n}\right)$ is a presentation of the monoid \mathbf{C}_{n}.
5.2.5. Precolumn presentation. Consider the rewriting system $\mathrm{Ch}_{2}(\mathrm{n})$ on $\left\{\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{n}}\right\}$ and whose rules are given by the following four families

$$
\begin{align*}
& \varepsilon_{x, y, z}: c_{z} \cdot c_{y} \cdot c_{x} \rightarrow c_{y} \cdot c_{z} \cdot c_{x} \text { and } \eta_{x, y, z}: c_{z} \cdot c_{x} \cdot c_{y} \rightarrow c_{y} \cdot c_{z} \cdot c_{x} \text { for all } 1 \leqslant x<y<z \leqslant n, \\
& \varepsilon_{x, y}: c_{y} \cdot c_{y} \cdot c_{x} \rightarrow c_{y} \cdot c_{x} \cdot c_{y} \text { and } \eta_{x, y}: c_{y} \cdot c_{x} \cdot c_{x} \rightarrow c_{x} \cdot c_{y} \cdot c_{x} \text { for all } 1 \leqslant x<y \leqslant n, \tag{5.2.6}
\end{align*}
$$

corresponding to the Chinese relations (5.0.1), hence is a presentation of the monoid \mathbf{C}_{n}. We add to the set of rules 5.2.6 the following set of rules

$$
\Gamma_{2}(n)=\left\{\gamma_{y, x}: c_{y} \cdot c_{x} \rightarrow c_{y x} \mid 1 \leqslant x<y \leqslant n\right\} \cup\left\{\gamma_{x, x}: c_{x} \cdot c_{x} \rightarrow c_{x x} \mid 1<x<n\right\}
$$

making a rewriting system $\mathrm{Ch}_{2}^{\mathcal{c}}(\mathrm{n})=\Gamma_{2}(\mathrm{n}) \cup \mathrm{Ch}_{2}(\mathrm{n})$ on Q_{n} that presents the monoid \mathbf{C}_{n}.
5.2.7. Lemma. For $n>0$, the rewriting system $\operatorname{PreCol}_{2}(n)$ on Q_{n}, whose set of rules is $\Gamma_{2}(n) \cup \Delta_{2}(n)$, where

$$
\begin{aligned}
\Delta_{2}(n)= & \left\{\gamma_{y, y x}: c_{y} \cdot c_{y x} \rightarrow c_{y x} \cdot c_{y} \text { for } 1 \leqslant x<y \leqslant n \text { and } \gamma_{y y, x}: c_{y y} \cdot c_{x} \rightarrow c_{y x} \cdot c_{y} \text { for } 1 \leqslant x<y<n\right\} \\
& \cup\left\{\gamma_{z y, x}: c_{z y} \cdot c_{x} \rightarrow c_{y} \cdot c_{z x} \text { and } \gamma_{z, y x}: c_{z} \cdot c_{y x} \rightarrow c_{y} \cdot c_{z x} \text { for } 1 \leqslant x \leqslant y<z \leqslant n\right\} \\
& \cup\left\{\gamma_{z x, y}: c_{z x} \cdot c_{y} \rightarrow c_{y} \cdot c_{z x} \text { for } 1 \leqslant x<y<z \leqslant n\right\} .
\end{aligned}
$$

is a finite semi-quadratic presentation of the Chinese monoid \mathbf{C}_{n}.
Proof. We explicit a Tietze equivalence between the rewriting systems $\mathrm{Ch}_{2}^{\mathrm{c}}(\mathrm{n})$ and $\operatorname{PreCol}_{2}(\mathrm{n})$. For $1 \leqslant$ $x<y \leqslant n$, consider the following critical branching

$$
\begin{aligned}
& \underbrace{\varepsilon_{x, y}}_{y, c_{x}} c_{y} \cdot c_{x} \cdot c_{y} \xrightarrow{\gamma_{\widehat{y, x}, y}} c_{y x} \cdot c_{y} \\
& c_{y} \cdot c_{y x}
\end{aligned}
$$

of the rewriting system $\mathrm{Ch}_{2}^{\mathrm{c}}(\mathfrak{n})$. We consider the Tietze transformation that substitutes the rule $\gamma_{y, y x}: c_{y} \cdot c_{y x} \rightarrow c_{y x} \cdot c_{y}$ to the rule $\varepsilon_{x, y}$, for every $1 \leqslant x<y \leqslant n$. Similarly, we substitute the rules $\gamma_{y x, x}, \gamma_{y y, x}, \gamma_{y, x x}, \gamma_{z y, x}, \gamma_{z x, y}$ and $\gamma_{z, y x}$ respectively to the rules $\eta_{x, y}, \varepsilon_{x, y}, \eta_{x, y}, \varepsilon_{x, y, z}, \eta_{x, y, z}$ and $\varepsilon_{x, y, z}$ using the following critical branchings of the rewriting system $\mathrm{Ch}_{2}^{\mathrm{c}}(\mathfrak{n})$:

The set of rule $\gamma_{-,-}$obtained in this way is equal to $\Delta_{2}(\mathfrak{n})$. This proves that the rewriting systems $\mathrm{Ch}_{2}^{\mathrm{c}}(\mathfrak{n})$ and $\operatorname{PreCol}_{2}(\mathrm{n})$ are Tietze equivalent.
5.2.8. Completion of the precolumn presentation. The rewriting system $\operatorname{PreCol}_{2}(\mathfrak{n})$ is not confluent, it has the following non-confluent critical branchings, that can be completed by Knuth-Bendix completion, [28], with respect to the total order \preccurlyeq ch into a confluent rewriting system by the dotted arrows as follows:
i) for every $1 \leqslant x \leqslant y<z<t \leqslant n$:

iii) for every $1 \leqslant x<y \leqslant z<t \leqslant n$:

iv) for every $1 \leqslant x<y \leqslant z \leqslant n$:

ii) for every $1 \leqslant x<y<z \leqslant n$:

v) for every $1<x<y<n$:

vi) for every $1 \leqslant x \leqslant y<z \leqslant n$:
vii) for every $1<y<n$:

The rules of $\operatorname{PreCol}_{2}(n)$ together with the family of the dotted rules defined by $\left.\mathbf{i}\right)$-vii) form the set

$$
\left\{\gamma_{u}, v: c_{u} \cdot c_{v} \rightarrow R_{Q_{n}}\left(c_{u} \star c_{r} c_{v}\right) \mid c_{u}, c_{v} \in Q_{\mathfrak{n}}\right\} .
$$

That is, the set of rules of $\mathcal{R}\left(Q_{n}, \mathbb{C}_{n}\right)$. Finally, by this construction, we prove that $\mathbb{C}_{\mathbb{C}_{n}}\left(c_{u} c_{v}\right)$ is at most of length 2 in Q_{n}^{*}, showing the semi-quadraticity of the presentation.

5.3. Coherent presentations for Chinese monoids

In this subsection we extend the rewriting system $\mathcal{R}\left(Q_{n}, \mathbb{C}_{n}\right)$ into a finite coherent convergent presentation of the Chinese monoid \mathbf{C}_{n} with an explicit description of the generating 3-cells. The rewriting system $\mathcal{R}\left(\mathrm{Q}_{n}, \mathbb{C}_{n}\right)$ being semi-quadratic any rewriting path with source $\mathrm{c}_{\mathfrak{u}} \cdot c_{v} \cdot c_{t}$ is an alternated composition of reductions of the form 5.2.3. Moreover, any rewriting rule $\gamma_{-,-}$of $\mathcal{R}\left(Q_{n}, \mathbb{C}_{n}\right)$ can be written

$$
\begin{equation*}
\gamma_{y x_{1}, x_{2} x_{3}}: c_{y x_{1}} \cdot c_{x_{2} x_{3}} \rightarrow c_{x_{\sigma(1)} x_{\sigma(2)}} \cdot c_{y x_{\sigma(3)}} \tag{5.3.1}
\end{equation*}
$$

with $y \in[n], x_{1}, x_{2}, x_{3} \in[n] \cup\{0\}$ and σ is a permutation on $[n] \cup\{0\}$, and where in (5.3.1), $c_{x 0}$ denotes the column generator c_{x} for all $1<\mathrm{x}<\mathrm{n}$.
5.3.2. When $c_{y x_{1}}$ is not a square generator, then $x_{\sigma(1)}$ takes value y only if rule 5.3 .1 is one of the commutation rules of the form

$$
\begin{equation*}
\mathbf{c}_{y} \cdot \mathbf{c}_{y x} \rightarrow \mathrm{c}_{y x} \cdot \mathrm{c}_{y}, \quad \mathrm{c}_{z y} \cdot \mathrm{c}_{z x} \rightarrow \mathrm{c}_{z x} \cdot \mathrm{c}_{z y}, \quad \mathrm{c}_{y y} \cdot \mathrm{c}_{y} \rightarrow \mathrm{c}_{y} \cdot \mathrm{c}_{y y}, \quad \mathrm{c}_{y y} \cdot \mathrm{c}_{y x} \rightarrow \mathrm{c}_{y x} \cdot \mathrm{c}_{y y} \tag{5.3.3}
\end{equation*}
$$

for $x<y<z$. When $c_{y x_{1}}$ is a square generator, with $y>x_{2}$, then $x_{\sigma(1)}$ takes value y only if rule (5.3.1) is one of the form

$$
\begin{equation*}
\mathrm{c}_{y y} \cdot \mathrm{c}_{x} \rightarrow \mathrm{c}_{y x} \cdot \mathrm{c}_{y}, \quad \mathrm{c}_{y y} \cdot \mathrm{c}_{x x} \rightarrow \mathrm{c}_{y x} \cdot \mathrm{c}_{y x}, \quad \mathrm{c}_{z z} \cdot \mathrm{c}_{y x} \rightarrow \mathrm{c}_{z x} \cdot \mathrm{c}_{z y} \tag{5.3.4}
\end{equation*}
$$

We obtain the following bounds for the rewriting paths with source a critical branching of $\mathcal{R}\left(\mathrm{Q}_{\mathrm{n}}, \mathbb{C}_{n}\right)$.
5.3.5. Proposition. For all $\mathrm{c}_{\mathfrak{u}}, \mathrm{c}_{v}, \mathrm{c}_{\mathrm{t}}$ in Q_{n} such that $\mathrm{c}_{\mathfrak{u}} \cdot \mathrm{c}_{v}$ and $\mathrm{c}_{v} \cdot \mathrm{c}_{\mathrm{t}}$ are not Chinese normal forms, the two following inequalities hold:

$$
\begin{equation*}
\ell_{l}\left(c_{\mathfrak{u}} \cdot c_{v} \cdot c_{\mathrm{t}}\right) \leqslant 5, \quad \text { and } \quad \ell_{\mathrm{r}}\left(\mathrm{c}_{\mathfrak{u}} \cdot c_{v} \cdot c_{\mathrm{t}}\right) \leqslant 5 \tag{5.3.6}
\end{equation*}
$$

The proof of this result is based on the two following preliminaries lemmas.
5.3.7. Lemma. Let $\mathrm{c}_{\mathfrak{u}}, \mathrm{c}_{v}, \mathrm{c}_{\mathrm{t}}$ in Q_{n}. If $\rho_{\mathrm{l}, 3}\left(\mathrm{c}_{\mathfrak{u}} \cdot \mathrm{c}_{v} \cdot \mathrm{c}_{\mathrm{t}}\right)$ is not a Chinese normal form, then the reductions applied to obtain the words $\rho_{l, p}\left(c_{u} \cdot c_{v} \cdot c_{t}\right)$, for $3<p \leqslant 5$, consist only on the commutation rules (5.3.3).

Proof. Let $c_{y x_{1}}, c_{x_{2} x_{3}}, c_{x_{4} x_{5}}$ be in Q_{n} such that $c_{y_{x_{1}}} \cdot c_{x_{2} x_{3}}$ and $c_{x_{2} x_{3}} \cdot c_{x_{4} x_{5}}$ are not Chinese normal forms. By definition of $\mathcal{R}\left(\mathrm{Q}_{\mathrm{n}}, \mathbb{C}_{n}\right)$, we have
$c_{y x_{1}} \cdot c_{x_{2} x_{3}} \cdot c_{x_{4} x_{5}} \rightarrow c_{\chi_{\sigma(1)} x_{\sigma(2)}} \cdot c_{y x_{\sigma(3)}} \cdot c_{x_{4} x_{5}} \rightarrow c_{\chi_{\sigma(1)} x_{\sigma(2)}} \cdot c_{\chi_{\sigma^{\prime}(\sigma(3))}} x_{\sigma^{\prime}(4)} \cdot c_{y x_{\sigma^{\prime}(5)}} \rightarrow c_{z_{1} z_{2}} \cdot c_{\chi_{\sigma(1)} z_{3}} \cdot c_{y_{x^{\prime}(5)}}$
where $z_{1}=x_{\sigma^{\prime \prime}(\sigma(2))}, z_{2}=x_{\sigma^{\prime \prime}\left(\sigma^{\prime}(\sigma(3))\right)}$ and $z_{3}=x_{\sigma^{\prime \prime}\left(\sigma^{\prime}(4)\right)}$ such that σ, σ^{\prime} and $\sigma^{\prime \prime}$ are permutations on $[n] \cup\{0\}$, and $c_{\chi_{\sigma(1)}} x_{\sigma(2)} \cdot c_{y x_{\sigma(3)}}, c_{\chi_{\sigma^{\prime}(\sigma(3))}} x_{\sigma^{\prime}(4)} \cdot c_{y^{x_{\sigma^{\prime}(5)}}}$ and $c_{z_{1} z_{2}} \cdot c_{x_{\sigma(1)} z_{3}}$ are Chinese normal forms.

Suppose that $c_{x_{\sigma(1)} z_{3}} \cdot c_{y_{\sigma^{\prime}(5)}}$ is not a Chinese normal form. Following 5.3.2, the only possible reduction that can be applied on it are of form (5.3.3) or (5.3.4). Let us prove that the rules (5.3.4) cannot be applied. On the contrary, then $\chi_{\sigma(1)}=z_{3}>y$. Since $c_{z_{1} z_{2}} \cdot c_{\chi_{\sigma(1)} z_{3}}$ is a Chinese normal form, we obtain that $z_{1}=z_{3}$ and $c_{\chi_{\sigma(1)} x_{\sigma(2)}} \cdot c_{\chi_{\sigma^{\prime}(\sigma(3))} x_{\sigma^{\prime}(4)}} \cdot c_{y x_{\sigma^{\prime}(5)}}=c_{z_{3} z_{3}} \cdot c_{z_{3} z_{2}} \cdot c_{y x_{\sigma^{\prime}(5)}}$. Since $z_{3}>y$, we obtain that $c_{z_{3} z_{2}} \cdot c_{y x_{\sigma^{\prime}(5)}}=c_{x_{\sigma^{\prime}(\sigma(3))} x_{\sigma^{\prime}(4)}} \cdot c_{\mathrm{yx}_{\sigma^{\prime}(5)}}$ is not a Chinese normal form, which yields a contradiction.

Then we can only apply a commutation rule on $c_{\chi_{\sigma(1)} z_{3}} \cdot c_{y x_{\sigma^{\prime}(5)}}$, with $\chi_{\sigma(1)}=y$, and we rewrite the word $c_{z_{1} z_{2}} \cdot c_{\chi_{\sigma(1)} z_{3}} \cdot c_{y x_{\sigma^{\prime}(5)}}$ into $c_{z_{1} z_{2}} \cdot c_{y^{\sigma^{\prime}(5)}} \cdot c_{\chi_{\sigma(1)} z_{3}}$. Suppose that $c_{z_{1} z_{2}} \cdot c_{y x_{\sigma^{\prime}(5)}}$ is not a Chinese normal form, then we can apply on it a rule of type (5.3.3) or (5.3.4). As in the previous step, let us prove that the rules $(5.3 .4)$ cannot be applied. On the contrary, then $z_{1}=z_{2}>y$. Since $c_{z_{1} z_{2}} \cdot c_{\chi_{\sigma(1)} z_{3}}$ is a Chinese normal form, we obtain that $z_{1}=z_{2}=x_{\sigma(1)}=y$, which yields a contradiction. Then we can only apply a commutation rule on $c_{z_{1} z_{2}} \cdot c_{y x_{\sigma^{\prime}(5)}}$.

We have thus proved that the reductions applied to obtain the words $\rho_{l, 4}\left(c_{y x_{1}} \cdot c_{x_{2} x_{3}} \cdot c_{x_{4} x_{5}}\right)$ and $\rho_{l, 5}\left(c_{y x_{1}} \cdot c_{x_{2} x_{3}} \cdot c_{x_{4} x_{5}}\right)$ consist only on the commutation rules. This is our claim.
5.3.8. Lemma. For all $\mathrm{c}_{\mathfrak{u}}, \mathrm{c}_{v}, \mathrm{c}_{\mathrm{t}}$ in Q_{n} such that $\mathrm{c}_{\mathfrak{u}}$ is a square generator and the words $\mathrm{c}_{\mathfrak{u}} \cdot \mathrm{c}_{v}$ and $\mathrm{c}_{v} \cdot \mathrm{c}_{\mathrm{t}}$ are not Chinese normal forms, the inequality $\ell_{r}\left(\mathrm{c}_{\mathrm{u}} \cdot \mathrm{c}_{v} \cdot \mathrm{c}_{\mathrm{t}}\right) \leqslant 5$ holds.

Proof. The word $c_{u} \cdot c_{v} \cdot c_{t}$ can have the following forms

$c_{r r} \cdot c_{t z} \cdot c_{y x}$	for $x<y<z<t \leqslant r$,	$c_{t t} \cdot c_{z y} \cdot c_{z x}$	for $x<y<z \leqslant t$,
$c_{r r} \cdot c_{t y} \cdot c_{z x}$	for $x \leqslant y<z<t \leqslant r$,	$c_{r r} \cdot c_{t x} \cdot c_{z y}$	for $x<y<z<t \leqslant r$,
$c_{t t} \cdot c_{z y} \cdot c_{y x}$	for $x<y<z \leqslant t$,	$c_{t t} \cdot c_{z} \cdot c_{y x}$	for $x<y \leqslant z \leqslant t$,
$c_{z z} \cdot c_{y x} \cdot c_{x}$	for $x<y \leqslant z$,	$c_{t \mathrm{tt}} \cdot c_{z y} \cdot c_{x}$	for $x<y<z \leqslant t$,
$c_{t \mathrm{tt}} \cdot c_{z x} \cdot c_{y}$	for $x<y<z \leqslant t$,	$c_{z z} \cdot c_{y} \cdot c_{x}$	for $x<y \leqslant z$.

For all these forms, we have $\ell_{r}\left(c_{u} \cdot c_{v} \cdot c_{t}\right) \leqslant 5$.
5.3.9. Proof of Proposition 5.3.5. Let $c_{y x_{1}}, c_{x_{2} x_{3}}$ and $c_{x_{4} x_{5}}$ be in Q_{n} such that $c_{y x_{1}} \cdot c_{x_{2} x_{3}}$ and $c_{x_{2} x_{3}} \cdot c_{x_{4} x_{5}}$ are not Chinese normal forms. Let us prove that $\ell_{1}\left(c_{y x_{1}} \cdot c_{x_{2} x_{3}} \cdot c_{x_{4} x_{5}}\right) \leqslant 5$. Suppose that $\rho_{l, 2}\left(c_{y x_{1}} \cdot c_{x_{2} x_{3}} \cdot c_{x_{4} x_{5}}\right)$ is not a Chinese normal form. By definition of the rewriting rules in $\mathcal{R}\left(Q_{n}, \mathbb{C}_{n}\right)$, we obtain
$c_{y x_{1}} \cdot c_{x_{2} x_{3}} \cdot c_{x_{4} x_{5}} \rightarrow c_{\chi_{\sigma(1)} x_{\sigma(2)}} \cdot c_{y x_{\sigma(3)}} c_{x_{4} x_{5}} \rightarrow c_{\chi_{\sigma(1)} x_{\sigma(2)}} \cdot c_{x_{\sigma^{\prime}(\sigma(3))} x_{\sigma^{\prime}(4)}} c_{y_{\sigma^{\prime}(5)}} \rightarrow c_{z_{1} z_{2}} \cdot c_{\chi_{\sigma(1)} z_{3}} \cdot c_{y^{x_{\sigma^{\prime}(5)}}}$
where $z_{1}=x_{\sigma^{\prime \prime}(\sigma(2))}, z_{2}=x_{\sigma^{\prime \prime}\left(\sigma^{\prime}(\sigma(3))\right)}$ and $z_{3}=x_{\sigma^{\prime \prime}\left(\sigma^{\prime}(4)\right)}$ such that σ, σ^{\prime} and $\sigma^{\prime \prime}$ are permutations on $[\mathrm{n}] \cup\{0\}$, and $\mathrm{c}_{\chi_{\sigma(1)} x_{\sigma(2)}} \cdot \mathrm{c}_{\mathrm{y} \chi_{\sigma(3)}}, \mathrm{c}_{\chi_{\sigma^{\prime}(\sigma(3))} x_{\sigma^{\prime}(4)}} \cdot \mathrm{c}_{\mathrm{yx}_{\sigma^{\prime}(5)}}$ and $\mathrm{c}_{z_{1} z_{2}} \cdot \mathrm{c}_{\chi_{\sigma(1)} z_{3}}$ are Chinese normal forms.

Suppose that $\mathrm{c}_{\chi_{\sigma(1)} z_{3}} \cdot \mathrm{c}_{\mathrm{yx}_{\sigma^{\prime}(5)}}$ is not a Chinese normal form, then by Lemma5.3.7 we can only apply a commutation rule on it and we rewrite the word $\mathrm{c}_{z_{1} z_{2}} \cdot \mathrm{c}_{\chi_{\sigma(1)} z_{3}} \cdot \mathrm{c}_{\mathrm{yx}}^{\sigma^{\prime}(5)}$ into $\mathrm{c}_{z_{1} z_{2}} \cdot \mathrm{c}_{y \chi_{\sigma^{\prime}(5)}} \cdot \mathrm{c}_{\chi_{\sigma(1)} z_{3}}$. Suppose that $c_{z_{1} z_{2}} \cdot c_{y^{\sigma^{\prime}(5)}}$ is not a Chinese normal form, then by Lemma 5.3.7 we can only apply a commutation rule on it and we rewrite $c_{z_{1} z_{2}} \cdot c_{y x_{\sigma^{\prime}(5)}} \cdot c_{x_{\sigma(1)} z_{3}}$ into $c_{y x_{\sigma^{\prime}(5)}} \cdot c_{z_{1} z_{2}} \cdot c_{\chi_{\sigma(1)} z_{3}}$, where $c_{y x_{\sigma^{\prime}(5)}} \cdot c_{\chi_{\chi_{(1)}} z_{3}}$
and $c_{y x_{\sigma^{\prime}(5)}} \cdot c_{z_{1} z_{2}}$ are Chinese normal forms. Since $c_{z_{1} z_{2}} c_{\chi_{\sigma(1)} z_{3}}$ is a Chinese normal form, we obtain that $\mathcal{c}_{y x_{\sigma^{\prime}}(5)} \mathfrak{c}_{\chi_{\sigma(1)} z_{3}}$ is a Chinese normal form. This proves the first inequality in 5 .3.6

Let us prove that $\ell_{r}\left(c_{y x_{1}} \cdot c_{x_{2} x_{3}} \cdot c_{x_{4} x_{5}}\right) \leqslant 5$. Suppose that the word $\sigma_{r, 3}\left(c_{y x_{1}} \cdot c_{x_{2} x_{3}} \cdot c_{x_{4} x_{5}}\right)$ is not a Chinese normal form. By definition of the rewriting rules in $\mathcal{R}\left(\mathrm{Q}_{\boldsymbol{n}}, \mathbb{C}_{n}\right)$, we have

$$
\begin{equation*}
c_{y x_{1}} \cdot c_{x_{2} x_{3}} \cdot c_{x_{4} x_{5}} \rightarrow c_{y x_{1}} \cdot c_{x_{\sigma(3)} x_{\sigma(4)}} \cdot c_{x_{2} x_{\sigma(5)}} \rightarrow c_{x_{\sigma^{\prime}(1)} y_{1}} \cdot c_{y y_{2}} \cdot c_{x_{2} x_{\sigma(5)}} \tag{5.3.10}
\end{equation*}
$$

and

$$
c_{x_{\sigma^{\prime}(1)} y_{1}} \cdot c_{y y_{2}} \cdot c_{x_{2} x_{\sigma_{G}(5)}} \rightarrow c_{x_{\sigma^{\prime}(1)} y_{1}} \cdot c_{x_{\sigma^{\prime \prime}(2)} z_{1}} \cdot c_{y z_{2}} \rightarrow c_{\mathfrak{t}_{1} t_{2}} \cdot c_{x_{\sigma^{\prime}(1)}} t_{3} \cdot c_{y z_{2}}
$$

where $y_{1}=x_{\sigma^{\prime}(\sigma(3))}, y_{2}=x_{\sigma^{\prime}(\sigma(4))}, z_{1}=x_{\sigma^{\prime \prime}\left(\sigma^{\prime}(\sigma(4))\right)}, z_{2}=x_{\sigma^{\prime \prime}(\sigma(5))}, t_{1}=x_{\sigma_{1}\left(\sigma^{\prime}(1)\right)}, \mathrm{t}_{2}=x_{\sigma_{1}\left(\sigma^{\prime}(\sigma(3))\right)}$ and $\mathrm{t}_{3}=\mathrm{x}_{\sigma_{1}\left(\sigma^{\prime \prime}\left(\sigma^{\prime}(\sigma(1))\right)\right)}$ such that σ, σ^{\prime}, $\sigma^{\prime \prime}$ and σ_{1} are permutations on $[n] \cup\{0\}$, and $c_{\chi_{\sigma(3)} \chi_{\sigma(4)}} \cdot \mathbf{c}_{x_{2} \chi_{\sigma(5)}}$, $c_{x_{\sigma^{\prime}(1)} y_{1}} \cdot c_{y y_{2}}, c_{x_{\sigma^{\prime \prime}(2)} z_{1}} \cdot c_{y_{y z_{2}}}$ and $c_{t_{1} t_{2}} \cdot c_{x_{\sigma^{\prime}(1)}} t_{3}$ are Chinese normal forms.

Suppose that $\sigma_{r, 4}\left(c_{y x_{1}} \cdot c_{x_{2} x_{3}} \cdot c_{x_{4} x_{5}}\right)$ is not a Chinese normal form. Then $x_{\sigma^{\prime}(1)}=y$ and the second reduction of (5.3.10) is $c_{y x_{1}} \cdot c_{x_{\sigma(3)} x_{\sigma(4)}} \cdot c_{x_{2} x_{\sigma(5)}} \rightarrow c_{y y_{1}} \cdot c_{y y_{2}} \cdot c_{x_{2} x_{\sigma(5)}}$. Following 5.3.2, the rule $\gamma_{y x_{1}, x_{\sigma(3)} x_{\sigma(4)}}$ can be of form (5.3.3) or (5.3.4). Let us prove that it cannot be of form (5.3.3). On the contrary, since $c_{\chi_{\sigma(3)} \chi_{\sigma(4)}} \cdot c_{x_{2} \chi_{\sigma(5)}}$ is a Chinese normal form, we obtain $x_{\sigma(3)}=y \geqslant x_{2}$. Moreover, since $c_{y_{1} x_{1}} \cdot c_{x_{2} x_{3}}$ is not a Chinese normal form, the inequality $y \leqslant x_{2}$ holds. Then $y=x_{2}$. In this way, the first reduction of (5.3.10) is $c_{y x_{1}} \cdot c_{y x_{3}} \cdot c_{y x_{5}} \rightarrow c_{y x_{3}} \cdot c_{y x_{1}} \cdot c_{y x_{5}}$, where $c_{y x_{3}} c_{y x_{5}}$ is a Chinese normal form, and its second reduction is $c_{y x_{3}} \cdot c_{y x_{1}} \cdot c_{y x_{5}} \rightarrow c_{y x_{3}} \cdot c_{y x_{5}} \cdot c_{y x_{1}}$. Since $\sigma_{r, 3}\left(c_{y x_{1}} \cdot c_{y x_{3}} \cdot c_{y x_{5}}\right)$ is not a Chinese normal form, the word $c_{y x_{3}} \cdot \mathcal{c}_{y x_{5}}$ is not a Chinese normal form, which yields a contradiction.

Thus, the rule $\gamma_{y x_{1}, x_{\sigma(3)} x_{\sigma(4)}}$ is of form (5.3.4) and $c_{y x_{1}}$ is a square generator such that $c_{y x_{1}} \cdot c_{x_{2} x_{3}}$ and $c_{x_{2} x_{3}} \cdot c_{x_{4} x_{5}}$ are not Chinese normal forms. Hence by Lemma 5.3.8 we obtain $\ell_{r}\left(c_{y x_{1}} \cdot c_{x_{2} x_{3}} \cdot c_{x_{4} x_{5}}\right) \leqslant 5$. This proves the second inequality in 5.3.6.
5.3.11. Theorem. The rewriting system $\mathcal{R}\left(\mathrm{Q}_{n}, \mathbb{C}_{n}\right)$ extends into a finite coherent convergent presentation of the Chinese monoid \mathbf{C}_{n} by adjunction of a generating 3-cell

for any $\mathrm{c}_{\mathfrak{u}}, \mathrm{c}_{v}, \mathrm{c}_{\mathrm{t}}$ in $\mathrm{Q}_{\mathfrak{n}}$ such that $\mathrm{c}_{\mathfrak{u}} \cdot \mathrm{c}_{v}$ and $\mathrm{c}_{v} \cdot \mathrm{c}_{\mathrm{t}}$ are not Chinese normal forms, and where the 2-cells $\gamma_{-,-}$denote either a rewriting rule of $\mathcal{R}\left(Q_{n}, \mathbb{C}_{n}\right)$ or an identity.
Proof. Any critical branching of $\mathcal{R}\left(\mathrm{Q}_{\mathfrak{n}}, \mathbb{C}_{\mathfrak{n}}\right)$ has the form

for any c_{u}, c_{v}, c_{t} in Q_{n} such that $c_{u} \cdot c_{v}$ and $c_{v} \cdot c_{t}$ are not Chinese normal forms, that is confluent by Theorem 5.2.4 Moreover by Proposition 5.3.5, $\ell_{\imath}\left(c_{u} \cdot c_{v} \cdot c_{t}\right) \leqslant 5$ and $\ell_{r}\left(c_{u} \cdot c_{v} \cdot c_{t}\right) \leqslant 5$. We conclude with coherent Squier's theorem recalled in 2.2.3
5.3.12. Remark. Note that in the boundary of the generating 3 -cell $X_{u, v, t}$ some $\gamma_{-,-}$can be identity 2-cells. However, following construction given in the proof of Proposition 5.3.5, if the source (resp. target) of $X_{u, v, t}$ is of length 5 , then its target (resp. source) is of length at most 4.

References

[1] Roland Berger. Confluence and Koszulity. J. Algebra, 201(1):243-283, 1998.
[2] Leonid Bokut, Yuqun Chen, Weiping Chen, and Jing Li. New approaches to plactic monoid via GröbnerShirshov bases. J. Algebra, 423:301-317, 2015.
[3] Ronald Book and Friedrich Otto. String-rewriting systems. Texts and Monographs in Computer Science. Springer-Verlag, 1993.
[4] Alan J. Cain, Robert D. Gray, and António Malheiro. Finite Gröbner-Shirshov bases for Plactic algebras and biautomatic structures for Plactic monoids. J. Algebra, 423:37-53, 2015.
[5] Alan J. Cain, Robert D. Gray, and António Malheiro. Rewriting systems and biautomatic structures for Chinese, hypoplactic, and Sylvester monoids. Internat. J. Algebra Comput., 25(1-2):51-80, 2015.
[6] Alan J. Cain, Robert D. Gray, and António Malheiro. Crystal monoids \& crystal bases: rewriting systems and biautomatic structures for plactic monoids of types $A_{n}, B_{n}, C_{n}, D_{n}$, and G_{2}. J. Combin. Theory Ser. A, 162:406-466, 2019.
[7] Alan J. Cain and António Malheiro. Crystallizing the hypoplactic monoid: from quasi-kashiwara operators to the robinson-schensted-knuth-type correspondence for quasi-ribbon tableaux. Journal of Algebraic Combinatorics, 45(2):475-524, 2017.
[8] Alan J. Cain and António Malheiro. Crystals and trees: quasi-Kashiwara operators, monoids of binary trees, and Robinson-Schensted-type correspondences. J. Algebra, 502:347-381, 2018.
[9] Alan J. Cain, António Malheiro, and Fabio M. Silva. The monoids of the patience sorting algorithm. arXiv:1706.06884, 2017.
[10] Julien Cassaigne, Marc Espie, Daniel Krob, Jean-Christophe Novelli, and Florent Hivert. The Chinese monoid. Internat. J. Algebra Comput., 11(3):301-334, 2001.
[11] Yuqun Chen and Jianjun Qiu. Gröbner-Shirshov basis for the Chinese monoid. J. Algebra Appl., 7(5):623-628, 2008.
[12] Etsurō Date, Michio Jimbo, and Tetsuji Miwa. Representations of $\mathrm{U}_{\mathrm{q}}(\mathrm{gl}(\mathrm{n}, \mathrm{C}))$ at $\mathrm{q}=0$ and the RobinsonSchensted correspondence. In Physics and mathematics of strings, pages 185-211. World Sci. Publ., Teaneck, NJ, 1990.
[13] Michel Dubois-Violette and Todor Popov. Homogeneous algebras, statistics and combinatorics. Letters in Mathematical Physics, 61(2):159-170, 2002.
[14] Gérard Duchamp and Daniel Krob. Plactic-growth-like monoids. In Words, languages and combinatorics, II (Kyoto, 1992), pages 124-142. World Sci. Publ., River Edge, NJ, 1994.
[15] William Fulton. Young tableaux, volume 35 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1997. With applications to representation theory and geometry.

REFERENCES

[16] Stéphane Gaussent, Yves Guiraud, and Philippe Malbos. Coherent presentations of Artin monoids. Compos. Math., 151(5):957-998, 2015.
[17] Samuele Giraudo. Algebraic and combinatorial structures on pairs of twin binary trees. J. Algebra, 360:115-157, 2012.
[18] Yves Guiraud, Eric Hoffbeck, and Philippe Malbos. Convergent presentations and polygraphic resolutions of associative algebras. arXiv:1406.0815v2, December 2017.
[19] Yves Guiraud and Philippe Malbos. Higher-dimensional normalisation strategies for acyclicity. Adv. Math., 231(3-4):2294-2351, 2012.
[20] Yves Guiraud and Philippe Malbos. Identities among relations for higher-dimensional rewriting systems. In OPERADS 2009, volume 26 of Sémin. Congr., pages 145-161. Soc. Math. France, Paris, 2013.
[21] Yves Guiraud and Philippe Malbos. Polygraphs of finite derivation type. Math. Structures Comput. Sci., 28(2):155-201, 2018.
[22] Eylem Güzel Karpuz. Complete rewriting system for the Chinese monoid. Appl. Math. Sci. (Ruse), 4(21-24):1081-1087, 2010.
[23] Nohra Hage. Finite convergent presentation of plactic monoid for type C. Internat. J. Algebra Comput., 25(8):1239-1263, 2015.
[24] Nohra Hage and Philippe Malbos. Knuth's coherent presentations of plactic monoids of type A. Algebras and Representation Theory, 20(5):1259-1288, Oct 2017.
[25] F. Hivert, J.-C. Novelli, and J.-Y. Thibon. The algebra of binary search trees. Theoret. Comput. Sci., 339(1):129-165, 2005.
[26] Florent Hivert, Jean-Christophe Novelli, and Jean-Yves Thibon. Commutative combinatorial hopf algebras. Journal of Algebraic Combinatorics, 28(1):65, Jun 2007.
[27] Jin Hong and Seok-Jin Kang. Introduction to quantum groups and crystal bases, volume 42 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2002.
[28] Donald Knuth and Peter Bendix. Simple word problems in universal algebras. In Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967), pages 263-297. Pergamon, Oxford, 1970.
[29] Donald E. Knuth. Permutations, matrices, and generalized Young tableaux. Pacific J. Math., 34:709-727, 1970.
[30] Daniel Krob and Jean-Yves Thibon. Noncommutative symmetric functions iv: Quantum linear groups and hecke algebras at $q=0$. Journal of Algebraic Combinatorics, 6(4):339-376, Oct 1997.
[31] Łukasz Kubat and Jan Okniński. Gröbner-Shirshov bases for plactic algebras. Algebra Colloq., 21(4):591-596, 2014.
[32] Alain Lascoux, Bernard Leclerc, and Jean-Yves Thibon. Crystal graphs and q-analogues of weight multiplicities for the root system A_{n}. Lett. Math. Phys., 35(4):359-374, 1995.
[33] Alain Lascoux and Marcel-Paul Schützenberger. Le monoïde plaxique. In Noncommutative structures in algebra and geometric combinatorics (Naples, 1978), volume 109 of Quad. "Ricerca Sci.", pages 129-156. CNR, Rome, 1981.
[34] Victoria Lebed. Plactic monoids: a braided approach. Preprint arXiv:1612.05768, 2016.
[35] Cédric Lecouvey. Schensted-type correspondence, plactic monoid, and jeu de taquin for type C ${ }_{n}$. J. Algebra, 247(2):295-331, 2002.
[36] Cédric Lecouvey. Schensted-type correspondences and plactic monoids for types B_{n} and D_{n}. J. Algebraic Combin., 18(2):99-133, 2003.
[37] Peter Littelmann. A plactic algebra for semisimple Lie algebras. Adv. Math., 124(2):312-331, 1996.
[38] M. Lothaire. Algebraic combinatorics on words, volume 90 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2002.
[39] Maxwell Newman. On theories with a combinatorial definition of "equivalence". Ann. of Math. (2), 43(2):223-243, 1942.
[40] Jean-Christophe Novelli. On the hypoplactic monoid. Discrete Math., 217(1-3):315-336, 2000.
[41] Jean-Baptiste Priez. Lattice of combinatorial hopf algebras: binary trees with multiplicities. Discrete Mathematics \& Theoretical Computer Science, 2013.
[42] Craige Schensted. Longest increasing and decreasing subsequences. Canad. J. Math., 13:179-191, 1961.
[43] Craig C. Squier, Friedrich Otto, and Yuji Kobayashi. A finiteness condition for rewriting systems. Theoret. Comput. Sci., 131(2):271-294, 1994.
[44] Hugh Thomas and Alexander Yong. Longest increasing subsequences, plancherel-type measure and the hecke insertion algorithm. Advances in Applied Mathematics, 46(1):610 - 642, 2011.
[45] Alfred Young. On Quantitative Substitutional Analysis. Proc. London Math. Soc., S2-28(1):255.

> Nohra Hage
> nohra.hage@usj.edu.lb

Ecole supérieure d'ingénieurs de Beyrouth (ESIB) Université Saint-Joseph de Beyrouth (USJ), Liban

Philippe Malbos
malbos@math.univ-lyon1.fr
Univ Lyon, Université Claude Bernard Lyon 1
CNRS UMR 5208, Institut Camille Jordan
43 blvd. du 11 novembre 1918
F-69622 Villeurbanne cedex, France

