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Coherence of monoids by insertions
and Chinese syzygies

Nohra Hage Philippe Malbos

Abstract – A data structure describes a way to organize and store a collection of data. It defines
primitive efficient functions and operations that can be applied to the data such as constructors,
modifications and access maps on the data. In this work, we consider data structures on strings as
combinatorial descriptions of structured words having a theory of normal forms defined by insertion
algorithms. We show that an insertion map of a string data structure induces a product on data
and we give necessary conditions making this product associative. Our construction allows us to
give a rewriting description of the cross-section property for the structure monoid of a string data
structure. We show how to compute a coherent presentation of the structure monoid made of rewriting
rules defined by insertion on words and whose syzygies are defined as relations among the insertion
algorithms. As an illustration, we show how our constructions can be applied to Chinese monoids by
making explicit the shape of syzygies of the Chinese congruence.

Keywords – String rewriting systems, data structure, normal forms, plactic monoids, Chinese monoids.

M.S.C. 2010 – Primary: 20M35, 68Q42. Secondary: 20M05, 18D05.

1 Introduction 2
2 Preliminaries on rewriting 6

2.1 String rewriting systems . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Coherent presentations . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 String data structures, cross-section and confluence 9
3.1 String data structures . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Commutation of insertions . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Example: plactic monoids of classical types . . . . . . . . . . . . . . 15
3.4 Other examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Coherent presentations by insertion 20
4.1 Generating set of a string data structure . . . . . . . . . . . . . . . . 20
4.2 Coherent presentations and string data structures . . . . . . . . . . . 25

5 String data structures for Chinese monoids 28
5.1 Presentation of Chinese monoids by string data structures . . . . . . . 28
5.2 Semi-quadratic convergent presentations for Chinese monoids . . . . 34
5.3 Coherent presentations for Chinese monoids . . . . . . . . . . . . . . 38



1. Introduction

1. Introduction
String data structures and syzygies

A data structure describes a way to organize, manage and store a collection of structured data. It
defines primitive efficient functions and operations that can be applied to the data such as constructors,
modifications and access maps on the data. In this article, we introduce the notion of string data structure
as a combinatorial description of structured words on ordered alphabets. Such data structures appear
in many contexts in combinatorial algebra, combinatorics and fundamental computer science through
combinatorial data structures, such as arrays, tableaux, staircases or binary search trees. For instance,
array data structures can be used to describe normal forms for plactic monoids of type A with Young
tableaux [15, 33, 38, 45], plactic monoids of classical types with symplectic and orthogonal tableaux,
[35, 36], Chinese monoids with staircases, [10, 14], hypoplactic monoids with quasi-ribbon tableaux, [40],
left and right patience sorting monoids with left and right patience sorting tableaux, [9, 44], and stalactic
monoids with stalactic tableaux [26, 41]. Binary search trees, binary search trees with multiplicities
and pairs of twin binary search trees can be respectively used to describe normal forms for sylvester
monoids, [25], taiga monoids, [41], and Baxter monoids, [17].

Cross-section by insertion. In all of these situations, structured data are constructed using insertion
algorithms, and give interpretations of congruence relations by a characterization of a cross-section
property for the presented monoids. Explicitly, given a string data structure S over an alphabetA defined by
a right insertion algorithm I, to each word w = x1x2 . . . xk on A it is associated a structured data CS(w)
obtained by insertion of the word w in the empty data ∅ by application of insertion I step by step:

CS(w) := (∅  

I w) = ((((∅  

I x1)

 

I x2)

 

I . . .)

 

I xk−1)

 

I xk

Structured data form a cross-section property for a congruence relation ≈ on the free monoid A∗: for
any words w,w ′ on A, w ≈ w ′ if and only if the insertion algorithm yields the same structured data:
CS(w) = CS(w

′).
In this work, we explain how insertion algorithms define a product on the structured data, and we

give necessary conditions on the insertion to induce an associative product. We relate the cross-section
property of the string data structure to a confluence property of a string rewriting system whose rewriting
rules are defined by insertion. Finally, using this construction, we show how to compute an economic
coherent presentation of the monoid presented by the data structure, made of generators, rewriting rules
describing the insertion of letters in words and syzygies of the presentation interpreted in terms of relations
among the insertion algorithms. This is the first step in an explicit construction of free resolutions of
these monoids by extending a coherent resolution in a polygraphic resolution, that is cofibrant objects in
the category of (∞, 1)-categories, [19, 20], whose acyclicity is proved by an iterative construction of a
normalisation strategy.

Tableaux and plactic congruence. These constructions are well known for the plactic congruence ≈Pn
of type A on the free monoid over [n] := {1, . . . , n}, generated by the Knuth relations zxy = xzy for
all 1 6 x 6 y < z 6 n and yzx = yxz for all 1 6 x < y 6 z 6 n, that emerged from the works of
Schensted [42] and Knuth [29] on the combinatorial study of Young tableaux. The structure of plactic
monoid of typeA of rank n, denoted by Pn, was introduced by Lascoux and Schützenberger in [33] as the
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1. Introduction

monoid generated on [n] and submitted to the plactic congruence. Knuth proved in [29] that the set Ytn of
Young tableaux over [n] satisfies the cross-section property for the plactic congruence ≈Pn . Schensted
introduced two algorithms to insert an element x of [n] into a tableau t of Ytn, [42]: the right insertion
algorithm Sr, we denote t  

Sr x and the left insertion algorithm Sl, we denote x Sl t, see 3.3.3. Denote
by Rcol : Ytn → [n]∗ the map that reads a tableau column by column from left to right and from bottom to
top. The insertion algorithms allow to define two internal products on Ytn by setting

t ?Sr t
′ = (t  

Sr Rcol(t
′)), t ?Sl t

′ = (Rcol(t
′) Sl t)

for all tableaux t, t ′ in Ytn. Knuth showed in [29] that these products define on Ytn a structure of monoid
that is isomorphic to the plactic monoid Pn, see also [34] for explicit description. In fact, as we will show
in Section 3, the associativity of these products is an immediate consequence of the commutation of the
two insertion algorithms, that is

y Sl (t

 

Sr x) = (y Sl t)

 

Sr x

holds for all tableau t and x, y in [n], as shown by Schensted in [42], see 3.3.4. We will show that these
insertion algorithms define string data structures on the set of Young tableaux. We explain how the
cross-section property is a consequence of these structures and how to relate this property to the confluence
property of a rewriting system defined on the set of Young tableaux. The study of plactic monoids of type A
using string rewriting systems on Knuth generators is not straightforward, in particular in rank greater
than 4 they do not admit finite completion with respect the lexicographic order, [31]. Finite completions
can be obtained by adding new generators in the quasi-center of the monoid. In particular, by adding
column generators or row generators, the completion procedure ends producing a convergent presentation
of plactic monoids, [2, 4], see also [4, 6, 23] for classical types. Such convergent presentations can be used
to explicit coherent presentations of plactic monoids giving all the relations among the relations of the
presentations, [24]. In Section 4, we will explain that the confluence of the column or row presentations
for plactic monoids are in fact a consequence of the commutation of Schensted’s insertion algorithms.

Main results and organization of the article

Let us present the main results of this article. Section 2 gives some preliminaries on presentations of
monoids by string rewriting systems and coherent presentation.

String data structures. In Section 3 we introduce the notion of string data structure over a totally ordered
alphabet as a set of combinatorial data describing structured words equipped with insertion and reading
maps. Explicitly, a string data structure S over an alphabet A is quadruple (D, `, I, R) made of a set D of
data, a reading map ` of words in A∗, a reading map R : D→ A∗ of the data and a one-element insertion
map I : D × A → D satisfying conditions given by Definition 3.1.1. The map I extends into a map
I` : D×A∗ → D defined by

I`(d, u) = I`(I(d, x1), x2 . . . xk) and I`(d, λ) = d

for all d in D and u in A∗ with x1 . . . xk = `(u). The map CS := I`(∅,−) : A∗ → D is called the
constructor of S. We say that S is right (resp. left) if the insertion map I` is defined with respect to
the left-to-right reading `l (resp. right-to-left reading `r). In that case, I`l(d, u) (resp. I`r(d, u)) will be
denoted by d  

I`l
u (resp. u I`r

d).
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1. Introduction

Structure monoid. We define an internal product ?I onD by setting d ?I d ′ := I`(d, R(d ′)) for all d, d ′
in D. By definition the product ?I is unitary, and the string data structure S is called associative if ?I
is associative. The set D with the product ?I is a monoid called the structure monoid of S, denoted
by M(D, I). We say that an associative string data structure presents a monoid M if its structure monoid
is isomorphic toM. We will denote by R(D, S) the rewriting system on D, whose rules are

γd,d ′ : d·d ′ → d ?I d
′

for any d, d ′ in D. The rewriting system R(D, S) is terminating, moreover it is confluent when S is
associative. It is thus a convergent presentation of the structure monoid M(D, I), and the set of R(D, S)-
normal forms satisfies the cross-section property for M(D, I). An associative string data structure S
over A satisfies the cross-section property for a congruence relation ≈ on A∗, if u ≈ v holds if and only
if CS(u) = CS(v) holds for all u, v in A∗. A string data structure S is compatible with a congruence
relation ≈ on A∗, if for all d in D and u, v in A∗, u ≈ v implies I`(d, u) = I`(d, v), and RCS(u) ≈ u,
see 3.1.11. Theorem 3.1.13 states that when S is right (resp. left) associative, S is compatible with a
congruence relation ≈ on A∗ if, and only if, it satisfies the cross-section property for ≈ if, and only if, it
presents the quotient monoid A∗/ ≈ (resp. the opposite of the quotient monoid A∗/ ≈).

Moreover, Proposition 3.1.18 states that when S is right (resp. left) associative, the rewriting
system R(R) on A, whose rules are defined by

γd,d ′ : R(d)R(d ′)→ R(d ?I d
′)

for all d, d ′ in D such that R(d ?I d
′) 6= R(d)R(d ′), is convergent, and that S presents the monoid

(resp. opposite monoid) presented by R(R). It follows that R(R) is a convergent presentation of the
structure monoid M(D, I). As a consequence, one can prove that an associative string data structure S
satisfies the cross-section property for a congruence relation ≈ by showing that R(R) presents the quotient
monoid A∗/ ≈.

Commutation of insertions. One defines in 3.2.1 a string data bistructure over A as a quadru-
ple (D, I, J, R) such that the one-element insertions I and J define on D a right and left string data
structure over A respectively and commute, that is the following condition

(x I d)

 

J y = x I (d

 

J y)

holds for all d in D and x, y in A. Theorem 3.2.3 proves that commutation of insertion induces the
associativity of products ?I and ?J and the commutation relation d ?I d

′ = d ′ ?J d for all d, d ′ in D.
Moreover, the structure monoids M(D, I) and M(D, J) are anti-isomorphic. As an example, we show
in Subsection 3.3, that right and left Schensted’s insertion algorithms equip the set of Young tableaux
with a string data bistructure that presents the plactic monoid Pn. In 3.3.6 we illustratre that Lecouvey’s
left insertion algorithms define left string data structures on symplectic tableaux, [35] and orthogonal
tableaux, [36] used to characterize cross-section properties for plactic monoids of classical type C, B and D
respectively. However, the existence of a right insertion algorithm on symplectic and orthogonal tableaux
that commutes with Lecouvey’s left insertion, and thus a string data bistructure on these tableaux is still an
open problem. In Subsection 3.4 we give other instances of string data bistructures: with hypoplactic
monoids and quasi-ribbon tableaux, [30, 40], sylvester monoids and binary search trees, [25], patience
sorting monoids and patience sorting tableaux, [9, 44]. Note that the existence of a string data bistructure
on quasi-ribbon tableaux, binary search trees, and patience sorting tableaux are still open problems.
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1. Introduction

Generating string data structures and coherence by insertion. In general the rewriting systemR(D, S)
is infinite. In some situations, we can reduce the set of generators to a finite subset Q of D in order to
define a finite string rewriting system R(Q,S) that is Tietze equivalent to R(D, S). In Subsection 4.1
we define generating set Q of a string data structure S as a subset Q of D such that any element d in D
can be decomposed as d = c1 ?I c2 ?I . . . ?I ck, where c1, . . . , ck ∈ Q, and that there exists a unique
decomposition d = c1 ?I . . . ?I cl, with c1, . . . , cl in Q satisfying ci ?I ci+1 /∈ Q for all 1 6 i 6 l − 1,
and R(d) = R(c1) . . . R(cl) holds in A∗. For instance, the set of columns over [n] and the set of rows
over [n] generate the set of Young tableaux Ytn equipped with Schensted’s insertions. We define the
rewriting system R(Q,S) on Q whose rules are

γc,c ′ : c·c ′ → RQ(c ?I c
′)

for all c, c ′ in Q, whenever c·c ′ 6= RQ(c ?I c
′). In most applications, the termination of R(Q,S) can

be showed by introducing a well-founded order on the free monoid Q∗ as shown in 4.1.7. A generating
set Q of S is called well-founded if the rewriting system R(Q,S) is terminating. When S is right
associative and Q is a well-founded generating set, Proposition 4.1.8 states that R(Q,S) is a convergent
presentation of the structure monoid M(D, I). As a consequence, the set of R(Q, S)-normal forms
satisfies the cross-section property forM(D, I). The last result of Section 4, Theorem 4.2.1, shows how to
extend R(Q, S) into a coherent presentation of the monoidM(D, I) when S is a right associative string
data structure, and Q is a well-founded generating set. In that case, R(Q, S) extends into a coherent
convergent presentation of the monoidM(D, I) by adjunction of a generating 3-cell

c·c ′ ·c ′′

σ
>,Q
c·c ′·c ′′

"6

c·γc ′,c ′′ "6

Ac,c ′,c ′′��
RQ(c ?I c

′ ?I c
′′)

c·RQ(c ′ ?I c ′′) σ
>,Q
c·RQ(c ′?Ic ′′)

-A

for any c, c ′, c ′′ inQ such that c·c ′ 6= RQ(c ?I c ′) and c ′ ·c ′′ 6= RQ(c ′ ?I c ′′). In particular, we show that
when D is equipped by a bistructure (D, I, J, R) and it is generated by a well-founded set Q, then the
generating 3-cells Ac,c ′,c ′′ can be written

c·c ′ ·c ′′

σ
>,Q
cc ′c ′′

�2

σ
⊥,Q
cc ′c ′′

,@
RQ(c ?I c

′ ?I c
′′)Ac,c ′,c ′′

��

whereσ>,Q andσ⊥,Q are the leftmost and rightmost normalisation strategy corresponding to the application
of the insertions I and J respectively.

String data structures on Chinese staircases. As an illustration we construct in Section 5 a string
data bistructure that presents the Chinese monoid introduced in [14] by Duchamp and Krob in their
classification of monoids with growth similar to that of the plactic monoid. The Chinese monoid of
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2. Preliminaries on rewriting

rank n, denoted by Cn, is the monoid generated by [n] and submitted to the relations zyx = zxy = yzx
for all 1 6 x 6 y 6 z 6 n. This Chinese congruence was interpreted in [10] by Chinese staircases and
the authors prove that the set Chn of Chinese staircases over [n] satisfies the cross-section property for
the monoid Cn. We recall in Subsection 5.1 the structure of Chinese staircase and the right insertion
algorithm Cr in Chinese staircases introduced in [10], and we recall also the left insertion algorithm Cl
introduced in [5]. Theorem 5.1.4, shows that these two insertions commute: for all staircase t in Chn
and x, y in [n], the following equality holds in Chn:

y Cl (t

 

Cr x) = (y Cl t)

 

Cr x.

As a consequence, the right and left insertions with the row reading Rr defined in 5.1.1 induce a string
data bistructure on Chinese staircases over [n], that implies, by Theorem 3.2.3, that the compositions ?Cr
and ?Cl are associative.

In Subsection 5.2 we construct a finite semi-quadratic convergent presentation R(Qn,Cn) of the
monoid Cn induced by the right string data structure Cn := (Chn, Cr, `l, Rr), and whose set of genera-
tors Qn is made of columns over [n] of length at most 2 and square generators. We deduce that the set of
normal forms with respect to R(Qn,Cn), called Chinese normal forms, satisfies the cross-section property
for the monoid Cn. Note that finite convergent presentations of Chinese monoids were already obtained
in [11, 22], by completion of Chinese relations, and in [5] by adding column generators. However, these
presentations are not semi-quadratic, and thus it is difficult to extend these presentations into coherent
presentations of the Chinese monoid.

Finally, Theorem 5.3.11 extends the rewriting system R(Qn,Cn) into a finite coherent convergent
presentation of the monoid Cn by adjunction of generating 3-cells with the following degagonal form

ce ·ce ′ ·ct
γ
e,ê ′,t %9

Xu,v,t
��

ce ·cb ·cb ′
γ
ê,b,b ′ %9 cs ·cs ′ ·cb ′

γ
s,ŝ ′,b ′ %9 cs ·ck ·ck ′ γ

ŝ,k,k ′

�1
cu ·cv ·ct

γû,v,t ';

γu,v̂,t
"6

cl ·cm ·ck ′

cu ·cw ·cw ′
γû,w,w ′

%9 ca ·ca ′ ·cw ′
γ
a,â ′,w ′

%9 ca ·cd ·cd ′
γ
a,â ′,w ′

%9 cl ·cl ′ ·cd ′ γ
l,l̂ ′,d ′

-A

for any cu, cv, ct inQn such that cu·cv and cv·ct are not Chinese normal forms, and where the 2-cells γ−,−
denote either a rewriting rule of R(Qn,Cn) or an identity.

2. Preliminaries on rewriting
In this work we deal with presentations of monoids by string rewriting systems. In this preliminary section
we recall the basic notions of rewriting we use in this article. For a fuller account of the theory, we refer
the reader to [3]. In Subsection 2.2 we will recall from [16, 21] the notion of coherent presentation of a
monoid that extends the notion of a presentation by globular homotopy generators taking into account all
the relations amongst the relations.

We will denote by X∗ the free monoid of words written in the alphabet X, the product being
concatenation of words, and the identity being the empty word, denoted by λ. Elements of X∗ are called
words. We will denote by u = x1 . . . xk a word in X∗ of length k, where x1, . . . , xk belong in X. The
length of a word u will be denoted by |u|.
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2.1. String rewriting systems

2.1. String rewriting systems

2.1.1. String rewriting systems. A (string) rewriting system on X is a subset R of X∗ × X∗. Each
element (u, v) of R is called a rule and will be denoted by u → v. A one step reduction is defined by
wuw ′ → wvw ′ for all words w,w ′ in X∗ and rule β : u → v in R, and will be denoted by wβw ′.
One step reductions form the reduction relation on X∗ denoted by→R. A rewriting path with respect
to R is a finite or infinite sequence u0 →R u1 →R u2 →R · · · . This corresponds to the reflexive and
transitive closure of the relation→R, that we denote by→∗R. A word u in X∗ is R-reduced if there is
no reduction with source u. A R-normal form for a word u in X∗ is a R-reduced word v such that u
reduces into v. The rewriting system R terminates if it has no infinite rewriting path, and it is (weakly)
normalizing if every word u in X∗ reduces to some R-normal form. A rewriting system R is reduced if, for
every rule β : u→ v in R, the source u is (R \ {β})-reduced and the target v is R-reduced. The reflexive,
symmetric and transitive closure of→R is the congruence on X∗ generated by R, that we denote by ≈R.
The monoid presented by R is the quotient of the free monoid X∗ by the congruence ≈R. A presentation of
a monoidM is a rewriting system whose presented monoid is isomorphic toM. Two rewriting systems
are Tietze equivalent if they present isomorphic monoids. Recall that a Tietze transformation between two
rewriting systems is a sequence of elementary Tietze transformations, defined on a rewriting system R on
an alphabet X by the following operations:

i) adjunction or elimination of an element x in X and of a rule β : u→ x, where u is an element in X∗
that does not contain x,

ii) adjunction or elimination of a rule β : u → v such that u and v are equivalent by the congruence
generated by R \ {β}.

One shows that two rewriting systems are Tietze equivalent if, and only if, there exists a Tietze transformation
between them. We refer the reader to [16, Subsection 2.1] for more details on Tietze transformations.

2.1.2. Confluence. A branching (resp. local branching) of a rewriting system R on an alphabet X is a
non ordered pair (f, g) of reductions (resp. one step reductions) of R on the same word. A branching is
aspherical if it is of the form (f, f), for a rewriting step f and Peiffer when it is of the form (fv, ug) for
rewriting steps f and g with source u and v respectively. The overlapping branchings are the remaining
local branchings. An overlapping local branching is critical if it is minimal for the order v generated
by the relations (f, g) v

(
wfw ′, wgw ′), given for all local branching (f, g) and words w,w ′ in X∗. A

branching (f, g) is confluent if there exist reductions f ′ and g ′ reducing to the same word:

v f ′

##

u

f 00

g --

w

v ′ g ′

<<
(2.1.3)

The rewriting system R is confluent if all of its branchings are confluent, and convergent if it is both
confluent and terminating. If R is convergent, then every word u of X∗ has a unique normal form.
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2. Preliminaries on rewriting

2.1.4. Normalization strategies. Recall that a reduction strategy for a rewriting system R on X specifies
a way to apply the rules in a deterministic way. It is defined as a mapping ϑ of every word u in X∗ to
a rewriting step ϑu with source u. When R is normalizing, a normalization strategy is a mapping σ of
every word u to a rewriting path σu with source u and target a chosen normal form of u. For a reduced
rewriting system, we distinguish two canonical reduction strategies to reduce words: the leftmost one
and the rightmost one, according to the way we apply first the rewriting rule that reduces the leftmost or
the rightmost subword, and defined as follows. For every word u of X∗, the set of rewriting steps with
source u can be ordered from left to right as follows. For two rewriting steps f = vγv ′ and g = wβw ′

with source u, we have f ≺ g if the length of v is strictly smaller than the length of w. If R is finite, then
the order ≺ is total and the set of rewriting steps of source u is finite. Hence this set contains a smallest
element ρu and a greatest element ηu, respectively called the leftmost and the rightmost rewriting steps
on u. If, moreover, the rewriting system terminates, the iteration of ρ (resp. η) yields a normalization
strategy for R called the leftmost (resp. rightmost) normalization strategy of R:

σ>u = ρu ?1 σ
>
t(ρu)

(resp. σ⊥u = ηu ?1 σ
⊥
t(ηu)

). (2.1.5)

The leftmost (resp. rightmost) rewriting path on a word u is the rewriting path obtained by applying the
leftmost (resp. rightmost) normalization strategy σ>u (resp. σ⊥u ). We refer the reader to [19] for more
details on rewriting normalization strategies.

2.1.6. Semi-quadratic rewriting systems. A rewriting system R onX is semi-quadratic (resp. quadratic)
if for all γ in R we have |s(γ)| = 2 and |t(γ)| 6 2 (resp. |s(γ)| = |t(γ)| = 2). By definition, the sources
of the critical branchings of a semi-quadratic rewriting system are of length 3. When R is reduced,
there are at most two rewriting paths with respect to R with source a word of length 3. We will denote
by ρl,p(w) (resp. σr,p(w)) the word obtained by the rewriting path of length p with source a word w
starting with the leftmost (resp. rightmost) reduction strategy. Given a word w, we will denote by `l(w)
(resp. `r(w)) the length of the leftmost (resp. rightmost) rewriting path from w to its normal form.

2.1.7. Cross-section property. Given a congruence ≈ on the free monoid X∗, we recall that a subset Y
of X∗ satisfies the cross-section property for the quotient monoid X∗/ ≈ if each equivalence class with
respect to ≈ contains exactly one element of Y. If R is a convergent rewriting system that presents the
quotient monoid X∗/ ≈, then the set of normal forms for R satisfies the cross-section property for ≈.

2.2. Coherent presentations

We recall the notion of coherent presentation of monoids formulated in terms of polygraphs in [16], and
we refer the reader to [21] for a deeper presentation.

2.2.1. Two-dimensional polygraphs. Rewriting systems can be interpreted as 2-polygraphs with only
0-cell. Such a 2-polygraph P is given by a pair (P1, P2), where P1 is a set and P2 is a globular extension
of the free monoid P∗1 seen as a 1-category, that is a set of generating 2-cells β : u⇒ v relating 1-cells
in P∗1 , where u and v denote the source and the target of β, respectively denoted by s1(β) and t1(β). A
rewriting system R on an alphabet X can be described by such a 2-polygraph whose generating 1-cells are
given by X, and having a generating 2-cell u⇒ v for every rule u→ v in R. Recall that a (2, 1)-category
is a category enriched in groupoids. We will denote by P>2 the (2, 1)-category freely generated by the
2-polygraph P, see [21, Section 2.4.] for expanded definitions.
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3. String data structures, cross-section and confluence

2.2.2. Coherent presentations. A (3, 1)-polygraph is a pair (P, P3) made of a 2-polygraph P and a
globular extension P3 of the (2, 1)-category P>2 , that is a set of 3-cells A : fV g relating 2-cells f and g
in P>2 , respectively denoted by s2(A) and t2(A) and satisfying the globular relations s1s2(A) = s1t2(A)
and t1s2(A) = t1t2(A). Such a 3-cell can be represented with the following globular shape:

·

u

��

v

??f
��

g
��

A %9 · or u

f
�(

g

5I vA��

where · denotes the unique 0-cell of P. We will denote by P>3 the free (3, 1)-category generated by the
(3, 1)-polygraph (P, P3). A pair (f, g) of 2-cells of P>2 such that s1(f) = s1(g) and t1(f) = t1(g) is
called a 2-sphere of P>2 . An extended presentation of a monoid M is a (3, 1)-polygraph whose underlying
2-polygraph is a presentation ofM. A coherent presentation ofM is an extended presentation (P, P3) ofM
such that the cellular extension P3 of the (2, 1)-category P>2 is acyclic, that is, for every 2-sphere (f, g)
of P>2 , there exists a 3-cell A in P>3 such that s2(A) = f and t2(A) = g.

2.2.3. Coherence from convergence. Recall coherent Squier’s theorem from [43, Theorem 5.2], see
also [21, Section 4.3], that states that, any convergent rewriting system R on X presenting a monoidM can
be extended into a coherent presentation of the monoidM having a generating 3-cell

v f ′

�+
Af,g��u

f $8

g $8

w

v ′
g ′

3G

for every critical branching (f, g) of R, where f ′ and g ′ are chosen confluent rewriting paths.

3. String data structures, cross-section and confluence

In this section we define the notion of string data structure. In Subsection 3.2 we introduce the notion of
string data bistructure and we give necessary conditions making the corresponding string data structure
associative. In Subsection 3.3 we apply our constructions to the presentations of plactic monoids of
type A, by considering a string data bistructure that presents these monoids, defined by Young tableaux
and Schensted’s insertions. Finally, Subsection 3.4 presents several examples of string data structures.

Throughout the article A denotes a totally ordered alphabet. For a natural number n > 0, we will
denote the finite set {1, . . . , n}with the natural order by [n]. A reading of words onA is a map ` : A∗ → A∗

sending a word x1 . . . xk in A∗ on a word xσ(1) . . . xσ(k) in A
∗, where σ is a permutation on [k]. The

identity on A∗ will be called a left-to-right reading, denoted by `l. The right-to-left reading is the map,
denoted by `r, that sends a word x1x2 . . . xk to its mirror image xk . . . x2x1.

9



3. String data structures, cross-section and confluence

3.1. String data structures

3.1.1. String data structures. A string data structure S over an alphabet A is a quadruple (D, `, I, R)
made of a setD with a distinguished element ∅, a reading map ` of words onA and two maps R : D→ A∗

and I : D×A→ D satisfying the four following conditions:

i) R(I(∅, x)) = x for all x in A,

ii) the relation I`(∅,−)R = IdD holds, where I` : D×A∗ → D is the map defined by

I`(d, u) = I`(I(d, x1), x2 . . . xk)

for all d in D and u in A∗, with x1 . . . xk = `(u), and I`(d, λ) = d for all d ∈ D,

iii) the map I`(∅,−) : A∗ → D is surjective,

iv) the map R is injective and R(∅) = λ.

One says that R is the reading map of S, and that I inserts an element of A into an element of D. The
map I` is called the insertion map of words of A∗ into elements of D with respect to `. The map

CS := I`(∅,−) : A∗ → D

is called the constructor of S from words in A∗. We will denote by ιD : A → D the map that sends a
letter x in A on the single element data ιD(x) = I(∅, x), that we will write simply x when no confusion
can arise.

A string data structure is called right (resp. left) if its insertion map is defined with respect to the
reading `l (resp. `r). For u in A∗ and d in D, we will denote I`l(d, u) (resp. I`r(d, u)) by d

 

I`l
u

(resp. u I`r
d). The relations

(d  

I`l
uv) = (d  

I`l
u)  

I`l
v, (3.1.2)

(uv I`r
d) = u I`r

(v I`r
d), (3.1.3)

hold for all d in D and u, v in A∗.

3.1.4. Associative insertion. Given a string data structureS = (D, `, I, R)we define an internal product ?I
on D by setting

d ?I d
′ := I`(d, R(d

′)) (3.1.5)

for all d, d ′ in D. By definition the relations d ?I ∅ = d and ∅ ?I d = d hold. Hence, the product ?I is
unitary with respect to ∅. A string data structure S is called associative if the product ?I is associative. In
that case, for all word w = x1x2 . . . xk in A∗, we write CS(w) = x1 ?I x2 ?I . . . ?I xk.

10



3.1. String data structures

3.1.6. Structure monoid. The set D with the product ?I is a monoid called the structure monoid of the
string data structure S, and denoted by M(D, I). We will denote u =I v the equality of two words u
and v in the structure monoid. We say that an associative string data structure presents a monoid M if its
structure monoid is isomorphic toM. Two string data structures are said to be Tietze equivalent if they
present isomorphic monoids. We will denote by R(D, S) the rewriting system on D, whose rules are

γd,d ′ : d·d ′ → d ?I d
′ (3.1.7)

for all d, d ′ in D. Every application of a rewriting rule is strictly decreasing in the number of generators,
hence the rewriting system R(D, S) is terminating. Moreover, when S is associative, the rewriting
system R(D, S) is confluent. It is thus a convergent presentation of the structure monoid M(D, I). We
will denote by Nf(D, S) the set of R(D, S)-normal forms.

3.1.8. Proposition. Let S = (D, `, I, R) be an associative string data structure. The rewriting sys-
tem R(D, S) is Tietze equivalent to the rewriting system on D whose rules are

γd,ιD(x) : d·ιD(x)→ d ?I ιD(x) (3.1.9)

for all d in D and x in A.

Proof. Any rule (3.1.9) is a rule of R(D, S). Conversely, by definition of ?I, the equality d ?I d
′ =

d ?I x1 ?I . . . ?I xk holds inD, where x1 . . . xk = `(R(d)). We have d·d ′ = d·(x1 ?I . . . ?I xk). Moreover,
there exist the following rewriting paths with respect to the rules of (3.1.9):

d·(x1 ·x2 ·. . .·xk)
γx1,x2

// d·(x1 ?I x2 ·. . .·xk)
γx1?Ix2,x3

// · · ·
γx1?I...?Ixk−1,xk

// d.d ′

d·x1 ·x2 ·. . .·xk
γd,x1

// (d ? x1)·x2 ·. . .·xk
γd?Ix1,x2

// · · ·
γd?Ix1?I...?Ixk−1,xk

// d ?I d
′

Hence, for any rule γd,d ′ in R(D, S), with d, d ′ inD, the source d·d ′ and the target d ?I d ′ are related by
a zigzag sequence of rewriting paths with respect to rules (3.1.9).

3.1.10. Cross-section property. We say that an associative string data structure S over A satisfies the
cross-section property for a congruence relation ≈ on A∗, if u ≈ v holds if and only if CS(u) = CS(v)
holds for all u, v in A∗. That is, to each equivalence class with respect to ≈ it corresponds exactly one
element in Im(CS).

3.1.11. Compatibility with an equivalence relation. A string data structure S = (D, `, I, R) over A is
said to be compatible with a congruence relation ≈ on A∗, if it satisfies the following two conditions:

i) for all d ∈ D and u, v ∈ A∗, u ≈ v implies I`(d, u) = I`(d, v),

ii) RCS is equivalent to the identity with respect to the congruence ≈, that is,

RCS(u) ≈ u for all u in A∗. (3.1.12)

11



3. String data structures, cross-section and confluence

Denote byM the quotient of the free monoidA∗ by the congruence≈, and by u the image of a word u
in A∗ by the quotient morphism π : A∗ →M. If S is compatible with the relation ≈, then the insertion
map I` induces a unique map Ĩ` : D×M→ D such that the following diagram commutes:

D×A∗
I`
//

Id×π
��

D

D×M
Ĩ`

;;

3.1.13. Theorem. Let S be an associative right (resp. left) string data structure over A and let ≈ be a
congruence relation on A∗. The following conditions are equivalent

i) S satisfies the cross-section property for the congruence relation ≈,

ii) S is compatible with the congruence relation ≈,

iii) S presents the quotient monoid A∗/ ≈ (resp. the opposite of the quotient monoid A∗/ ≈).

Proof. We prove the result for a right string data structure S = (D, `, I, R), the proof is similar for a left
one. Prove i)⇒ ii). For all u, v ∈ A∗, u ≈ v if and only if CS(u) = CS(v). The string data structure S
being right and associative, the equality

I`(d, u) = d ?I ιD(x1) ?I . . . ?I ιD(xk) = d ?I CS(u) (3.1.14)

holds in D, for all d ∈ D and u = x1 . . . xk ∈ A∗. Then, for all d ∈ D and u, v ∈ A∗, u ≈ v implies
I`(d, u) = I`(d, v). Moreover, for all u ∈ A∗, we have CSRCS(u) = CS(u). Then R(CS(u)) ≈ u,
showing (3.1.12). That proves ii).

Prove ii)⇒ iii). The mapCS : A∗ → D induces a mapCS : A∗/ ≈→ D defined byCS(w) = Ĩ`(∅, w)
for all w in A∗. Let us prove that this map is bijective, whose inverse is the map R := π ◦ R. We
have CS(w) = CS(w) for all w in A∗. Hence CSR(d) = CS(R(d)) = CS(R(d)) = d for all d in D. On
the other hand, following (3.1.12), we have RCS(w) = R(CS(w)) = RCS(w) = w for every w ∈ A∗.
This proves that the map CS is bijective. By definition CS(λ) = ∅, let us prove that we have

CS(uv) = CS(u) ?I CS(v) (3.1.15)

for all u, v in A∗/ ≈. We have

CS(u) ?I CS(v) = CS(u) ?I CS(v),
= I`(CS(u), RCS(v)),

= Ĩ`(CS(u), RCS(v)).

From 3.1.12 it follows thatCS(u)?ICS(v) = Ĩ`(CS(u), v). Moreover, the reading map ` being left-to-right,
we have CS(uv) = (CS(u)

 

I` v). This proves relation (3.1.15).
Prove iii)⇒ i). The structure monoidsM(D, I) and the quotient monoid A∗/ ≈ are isomorphic. That

is, u ≈ v if and only if CS(u) =I CS(v) for all u, v in A∗. This is our claim.
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3.1. String data structures

3.1.16. Congruence generated by a string data structure. Let S = (D, `, I, R) be an associative string
data structure over A. We denote by R(R) the rewriting system on A, whose rules are defined by

γd,d ′ : R(d)R(d ′)→ R(d ?I d
′) (3.1.17)

for all d, d ′ in D such that R(d ?I d
′) 6= R(d)R(d ′). We will denote by ≈S the congruence relation on

the free monoid A∗ generated by the rules (3.1.17). The map R defined in the proof of Theorem 3.1.13
is a monoid morphism from the structure monoid M(D, I) to A∗/ ≈S. Indeed, for all d, d ′ in D the
equality R(d ?I d

′) = R(d)R(d ′) holds in A∗/ ≈S and by definition we have R(∅) = λ. However, note
that the map R is not in general a morphism of monoids for an arbitrary congruence ≈.

3.1.18. Proposition. For a right (resp. left) associative string data structure S, the following conditions
hold

i) the rewriting system R(R) on A is convergent,

ii) S presents the quotient monoid A∗/ ≈S (resp. the opposite of the quotient monoid A∗/ ≈S).

Proof. Consider a right string data structure S = (D, `, I, R), the proof is similar for a left one.
i) The termination of the rewriting system R(R) is a consequence of the termination of R(D, S).

Indeed, any rewriting sequence with respect to R(R) gives rise to a rewriting sequence with respect
to R(D, S). Hence if R(R) has an infinite rewriting path, so does for R(D, S). As R(D, S) is terminating
this proves that R(R) is terminating. According to Newman’s lemma, [39], we prove confluence from
local confluence. It follows from the confluence of critical branchings of R(R). They have the form:

R(d ?I d
′)R(d ′′)

γd?Id ′,d ′′
// R((d ?I d

′) ?I d
′′))

R(d)R(d ′)R(d ′′)

γd,d ′R(d ′′)
00

R(d)γd ′,d ′′
.. R(d)R(d ′ ?I d

′′)
γd,d ′?Id ′′

// R(d ?I (d
′ ?I d

′′))

for all d, d ′, d ′′ in D such that R(d)R(d ′) 6= R(d ?I d
′) and R(d ′)R(d") 6= R(d ′ ?I d ′′). These critical

branching are confluent by associativity of ?I.
ii) Following Theorem 3.1.13, it suffices to prove that S is compatible with the congruence relation≈S.

Suppose that u ≈S v, for u, v in A∗ and prove that

(d  

I`l
u) = (d  

I`l
v)

holds for all d in D. The string data structure S being right, following (3.1.2), we have

CS(R(d)u) = (d  

I`l
u)

for all u ∈ A∗ and d ∈ D. Since u ≈S v, we have R(d)u ≈S R(d)v, and by the unique normal form
property of R(R), we have RCS(R(d)u) = RCS(R(d)v) for all d in D. The map R being injective,
we deduce that CS(R(d)u) = CS(R(d)v). That proves condition i) of 3.1.11. Now consider a word
w = x1 . . . xp inA∗. It can be writtenw = RιD(x1) . . . RιD(xp). Following i), the rewriting system R(R)
is convergent, hence any R(R)-reduction on w ends at the normal form R(ιD(x1) ? . . . ?S ιD(xp)), that
is equal to RCS(w) by associativity of S. It follows that RCS(w) ≈S w, which proves condition ii)
of 3.1.11.
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3. String data structures, cross-section and confluence

3.1.19. Remark. Condition ii) of Proposition 3.1.18 shows that the rewriting systemR(R) is a presentation
of the structure monoid M(D, I). Thus, one can prove that an associative string data structure S satisfies
the cross-section property for a congruence relation ≈ on A∗ by showing that R(R) is a presentation
of the quotient monoid A∗/ ≈. Indeed, in that case we have u ≈ v if and only if u ≈S v if and only
if CS(u) = CS(v) for all u, v in A∗.

3.2. Commutation of insertions

3.2.1. Commutation of insertions. A string data bistructure over A is a quadruple (D, I, J, R) such
that (D, `l, I, R) (resp. (D, `r, J, R)) is a right (resp. left) string data structure over A and such that the
one-element insertion maps I and J commute, that is the following condition

y J (d

 

I x) = (y J d)

 

I x, (3.2.2)

holds for all d in D and x, y in A.

3.2.3. Theorem. If (D, I, J, R) is a string data bistructure over A, then the compositions ?I and ?J are
associative and the following relation

d ?I d
′ = d ′ ?J d (3.2.4)

holds for all d, d ′ in D. Moreover, the structure monoidsM(D, I) and M(D, J) are anti-isomorphic.

Proof. Let S = (D, `l, I, R) and T = (D, `r, J, R) be the right and left string data structures associated
to (D, I, J, R). Let us first show by induction on the length of w that

CS(w) = CT(w) (3.2.5)

holds for all w in A∗. By definition, CS(x) = CT(x) holds for all x in A. Suppose that (3.2.5) holds for
words of length n > 1 and consider wy a word in A∗, where w = xv with x in A and |v| = n − 1. By
induction hypothesis, we have CS(wy) = I(CS(w), y) = I(CT(w), y), and by commutation of I and J,
we have I(J(CT(v), x), y) = J(I(CT(v), y), x). As a consequence, we have

I(CT(w), y) = I(J(CT(v), x), y) = J(I(CS(v), y), x) = J(CS(vy), x).

By induction, we deduce that I(CT(w), y) = J(CT(vy), x). This proves the equality CS(wy) = CT(wy).
Having d ?I d

′ = CS(R(d)R(d
′)) = CT(R(d)R(d

′)) = d ′ ?J d for all d, d ′ in D, the commutation
relation (3.2.4) is an immediate consequence of relation (3.2.5).

Prove associativity of ?I and ?J. From (3.2.5) we haveCS(R(d)R(d
′)R(d ′′)) = CT(R(d)R(d

′)R(d ′′))
for all d, d ′, d ′′ ∈ D. But

CS(R(d)R(d
′)R(d ′′)) = (d ?I d

′) ?I d
′′ and CT(R(d)R(d

′)R(d ′′)) = (d ′′ ?J d
′) ?J d

by definition, hence we have (d ?I d
′) ?I d

′′ = (d ′′ ?J d
′) ?J d for all d, d ′, d ′′ in D. By commutation

of I and J we obtain
(d ′′ ?J d

′) ?J d = d ?I (d
′′ ?J d

′) = d ?I (d
′ ?I d

′′).

We deduce that the product ?I is associative. The proof of the associativity of ?J is similar.
Finally, the anti-isomorphism between monoids M(D, I) and M(D, J) is a consequence of the fact

that the rewriting systems R(D, S) and R(D,T) are presentations of these monoids and the commutation
of ?I with ?J.
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3.3. Example: plactic monoids of classical types

As consequence of this result, when (D, I, J, R) is a string data bistructure over A, for all d inD and x
in A, we can relate the definition of the insertions algorithm from each other using the following relations:

(d  

I x) = (R(d) J ιD(x)), (3.2.6)
(x J d) = (ιD(x)

 

I R(d)). (3.2.7)

3.3. Example: plactic monoids of classical types

3.3.1. Plactic monoids of type A. Recall that the plactic monoid of type A of rank n introduced in [33],
denoted by Pn, is presented by the rewriting system on [n] whose rules are the Knuth relations, [29]:

ξx,y,z : zxy→ xzy for 1 6 x 6 y < z 6 n,
ζx,y,z : yzx→ yxz for 1 6 x < y 6 z 6 n. (3.3.2)

We will denote by ≈Pn the congruence relation of [n]∗ generated by this presentation.

3.3.3. String data bistructures on Young tableaux. Knuth in [29] described the congruence≈Pn using
the notion of Young tableau. Recall from [45] that a (Young) tableau over [n] is a collection of boxes in
left-justified rows

x11 x21 x31 · · · · · · · · · x
k1
1

x12 x22 x32 · · · x
k2
2

...
...

x1l x2l

x1l+1

filled with elements of [n], where the entries weakly increase along each row, i.e. xik 6 x
i+1
k for all k, i > 1,

and strictly increase down each column, i.e. xik < xik+1 for all k, i > 1. Denote by Ytn the set of tableaux
over [n]. A column (resp. row) over [n] is a tableau such that every row (resp. column) contains exactly
one box. Denote by Col(n) the set of columns over [n].

Schensted introduced two algorithms to insert an element x of [n] into a tableau t of Ytn, [42]. The
right (or row) insertion algorithm Sr computes a tableau (t  

Sr x) as follows. If x is at least as large as
the last element of the top row of t, then put x to the right of this row. Otherwise, let y be the smallest
element of the top row of t such that y > x. Then x replaces y in this row and y is bumped into the next
row where the process is repeated. The algorithm terminates when the element which is bumped is at least
as large as the last element of the next row. Then it is placed at the right of that row. For example, the four
steps to compute

(
1 3 5
2 4
6

 

Sr 2
)
are:

1 3 5

 

Sr 2
2 4
6

→ 1 2 5
2 4

 

Sr 3
6

→ 1 2 5
2 3
6

 

Sr 4

→ 1 2 5
2 3
4  

Sr 6

→ 1 2 5
2 3
4
6

The left (or column) insertion algorithm Sl computes a tableau (x Sl t) as follows. If x is larger
than the first element of the leftmost column of t, then put x to the bottom of this column. Otherwise, let y
be the smallest element of the leftmost column of t such that y > x. Then x replaces y in this column
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3. String data structures, cross-section and confluence

and y is bumped into the next column where the process is repeated. The algorithm terminates when
the element which is bumped is greater than all the elements of the next column. Then it is placed at the
bottom of that column. Note that the left insertion algorithm can be deduce from the right one by the
relation (3.2.7). Indeed, we have:

(x Sl t) = (x  

Sr R(t)).

For example, the four steps to compute
(
2 Sl

1 3 5
2 4
6

)
are:

1 3 5
2 4
6↑
2

→ 1 3 5
2 4
6 ↑
2

→ 1 2 5
2 4
6 ↑

3

→ 1 2 3
2 4
6 ↑

5

→ 1 2 3 5
2 4
6

Denote by Rcol : Ytn → [n]∗ the map that reads tableaux column by column, from left to right
and from bottom to top. Schensted’s algorithms induce two string data structures on Ytn: a right
one Yrn := (Ytn, `l, Sr, Rcol) and a left one Ycn := (Ytn, `r, Sl, Rcol). Note that the insertion Sr with the
readings `r and Rcol does not induce an associative structure on Ytn as shown by the following example:(
1
4
6

?Sr 2
3

)
?Sr 1 = 1 2 3

4
6

?Sr 1 = 1 1 3
2
4
6

6= 1 1 2 3
4
6

= 1
4
6

?Sr 1
2
3

= 1
4
6

?Sr
(
2
3

?Sr 1
)

Finally, note that we can show that the following equalities hold, see [29, Theorem 5],

CYrn(zxy) = CYrn(xzy) for 1 6 x 6 y < z 6 n,
CYrn(yzx) = CYrn(yxz) for 1 6 x < y 6 z 6 n.

More generally, Knuth showed that for any word w,w ′ in [n]∗, CYrn(w) = CYrn(w
′) holds if and only

ifw ≈Pn w
′ holds, [29, Theorem 6], that is the string data structure Yrn satisfies the cross-section property

for ≈Pn .

3.3.4. Commutation of Schensted’s insertions. Schensted showed that Sr and Sl commute, [42,
Lemma 6]. Hence we have a string data bistructure (Ytn, Sr, Sl, Rcol) over [n]. From Theorem 3.2.3, we
deduce that the string data structures Yrn and Ycn are associative and the structure monoidsM(Yrn, Sr) and
M(Ycn, Sl) are anti-isomorphic. Note that Yrn being compatible with ≈Pn , by Theorem 3.1.13 the monoid
M(Yrn, Sr) is isomorphic to Pn. Let Rocol be the reading map on Ytn obtained by reading the columns
from right to left and from top to bottom. The string data structure (Ytn, `l, Sl, Rocol) is compatible with
the congruence generated by the following rules

zxy→ xzy for 1 6 x < y 6 z 6 n
yzx→ yxz for 1 6 x 6 y < z 6 n, (3.3.5)

as pointed out by Knuth in [29, Section 6]. Note that these relations are used to present the plactic monoid
of type A in the theory of crystal graphs, [12, 32, 37].
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3.4. Other examples

3.3.6. The plactic monoids of classical types. In Subsection 3.3, we have given a string data bistructure
that presents plactic monoids of type A. Using Kashiwara’s theory of crystal bases, the plactic congruence
of plactic monoids of type A generated by the relations 3.3.5 characterizes the representations of the
general Lie algebra gln of n by nmatrices, [12, 32]. We refer the reader to [27] for details on crystal bases
theory and to [35–37] for characterizations of representations of Lie algebras by plactic congruences. More
generally, since Kashiwara’s theory of crystal bases also exists for all classical semisimple Lie algebras, a
plactic monoid was introduced for each of these algebras using a case-by-case analysis, [35–37]. To each
semisimple Lie algebra it is associated a finite alphabet A indexing a basis of the vector representation
of the algebra and a congruence ≈Pn(A) on the free monoid A∗ is defined using the crystal graph of the
standard representation. In this way, to each semisimple Lie algebra it corresponds a plactic monoid
defined as the quotient of A∗ by the congruence ≈Pn(A). In particular, the plactic monoid of type C, B
and D corresponds respectively to the representations of the symplectic Lie algebra, the odd-dimensional
orthogonal Lie algebra and the even-dimensional orthogonal Lie algebra. Lecouvey in [35, 36] introduced
the notion of admissible columns generalizing the notion of columns in type A , and the notions of
symplectic tableaux for type C and orthogonal tableaux for type B and D generalizing the notion of
tableaux for type A. He also introduced a Schensted-like left insertion on symplectic tableaux, see [35,
Section 4] and orthogonal tableaux, see [36, Section 3.3]. These insertion algorithms define a left string
data structure on the set of symplectic and orthogonal tableaux for type C, B, D. However, the existence of
a right insertion algorithm on symplectic and orthogonal tableaux that commutes with Lecouvey’s left
insertion, and thus a string data bistructure on these tableaux is still an open problem.

3.4. Other examples

3.4.1. The hypoplactic monoid. Recall that the hypoplactic monoid of rank n introduced in [30, 40],
is the monoid presented by the rewriting system on [n] and whose rules are the Knuth relations (3.3.2),
together with the following rules

zxty→ xzyt for 1 6 x 6 y < z 6 t 6 n and tyzx→ ytxz for 1 6 x < y 6 z < t 6 n.

The congruence generated by this presentation can be described by using quasi-ribbon tableaux, [40],
and in terms of Kashiwara’s theory of crystal bases, [7]. Recall that a quasi-ribbon tableau over [n] is
a collection of boxes filled with elements of [n], where the entries weakly increase along each row and
strictly increase down each column, and where the columns are arranged from left to right so that the
bottom box in each column aligns with the top box of the next column. We will denote by Qrn the set of
quasi-ribbon tableaux over [n]. Let denote by Rc the reading map on Qrn obtained by reading the columns
from left to right and from bottom to top. For instance, the following diagram

1 1 5
6 6 6

7
8 8 9

is a quasi-ribbon tableau over [9] and its reading is 1165687689. Novelli proved in [40, Theorem 4.7] that
the set Qrn satisfies the cross-section property for the hypoplactic monoid.

A right insertion algorithm Hr : Qrn×[n]→ Qrn that inserts an element x in [n] into a quasi-ribon
tableau t is introduced in [40, Algorithm 4.4] as follows. If x is smaller than each element of t, create a
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new box filled by x and attach t to the bottom of this box by its topmost and leftmost box. Otherwise, let y
be the rightmost and the bottommost element of t that is smaller or equal to x. Create a new box filled
by x to the right of the box containing y and attach the other boxes of t situated to the right and below
of y onto the bottom of x . This algorithm defines a right string data structure Qrn = (Qrn, `l, Hr, Rc)
over [n]. For instance the five steps to compute CQrn(142215) by insertion produce the following tableaux

1 1 4 1 2
4

1 2 2
4

1 1
2 2
4

1 1
2 2
4 5

A left insertion algorithmHl : Qrn×[n]→ Qrn that inserts an element x in [n] into a quasi-ribon tableau t
is also introduced in [5, Algorithm 4.4] as follows. If x is bigger than each element of t, create a new box
filled by x and attach t to the top of this box by its bottommost and rightmost box. Otherwise, let y be the
leftmost and the topmost element of t that is bigger or equal to x. Create a new box filled by x to the left
of the box containing y and attach the other boxes of t situated to the left and above of y onto the top
of x . This algorithm defines a left string data structure Qln = (Qrn, `r, Hl, Rc) over [n]. For instance the
five steps to compute CQln(142215) by insertion are

5 1 5 1
2 5

1
2 2 5

1
2 2
4 5

1 1
2 2
4 5

However, the commutation of the right insertion algorithm Hr and the left insertion algorithm Hl, and
thus the existence of a string data bistructure on quasi-ribbon tableaux is still an open problem.

3.4.2. The sylvester monoid. The structure of sylvester monoids appeared in the combinatorial study
of Loday-Ronco’s algebra of planar binary trees related to non-commutative symmetric functions and
free symmetric functions, [25]. Recall from [25, Definition 8] that the sylvester monoid of rank n is the
monoid presented by the rewriting system on [n] and whose rules are

zxwy→ xzwy for all 1 6 x 6 y < z 6 n and w ∈ [n]∗.

The sylvester monoid can be constructed using the notion of binary search trees and a Schensted-like left
insertion on these trees, [25, Definition 7], and also by using the theory of crystal bases, [8]. Recall that a
(right strict) binary search tree is a labelled rooted binary tree where the label of each node is greater than
or equal to the label of every node in its left sub-tree, and strictly less than every node in its right sub-tree.
We will denote by Btn the set of binary search trees on [n]. Denote by Ll the reading map on Btn by
recursively performing the right to left postfix reading of the right sub-tree of a tree, then recursively
performing the right to left postfix reading of its left sub-tree and finally add the root of the tree. For
instance, the following tree

6

7

87

4

is a binary search tree on [8] and its reading is 78746. Note that the set Btn satisfies the cross-section
property for the sylvester monoid, [25]. The left insertion algorithm IBtn introduced in [25, Subsection 3.3]
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inserts an element x in [n] into a binary search tree t as follows. If t is empty, create a node and label it by x.
If t is non-empty, then if x is strictly greater than the label of the root node, then recursively insert x into
the right sub-tree of t. Otherwise recursively insert x into its right sub-tree. This algorithm defines a left
string data structure Bln = (Btn, `r, IBtn , Ll) over [n]. For instance, the four steps to compute CBln(87476)
are

6 6

7

6

74

6

7

7

4

6

7

87

4

Note that the existence of a string data bistructure on Btn is still an open problem.
3.4.3. The patience sorting monoids. Recall from [9, Section 3] that the left (resp. right) patience
sorting monoid, or lPS (resp. rPS) monoid for short, of rank n is the monoid presented by the rewriting
system on [n] and whose rules are

yxp . . . x1x→ yxxp . . . x1 for x < y 6 x1 < . . . < xp (resp. x 6 y < x1 6 . . . 6 xp).

Recall that an lPS (resp. rPS) tableau over [n] is a collection of boxes in bottom-justified columns, filled
with elements of [n], where the entries weakly (resp. strictly) increase along each row from left to right
and strictly (resp. weakly) decrease along each column from top to bottom. Denote by Pln (resp. Prn) the
set of lPS (resp. rPS) tableaux over [n], and by Rc the reading map on Pln (resp. Prn) obtained by reading
the columns of an lPS (resp. rPS) tableau from left to right and from top to bottom. For instance, the
following tableaux

4
2 3

1 1 2 4

4
2 4

1 2 4 5

are respectively an lPS and an rPS tableaux over [5] and their readings are respectively 1421324
and 1422445.

A right insertion algorithm Prl : Pln × [n] → Pln (resp. Prr : Prn × [n] → Prn) that inserts an
element x in [n] into an lPS (resp. rPS) tableau t is introduced in [44, Subsection 3.2] as follows. If x is
greater or equal (resp. greater) to every element of the bottom row of t, create a box filled by x to the
right of this row. Otherwise, let y be the leftmost element of the bottom row of t that is greater than (resp.
greater or equal to) x, replace y by x and attach the column containing y to to the top of the box filled by x.
This algorithm defines a right string data structure PLrn = (Pln, `l, P

r
l , R

c) (resp. PRrn = (Prn, `l, P
r
r, R

c))
over [n]. For instance, the six steps to compute the lPS tableau CPLrn(1423241) are

1 1 4
4

1 2
4

1 2 3
4 3

1 2 2
4 3

1 2 2 4

4
2 3

1 1 2 4

and the six steps to compute the rPS tableau CPRrn(1423241) are

1 1 4
4

1 2
4

1 2 3

4
2

1 2 3

4
2

1 2 3 4

4
1 2
1 2 3 4

Note that a left insertion algorithm that inserts an element of [n] into an lPS (resp. rPS) tableau is also
introduced in [9, Algorithm 3.14], yielding a left string data structure over [n]. The commutation of this
algorithm with the right insertion algorithm Prl (resp. Prr), and thus the existence of a string data bistructure
on these tableaux is still an open problem.
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4. Coherent presentations by insertion
In this section we show how to generate a string data structure (D, `, I, R) by a subsetQ ofD. This allows
us to consider an associated rewriting system R(Q,S) that presents the structure monoid M(D, I) with a
more economic set of rules than R(D, S). Finally, we explain in Subsection 4.2 how to extend such a
rewriting system R(Q,S) into a coherent presentation of the monoid M(D, I), whose generating 3-cells
are interpreted in terms of strategy among insertions.

4.1. Generating set of a string data structure

In this subsection S = (D, `, I, R) denotes a right associative string data structure over A. Note that all
definitions and results remain valid when S is a left associative string data structure.

4.1.1. Generating set of a string data structure. A generating set for S is a subset Q of D such that
the three following conditions hold:

i) ιD(x) ∈ Q for all x in A,

ii) any element d in D can be decomposed as d = c1 ?I c2 ?I . . . ?I ck, where c1, . . . , ck ∈ Q,

iii) there exists a unique decomposition d = c1 ?I . . . ?I cl, with c1, . . . , cl in Q satisfying the two
following conditions:

− ci ?I ci+1 /∈ Q for all 1 6 i 6 l− 1,
− R(c1 ?I . . . ?I cl) = R(c1) . . . R(cl) holds in A∗.

We suppose that the empty element ∅ in D is decomposed into an empty product. The decomposition
c1 ?I . . . ?I cl in iii) will be denoted by [d]Q. For example, the setD is a generating set for S by considering
trivial decomposition in conditions ii) and iii), with [d]D = d for all d inD. As an other trivial example, the
set ιD(A) is a generating set for S. Indeed, following condition iii) of 3.1.1, any d inD can be decomposed
into a product for ?I of elements ιD(x) with x in A. Moreover, we have [d]ιD(A) = ιD(x1) ?I . . . ?I ιD(xl)
for all d in D with R(d) = x1 . . . xl. The unicity of the decomposition follows from the injectivity of the
reading map R.

4.1.2. Given a generating set Q of S one defines a string data structure SQ := (D, `Q, IQ, RQ) over Q by
setting

i) `Q is the left-to-right reading of words on Q,

ii) IQ : D×Q→ D is defined by IQ(d, c) = d ?I c for all c inQ and d inD, and it induces an insertion
map I`Q : D×Q∗ → D defined by

I`Q(d, c1 ·. . .·ck) = I`Q(d ?I c1, c2 ·. . .·ck)

for all d in D and c1, . . . , ck in Q, where·denotes the product in Q∗, and I`Q(d, λ) = d,

iii) RQ : D→ Q∗ is defined by RQ(d) = c1 ·c2 ·. . .·ck, for any d inD, with [d]Q = c1 ?I c2 ?I . . . ?I ck,
and c1, c2, . . . , ck in Q.
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4.1. Generating set of a string data structure

4.1.3. Proposition. The string data structures S and SQ are Tietze equivalent.

Proof. By definition, the equality c ?IQ c ′ = c ?I c
′ holds in D for all c, c ′ in Q. Hence for any

word w = c1 ·c2 ·. . .·ck in Q∗ we have CSQ(w) = c1 ?I c2 ?I . . . ?I ck. Now consider d, d ′ in D. We
have d ?IQ d

′ = I`Q(d, RQ(d
′)). Moreover there exists a unique decomposition [d ′]Q = c ′1 ?I . . . ?I c

′
l

such that R(d ′) = R(c ′1) . . . R(c ′l) and c ′i ?I c ′i+1 /∈ Q for all 1 6 i 6 l− 1. Hence

I`Q(d, RQ(d
′)) = I`Q(d, c

′
1 ·. . .·c ′l) = I`(d, R(d ′)) = d ?I d

′.

Hence the compositions ?I and ?IQ coincide on D, that proves the Tietze equivalence of S and SQ.

4.1.4. Given a generating set Q of S, we denote by R(Q, S) the rewriting system on Q whose rules are

γc,c ′ : c·c ′ → RQ(c ?I c
′) (4.1.5)

for all c, c ′ in Q, whenever c·c ′ 6= RQ(c ?I c ′), and where ·denotes the product in the free monoid on Q.
We will denote by Nf(Q, S) the set of R(Q,S)-normal forms. Note that when Q = D, we recover the
rewriting system R(D, S) defined in (3.1.7) and that presents the structure monoidM(D, I).

4.1.6. Well-founded generating set. A generating set Q of S is called well-founded (resp. quadratic)
if the rewriting system R(Q,S) is terminating (resp. quadratic). When Q is well-founded, we denote
by σ>,Q the leftmost reduction strategy on R(Q,S). Given d in D and c in Q, by associativity of ?I, the
rewriting path σ>,Q

RQ(d)·c reduces RQ(d)·c to RQ(d ?I c). More generally, the strategy σ>,Q reduces any
word w in Q∗ to RQCSQ(w), that is, it defines a rewriting path

σ>,Qw : w→∗ RQCSQ(w)

for all w in Q∗. Note that, the rewriting system R(D, S) being convergent, any normalization strategy σ
on R(D, S) reduces any word w in Q∗ to RQCSQ(w).

4.1.7. Termination of R(Q,S). In most applications, the termination of R(Q,S) can be showed by
introducing a well-founded order on the free monoid Q∗ defined as follows. Given two well-founded
ordered sets (X1,6) and (X2,�), and two maps g : Q→ X1 and f : Q∗ → X2, one defines a lexicographic
order ≺f,g on Q∗ by setting

u ≺f,g v if and only if
(
f(u) < f(v)

)
or
(
f(u) = f(v) and g(c1) ≺ g(c ′1)

)
for all u = c1 ·. . .·ck and v = c ′1 ·. . .·c ′l in Q∗. The order ≺f,g is well-founded, and we can prove the
termination of the rewriting system R(Q,S) by using such an order compatible with rules (4.1.5), that
is the inequalities f(RQ(c ?I c ′)) 6 f(c·c ′) and g(c1) ≺ g(c) hold, where c1 is the first element in the
decomposition of RQ(c?I c ′) inQ∗. Then a reduction with respect toR(Q, S)must decrease a word inQ∗
either with respect to f or with respect to g. In particular, this method is used to prove the termination of
the column presentation for the plactic monoids of type C in [6, 23], and for other classical types A, B and
D in [6], by introducing a well-founded order on the set of column generators corresponding to each type
and where the map f counts the number of columns and g is the length of each column. Note that for
the plactic monoid of type G2, the termination of the column presentation cannot be proved by using the
lexicographic order of the form ≺f,g since the Lecouvey insertion of one column into another one can
produce a tableau with three columns as shown in [6].
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4.1.8. Proposition. Let S = (D, `, I, R) be a right associative string data structure, and let Q be a well-
founded generating set of S. Then R(Q,S) is a convergent presentation of the structure monoid M(D, I),
and the set Nf(Q,S) satisfies the cross-section property for the structure monoidM(D, I).

Proof. Prove that R(Q,S) is confluent. Any critical pair of R(Q,S) has the form (γc,c ′ ·c ′′, c·γc ′,c ′′),
for c, c ′, c ′′ in Q. By 4.1.6, the target of the rewriting path σ>,Q

RQ(c?Ic ′)·c ′′ is RQCSQ(RQ(c ?I c
′) ·c ′′).

Suppose RQ(c ?I c ′) = c1·. . .·ck, with c1, . . . , ck inQ. The map `Q being a left-to-right reading, we have

CSQ(RQ(c ?I c
′)·c ′′) = I`Q(c1 ?I c2 ?I . . . ?I ck, c

′′).

Moreover, the equality c1?Ic2?I . . .?Ick = c?Ic ′ holds in D. HenceCSQ(RQ(c?Ic
′)·c ′′) = (c?Ic

′)?Ic
′′.

Similarly, one shows that the target of σ>,Q
c·RQ(c ′?Ic ′′)

is RQ
(
c?I (c

′?I c
′′)
)
. Then any critical pair ofR(Q,S)

has the following reduction diagram:

RQ(c ?I c
′)·c ′′

σ
>,Q
RQ(c?Ic ′)·c ′′

// RQ
(
(c ?I c

′) ?I c
′′)

c·c ′ ·c ′′

γc,c ′ ·c ′′ 00

c·γc ′,c ′′ .. c·RQ(c ′ ?I c ′′)
σ
>,Q
c·RQ(c ′?Ic ′′)

// RQ
(
c ?I (c

′ ?I c
′′)
)

which is confluent by the associativity of the product ?I. This proves that the rewriting system R(Q,S) is
locally confluent and thus confluent by termination hypothesis.

Prove that SQ is compatible with the congruence relation ≈R(Q,S). Consider a word w in Q∗. The
rewriting system R(Q,S) being terminating, the reduction strategy σ>,Q reduces w to RQCSQ(w) which
proves that RQCSQ(w) ≈R(Q,S) w, showing condition ii) of 3.1.11. Suppose now that u ≈R(Q,S) v,
for u, v inQ∗ and prove that I`Q(d, u) = I`Q(d, v) holds for all d inD. The string data structure SQ being
right associative, we have I`Q(d, u) = d ?IQ CSQ(u), for all u ∈ A∗ and d ∈ D. Since u ≈R(Q,S) v, by
the unique normal form property of R(Q, S), the equality RQCSQ(u) = RQCSQ(v) holds. The map RQ
being injective, we obtain that CSQ(u) = CSQ(v). We deduce that d ?IQ CSQ(u) = d ?IQ CSQ(v),
for all d in D. That proves condition i) of 3.1.11. Then by Theorem 3.1.13 SQ presents the quotient
monoid Q∗/ ≈R(Q,S). Hence, by Proposition 4.1.3, the rewriting system R(Q, S) is a presentation of the
structure monoidM(D, I).

The fact that Nf(Q,S) satisfies the cross-section property for the monoid M(D, I) is an immediate
consequence of the confluence of R(Q, S) as explained in 3.1.10.

As a consequence of Proposition 4.1.8, when the generating set Q is well-founded, the rewriting
systems R(R) and R(Q,S) are Tietze-equivalent. Indeed, by this result the rewriting systems R(Q,S) is
Tietze-equivalent to R(D, S), that is Tietze-equivalent to R(R) by Proposition 3.1.18.

4.1.9. Corollary. Let S = (D, `, I, R) be a right associative string data structure.

i) If S has a finite well-founded generating set Q, then the structure monoid M(D, I) has finite
derivation type and thus finite homological type.

ii) If S has a quadratic well-founded generating set Q, then the structure monoidM(D, I) is Koszul.
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Proof. In [43] the authors showed that if a monoid admits a finite convergent presentation, then it is of
finite derivation type. Moreover, the property finite derivation type implies the property finite homological
type. If S has a finite well-founded generating set Q, then by Proposition 4.1.8 the monoid M(D, I)
admits R(Q,S) as a finite convergent presentation, and thus it has finite derivation type.

The assertion ii) is a consequence of the fact that a monoid having a quadratic convergent presentation
is Koszul, see [1, 18]. If S has a quadratic well-founded generating set Q, by Proposition 4.1.8 the
rewriting system R(Q,S) is a quadratic convergent presentation of the structure monoid M(D, I), and
thus M(D, I) is Koszul.

For instance, the plactic monoid of type A has finite derivation type, but it is not Koszul, [13]. As a
consequence, there is no quadratic well-founded generating set for Young structures of type A.

4.1.10. Example: column presentation of plactic monoids of type A. As an illustration, we prove
that the set of columns Col(n) defined in Example 3.3 is a generating set for the associative string data
structure Yrn. For all x in [n], CS(x) is a Young tableau with only one box filled by x, hence a column
in Col(n). Every d in Ytn can be uniquely decomposed into a sequence (c1, . . . , ck) of columns in Col(n):

c1 c2 . . . ck
x1 y1 . . . z1......

... zs
yt

xl

where c1, . . . , ck are the columns of d from left to right. By definition of the tableau, we have
d = c1 ?Sr . . . ?Sr ck, and ci ?Sr ci+1 /∈ Col(n) for all 1 6 i 6 k − 1. Moreover, by definition of the
reading map, the equality Rcol(d) = Rcol(c1) . . . Rcol(ck) holds in [n]∗.

The rules of the rewriting system R(Col(n),Yrn) are of the form

γc,c ′ : c·c ′ → RCol(n)(c ?Sr c
′)

for all c, c ′ in Col(n) such that c·c ′ 6= RCol(n)(c ?Sr c ′), where the reading map RCol(n) : Ytn → Col(n)∗
sends a tableau to the product of its columns from left to right. By using a lexicographic order as defined
in 4.1.7, one shows that the rewriting system R(Col(n),Yrn) is terminating. Following Proposition 4.1.8
the rewriting system R(Col(n),Yrn) is convergent and Tietze-equivalent to R(Ytn,Yrn).

Note that Schensted’s insertion Sr corresponds to the application of the leftmost normalisation
strategy σ>,Col(n). For instance, consider the word 453126 in [6]∗. To compute the tableau CYr6(453126),
one applies the following successive rules of R(Col6,Yr6) :

4 · 5 · 3 · 1 · 2 · 6 γ5,3−→ 4 · 3
5
· 1 · 2 · 6 γ4,53−→ 3

4
· 5 · 1 · 2 · 6 γ5,1−→ 3

4
· 1
5
· 2 · 6 γ43,51−→ 1

3
4

· 5 · 2 · 6 γ5,2−→ 1
3
4

· 2
5
· 6

producing CYc6(453126) =
1 2 6
3 5
4

.

Moreover, the readings of the source and the target of any rule of R(Col(n),Yrn) are related
by Knuth’s relations (3.3.2), that is Rcol(c)Rcol(c ′) ≈Pn Rcol(c ?Sr c

′), for all c, c ′ in Col(n) such
that c·c ′ 6= RCol(n)(c ?Sr c ′). Indeed, it is sufficient to show that

Rcol(d ?Sr ιYrn(x)) ≈Pn Rcol(d)x (4.1.11)
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for all d in Ytn and x in [n]. By definition of Schensted’s insertion, the process that occurs on the first
row of a tableau, is repeated on the next rows of the same tableau. Then, it is sufficient to show the
equivalence (4.1.11) in the case where d is a row on [n]. Since Rcol(u) and Rcol(v) are strictly decreasing
words, the rows of the tableau u ?Sr v are of length at most 2. Then it is also sufficient to show the
equivalence (4.1.11) in the case where d is a row of length at most 2. Suppose that Rcol(d) = x1x2
with x1 6 x2 and let x be in [n] such that x2 > x. There are two cases: x1 6 x < x2 or x < x1 6 x2. In
the first case, Rcol(d)x = x1x2x ≈Pn x2x1x by applying ξx1,x,x2 , and Rcol(d ?Sr ιYrn(x)) = x2x1x. In the
second case, Rcol(d)x = x1x2x ≈Pn x1xx2 by applying ζx,x1,x2 , and Rcol(d ?Sr ιYrn(x)) = x1xx2. Then,
in the two cases, we obtain Rcol(d)x ≈Pn Rcol(d ?Sr ιYrn(x)).

Finally, let us show that the string data structure Yrn presents the plactic monoid Pn by using the
properties of the string rewriting systemR(Col(n),Yrn), recovering thenKnuth’s Theorem, [29, Theorem6].
Following Theorem 3.1.13, it suffices to prove that Yrn is compatible with the plactic congruence ≈Pn .
Suppose that u ≈Pn v, for u, v in A∗ and prove that (d  

Sr u) = (d  

Sr v) holds for all d in D.
The string data structure Yrn being right, following (3.1.14) we have (d  

ISr
u) = d ?Sr CYrn(u), for

all u ∈ A∗ and d ∈ D. Moreover, for any 1 6 x 6 y < z 6 n (resp. 1 6 x < y 6 z 6 n), the
rules ξx,y,z (resp. ζx,y,z) can be decomposed by rules in R(Col(n),Yrn) as follows:

z · x · y
ξx,y,z

//

γ z , x

��

x · z · y

γ z , y

��

x
z
· y x · y

zγ x , y
z

oo

(resp.

y · z · x
ζx,y,z

//

γ z , x

��

y · x · z

γ y , x

��

y · x
z γ y , x

z

// x
y
· z

).

Then, since u ≈Pn v, the words u and v are also related by the rules of R(Col(n),Yrn), and by
the unique normal form property of R(Col(n),Yrn), we obtain CYrn(u) = CYrn(v). We deduce that
d ?Yrn CYrn(u) = d ?Yrn CYrn(v), for all d in D. That proves condition i) of 3.1.11. Now consider a
word w = x1 . . . xp in A∗. To compute the tableau CYrn(w), one applies the leftmost normalisation
strategy σ>,Col(n) on w. Then CYrn(w) and w are related by the rules of R(Col(n),Yrn). The readings
of the source and the target of any rule of R(Col(n),Yrn) being related by Knuth’s relations (3.3.2), it
follows that RcolCYrn(w) ≈Pn w, which proves condition ii) of 3.1.11.

As a consequence, we obtain that the rewriting systemR(Col(n),Yrn) is a finite convergent presentation
of the monoid Pn. By this way, we recover the results of [4, Theorem 3.4] and [2, Theorem 4.5].

4.1.12. Example: row presentation of plactic monoids of type A. Let consider the string data struc-
ture YRown = (Ytn, `l, Sr, Rrow), where Sr is Schensted’s insertion recalled in 3.3.3, and Rrow is the
reading map on Ytn that reads a tableau row by row, from left to right and from bottom to top. We
denote by Row(n) the set of rows on [n]. The set Row(n) forms a generating set for YRown . Indeed,
for all x in [n] the tableau CYRown

(x) belongs to Row(n). Every tableau d in Ytn can be uniquely
decomposed as d = r1 ?Sr . . . ?Sr rk, where r1, . . . , rk are the rows of d from bottom to top. By definition
of the tableau, ri ?Sr ri+1 /∈ Row(n) for all 1 6 i 6 k − 1, and by definition of the reading map, the
equality Rrow(d) = Rrow(r1) . . . Rrow(rk) holds in [n]∗.

The rules of the rewriting system R(Row(n),YRown ) are of the form

γr,r ′ : r·r ′ → RRow(n)(r ?Sr r
′)
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4.2. Coherent presentations and string data structures

for all r, r ′ in Row(n) such that r · r ′ 6= RRow(n)(r ?Sr r
′), and where RRow(n) : Ytn → Row(n)∗ is the

reading map sending a tableau to the product of its rows from bottom to top. Using the arguments of 4.1.10,
one proves that the string data structure YRown presents the plactic monoid Pn. Using a lexicographic
order as defined in 4.1.7 one proves that R(Row(n),YRown ) is terminating. Then by Proposition 4.1.8 the
rewriting system R(Row(n),YRown ) is a convergent presentation of the monoid Pn, that is infinite contrary
to the column presentation that is finite. By this way, we recover the result of [2, Theorem 3.2].

4.2. Coherent presentations and string data structures

4.2.1. Theorem. Let S be a right associative string data structure, and letQ be a well-founded generating
set of S. Then R(Q,S) extends into a coherent convergent presentation of the structure monoidM(D, I)
by adjunction of a generating 3-cell

c·c ′ ·c ′′

σ
>,Q
c·c ′·c ′′

"6

c·γc ′,c ′′ "6

Ac,c ′,c ′′��
RQ(c ?I c

′ ?I c
′′)

c·RQ(c ′ ?I c ′′) σ
>,Q
c·RQ(c ′?Ic ′′)

-A
(4.2.2)

for any c, c ′, c ′′ in Q such that c·c ′ 6= RQ(c ?I c ′) and c ′ ·c ′′ 6= RQ(c ′ ?I c ′′).

Proof. Any critical branching of R(Q,S) has the form

RQ(c ?I c
′)·c ′′

c·c ′ ·c ′′

γc,c ′ ·c ′′ ';

c·γc ′,c ′′ #7 c·RQ(c ′ ?I c ′′)

with c, c ′, c ′′ inQ such that c·c ′ 6= RQ(c ?I c ′) and c ′·c ′′ 6= RQ(c ′ ?I c ′′). By Proposition 4.1.8, R(Q,S)
is confluent, hence such a critical branching is confluent with a confluence diagram as in (4.2.2). We
conclude with coherent Squier’s theorem recalled in 2.2.3.

4.2.3. Coherent presentations and insertion. Let (D, I, J, R) be a string data bistructure over A and
let S (resp. T) be the corresponding right (resp. left) string data structure. Given a well-founded generating
set Q of S, we consider the rewriting system R(Q,T)op on Q, whose rules are

c·c ′ → RQ(c
′ ?J c)

for any c, c ′ in Q such that c·c ′ 6= RQ(c
′ ?J c). By definition, we have RQ(c ′ ?J c) = RQ(c ?I c

′) for
all c, c ′ inQ, thus the rewriting systemsR(Q,T)op andR(Q,S) coincide. If the rewriting systemR(Q,S)
is convergent, by Theorem 4.2.1 it can be extended into a coherent convergent presentation of the
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4. Coherent presentations by insertion

monoidM(D, I) by adjunction of a generating 3-cell

c·c ′ ·c ′′

σ
>,Q
cc ′c ′′

�1

σ
⊥,Q
cc ′c ′′

-A
RQ(c ?I c

′ ?I c
′′)

��

for any c, c ′, c ′′ inQ such that c·c ′ 6= RQ(c ?I c ′) and c ′·c ′′ 6= RQ(c ′ ?I c ′′) and where σ>,Q (resp. σ⊥,Q)
is the leftmost (resp. rightmost) normalisation strategy with respect to the rewriting system R(Q,S)
(resp.R(Q,T)op). In this way, the application of the leftmost (resp. rightmost) normalisation strategy σ>,Q
(resp. σ⊥,Q) on the word c·c ′ ·c ′′ corresponds to the application of the right (resp. left) insertion

∅  

I R(c)R(c
′)R(c ′′)

(
resp. R(c)R(c ′)R(c ′′) J ∅

)
.

4.2.4. Example. As an illustration, consider the string data bistructure (Ytn, Sr, Sl, Rcol) and the conver-
gent presentation R(Col(n),Yrn) of the plactic monoid Pn given in Example 4.1.10. Let

c = 1
3
5

, c ′ = 1
3
4
5

, c ′′ = 1
2
3

be columns in Col(n). We have

( ∅  

Sr RCol(c)RCol(c
′)RCol(c

′′) ) = 1 1 1
2 3 3
3 5
4
5

= (RCol(c)RCol(c
′)RCol(c

′′) Sl ∅ ).

Moreover, the leftmost normalisation strategy σ>,Col(n) with respect to R(Col(n),Yrn) reduces the
word c·c ′·c ′′ into RCol(n)(CYrn(RCol(c)RCol(c)RCol(c))) and the rightmost normalisation strategy σ⊥,Col(n)
with respect to R(Col(n),Ycn)op reduces the word c·c ′ ·c ′′ into RCol(n)(CYcn(RCol(c)RCol(c)RCol(c))),
as shown in the following diagram:

1
3
4
5

· 1
3
5

· 1
2
3

σ>,Col(n)
//

1
3
4
5

· 1
2
3
5

· 1
3

σ>,Col(n)
��

1
3
5

· 1
3
4
5

· 1
2
3

γc,c ′c
′′ 22

cγc ′,c ′′ ,,

1
3
5

· 1
2
3
4
5

· 1
3

σ⊥,Col(n)
//

1
2
3
4
5

· 1
3
5

· 1
3
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4.2. Coherent presentations and string data structures

4.2.5. Example: coherent column presentations of plactic monoids of type A. By definition of
Schensted’s algorithms, the leftmost (resp. rightmost) normalization strategy with respect to R(Coln,Yrn)
(resp. R(Coln,Ycn)op) on the sources of its critical branchings, leads to the normal form, after applying
three steps of reductions rules. Then, by Theorem 4.2.1 the rewriting system R(Coln,Yrn) can be extended
into a coherent convergent presentation by adjunction of the following generating 3-cells:

c1 ·c2 ·c ′′
c1γc2,c ′′%9

Ac,c ′,c ′′��

c1 ·c3 ·c4 γc1,c3c4
�2

c·c ′ ·c ′′
γc,c ′c

′′
';

cγc ′,c ′′
#7

c ′3 ·c5 ·c4
c·c ′1 ·c ′2

γc,c ′1c
′
2

%9 c ′3 ·c ′4 ·c ′2 c ′3γc ′4,c
′
2

,@

such that c·c ′ 6= RCol(n)(c ?Sr c
′), and c ′ ·c ′′ 6= RCol(n)(c

′ ?Sr c
′′), and where RColn(c ?Sr c ′) = c1 ·c2,

RColn(c2 ?Sr c
′′) = c3 ·c4, RColn(c1 ?Sr c3) = c ′3 ·c5, RColn(c ′′ ?Sl c ′) = c ′1 ·c ′2, RColn(c ′1 ?Sl c) = c ′3 ·c ′4,

and RColn(c ′2 ?Sl c ′4) = c5 ·c4. By this way, we recover the result in [24, Theorem 1].

4.2.6. Remark. In previous example, the shape of the generating 3-cell can be deduced from the
Schützenberger involution, as shown in [24, Remark 3.2.7]. More generally, for a well-founded generating
set Q of S, one shows that such an involution transforms the leftmost reduction strategy σ>,Q of R(Q,S)
into the rightmost reduction strategy σ⊥,Q of R(Q,T)op, and conversely. We call involution on S with
respect toQ a map ? : Q→ Q, that we extend into a map ? : Q∗ → Q∗ by setting (c1·. . .·ck)? = c?k·. . .·c?1
for all c1, . . . , ck ∈ Q, and satisfying the following conditions:

i) for u, v ∈ Q∗, if u ≈R(Q,S) v then u? ≈R(Q,S) v
?,

ii) if u is a R(Q,S)-normal form in Q∗, then u? is a R(Q, S)-normal form.

As a consequence, for all u ∈ Q∗, the equality RQCSQ(u
?) = (RQCSQ(u))

? holds. Indeed, the
rewriting system R(Q,S) being terminating, the reduction strategy σ>,Q reduces u? to RQCSQ(u

?),
proving that RQCSQ(u

?) ≈R(Q,S) u
?. By condition i), we obtain (RQCSQ(u

?))? ≈R(Q,S) u. Moreover, by
condition ii), the word (RQCSQ(u

?))? is aR(Q,S)-normal form. Then, by the unique normal form property
of R(Q,S), the equality (RQCSQ(u

?))? = RQCSQ(u) holds, showing that RQCSQ(u
?) = (RQCSQ(u))

?.
Moreover, by applying the involution on the sources and the targets of the rules (4.1.5) of R(Q,S),

these rules turn into

γc ′?,c? : c ′? · c? → (RQCSQ(c · c
′))? = RQCSQ(c

′? · c?)

for all c, c ′ inQ, whenever c·c ′ 6= RQ(c ?I c ′). In this way, by applying the involution on the sources and
the targets of the reductions of the rightmost normalisation strategy σ⊥,Q, we transform it into the leftmost
normalisation strategy σ>,Q, and conversely.

In particular for the string data structure Yrn, the Schützenberger involution ? is defined on Coln by
sending each column to its complement in Coln. That is, for a column u in Coln containing p boxes, u? is
the column containing n− p boxes filled by the complements of the elements of u. Moreover, one shows
that the Schützenberger involution satisfies the conditions i) and ii).
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5. String data structures for Chinese monoids

5. String data structures for Chinese monoids
In this section we construct string data bistructures that present Chinese congruences. The Chinese monoid
of rank n > 0, introduced in [14], and denoted by Cn, is presented by the rewriting system on [n], whose
rules are the Chinese relations:

zyx→ yzx and zxy→ yzx for all 1 6 x < y < z 6 n,
yyx→ yxy and yxx→ xyx for all 1 6 x < y 6 n.

(5.0.1)

We recall in Subsection 5.1 the structure of Chinese staircase and the right insertion algorithm in
Chinese staircases introduced in [10], we recall also the right insertion algorithm introduced in [5]. The
main result of this section, Theorem 5.1.4, states that these two algorithms commute. In Subsection 5.2
we give a construction of a semi-quadratic convergent presentation of the Chinese monoid, that we extend
in Subsection 5.3 into a coherent one.

5.1. Presentation of Chinese monoids by string data structures

We recall from [10] the notion of Chinese monoid and the representation of the Chinese monoid by
Chinese staircases that satisfy the cross-section property for the Chinese monoid.

5.1.1. Chinese staircases. A Ferrers diagram of shape (1, 2, . . . , n) is a collection of boxes in right-
justified rows, whose rows (resp. columns) are indexed with [n] from top to bottom (resp. from right to
left) and where every i-th row contains i boxes for 1 6 i 6 n. A (Chinese) staircase over [n] is a Ferrers
diagram of shape (1, 2, . . . , n) filled with non-negative integers. Denote by tij (resp. ti) the contents of the
box in row i and column j for i > j (resp. i = j). A box filled by 0 is called empty. Denote by Chn the set
of staircases over [n] and by Rr : Chn → [n]∗ the map that reads a staircase row by row, from right to left
and from top to bottom, and where the i-th row is read as follows (i1)ti1(i2)ti2 . . . (i(i− 1))ti(i−1)(i)ti ,
for 1 6 i 6 n. For instance, for the following staircase t over [4]:

t1 1

t2 t21 2

t3 t32t31 3

t4 t43t42t41 4

4 3 2 1

we have Rr(t) = 1t1(21)t21(2)t2(31)t31(32)t32(3)t3(41)t41(42)t42(43)t43(4)t4 . Given a staircase over [n]

1

n−1

...

ntn tn1

n 1. . .
. . .

t ′
t =

by removing the bottom row, we obtain a staircase over [n− 1], denoted by t ′ on the picture. According
to this, a staircase t over [n] can be denoted by (t ′, R1), where R1 is the bottom row of t, and t ′ is the
staircase over [n− 1] obtained by removing the row R1.
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5.1. Presentation of Chinese monoids by string data structures

5.1.2. The right insertion algorithm. Recall the right insertion map Cr : Chn×[n]→ Chn introduced
in [10, Subsection 2.2]. Let t be a staircase and x an element in [n]. If x = n, then Cr(t, x) = (t ′, R ′1),
where R ′1 is obtained from R1 by adding 1 to tn. If x < n, let y1 be maximal such that the entry in
column y1 of R1 is non-zero or if such a y1 does not exist, set y1 = x. Three cases appear:

i) If x > y1, then Cr(t, x) = (Cr(t
′, x), R1),

ii) If x < y1 < n, then Cr(t, x) = (Cr(t
′, y1), R

′
1), where R ′1 is obtained from R1 by subtracting 1

from tny1 and adding 1 to tnx,

iii) If x < y1 = n, then Cr(t, x) = (t ′, R ′1), where R ′1 is obtained from R1 by substracting 1 from tn and
adding 1 to tnx.

For example, the three steps to compute
( 1 1

1 0 2
0 1 1 3

0 0 2 0 4
4 3 2 1

 

Cr 1
)
are:

1 1
1 0 2

0 1 1 3
0 0 2 0 4

 

Cr
1

4 3 2 1

→ 1 1
1 0 2

0 1 1 3

 

Cr
2

0 0 1 1 4
4 3 2 1

→ 1 1
1 0 2

 

Cr
2

0 1 1 3
0 0 1 1 4
4 3 2 1

→ 1 1
2 0 2

0 1 1 3
0 0 1 1 4
4 3 2 1

5.1.3. The left insertion algorithm. A left insertion map Cl : Chn×[n]→ Chn that insets an element x
in [n] into a staircase t, is defined in [5, Algorithm 3.5] as follows. Let y be an element in [n] ∪ {λ},
initially set to λ. There are two steps. In the first step, for i = 1, . . . , x− 1, iterate the following. If every
entry in the i-th row is empty, do nothing. Otherwise, let z be minimal such that tiz is non-zero. There are
two cases according to the values of y:

i) Suppose y = λ. If z < i, decrement tiz by 1, increment ti by 1, and set y = z. If z = i, decrement ti
by 1, and set y = z.

ii) Suppose y 6= λ. If z < y, decrement tiz by 1, increment tiy by 1, and set y = z. If z > y, do nothing.

In the second step, for i = x, if y = λ, then increment ti by 1. Otherwise, decrement tiy by 1.

For example, the three steps to compute
(
4 Cl

0 1
1 0 2

0 1 1 3
0 0 2 0 4
4 3 2 1

)
are:

4  Cr
0 1

1 0 2
0 1 1 3

0 0 2 0 4
4 3 2 1

→ 0 1
0 0 2

0 1 1 3
0 0 1 1 4
4 3 2 1

→ 0 1
1 0 2

0 2 0 3
0 0 1 1 4
4 3 2 1

→ 0 1
1 0 2

0 2 0 3
0 0 1 2 4
4 3 2 1

5.1.4. Theorem. For all staircase t in Chn and x, y in [n], the following equality

y Cl (t

 

Cr x) = (y Cl t)

 

Cr x (5.1.5)

holds in Chn.

By this result we deduce a string data bistructure (Chn, Cr, Cl, Rr) on staircases over [n], and following
Theorem 3.2.3, the compositions ?Cr and ?Cl are associative. Moreover, the insertions maps Cr and Cl
can be deduced to each other by formulas (3.2.6) and (3.2.7).

The rest of this section is devoted to the proof of Theorem 5.1.4. We consider a staircase t = (t ′, R1)
and x, y in [n]. We prove the commutation relation (5.1.5) by considering four cases according to the
values of x and y.
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5. String data structures for Chinese monoids

5.1.6. Case 1: x = y = n. The staircase t  

Cr n is obtained from t by adding 1 to tn.
Case 1. A. Suppose that any box in t ′ is empty. The staircase n  Cl t is obtained from t by adding 1
to tn. Similarly, the staircase n  Cl (t  

Cr n) is obtained from t  

Cr n by adding 1 to tn.
Then n Cl (t

 

Cr n) is obtained from t by adding 2 to tn. Moreover, the staircase (n Cl t)

 

Cr n

is obtained from n Cl t by adding 1 to tn, and thus it is obtained from t by adding 2 to tn. Hence

1

n−1

...

ntn+2 tn1

n 1. . .
. . .

t ′
n Cl (t

 

Cr n) = = (n Clt)

 

Cr n

Case 1. B. Suppose that t ′ contains at least one non-empty box. The bottom row of the stair-
case n Cl (t

 

Cr n) is obtained from the bottom one of t  

Cr n by adding 1 to tnl where the
l-th column is the last one in which we have eliminating 1 after applying the first step of 5.1.3 on the
remaining rows of t  

Cr n. Then the staircase n Cl (t

 

Cr n) is obtained from t by adding 1 to tnl
and tn after performing the first step of 5.1.3 on the remaining rows of t. Similarly, the bottom row
of n Cl t is obtained from the bottom one of t by adding 1 to tnl. Then (n Cl t)

 

Cr n is obtained
from t by adding 1 to tnl and tn after performing the first step of 5.1.3 on t ′. Hence

1

n−1

...

ntn+1 tn1tnl+1

n 1l ......

... ...

t ′′
n Cl (t

 

Cr n) = = (n Clt)

 

Cr n

where t ′′ is the staircase obtained from t ′ by applying the first step of 5.1.3 on t ′ when computing n Cl t.

5.1.7. Case 2: y < n and x = n. The staircase t  

Cr n is obtained from t by adding 1 to tn.
Since y < n, by definition of Cl, when computing y  Cl (t

 

Cr n) we only change the contents
of the boxes in t ′ and no operations are performed in the bottom row of t  

Cr n. Similarly, when
computing y  Cl t, we only change the contents of the boxes in t ′ and no operations are done in R1.
Moreover, the staircase (y Cl t)

 

Cr n is obtained from y Cl t by adding 1 to tn. Hence

1

n−1

...

ntn+1 tn1

n 1. . .
. . .

t ′′
y Cl (t

 

Cr n) = = (y Clt)

 

Cr n

where t ′′ is the staircase obtained from t ′ by applying the first step of 5.1.3 on t ′ when computing y Cl t.
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5.1. Presentation of Chinese monoids by string data structures

5.1.8. Case 3: y = n and x < n. There are two subcases.
Case 3. A. Suppose that all the contents of the boxes in t ′ are zero. In this case, the staircase n Cl t is
obtained from t by adding 1 to tn. Then (n Cl t)

 

Cr x is obtained from n Cl t by eliminating 1
from tn and by adding 1 to tnx in its bottom row. Hence (n  Cl t)

 

Cr x is obtained from t by
adding 1 to tnx. Let us compute the staircase n Cl (t

 

Cr x). Let y1 be maximal such that the entry in
column y1 of R1 is non-zero. Three new subcases appear.
Case 3. A. 1. x > y1. We have t  

Cr x =
(
t ′  

Cr x, R1
)
. Since all the boxes of t ′ are empty, the

staircase t ′  

Cr x is obtained from t ′ by adding 1 to tx. We obtain

1

n−1

...
x...
ntn tn1

n 1x ......

... ...

0+1
t

 

Cr x =

where the shaded area denotes empty boxes. Then the staircasen Cl (t

 

Cr x) is obtained from t

 

Cr x

by eliminating 1 from tx and by adding 1 to tnx. Hence the staircase n Cl (t

 

Cr x) is obtained from t
by adding 1 to tnx in R1.
Case 3. A. 2. x < y1 = n. We have t  

Cr x =
(
t ′, R ′1

)
, where R ′1 is obtained from R1 by eliminating 1

from tn and by adding 1 to tnx. Moreover, the staircase n Cl (t

 

Cr x) is obtained from t

 

Cr x by
adding 1 to tn. Hence the staircase n Cl (t

 
Cr x) is obtained from t by adding 1 to tnx in R1.

Case 3. A. 3. x < y1 < n. We have t  

Cr x =
(
t ′  

Cr y1, R
′
1

)
, where R ′1 is obtained from R1 by

eliminating 1 from tny1 and by adding 1 to tnx, and t ′  

Cr y1 is obtained from t ′ by adding 1 to ty1 .
Then, we obtain

1

x

n−1

...
y1...
ntn tnx+1tny1−1

n x 1y1 ...... ...

... ...

...

...

...

...

...

...

...

...

...

0+1

tx

...

t

 

Cr x =

where the shaded area denotes empty boxes. Moreover, the staircase n  Cl (t

 

Cr x) is obtained
from t  

Cr x by eliminating 1 from ty1 and tny1 . Hence it is obtained from t by adding 1 to tnx in R1.
As a consequence, in the three subcases above we obtain:

1

n−1

...
x...
ntn tnx+1 tn1

n 1x ......

... ...

tx
n Cl (t

 

Cr x) = = (n Clt)

 

Cr x
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5. String data structures for Chinese monoids

where the shaded area denotes empty boxes.

Case 3. B. Suppose that t ′ contains at least one non-empty box. Let y1 be maximal such that the entry in
column y1 of R1 in non-zero. There are two subcases.

Case 3. B. 1. x < y1 = n. We have t  

Cr x =
(
t ′, R ′1

)
, where R ′1 is obtained from R1 by eliminating 1

from tn and by adding 1 to tnx. The bottom row of n Cl (t

 

Cr x) is obtained from the bottom one
of t  

Cr x by adding 1 to tnl, where the l-th column is the last one in which we have eliminating 1 after
applying the first step of 5.1.3 on the remaining rows of t  

Cr x. Then the staircase n Cl (t

 

Cr x) is
obtained from t by adding 1 to tnl and tnx and by eliminating 1 from tn after performing the first step
of 5.1.3 on the remaining rows of t. On the other hand, the staircase n  Cl t is obtained from t by
applying the first step of 5.1.3 on t ′ and by adding 1 to tnl. Moreover, the staircase (n Cl t)

 

Cr x is
obtained from n Cl t by eliminating 1 from tn and by adding 1 to tnx. That proves (5.1.5) in this case.

Case 3. B. 2. x > y1 or x < y1 < n. The other cases being similar, we study the case x < y1 < l < n,
where the l-th column is the last one in which we have eliminating 1 after applying the first step of 5.1.3,
when computing n Cl t. We have

−1
+1 ... −1

+1 ... −1
...

...

+1 ... −1
...

...
+1

1

...

i1
i2
i3

...

i4

...
n

1

...

...

...l

...

...

...j2

...

...

...

...

...

j1

...

...

...

...

...i1

...

...

...

...

...

n

n Clt =

where the shaded area represents empty boxes and the symbols +1 and −1 denote respectively adding 1 and
eliminating 1 on the corresponding box. Then, the staircase (n Cl t)

 

Cr x is obtained from n Cl t

by eliminating 1 from tnl, by adding 1 to tnx, by eliminating 1 from t(n−1)j where j is maximal such
that t(n−1)j is non-zero, by adding 1 to t(n−1)l and by performing the operations i), ii) and iii) of 5.1.2 on
the remaining rows of n Cl t in the area that is not hashed.

On the other hand, the staircase t  

Cr x is obtained from t by eliminating 1 from tny1 , by adding 1
to tnx, by eliminating 1 from t(n−1)j, by adding 1 to t(n−1)y1 and by performing the operations i), ii)
and iii) of 5.1.2 on the remaining rows of t in the area that is not hashed, as shown in the following
diagram:
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...

...

...
...
...

...
...

1

...

i1
i2
i3

...
i4...
...
n−1
n
1...

...

...

...l y1
−1
+1

x
+1...

...

...

......j

−1

j2

...

...

...

...

j1

...

...

...

...
i1

...

...

...

...

...

...

...

...

...

...

...

...

...

...

n

t

 

Cr x =

where the shaded area represents empty boxes and the symbols +1 and −1 denote respectively adding 1 and
eliminating 1 on the corresponding box. Then, the staircase n Cl (t

 

Cr x) is obtained from t  

Cr x

by performing the first step of 5.1.3 in the above area that is not hashed, by eliminating 1 from t(n−1)y1
and by adding 1 to tny1 . That proves (5.1.5) in this case.

5.1.9. Case 4: x < n and y < n. Let y1 be maximal such that the entry in column y1 of R1 in non-zero.
Case 4. A. Suppose x < y1 = n. In this case, t  

Cr x =
(
t ′, R ′1

)
, where R ′1 is obtained from R1 by

substracting 1 from tn and by adding 1 to tnx. Since y < n, when computing y Cl (t

 

Cr x) we only
modify the contents of the boxes in t ′. Then we obtain

y Cl (t

 

Cr x) = y Cl (t
′, R ′1) = (y Cl t

′, R ′1).

Moreover, we have y  Cl t = (y  Cl t
′, R1). Then (y  Cl t)

 

Cr x = (y  Cl t
′, R ′1). That

proves (5.1.5) in this case.
Case 4. B. Suppose x > y1 or x < y1 < n. In this case, we have

t  

Cr x = (t ′  

Cr s, K1),

where s = x and K1 = R1 for x > y1, and s = y1 and K1 is obtained from R1 by substracting 1 from tny1
and by adding 1 to tnx, for x < y1 < n. Let us show the commutation relation (5.1.5) by induction on [n].
Suppose that t is a staircase over [2] of the form:

t = t1 1

t2 t21 2

2 1

We prove (5.1.5) for x = y = 1, by considering four cases according to the values of t1, t2, t21 ∈ [n]∪ {0}.
In the following staircases over [2], the symbols +1, +2 and −1 denote respectively adding 1, adding 2 and
eliminating 1 in the corresponding box.
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t  

Cr 1 1 Cl t 1 Cl (t

 

Cr 1) = (1 Cl t)

 

Cr 1

t1 = t2 = 0 and t21 ∈ [n] ∪ {0}
1 1

0 t21 2

2 1

0 1

1 t21 2

2 1

0 1

0 +1 2
2 1

t1, t2 6= 0 and t21 ∈ [n] ∪ {0}
t1 1

−1+1 2
2 1

−1 1
t2 +1 2
2 1

−1 1
−1+2 2
2 1

t1 6= 0, t2 = 0 and t21 ∈ [n] ∪ {0}
+1 1

0 t21 2

2 1

−1 1
0 +1 2
2 1

t1 1

0 +1 2
2 1

t2 6= 0, t1 = 0 and t21 ∈ [n] ∪ {0}
0 1

−1+1 2
2 1

0 1

+1t21 2
2 1

0 1

t2 +1 2
2 1

Suppose now that the commutation relation (5.1.5) is verified for staircases over [n− 1], and prove it
for a staircase t over [n]. By hypothesis, the equality y Cl

(
t  

Cr x
)
= y Cl

(
t ′  

Cr s, K1
)
holds.

Since y < n, by definition of Cl, when computing y Cl

(
t ′  

Cr s, K1
)
we do not change the contents

of the boxes in K1 and all the modifications are performed in t ′  

Cr s. Then

y Cl

(
t ′  

Cr s, K1
)
=
(
y Cl

(
t ′  

Cr s
)
, K1
)
.

The staircase t ′ being a staircase over [n− 1], the following equality holds by induction hypothesis(
y Cl

(
t ′  

Cr s
)
, K1
)
=
((
y Cl t

′)  

Cr s, K1
)
.

On the other hand, since y < n, the equality y Cl t =
(
y Cl t

′, R1
)
holds. Then(

y Cl t
)  

Cr x =
((
y Cl t

′)  

Cr s, K1
)
.

That proves (5.1.5) in this case.

5.2. Semi-quadratic convergent presentations for Chinese monoids

In this subsection we construct a finite semi-quadratic convergent presentation of the Chinese monoid Cn
by adding the columns in [n]∗ of length at most 2 and square generators to the presentation (5.0.1). We
will denote by Cn the right string data structure (Chn, Cr, `l, Rr).

5.2.1. Reduced column presentation. We consider one column generator cyx of length 2 for all 1 6
x < y 6 n, one column generator cx of length 1 for all 1 6 x 6 n, and one square generator cxx for
all 1 < x < n, corresponding to the following three staircases:

1

x...
y1 ...
n

n x 1y ...... ...
... ...

...

...

...

...

...

...

...

...

...tx

...
1...x...
n

n 1x ......
... ...

1

1...x...
n

n 1x ......
... ...

2
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where the dashed area in each staircase represents empty boxes. We will denote by Qn the set defined by

Qn :=
{
cyx

∣∣ 1 6 x < y 6 n} ∪ {cxx ∣∣ 1 < x < n} ∪ {c1, . . . , cn}.
Let us define a map RQn : Chn → Q∗n that reads a staircase row by row, from right to left and from

top to bottom, and where the reading of the i-th row, for 1 6 i 6 n, is the word

ci1 ·. . .·ci1︸ ︷︷ ︸
ti1 times

·ci2 ·. . .·ci2︸ ︷︷ ︸
ti2 times

·. . .·ci · cii ·. . .·cii︸ ︷︷ ︸
1
2
(ti − 1) times

in Q∗, when ti is an odd number, or the word

ci1 ·. . .·ci1︸ ︷︷ ︸
ti1 times

·ci2 ·. . .·ci2︸ ︷︷ ︸
ti2 times

·. . .·cii ·. . .·cii︸ ︷︷ ︸
1
2
ti times

in Q∗, when ti is an even number. For instance, consider the following staircase t over [4]:

1 1
3 0 2

0 1 3 3
4 0 2 1 4
4 3 2 1

we have RQn(t) = c1 ·c2 ·c22 ·c31 ·c31 ·c31 ·c32 ·c41 ·c42 ·c42 ·c44 ·c44.

5.2.2. Lemma. The set Qn is a well-founded generating set of the string data structure Cn.

Proof. By definition ιChn(x) = cx belongs toQn for all x in [n]. For c inQn \ {c1, . . . , cn}, then c ?Cr c
is the staircase whose all boxes are empty except the box corresponding to c that is filled by 2 (resp. 4)
if c is a column generator of length 2 (resp. a square generator). For any c, c ′ in Qn such that the
non-empty box of c is located above or to the right of the non-empty one of c ′, then c ?Cr c ′ is the
staircase whose all boxes are empty expect the two boxes corresponding to those of c and c ′. As a
consequence, for any c inQn \{c1, . . . , cn} (resp. c, c ′ inQn), the staircase c?Cr c (resp. c?Cr c ′) does not
belong to Qn. Moreover, following the reading RQn any staircase t in Chn can be uniquely decomposed
as t = cu1 ?Cr . . . ?Cr cul , where cu1 , . . . , cul belong to Qn, and the non-empty box of cui is located
above or to the right of the non-empty one of cui+1 for all 1 6 i 6 l− 1. By remark above and property of
the decomposition of t with respect the reading RQn , we have cui ?Cr cui+1 /∈ Qn. Finally, by definition
of Rr, we have Rr(t) = Rr(cu1) . . . Rr(cul) in [n]∗. This proves that Qn is a generating set of Cn.

Following 4.1.7, the termination of R(Qn,Cn) can be proved using a lexicographic order induced by
the total order 4Ch defined on Qn by cu 4Ch cv if(

u = yx and v = y for 1 6 x < y 6 n
)

or |u| < |v| or
(
|u| = |v| and u <lex v

)
,

where <lex denotes the lexicographic order on [n]∗ induced by the natural order on [n].

We consider the rewriting system R(Qn,Cn) on Qn defined in 4.1.4. Its rules are

γu,v : cu ·cv → RQn(cu ?Cr cv)
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such that cu ·cv 6= RQn(cu ?Cr cv). By definition of R(Qn,Cn), the leftmost anf rightmost reductions are
the only reductions on a word cu ·cv ·ct in Q∗n. There will be denoted respectively by

γû,v,t := γu,v ·ct and γu,v̂,t := cu ·γv,t. (5.2.3)

5.2.4. Theorem. The rewriting system R(Qn,Cn) on Qn is a finite semi-quadratic convergent presenta-
tion of the Chinese monoid Cn.

As a consequence of this result, the set of R(Qn,Cn)-normal forms, that we call Chinese normal
forms, satisfies the cross-section property for the monoid Cn. Note that this result is proved in [10,
Theorem 2.1], using combinatorial properties of the right insertion algorithm Cr on Chinese staircases.

The rest of this section is devoted to the proof of Theorem 5.2.4. The confluence ofR(Qn,Cn) follows
from Proposition 4.1.8 and Theorem 5.1.4. Let us prove that R(Qn,Cn) is a semi-quadratic presentation
of the monoid Cn. We first add the columns generators of length 2 and their defining rules. This forms a
non-confluent rewriting system that we complete into a presentation of Cn, that we call the precolumn
presentation. Then we show that the rules of R(Qn,Cn) are obtained from the precolumn presentation by
applying one step of Knuth-Bendix’s completion, [28], on the precolumn presentation. Hence R(Qn,Cn)
is a presentation of the monoid Cn.

5.2.5. Precolumn presentation. Consider the rewriting system Ch2(n) on {c1, . . . , cn} and whose rules
are given by the following four families

εx,y,z : cz ·cy ·cx → cy ·cz ·cx and ηx,y,z : cz ·cx ·cy → cy ·cz ·cx for all 1 6 x < y < z 6 n,
εx,y : cy ·cy ·cx → cy ·cx ·cy and ηx,y : cy ·cx ·cx → cx ·cy ·cx for all 1 6 x < y 6 n,

(5.2.6)
corresponding to the Chinese relations (5.0.1), hence is a presentation of the monoid Cn. We add to the
set of rules (5.2.6) the following set of rules

Γ2(n) = { γy,x : cy ·cx → cyx | 1 6 x < y 6 n } ∪ { γx,x : cx ·cx → cxx | 1 < x < n },

making a rewriting system Chc2(n) = Γ2(n) ∪ Ch2(n) on Qn that presents the monoid Cn.

5.2.7. Lemma. For n > 0, the rewriting system PreCol2(n) onQn, whose set of rules is Γ2(n) ∪ ∆2(n),
where

∆2(n) = { γy,yx : cy ·cyx → cyx ·cy for 1 6 x < y 6 n and γyy,x : cyy ·cx → cyx ·cy for 1 6 x < y < n}
∪ { γzy,x : czy ·cx → cy ·czx and γz,yx : cz ·cyx → cy ·czx for 1 6 x 6 y < z 6 n }

∪ { γzx,y : czx ·cy → cy ·czx for 1 6 x < y < z 6 n }.

is a finite semi-quadratic presentation of the Chinese monoid Cn.

Proof. We explicit a Tietze equivalence between the rewriting systems Chc2(n) and PreCol2(n). For 1 6
x < y 6 n, consider the following critical branching

cy ·cx ·cy
γŷ,x,y
// cyx ·cy

cy ·cy ·cx

εx,y 33

γy,ŷ,x
,, cy ·cyx
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of the rewriting system Chc2(n). We consider the Tietze transformation that substitutes the
rule γy,yx : cy ·cyx → cyx ·cy to the rule εx,y, for every 1 6 x < y 6 n. Similarly, we substi-
tute the rules γyx,x, γyy,x, γy,xx, γzy,x, γzx,y and γz,yx respectively to the rules ηx,y, εx,y, ηx,y, εx,y,z, ηx,y,z
and εx,y,z using the following critical branchings of the rewriting system Chc2(n):

cx ·cy ·cx
γx,ŷ,x
// cx ·cyx

cy ·cx ·cx

ηx,y 33

γŷ,x,x
,, cyx ·cx

γyx,x

;;
cy ·cx ·cy

γŷ,x,y
// cyx ·cy

cy ·cy ·cx

εx,y 33

γŷ,y,x
,, cyy ·cx

γyy,x

;;
cx ·cy ·cx

γx,ŷ,x
// cx ·cyx

cy ·cx ·cx

ηx,y 33

γy,x̂,x
,, cy ·cxx

γy,xx

;;

cy ·cz ·cx
γy,ẑ,x
// cy ·czx

cz ·cy ·cx

εx,y,z 33

γẑ,y,x
,, czy ·cx

γzy,x

;;
cy ·cz ·cx

γy,ẑ,x
// cy ·czx

cz ·cx ·cy

ηx,y,z 33

γẑ,x,y
,, czx ·cy

γzx,y

;;
cy ·cz ·cx

γy,ẑ,x
// cy ·czx

cz ·cy ·cx

εx,y,z 33

γz,ŷ,x
,, cz ·cyx

γz,yx

;;

The set of rule γ−,− obtained in this way is equal to ∆2(n). This proves that the rewriting systems Chc2(n)
and PreCol2(n) are Tietze equivalent.

5.2.8. Completion of the precolumn presentation. The rewriting system PreCol2(n) is not confluent,
it has the following non-confluent critical branchings, that can be completed by Knuth-Bendix comple-
tion, [28], with respect to the total order 4Ch into a confluent rewriting system by the dotted arrows as
follows:

i) for every 1 6 x 6 y < z < t 6 n :

cz ·cty ·cx
γz,t̂y,x
// cz ·cy ·ctx

γẑ,y,tx
// czy ·ctx

cty ·cz ·cx

γt̂y,z,x 22

γty,ẑ,x
,, cty ·czx

γty,zx

44

ii) for every 1 6 x < y < z 6 n :

czx ·cz ·cy
γzx,ẑ,y

// czx ·czy
cz ·czx ·cy

γẑ,zx,y 22

γz,ẑx,y
,, cz ·cy ·czxγẑ,y,zx

// czy ·czx

γzy,zx

OO

iii) for every 1 6 x < y 6 z < t 6 n :

cz ·cty ·cx
γz,t̂y,x
// cz ·cy ·ctx

γẑ,y,tx
// czy ·ctx

ctz ·cy ·cx

γt̂z,y,x 22

γtz,ŷ,x
,, ctz ·cyx

γtz,yx

44
cz ·ctx ·cy

γz,t̂x,y
// cz ·cy ·ctx

γẑ,y,tx
// czy ·ctx

ctx ·cz ·cy

γt̂x,z,y 22

γtx,ẑ,y
,, ctx ·czy

γtx,zy

44

iv) for every 1 6 x < y 6 z 6 n :

czz ·cyx
γzz,yx

**

cz ·cz ·cyx

γẑ,z,yx 11

γz,ẑ,yx
-- cz ·cy ·czxγẑ,y,zx

// czy ·czxγzy,zx
// czx ·czy

v) for every 1 < x < y < n :

cyy ·cxx
γyy,xx

&&

cy ·cy ·cxx

γŷ,y,xx 11

γy,ŷ,xx
-- cy ·cx ·cyxγŷ,x,yx

// cyx ·cyx
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vi) for every 1 6 x 6 y < z 6 n :

cy ·czx ·cx
γy,ẑx,x

// cy ·cx ·czx
γŷ,x,zx

// cyx ·czx
czy ·cx ·cx

γẑy,x,x 11

γzy,x̂,x
-- czy ·cxx

γzy,xx

33

vii) for every 1 < y < n :

cyy ·cy
γyy,y
��

cy ·cy ·cy

γŷ,y,y 22

γy,ŷ,y
,, cy ·cyy

The rules of PreCol2(n) together with the family of the dotted rules defined by i)-vii) form the set{
γu,v : cu ·cv → RQn(cu ?Cr cv) | cu, cv ∈ Qn

}
.

That is, the set of rules of R(Qn,Cn). Finally, by this construction, we prove that CCn(cucv) is at most of
length 2 in Q∗n, showing the semi-quadraticity of the presentation.

5.3. Coherent presentations for Chinese monoids

In this subsection we extend the rewriting system R(Qn,Cn) into a finite coherent convergent presentation
of the Chinese monoid Cn with an explicit description of the generating 3-cells. The rewriting system
R(Qn,Cn) being semi-quadratic any rewriting path with source cu ·cv ·ct is an alternated composition of
reductions of the form (5.2.3). Moreover, any rewriting rule γ−,− of R(Qn,Cn) can be written

γyx1,x2x3 : cyx1 ·cx2x3 → cxσ(1)xσ(2) ·cyxσ(3) (5.3.1)

with y ∈ [n], x1, x2, x3 ∈ [n] ∪ {0} and σ is a permutation on [n] ∪ {0}, and where in (5.3.1), cx0 denotes
the column generator cx for all 1 < x < n.

5.3.2. When cyx1 is not a square generator, then xσ(1) takes value y only if rule (5.3.1) is one of the
commutation rules of the form

cy ·cyx → cyx ·cy, czy ·czx → czx ·czy, cyy ·cy → cy ·cyy, cyy ·cyx → cyx ·cyy (5.3.3)

for x < y < z. When cyx1 is a square generator, with y > x2, then xσ(1) takes value y only if rule (5.3.1)
is one of the form

cyy ·cx → cyx ·cy, cyy ·cxx → cyx ·cyx, czz ·cyx → czx ·czy. (5.3.4)

We obtain the following bounds for the rewriting paths with source a critical branching of R(Qn,Cn).

5.3.5. Proposition. For all cu, cv, ct inQn such that cu ·cv and cv ·ct are not Chinese normal forms, the
two following inequalities hold:

`l(cu ·cv ·ct) 6 5, and `r(cu ·cv ·ct) 6 5. (5.3.6)

The proof of this result is based on the two following preliminaries lemmas.

5.3.7. Lemma. Let cu, cv, ct in Qn. If ρl,3(cu ·cv ·ct) is not a Chinese normal form, then the reductions
applied to obtain the words ρl,p(cu ·cv ·ct), for 3 < p 6 5, consist only on the commutation rules (5.3.3).
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Proof. Let cyx1 , cx2x3 , cx4x5 be inQn such that cyx1 ·cx2x3 and cx2x3 ·cx4x5 are not Chinese normal forms.
By definition of R(Qn,Cn), we have

cyx1·cx2x3·cx4x5 → cxσ(1)xσ(2)·cyxσ(3)·cx4x5 → cxσ(1)xσ(2)·cxσ ′(σ(3))xσ ′(4)·cyxσ ′(5) → cz1z2·cxσ(1)z3·cyxσ ′(5)

where z1 = xσ ′′(σ(2)), z2 = xσ ′′(σ ′(σ(3))) and z3 = xσ ′′(σ ′(4)) such that σ, σ ′ and σ ′′ are permutations
on [n] ∪ {0}, and cxσ(1)xσ(2) ·cyxσ(3) , cxσ ′(σ(3))xσ ′(4) ·cyxσ ′(5) and cz1z2 ·cxσ(1)z3 are Chinese normal forms.

Suppose that cxσ(1)z3 ·cyxσ ′(5) is not a Chinese normal form. Following 5.3.2, the only possible
reduction that can be applied on it are of form (5.3.3) or (5.3.4). Let us prove that the rules (5.3.4) cannot
be applied. On the contrary, then xσ(1) = z3 > y. Since cz1z2 ·cxσ(1)z3 is a Chinese normal form, we
obtain that z1 = z3 and cxσ(1)xσ(2) ·cxσ ′(σ(3))xσ ′(4) ·cyxσ ′(5) = cz3z3 ·cz3z2 ·cyxσ ′(5) . Since z3 > y, we obtain
that cz3z2 ·cyxσ ′(5) = cxσ ′(σ(3))xσ ′(4) ·cyxσ ′(5) is not a Chinese normal form, which yields a contradiction.

Then we can only apply a commutation rule on cxσ(1)z3 ·cyxσ ′(5) , with xσ(1) = y, and we rewrite the
word cz1z2·cxσ(1)z3·cyxσ ′(5) into cz1z2·cyxσ ′(5)·cxσ(1)z3 . Suppose that cz1z2·cyxσ ′(5) is not a Chinese normal
form, then we can apply on it a rule of type (5.3.3) or (5.3.4). As in the previous step, let us prove that the
rules (5.3.4) cannot be applied. On the contrary, then z1 = z2 > y. Since cz1z2 ·cxσ(1)z3 is a Chinese
normal form, we obtain that z1 = z2 = xσ(1) = y, which yields a contradiction. Then we can only apply a
commutation rule on cz1z2 ·cyxσ ′(5) .

We have thus proved that the reductions applied to obtain the words ρl,4(cyx1 · cx2x3 · cx4x5)
and ρl,5(cyx1 ·cx2x3 ·cx4x5) consist only on the commutation rules. This is our claim.

5.3.8. Lemma. For all cu, cv, ct inQn such that cu is a square generator and the words cu·cv and cv·ct
are not Chinese normal forms, the inequality `r(cu ·cv ·ct) 6 5 holds.

Proof. The word cu ·cv ·ct can have the following forms

crr ·ctz ·cyx for x < y < z < t 6 r, ctt ·czy ·czx for x < y < z 6 t,
crr ·cty ·czx for x 6 y < z < t 6 r, crr ·ctx ·czy for x < y < z < t 6 r,
ctt ·czy ·cyx for x < y < z 6 t, ctt ·cz ·cyx for x < y 6 z 6 t,
czz ·cyx ·cx for x < y 6 z, ctt ·czy ·cx for x < y < z 6 t,
ctt ·czx ·cy for x < y < z 6 t, czz ·cy ·cx for x < y 6 z.

For all these forms, we have `r(cu ·cv ·ct) 6 5.

5.3.9. Proof of Proposition 5.3.5. Let cyx1 , cx2x3 and cx4x5 be inQn such that cyx1·cx2x3 and cx2x3·cx4x5
are not Chinese normal forms. Let us prove that `l(cyx1·cx2x3·cx4x5) 6 5. Suppose that ρl,2(cyx1·cx2x3·cx4x5)
is not a Chinese normal form. By definition of the rewriting rules in R(Qn,Cn), we obtain

cyx1 ·cx2x3 ·cx4x5 → cxσ(1)xσ(2) ·cyxσ(3)cx4x5 → cxσ(1)xσ(2) ·cxσ ′(σ(3))xσ ′(4)cyxσ ′(5) → cz1z2 ·cxσ(1)z3 ·cyxσ ′(5)

where z1 = xσ ′′(σ(2)), z2 = xσ ′′(σ ′(σ(3))) and z3 = xσ ′′(σ ′(4)) such that σ, σ ′ and σ ′′ are permutations
on [n] ∪ {0}, and cxσ(1)xσ(2) ·cyxσ(3) , cxσ ′(σ(3))xσ ′(4) ·cyxσ ′(5) and cz1z2 ·cxσ(1)z3 are Chinese normal forms.

Suppose that cxσ(1)z3 ·cyxσ ′(5) is not a Chinese normal form, then by Lemma 5.3.7 we can only apply a
commutation rule on it and we rewrite the word cz1z2·cxσ(1)z3·cyxσ ′(5) into cz1z2·cyxσ ′(5)·cxσ(1)z3 . Suppose
that cz1z2 ·cyxσ ′(5) is not a Chinese normal form, then by Lemma 5.3.7 we can only apply a commutation
rule on it and we rewrite cz1z2 ·cyxσ ′(5) ·cxσ(1)z3 into cyxσ ′(5) ·cz1z2 ·cxσ(1)z3 , where cyxσ ′(5) ·cxσ(1)z3
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and cyxσ ′(5) ·cz1z2 are Chinese normal forms. Since cz1z2cxσ(1)z3 is a Chinese normal form, we obtain
that cyxσ ′(5)cxσ(1)z3 is a Chinese normal form. This proves the first inequality in 5.3.6.

Let us prove that `r(cyx1 ·cx2x3 ·cx4x5) 6 5. Suppose that the word σr,3(cyx1 ·cx2x3 ·cx4x5) is not a
Chinese normal form. By definition of the rewriting rules in R(Qn,Cn), we have

cyx1 ·cx2x3 ·cx4x5 → cyx1 ·cxσ(3)xσ(4) ·cx2xσ(5) → cxσ ′(1)y1 ·cyy2 ·cx2xσ(5)
and

cxσ ′(1)y1 ·cyy2 ·cx2xσ(5) → cxσ ′(1)y1 ·cxσ"(2)z1 ·cyz2 → ct1t2 ·cxσ ′(1)t3 ·cyz2

(5.3.10)

where y1 = xσ ′(σ(3)), y2 = xσ ′(σ(4)), z1 = xσ"(σ ′(σ(4))), z2 = xσ"(σ(5)), t1 = xσ1(σ ′(1)), t2 = xσ1(σ ′(σ(3)))

and t3 = xσ1(σ"(σ ′(σ(1)))) such that σ, σ ′, σ" and σ1 are permutations on [n] ∪ {0}, and cxσ(3)xσ(4) ·cx2xσ(5) ,
cxσ ′(1)y1 ·cyy2 , cxσ"(2)z1 ·cyz2 and ct1t2 ·cxσ ′(1)t3 are Chinese normal forms.

Suppose that σr,4(cyx1 ·cx2x3 · cx4x5) is not a Chinese normal form. Then xσ ′(1) = y and the
second reduction of (5.3.10) is cyx1 ·cxσ(3)xσ(4) ·cx2xσ(5) → cyy1 ·cyy2 ·cx2xσ(5) . Following 5.3.2, the
rule γyx1,xσ(3)xσ(4) can be of form (5.3.3) or (5.3.4). Let us prove that it cannot be of form (5.3.3). On
the contrary, since cxσ(3)xσ(4) ·cx2xσ(5) is a Chinese normal form, we obtain xσ(3) = y > x2. Moreover,
since cyx1 ·cx2x3 is not a Chinese normal form, the inequality y 6 x2 holds. Then y = x2. In this way, the
first reduction of (5.3.10) is cyx1 ·cyx3 ·cyx5 → cyx3 ·cyx1 ·cyx5 , where cyx3cyx5 is a Chinese normal form,
and its second reduction is cyx3 ·cyx1 ·cyx5 → cyx3 ·cyx5 ·cyx1 . Since σr,3(cyx1 ·cyx3 ·cyx5) is not a Chinese
normal form, the word cyx3 ·cyx5 is not a Chinese normal form, which yields a contradiction.

Thus, the rule γyx1,xσ(3)xσ(4) is of form (5.3.4) and cyx1 is a square generator such that cyx1 ·cx2x3
and cx2x3 ·cx4x5 are not Chinese normal forms. Hence by Lemma 5.3.8 we obtain `r(cyx1 ·cx2x3 ·cx4x5) 6 5.
This proves the second inequality in (5.3.6).

5.3.11. Theorem. The rewriting systemR(Qn,Cn) extends into a finite coherent convergent presentation
of the Chinese monoid Cn by adjunction of a generating 3-cell

ce ·ce ′ ·ct
γ
e,ê ′,t %9

Xu,v,t
��

ce ·cb ·cb ′
γ
ê,b,b ′ %9 cs ·cs ′ ·cb ′

γ
s,ŝ ′,b ′ %9 cs ·ck ·ck ′ γ

ŝ,k,k ′

�1
cu ·cv ·ct

γû,v,t ';

γu,v̂,t
"6

cl ·cm ·ck ′

cu ·cw ·cw ′
γû,w,w ′

%9 ca ·ca ′ ·cw ′
γ
a,â ′,w ′

%9 ca ·cd ·cd ′
γ
a,â ′,w ′

%9 cl ·cl ′ ·cd ′ γ
l,l̂ ′,d ′

-A

for any cu, cv, ct in Qn such that cu ·cv and cv ·ct are not Chinese normal forms, and where the 2-cells
γ−,− denote either a rewriting rule of R(Qn,Cn) or an identity.

Proof. Any critical branching of R(Qn,Cn) has the form

RQn(cu ?Cr cv)·ct
cu ·cv ·ct

γû,v,t ';

γu,v̂,t
#7 cu ·Rr(cv ?Cr ct)

for any cu, cv, ct in Qn such that cu ·cv and cv ·ct are not Chinese normal forms, that is confluent by
Theorem 5.2.4. Moreover by Proposition 5.3.5, `l(cu ·cv ·ct) 6 5 and `r(cu ·cv ·ct) 6 5. We conclude
with coherent Squier’s theorem recalled in 2.2.3.
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5.3.12. Remark. Note that in the boundary of the generating 3-cell Xu,v,t some γ−,− can be identity
2-cells. However, following construction given in the proof of Proposition 5.3.5, if the source (resp. target)
of Xu,v,t is of length 5, then its target (resp. source) is of length at most 4.
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