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L-POINCARE INEQUALITIES FOR DIFFERENTIAL FORMS ON
EUCLIDEAN SPACES AND HEISENBERG GROUPS

ANNALISA BALDI
BRUNO FRANCHI
PIERRE PANSU

ABSTRACT. In this paper, we prove interior Poincaré and Sobolev inequalities
in Euclidean spaces and in Heisenberg groups, in the limiting case where the
exterior (resp. Rumin) differential of a differential form is measured in L!
norm. Unlike for LP, p > 1, the estimates are doomed to fail in top degree.
The singular integral estimates are replaced with inequalities which go back
to Bourgain-Brezis in Euclidean spaces, and to Chanillo-van Schaftingen in
Heisenberg groups.

1. INTRODUCTION

1.1. L'-Sobolev and Poincaré inequalities. The well known Sobolev inequali-
ties on R™ states that for every 1 < p < n, there exists a constant C'(n, p) such that
all smooth compactly supported functions v on R™ satisfy

1 1 1
llullg < C(n,p)||Vull, provided - —-=— (p—Sobolev).
p q n
The most important of these inequalities is (1 —Sobolev). Indeed, (1— Sobolev)
implies all inequalities (p—Sobolev), p < n. Furthermore, (1—Sobolev) is equivalent
to the isoperimetric inequality for smooth bounded domains A of R™ (Federer-

Fleming’s theorem, [15]),
volume(A)™ =D/ < C(n,1) area(A),

(with the same constant). Similarly, for noncompactly supported functions, a
Poincaré inequality holds for 1 < p < n: there exists a constant ¢, such that

1 1 1
lu —cullq < C(n,p) ||Vullp, provided - ——=— (p— Poincaré).
p q n
We investigate generalizations of these inequalities to differential forms. More
precisely, we ask whether, given a closed differential h-form w in LP(R"™), there

exists an (h — 1)-form ¢ in LY(R™) with % - % = L such that d¢ = w and

[6llq < C(n,p, h) [l

If p > 1, the easy proof consists in putting ¢ = d*A~'w. Here, A~! denotes the
inverse of the Hodge Laplacian A = d*d + dd* and d* is the formal L?-adjoint of
d. The operator d*A~"! is given by convolution with a homogeneous kernel of type
1 in the terminology of [16] and [17], hence it is bounded from L? to LY if p > 1.
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Unfortunately, this argument does not suffice for p = 1 since, by [17], Theorem 6.10,
d*A~" maps L' only into the weak Marcinkiewicz space L™ ("~1):°° Upgrading
from L™/ (=120 to [7/(n=1) ig possible for functions. Indeed, for characteristic
functions of sets, the L™/ ("=1):2 and L™/ ("=1) norms coincide, and every function
is the sum of characteristic functions of its superlevel sets (see [27], [18], [19]).

This trick does not seem to generalize to differential forms.

Note that locally, d*A~! maps L' to LY for all ¢ < n/(n — 1), but this does not
lead to a scale invariant inequality.

1.2. Analysis of L!-differential forms. In fact, (1—Poincaré) fails in degree n.
There is an obvious obstruction: n-forms belonging to L' and with nonvanishing
integral cannot be differentials of L™/ ("~1) forms, see [43]. But even if integral
vanishes, a primitive ¢ such that ||¢||, < C'||w|1 need not exist, with 1 — % =1
Indeed, if so, then, for every smooth function u on R™, one could write, for every

n-form w € L' with vanishing integral,

I/uwl = I/ud¢| = ldu A o| < [|dulln]|dlly < Clldulln]lw]l1,

which would imply (by Hahn-Banach theorem) the existence of a constant ¢, such
that |Ju—cylleo < C||du||p. Such a (n—Sobolev) inequality does not hold, since R™ is
n-parabolic, i.e. for every compact subset K and every € > 0, there exists a smooth
compactly supported function x on R” such that x > 1 on K and [, [dx|" < e,
(see [14] Section 4.7).

Surprisingly, Poincaré and Sobolev inequalities persist sometimes for p = 1. The
first result appeared in [10], whose Theorem 2 states that, if f is a divergence free
vectorfield in L*(R™), then the solution of AZ = f satisfies Vi € L™ "=1. In
differential form notation, this means that VA~! restricted to closed (n — 1)-forms
is bounded from L' to L™/ (=Y A fortiori, so is d* A=, this proves (1—Poincaré)
in degree n — 1.

1.3. Results. In this paper, we prove (1—Poincaré) for h-forms of degree h < n in
de Rham’s complex (9°,d). We rely on Lanzani-Stein’s observation (see [26]) that
the duality estimate (emphasized by van Schaftingen [44]) underlying Bourgain-
Brezis’ result descends from (n—1)-forms to forms of lower degree, and the resulting
Gagliardo-Nirenberg inequalities.

Remarkably, this approach generalizes to the non-commutative Heisenberg groups
H" equipped with Rumin’s complex (E§,d.). Indeed, when passing to Heisenberg
groups, we can use Lanzani-Stein’s type arguments proved in [2], [5]. Precise defi-
nitions of Heisenberg groups and related properties as well as of Rumin’s complex,
can be found in Section 4.

In the Euclidean setting, the integral obstruction generalizes to forms in every
degree: if a closed L'-form w is the differential of a form in L™/ (»~1(R™), then for
every constant coefficient form S of complementary degree, f w A B = 0. Therefore
we introduce the subspace L} of L!-differential forms satisfying these conditions (we
call them forms with vanishing averages). In Heisenberg groups, constant coefficient
forms must be replaced with left-invariant Rumin forms.

We can state our main results. We stress that, in (1) below we are dealing with
usual de Rham forms, whereas in (2) we are dealing with Rumin’s complex.

Theorem 1.1 (Global Poincaré and Sobolev inequalities). We have:
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(1) Euclidean case R™. Let h=1,...,n—1 and set ¢ =n/(n—1). For every
closed h-form o € L{(R™), there exists an (h — 1)-form ¢ € LY(R™), such
that

db=a and gy <C lalh.

(2) Heisenberg case H™ = R?" 1. Let h =1,...,2n and set ¢ = (2n+2)/(2n+
ifh#n+1andqg= 2n+2)/(2n) if h = n+ 1. For every d.-closed
h-form o € Ly(H™), there exists an (h — 1)-form ¢ € L4(H™), such that

dep=a  and ¢l < C el
Furthermore, in both cases, if « is compactly supported, so is ¢.

We also prove local versions of these inequalities, of the following types (see
Corollary 6.5).

Theorem 1.2. (1) Euclidean case. For h=1,...,n—1, let ¢ = n/(n —1).
For every A > 1, there exists C with the following property. Let B(R) be a
ball of radius R in R™.

(a) Interior Poincaré inequality: for every closed h-form o € L'(B(AR)),
there exists an (h — 1)-form ¢ € LY(B(R)), such that

dp=opr)y  and  ||9llLapr) < Cllalloaory)-
(b) Sobolev inequality: for every closed h-form o« € L' with support in

B(R), there exists an (h — 1)-form ¢ € L9, with support in B(AR),
such that

dp=a  and  ||9llLasrry) < CllellLr(s(ry)-

(2) Heisenberg case: for h=1,....2n, let g= 2n+2)/2n+1) if h £ n+1
and ¢ = (2n+ 2)/(2n) if h = n+ 1. There exist X\ > 1 and C with the
following property. Let B(R) be a ball of radius R in H™.

(a) Interior Poincaré inequality. For every d.-closed Rumin h-form « €

LY(B(\R)), there exists an (h — 1)-form ¢ € LY(B(R)), such that

de¢ = op(R) and  [|9llLaBr)) < CllallLiBor))-

(b) Sobolev inequality: for every d.-closed Rumin h-form o« € L' with
support in B(R), there exists an (h — 1)-form ¢ € L1, with support in
B(AR), such that

dep = and ||¢||Lq(B(AR)) <C ||a||L1(B(R))'

Finally, we construct smoothing homotopies on Riemannian or contact subRie-
mannian manifolds of bounded geometry (see [13], Proposition 1, p. 77). Roughly
speaking, a Riemannian manifold has C*-bounded geometry if it admits an atlas of
charts defined on the unit Euclidean ball, with uniformly bounded Lipschitz con-
stant, and such that changes of charts have uniformly bounded derivatives up to
order k. In the contact subRiemannian case, the models are unit Heisenberg balls,
the charts are assumed to be contactomorphisms and only horizontal derivatives
play a role. Details appear in Definition 7.1.

Theorem 1.3. (1) Riemannian case: let M be a Riemannian manifold of di-
mension 2n + 1 and bounded C*-geometry, where k is an integer, k > 2.
Forh=1,....n—1,1let ¢ =n/(n—1). Let 1 < ¢ < q. There exist
operators S and T on h-forms on M such that S is bounded from L' to
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WE=14" T s bounded from L* Nd=tL* to LY, and the homotopy identity
1=S+dTl +Td holds on L' Nd~'L".

(2) SubRiemannian contact case: let M be a subRiemannian contact manifold
of dimension 2n+1 and bounded C*-geometry, where k is an integer, k > 3.
Forh=1,...,2n,let g = (2n+2)/(2n+1) if h # n+1 and ¢ = (2n+2)/(2n)
ifh=n+1. Let 1 < ¢ < q. There exist operators S and T on h-forms on
M such that S is bounded from L' to WHh=14" T is bounded from L'Nd—1L*
to Lq/, and the homotopy identity 1 = S +d.T + Td. holds on L* Nd_1L".
Furthermore, in degree h = n+ 1, T is bounded from WIi=bL1 to Wl for
alll1 <j<k-1.

Such local Poincaré inequalities and smoothing homotopies are the necessary
ingredients in order to prove that Rumin’s complex can be used to compute the
¢%'_cohomology of a subRiemannian contact manifold, see [37]. Therefore Theorem
1.1 has significance in geometric group theory, see Corollary 8.2.

This paper is organised as follows: in Section 2 we provide a sketch of the proof
of Theorems 1.1 and 6.5. Section 3 deals with continuity properties of homogeneous
kernels in Carnot groups and with function spaces. Most of the results are more or
less known, except, as long as we know, for Theorem 3.13. Preliminary results on
Heisenberg groups, Rumin’s complex and Laplacians are gathered in Section 4. The
proof of Theorem 1.1 is contained in Section 5 and relies on Gagliardo-Nirenberg
type inequalities proved therein, and interior inequalities stated in Theorem 6.5 are
proved in Section 6 via suitable smoothing homotopy formulas. Finally, Sections 7
and 8 deal with Riemannian and contact manifolds with bounded geometry.

2. SCHEME OF PROOF

In this Section we sketch the proof of Theorems with more details in the Eu-
clidean case, whereas the body of this paper will contain only the proofs for differ-
ential forms in Heisenberg groups which require several further arguments.

2.1. Euclidean case. Let ¢ = n/(n — 1). According to Lanzani-Stein, in degrees
< n, for smooth compactly supported forms u,

(1) [ullg < C (ldully + [|d*ul|x),

where | - || v denotes either L'-norm (in degrees # 1) or the norm of the real Hardy
space H! (in degree 1). Since the inverse of the Laplacian, A~!, commutes with d,
the operator K = d*A~! satisfies dK + Kd = 1 on smooth compactly supported
forms. Given a closed form o € LY(R"), u = Ko is not compactly supported, so
cannot be directly plugged in (1). Therefore we use a smooth cut-off function y
and put

¢ =d" (xA ).
Then ¢ has compact support, d*¢ = 0 and
do = [dd*, x]A  a + xdd* A o = [dd*, x] A" e + xa.

The point is to estimate the garbage term ||[dd*, x]A~'al|;. Notice that [dd*,x] is
a first order differential operator, of the form [dd*, x] = Py + P1 where P, has order
0 and depends on second derivatives V2y and P; has order 1 and depends on first
derivatives Vy only. Both Pp)A~! and P;A~! have homogeneous kernels.
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Here comes our key trick. If P is the operator of convolution with a kernel of
type u > 0, and o € L', then the L! norm of Pa on shells B(0,2R) \ B(0, R) is
O(R*). If furthermore a € L{, this can be improved to o( R*).

Pick x = xr such that dxp is supported in the shell B(0,2R)\ B(0, R), |Vxr| <
+ and |[V2xg| < #5. Then |[PhA™'al|; and |[PLA™ al|; tend to 0 as R — oo. Then
|64 stays uniformly bounded, yielding eventually that d*A~'a € L%, thanks to
Fatou’s theorem.

The local Poincaré inequality is based on Iwaniec-Lutoborsky’s homotopy, [25].
This homotopy is defined by a kernel k£ which belongs to L9 in a neighborhood of
the origin, for every ¢ < n/(n —1), but not for ¢ = n/(n —1). Fortunately, Young’s
inequality suffices to prove that a truncation of k maps L' to L'. This provides an
L' local primitive for a closed form, up to a smoothed closed form, which belongs
to W1, The L' primitive is upgraded to L™/ ("1 using a cut-off and Theorem
1.1. To the smoothed form, one can again apply Iwaniec-Lutoborsky’s homotopy,
which yields a form in W', The Sobolev embedding W' ¢ L™/ (»~1) concludes
the argument.

For further details in the Euclidean case, we refer to [4].

2.2. Heisenberg case. We use Rumin’s Laplacian Ag on Rumin forms. It does
not quite commute with Rumin’s differential d. in degrees n — 1 and n + 2 but
this turns out to be harmless. Write K = d Aﬁ_ﬂl (with a modification in degrees n
and n + 1), in order that d.K + Kd. = 1 on smooth compactly supported forms.
In spite of the complicated form of Leibniz’ formula for d., the basic features of
commutators [d.d?, x]Ay" from the Euclidean case persist.

The local Poincaré inequality requires special care in the Heisenberg case, since
no analogue of Iwaniec-Lutoborsky’s homotopy exists. The kernel of K = d:A{ﬂl
is a valuable replacement. This provides again a L' local primitive for a d.-closed
form, up to a smoothed d.-closed form, which belongs to W31, The L' primitive
is upgraded to L? using a cut-off and Theorem 1.1 in the same manner. To the
smoothed form, one can apply Rumin’s homotopy, yielding a W?2! d.-closed form,
and then Iwaniec-Lutoborsky’s Euclidean homotopy. The resulting form belongs
to L9, with ¢ = (2n+2)/(2n+ 1) if h#n+1and ¢g= (2n+2)/(2n) it h =n+ 1,
again by Sobolev embedding.

2.3. Gaffney type inequality in Euclidean spaces. If p > 1, an alternative
route to Poincaré’s inequality could be to first establish a Gaffney type inequality:
for every differential form ¢ such that d¢ and é¢ € LP,

IVell, < C(llddllp + [16¢1l5)-

Combined with (p—Poincaré) inequality for functions, ||¢—cg|lnp/(n—p) < C |V,
this implies (p— Poincaré) for forms. Unfortunately, if p = 1, Gaffney’s inequality
trivially holds for forms of degree 0, but fails in every degree > 1. This follows
from Ornstein’s non-inequality, [36]. Indeed, in degrees > 1, Vo = §¢ + d¢p + R,
where all three components constitute a linearly independent collection of linear
first order constant coefficient differential operators on R™. Therefore no universal
inequality

[BSllr < C(ldell + l|0¢]]1)

can hold, even for forms with compact support in a fixed ball.



6 ANNALISA BALDI, BRUNO FRANCHI, PIERRE PANSU

However, the following statement is still open for h # 1,n : in R™, for every
closed differential h-form w in L', does there exist an (h — 1)-form ¢ such that
dp = w and

Vo[l < Cllwllr ?

This is true if L' is replaced with Hardy space H'.

3. KERNELS

In Theorem 1.1, the primitive ¢ of a closed form w is provided by an operator
defined by convolution with a homogeneous (matrix valued) function. We collect in
this section the classical properties of such operators, especially their boundedness
in function spaces in the Lebesgue and Sobolev scales. A special care will be taken
of boundedness on L', a fact which is not standard.

This section applies to the wider class of Carnot groups, which contains both
abelian and Heisenberg groups.

3.1. Convolutions on Carnot groups. A Carnot group G of step k is a con-
nected, simply connected Lie group whose Lie algebra g admits a step k stratifica-
tion, i.e. there exist linear subspaces Vi, ..., V,; such that

2) g=Vie.oV. [WV]=Via, V.#{0}, Vi={0}ifi>x,

where [V1, V;] is the subspace of g generated by the commutators [X, Y] with X € V;
and Y € V;. The exponential map is a one to one map from g onto G. Using
exponential coordinates, we identify a point p € G with the N-tuple (p1,...,pn) €
RY and we identify G with (R”,.) where the explicit expression of the group
operation - is determined by the Campbell-Hausdorff formula (see, e.g., [17]). In
exponential coordinates the unit element e of G is e = (0,...,0).

The first layer V4 will be called horizontal layer; a left-invariant vector field in
V1, identified with a differential operator, will be called an horizontal deerivative.

From now on, we shall denote by {W7i,...,W,,} a basis of V].

The N-dimensional Lebesgue measure £, is the Haar measure of the group G.
For any A > 0, the dilation 0y : G — G, is defined as

(3) Sa(x1, .y zy) = Aay, . NV ay),

where d; € N is called the homogeneity of the variable x; in G (see [17] Chapter 1).
We denote by @ the homogeneous dimension of G defined by

(4) Q::iidim%.
=1

Through this paper we shall assume that @ > 3.

In this paper we denote by |- | a homogeneous norm, smooth outside the origin,
that induces a genuine distance on G as in [42], p. 638. In the special case of
G = H", the n-th Heisenberg group, this homogeneous norm is the Koranyi norm
p (see (23)). Later on, we shall use the following gauge distance:

d(z,y) = |y,
and we denote by B(z, R) the d-ball of radius R centred at x.
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Following e.g. [17], we can define a group convolution in G: if, for instance,
f €D(G) and g € Li (G), we set

loc

(5) frglp) = / f@gla -p)dq for g €G.

We remind that, if (say) g is a smooth function and P is a left invariant differential
operator, then
P(fxg)=fxPyg.

If f is a real function defined in G, we denote by " f the function defined by ¥ f(p) :=
f(p~h), and, if T € D'(G), then “T is the distribution defined by (*T|¢) := (T'|Y¢)
for any test function ¢.

We remind also that the convolution is again well defined when f,g € D'(G),
provided at least one of them has compact support. In this case the following
identities hold

(6) (fxgl¢) = (gl"f+¢) and (fxglo) = (fl¢*"g)
for any test function ¢, where we use the notation (-|-) for the duality between D’
and D.

As in [17], we also adopt the following multi-index notation for higher-order
derivatives. If I = (iy,...,42,41) is a multi-index, we set Wi = VVlil e W;fl" Tian+1,
By the Poincaré Birkhoff-Witt theorem, the differential operators W/ form a basis
for the algebra of left invariant differential operators in G. Furthermore, we set

[I] := iy + - +don + f2nt1
the order of the differential operator W/, and
d(I) := i1+ - +ion + 2i2p41

its degree of homogeneity with respect to group dilations.
Suppose now f € £'(G) and g € D'(G). Then, if ¢ € D(G), we have

(WTF)xgly = (Wl «Vg) = (=) (flp« (W Vg)) = (=) f = YW Y glap).
Thus
(WTF)* gly = (Wl «Vg) = (=) (flyp « (W ¥g))

7
" = (=D)MI(f =WV gly).

3.2. Kernels, basic properties. Following [16], we remind now the notion of
kernel of type p and some properties stated below in Proposition 3.2.

Definition 3.1. A kernel of type p is a homogeneous distribution of degree p — Q
(with respect to group dilations), that is smooth outside of the origin.
The convolution operator with a kernel of type u is still called an operator of type

I
Proposition 3.2. Let K € D'(G) be a kernel of type p.

i) VK is again a kernel of type p;

ii) WK and KW are associated with kernels of type p — 1 for any horizontal

derivative W

iii) If p >0, then K € L .(G).
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Lemma 3.3. Let g be a a kernel of type > 0, and let ¢ € D(G) be a test function.
Then ¥ x g is smooth on G.

If, in addition, R is an homogeneous polynomial of degree £ > 0 in the horizontal
derivatives, we have

R(¥*g)(p) = O(Ip|"~°™") asp — oc.

On the other hand, if g is a smooth function in G\ {0} that satisfies the logarith-
mic estimate |g(p)] < C(1 4 |In|p||) and in addition its horizontal derivatives are
homogeneous of degree —1 with respect to group dilations, then, if ¢ € D(G) and
R is an homogeneous polynomial of degree £ > 0 in the horizontal derivatives, we
have

Rxg)p) = O(p|™") asp—oo if£>0;
R(pxg)(p) = O(nlp]) asp—oo if£=0.
In particular, if ¢ € D(G), and K is a kernel of type p < @, then both ¢ x K
and all its derivatives belong to L>=(G).

In the following theorem we gather some continuity properties for convolutions
that can be find in [16] and [17] (or easily derived from [16] [17]).

Theorem 3.4. We have:

i) Hausdorff-Young inequality holds, i.e., if f € LP(G), g € L1(G), 1 <
p,q,r < 00 and % + % —1=1 then fxg e L"(G) (see [17], Proposition
1.18) .

il) If K is a kernel of type 0, 1 < p < 00, > 0, then the mapping T : u — ux K
defined for u € D(G) extends to a bounded operator on WP (G) (see [16],
Theorem 4.9).

iil) Suppose 0 < u < Q, 1 <p<Q/u and % =1_ % Let K be a kernel of

P
type . If w € LP(G) the convolutions ux K and K x u exists a.e. and are

in LY(G) and there is a constant Cp > 0 such that
us Kllg < Cpllull, and [[K *ullqg < Cpllullp

(see [16], Proposition 1.11).
iv) Suppose s > 1, 1 < p < Q, and let U be a bounded open set. If K is a
kernel of type 1 and u € WS~ 1P(G) with supp u C U, then

% Kllwesce) < Cullullws1.5(G).

Proof. The proof of iv) can be carried out relying on Theorems 4.10, 4.9 and Propo-
sition 1.11 of [16], keeping into account that LP?/(?=P)(1f) C LP and Proposition
3.2, ii). Indeed

lux K|lwerc) < C{llux K| @) + Z [ WeK || ws=10(G) }
=1

< C{llu* Ko@) + lullws-10(c) }
< C{llull prer@-v) + lullws-10e) } < Cullullws—1.-(G).
1

Definition 3.5. Let f be a measurable function on G. If t > 0 we set
Ap(t) = KIfI > t}.



If1 <p<oo and
sup N(t) < oo,
>0

we say that f € LP>°(G).

Definition 3.6. Following [8], Definition A.1, if 1 < p < oo, we set
||| are == inf{C > 0; / lu|dz < C|K[Y?" for all L-measurable set K C G}.
K

and MP = MP(G) is the set of measurable functions u on G satisfying ||u||pr < 00.
Repeating verbatim the arguments of [8], Lemma A.2, we obtain

Lemma 3.7. If 1 < p < oo, then

© L g, < sup{API{Jal > AN} < [l
pp+1 A>0

In particular, if 1 < p < oo, then MP = LP>°(G).
Corollary 3.8. If1 < s < p, then M? C L{ (G) C L}, .(G).

loc

Proof. By Lemma 3.7, if u € MP then |u|® € MP?/* and we can conclude thanks to
Definition 3.6.
O

Lemma 3.9. Let E be a kernel of type o € (0,Q). Then for all f € L*(G) we have
f*E e MQ/Q=%) and there exists C > 0 such that

If * Ellper@-o < Cllfllre)
for all f € LY(G). In particular, by Corollary 3.8, if 1 < p < Q/(Q — «), then
f*EclLl (G)cCLL.(G).

loc loc

As in [5], Lemma 4.4 and Remark 4.5, we have:

Remark 3.10. Suppose 0 < a < Q. If K is a kernel of type o and ¢ € D(G),
1 = 1 in a neighborhood of the origin, then the statements of Lemma 8.9 still hold
if we replace K by (1 — 1)K or by Y K.

3.3. Estimates on shells. Here, we prove a fine boundedness property of kernels
in L', expressed in terms of L' norms on shells. It will play a crucial role in section
5. We start with a preliminary duality lemma.

Lemma 3.11. If K is a kernel of type p € (0,Q), u € L*(G) and v € D(G), then
(8) (us Kp) = (ulyp + Y K).

In this equation, the left hand side is the action of a matrix-valued distribution
on a vector-valued test function, see formula (25), the right hand side is the inner
product of an L' vector-valued function with an L> vector-valued function.

Proof. The assertion follows by Fubini-Tonelli theorem. Indeed
[ 1K o) () dy o
9)
<¢ [ [y @ )o@ dyde < oc.
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Since ¥ is compactly supported there exists M > 0 such that the above integral
can be written as

/1SM/ /|$|§M /yS2M || <M J|y[>2M

Now
/ ) fuly) (0] dy do
|z|<M J|y|<2M
e N I
(10) jo| <M J|y|<2m
<c [ ([ w2ty
lz|<M *Jd(z,y)<3M
< Cyllullpye)-

On the other hand, if |z| < M and |y| > 2M, then d(z,y) > M. so that

[ ey @ i) dy do
(11) le|<M Jly|>2M
<MY oy llull i )-

Then

/ ( / K(y~'a)uly) dy) ¢(z) d

(12) ~ [( [ K 0wt dz)utw) dy
Z/(/"K(:v’ly)@b(w) dw)u(y) dy,

and therefore we are done.
O

Remark 3.12. The conclusion of Lemma 3.11 still holds if we assume K €
L (G), provided u is compactly supported.

loc

Theorem 3.13. If K is a kernel of type o € (0,Q), then for any f € L*(G) such
that

(13) /G fly) dy =0,

we have:

Rfo‘/ |K * fldx — 0 as R — oo.
B(e,2R)\B(e,R)
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Proof. If R > 1, taking into account (13), we have:

re [ K fldo =R [ da| [ K( o) p(w) dy
B(e,2R)\B(e,R) R<|z|<2R

s [l [ K6 K@)y

<o [uwi(f, | Jro k@] a) a

- /y<§R |f(y)|( ) W R_a~/§R<y<4R |f(y)|( B ) 4y

R oan F@I(--) dy

== Riall (R) + RiaIQ (R) + R7QI3 (R)

Consider first the third term above. By homogeneity we have

Ii(R) < C / FW)I( (d(z, )=+ + d(x, €)=+ dz) dy
ly|>4R R<|z|<2R

Notice now that, if |y| > 4R and R < |z| < 2R, then d(z,y) > |y|—|z| > 4R— R =>
3|2|. Therefore, by [17], Corollary 1.16,

2\Q-a _
d(a,y) "9+ d(w,e) " < {(§>Q N 1} a2+,

and then
[ )@ s diwe ) de < Co R
R<|z|<2R
Thus
R °I3(R) < Ck.a / |f(y)ldy — 0
ly|>4R
as R — oo.

Consider now the second term. Again we have

B(R) < Ci [ DI () @ (o)) da) dy.
3 R<|y|<4R R<|z|<2R

Obviously, as above,

/ d(z,e)" 9T dx < CR*.
R<|z|<2R

1
Notice now that, if §R <l|y| < 4R and R < |z| < 2R, then d(z,y) < |z|+]|y| < 6R.

Hence
/ Sty ay < oR
1 R<|y|<4R d(z,y)<6R

R°Iy(R) < Cx / F@)dy —> 0
1R<|y|<4R

Therefore
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as R — oo. Finally, if [y| < & and R < |z < 2R we have |y| < i|z|, so that, by
[17], Proposition 1.7 and Corollary 1.16,

_ ly|
R°I,(R) < Cx / F)] W gy ay
ly|<im ( R<|z|<2r |T|@7oH )
1
yen / F@)wlxo.s m (D) (R / 1)y
G (0.2 7] ( R<|z|<2r |T|@7oF! )

< [ 1@ vlxo (DR dy = Coc [ 1£) Ry .

Obviously, for any fixed y € G we have (|y|)Hr(|y|) — 0 as R — oco. On the other
hand, |f(y)|Hr(Jy|) < $|f(y)|, so that, by dominated convergence theorem,

R I (R) — 0

as R — oc.
This completes the proof of Theorem 3.13. O

3.4. Powers of Kohn’s Laplacian and Sobolev spaces. In section 8, we shall
construct operators of order —1, and we shall need to show that they improve
differentiability. They win one degree of differentiability on the LP scale when
p > 1, but not on the L' scale. This is why we need introduce fractional Sobolev
spaces, fortunately only for exponents p > 1. We choose to define them using
powers of Kohn’s Laplacian.

Let {X1,...,X,,} be the fixed basis of the horizontal layer V; of g chosen above.

We denote by Ag the negative horizontal sublaplacian

Ag = in
j=1

If 1 <p < ooanda € C, we define (—Ag)?? in LP(G) following [16]. If in addition
s > 0, again as in [16], we denote by WZ*(G) the domain of the realization of
(—Ag)*? in LP(G) endowed with the graph norm. In fact, as soon as p € (1, 00)
is fixed, to avoid cumbersome notations, we do not stress the explicit dependence
on p of the fractional powers (—Ag)*/? and of its domain.

Remark 3.14. By [40], Proposition 6, if p > 1, then the spaces WZ*(G), s > 0
provide a complex interpolation scale of Banach spaces (see e.g. [9]).

Proposition 3.15. The operators (—Ag)*/? are left invariant on Wa'*(G).
We recall that

Proposition 3.16 ([16], Corollary 4.13). If 1 < p < oo and ¢ € N, then the space
Wé’p(G) coincides with the space of all uw € LP(G) such that

X'ue LP(G)  for all multi-indices I with d(I) = ¢,
endowed with the natural norm.

Proposition 3.17 ([16], Corollary 4.14). If 1 < p < 0o and s > 0, then the space
WP (G) is independent of the choice of X1, ..., Xp,.

Proposition 3.18. If 1 < p < oo and s > 0, then S(G) and D(G) are dense
subspaces of Wi (G).



13

Theorem 3.19 ([16], Corollary 4.15). If ¢ € D(G), the map f — ¢f is continuous
from W*P(G) to WP(G) for p>1 and s > 0.

The following Proposition is a tool to prove that a given operator maps a suitable
function space into a Sobolev space W*P. Indeed, it reduces the question to the
case of the kernel of a negative power of Ag. It will be used in Lemma 3.26.

Proposition 3.20 (see [16]). Suppose 0 < 8 < Q. Denote by h = h(t,z) the
fundamental solution of —Ag + 0/0t (see [16], Proposition 3.3). Then the integral

Rs(z) = m/omt‘i—lh(t,x) dt

converges absolutely for x # 0.
Moreover
1) Rg is a kernel of type 5;
ii) if a € (0,2) and u € D(G), then

(—Aq;,)o‘/Qu = —Aq;,(u * Rg_a).

3.5. Function spaces in domains. When dealing with subRiemannian manifolds
in section 8, we shall need to localize Sobolev spaces on balls and transport them
by contactomorphims. Therefore we provide a precise definitions of W*? (D) for D
a good domain, typically a ball, in a Carnot group.

Definition 3.21. As in Proposition 3.16, if D C G is a connected open set, { is a
nonnegative integer and p > 1, we set

W4 (D) := {u € LP(D) : Wlu e LP(D), d(I) < (}.
From now on, we assume that D is an extension domain, i.e.

Definition 3.22. We say that a connected bounded open set D C G is an extension
domain if it enjoys the so-called extension property, i.e. for any ¢ € N there exists
a bounded linear operator

(14) pe: WHP(D) — WHP(G)
such that peu = u in D.

Sufficient conditions yielding that D enjoys the extension property are largely
studied in the literature. We do not enter into technical details, but we recall the
following facts:

e In general Carnot groups “elementary” qualitative conditions for (14) are
not known. Smooth domains may fail to be extension domains.

e The so-called (¢,0) (or uniform) domains are extension domains. In par-
ticular, in Heisenberg groups, Carnot-Carathéodory balls are extension do-
mains.

e In Carnot groups of step 2, C!-domains are extension domains. In partic-
ular, we shall need later that Kordnyi balls in Heisenberg groups (see (23)
below) are extension domains. In particular, in Heisenberg groups there is
a basis of the topology made by extension domains. This provides a precise
meaning for the fractional local Sobolev spaces Wli’f (G).

e In general Carnot groups, bounded intrinsic Lipschitz domains are exten-
sion domains.
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For proofs of the above results and for an overview of the problem we refer for
instance to [12], [28], [35], [22], [11], [34] [33], [46], [20].

The following definition is not optimal but suffices for our purposes: if s is a
nonnegative integer, the notion of Sobolev space given in Definitions 3.21 is equiv-
alent to the following one when the domain is an extension domain, as we will see
in Remark 3.24 below.

Definition 3.23. Let D be a connected bounded open set enjoying the extension
property (14). Denote by rp the operator of restriction to D. If s > 0 and p > 1
we set

W*P(D) = {rpu,u € W>P(G)},

endowed with the norm
(15) llullwsr(py == inf{||v]|wsr@c), 7DV = u}.
Remark 3.24. If s is a nonnegative integer, then Definitions 3.23 and 3.21 are

equivalent (in bounded extension domains). Indeed, denote for a while by ||U||T/vs,p(p)

the norm defined in (15), keeping the notation ||[ullys.»(py for the norm of Defini-
tion 3.21. Thus, since rppsu = u, we have

lulliyer(py < llpsullwsr@c) < Cllullwsrp)-

On the other hand, let v be an arbitrary extension of u outside D. We notice that
for any horizontal derivative W we have Wu = rp(Wwv). Thus

lullwe»(p) < lV]lwer @),
so that, taking the infimum of the right-hand side of this inequality for all extensions
v, we have

[ullwerpy < llulliyer -
Remark 3.25. It is easy to see that Proposition 3.18 and Theorem 3.19 still hold
for Sobolev spaces in D.

3.6. Truncated kernels. The interior inequalities of Theorem 1.2 rely on convo-
lution with functions of the form ¥ K where K is a kernel and ¢ a smooth cut-off.
We establish now boundedness properties of such operators.

Lemma 3.26. Let K be a kernel of type o € (0,2] and let » € D(G), p =1 in a
neighborhood of the origin. Let xo € D(G). If D is a bounded extension domain (see
Definition 3.22), & >0, a—1<d <aand Q/(Q—a) >p>Q/(Q—a+d) >1,
then the map
xof = (xof) * VK

is continuous from L'(G) to W »(D).

Proof. Since both xo and K are compactly supported, then (xof) * ¢ K is com-
pactly supported in a bounded open set U and, obviously, is an extension of

rp((xof) * YIK). Hence

[(xof) * VK lyr.er (py < 1(x0f) * VK] Loy + ||Agl/2((>(of) * Y K) || Lr(c)-

Since p < Q/(Q — «), by Theorem 3.4 - i), f x ¢ K belongs to LP(G) and the first
term above is estimated as we want.
We are left with the estimation of the second norm above.
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By density we can always suppose f € D(G), so that (xof)* K € D(G). Thus,
by Proposition 3.20, ii)
(16) —AZ (O f) * 0 K) = ~As ((xof) * ¥F) % Ra—ar).

On the other hand, we can write (xof) * VK = (xof) * K — (xof) * (1 —¥)K, so
that

(17) =A% ((xof) ¥ ¥K) = =A% P((xof) * K) — =A% ((xof) * (1 — $)K).

Let us consider the second term of (17). We notice first that, keeping in mind
that Ra_q is a kernel of type 2 — o/, we can apply Lemma 1.12 of [16], to get

(18) (f*x(1—=9Y)K)x Ra_o = [ % ((1 —)K * Rg,a/).
Indeed, K is a kernel of type «, and then
(=)K< C(1+[2]"79),

so that (1 —¢)K € L%G) for fome suitable ¢ > 1, provided 1/¢ < 1 — o/Q. In
addition

1 2—a
1+--— —1>0,
q Q
since
— 2_¢qf
Q -« B o >0,
Q Q
and we can alway choose g such that
1 2—d Q—«
19 - € , .
(19) 7 ( 0 0 )

This prove (18).

We stress that the choice of ¢ will not affect the remaining part of the proof,
since ¢ is merely a tool used to prove identity (18).

By (18), we get

Ac(((xof) * (1 = ¢)K) * Ra—ar) = (xof) * Ac ((1 — ) K * Ry—o)
= (xof) * (YAe((1 =9)"K) * Ro—q).
Take now s > 1 such that

(20)

(21) S=—+

Keeping into account that VK is still a kernel of type « and that 1 — ¢ = 1 near
the infinity, by Lemma 3.3 we have

FAc((1 = ¢) K)| < C(1 + [a]*=972),
Hence YAg((1 —9)"K) € L*(G). Therefore, by Theorem 3.4 - iii) and (21)
Ag((1=W)K * Ry—ar) € LP(G).

Combining (16) and (20), by Hausdorff-Young theorem (see Theorem 3.4 -1)) we
have

HAE//Q((XOJF) (1 =V)K)|lr@) < 1l 1A (1 — ) K * Ra—or) || Lo(c)-

This provides an estimate of the second term of (17).
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Thus, we have but to consider the term —Ag(((xof) * K) * Ra—o/). Since a +
2 —a' <3< Q, by Proposition 1.13 of [16],

~Ac(((x0f) * K) * Ra-ar) = =Da((x0)) (K * Ro-))
= —(xof) * (Ag(K * Ra—ur)),

where K * Ro_,/ is a kernel of type o+ 2 — o, so that, by Proposition 3.2, Ag (K *
Rs_4) is a kernel of type o — . Therefore, by Lemma 3.9,

[(x0f) * (Ac(K * Ra—ar)) lLepy < Cllf L1 (s
and the proof is completed. O

The proof of the following result is similar to the previous one but for sake of
completeness we write down the details.

Theorem 3.27. Suppose p > 1, and let xo € D(G) be fized.
i) Let K be a kernel of type 1 and let ¢ € D(G) be as in Remark 3.10 above,
i.e. ¥ =1 in a neighborhood of the origin. In addition, let D C G be a
bounded connected extension domain. Then the map f — (xof) * YK is
continuous from W=1P(G) to W*P(D) for s > 1.
i) Analogously, if K is a kernel of type 0, then the map (xof) — [ * VK is
continuous from WP (G) to W*P(D).
for s > 0.

Proof. Since both x( and K are compactly supported, then (xof) * K is com-
pactly supported.
Let now g be a cut-off function, ¥y = 1 on D, so that 1/10{(X0f) * ¢K} is an

extension of T‘D{(Xof) * z/JK}.
Then, by definition (see (15)),

l(xof) * vK|lwsr(py < ||¢0{(X0f) * wK}HWSwP(G)-
Therefore, we have but to prove that

(22) [Yo{(x0f) * YK }Hlwsr@) < Cllfllws-10(c)-

By density (see Proposition 3.18), we can assume f € D(G). In addition, by
interpolation (see Remark 3.14), we can assume s integer. As in the proof of
Lemma 3.26 we write v K = K — (1 —¢)K. By Theorem 3.4, iv),

lho{ (xof) * K Hlwer@) < |(xof) * Kllwer@) < Ix0flwe-rr@) < Ifllw-10)-

On the other hand, the W#*P-norm of ¢0{(X0f) * (1 — ¢)K} can be estimated by
a sum of terms of the form

LWl 0s) < W@ = 6K de < C [ [0f) = W1 = 0)EP ds
G supp o
with d(I) +d(J) < s.

We notice now that (1 — ¢)K is a smooth function supported away from the
origin. Therefore, keeping into account that yo and vy are compactly supported,
we can assume that (1 —¢)K is compactly supported away from the origin, so that
WI((1 —)K belongs to L'(G). Thus eventually, once more by Hausdorff-Young
inequality (Theorem 3.4)

1/p
([ 10w «W' (1 = 9)KPdz) " < Clixofllzae < Clfllzae < 1w

supp o
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This completes the proof of assertion i).
The proof of assertion ii) can be carried out in the same way, using Theorem
3.4, ii) instead of Theorem 3.4, iv).
O

4. PRELIMINARY RESULTS ON HEISENBERG GROUPS, RUMIN’S COMPLEX AND
LAPLACIANS

4.1. Heisenberg groups. The n-dimensional Heisenberg group H" is the 2-step
Carnot group whose Lie algebra

h=b1 D bho.

has hs = R, h; = R?" and the Lie bracket h; x h; — B2 is a nondegenerate
skew-symmetric form.

The group can be identified with R?*+! through exponential coordinates and a
point p € H" can be denoted by p = (z,y,t), with both 2,y € R™ and ¢t € R. For a
general review on Heisenberg groups and their properties, we refer to [42], [23] and
to [45]. We limit ourselves to fix some notations following [5].

The Heisenberg group H” can be endowed with the homogeneous norm (Korédnyi
norm)

1/4
(23) o(p) = ((lal? + [y +£2) ",
and we define the gauge distance (a true distance, see [42], p. 638, that is equivalent
to Carnot—Carathéodory distance) as d(p,q) := o(p~' - q). Finally, set B(p,r) =

{a € H"; d(p,q) <7}
The standard basis of b is given, for i = 1,...,n, by

1 1
X = aﬂﬂz - 5%31&, Y = auz + ixiata T .= at.

The only non-trivial commutation relations are [X;,Y;] =T, for j =1,...,n.

The vector space b can be endowed with an inner product, indicated by (-, ),
making Xq,...,X,, Y1,...,Y, and T orthonormal.

Throughout this paper, we write also

(24) Wl = Xl', WiJrn = }/1', W2n+1 = T, for i = 1, e, N

The dual space of b is denoted by A'h. The basis of A'b, dual to the basis
{X1,...,Y,, T}, is the family of covectors {dz1,...,dz,,dy1,...,dy,, 0} where
1 n
0:=dt -3 > (wydy; — yjdzy)
j=1
is called the contact form in H". A diffeomorphism ¢ between open subsets of H"
is called a contactomorphism if ¢#6 is pointwise proportional to 6. In other words,
contactomorphisms preserve the contact structure ker().

The stratification of the Lie algebra h induces a family of anisotropic dilations
dx, A > 0 in H". The homogeneous dimension of H"™ with respect to dx, A > 0
equals @@ := 2n + 2. Unfortunately, when dealing with differential forms in H",
the de Rham complex lacks scale invariance under anisotropic dilations. Thus, a
substitute for de Rham’s complex, that recovers scale invariance under d; has been
defined by M. Rumin, [38]. In turn, this notion makes sense for arbitrary contact
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manifolds. We refer to [38] and [6] for details of the construction. In the present
paper, we shall merely need the following list of formal properties.

e For h =0,...,2n+1, the space of Rumin h-forms, E!* is the space of smooth
sections of a left-invariant subbundle of /\h T*H"™ (that we still denote by
El). Hence it inherits inner products, L and W*? norms.

e A differential operator d, : El' — EI" is defined. Tt is left-invariant, ho-
mogeneous with respect to group dilations. It is a first order homogeneous
operator in the horizontal derivatives in degree # n, whereas it is a second
order homogeneous horizontal operator in degree n.

e Contactomorphisms ¢ between open subsets of H™ pull-back Rumin forms
to Rumin forms, and in addition commute with d:

de (¢#0‘) = ¢# (dea).

e The L? (formal) adjoint of d. is a differential operator d of the same order
as d..

e Hypoelliptic “Laplacians” can be formed from d. and d (see Definition 4.2
below).

e Altogether, operators d. form a complex: d.od. = 0.

e This complex is homotopic to de Rham’s complex (Q2°,d). The homotopy
is achieved by differential operators Il : Ej — Q° and Ilg, : Q° — E§
(ITg has horizontal order < 1 and IIg, is an algebraic operator).

In other words, Il : E§ — Q° and Ilg, : Q° — E§ intertwine differentials d. and
d,

de de dc

h h+1
E! Eh+t ey

N

N oV R SN o V1 R,
dC h dC h+1 dC
E! Bt ey
THEU THEO
d

. or 4 oght1 4
and there exists an algebraic operator A : Q® — Q°~! such that 1-Ilg Igllgllg, =
0 on E6 and 1 — HEHEDHEOHE =dA+ Ad on Q°.

4.2. Leibniz formula. When d. is second order, (E§,d.) stops behaving like a
differential module. This is the source of many complications.

Lemma 4.1 (see also [5], Lemma 3.2). If  is a smooth real function, then
i) if h # n, then on EJ} we have:
[de, (] = B (WQ),

where PH(W() : Eb — E(})H'1 is a linear homogeneous differential operator
of order zero with coefficients depending only on the horizontal derivatives
of C. If h # n+ 1, an analogous statement holds if we replace d. by d;
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ii) if h =n, then on EJ we have
[de. ¢] = PI(WC) + P (W?C),
where PP(W¢) : Ef — EyT™ is a linear homogeneous differential operator
of order 1 (and therefore horizontal) with coefficients depending only on the
horizontal derivatives of ¢, and where P}(W?2() : B — E{)’H is a linear
homogeneous differential operator in the horizontal derivatives of order 0
with coefficients depending only on second order horizontal derivatives of .
If h=n+1, an analogous statement holds if we replace d. by d.
iii) if h #n+ 1, then
[dedz, €] = PY(WCQ) + By (W2Q),
where P(W() : Eb — Eb is a linear homogeneous differential operator
of order 1 and therefore horizontal) with coefficients depending only on the
horizontal derivatives of ¢, and where PM(W?() : Eb — E} is a linear
homogeneous differential operator in the horizontal derivatives of order 0
with coefficients depending only on second order horizontal derivatives of C.
iv) if h=n-+1, then
[ded;, (] = PSHH(WQ) + PR (W20) + PP (W2Q) + Fet (W),
where for j = 0,1,2,3, the PJ-”H(W‘l_jQ : E{f“ — ESH are linear ho-
mogeneous differential operators of order j and therefore horizontal) with
coefficients depending only on the horizontal derivatives of order 4 — j of C.

Proof. The first two assertions are more or less straighforward. Let us prove the
third assertion. If u is a Rumin’s differential form of degree h, keeping in mind the
first assertion, we have

[dedy, (Ju = dedy(Cu) — (dediu = de((dyu + Py (W()u) — (dediu
= (dediu+ Py~ (W) diu + do(PY(WQ)u) — Cdediu
= By~ WQdiu+ de(Py (W Qu).
Denote by {£/'} a left-invariant basis of Eff. If u = > ui€l, then PP (W (v =
Dik ajk(WiQ)ur€!. Thus, using i) on & for all j, k, we get
de(Py(WQu = a; k(WiQ)de(ung]) + Y _ Py (W(WiQ)ungy
Jik J.k
=: Pl (WQ)u + Py (W()u.
Therefore
[dedz, (Ju = Py~ (WQ)dzu + PY(WQu + Py (W*C)u,
and the assertion follows if we still denote by PJ*(W¢) the above operator Py~ (W ¢)d: +
P(WC).
The proof of iv) is similar. O
4.3. Rumin’s Laplacian.

Definition 4.2. In H", following [38], we define the operators Ay, on E} by
setting
ded; +did. if h#nn+1;
Agp =< (ded?)? +did. if h=n;
ded? + (did.)? if h=n+1.
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Notice that —Ag o = Z?Zl(Wf) is the usual sub-Laplacian of H™.

For sake of simplicity, once a basis of El! is fixed, the operator Ay j can be
identified with a matrix-valued map, still denoted by Ag p,
(25) Amp = (AF ))ij=1...n, : D'(H",RN") — D' (H", RN"),

.....

where D' (H", RV») is the space of vector-valued distributions on H", and N}, is the
dimension of E} (see [1]).

This identification makes possible to avoid the notion of currents: we refer to [6]
for a more elegant presentation.

Definition 4.3. If a basis of E is fized, and 1 < p < oo, we denote by LP(H", EJ)
the space of all sections of Eg such that their components with respect to the given
basis belong to LP(H™), endowed with its natural norm. Clearly, this definition is
independent of the choice of the basis itself.

The notations MP(H", ES) (see Definition 3.6), D(H", E§), S(H", E3), as well
as W™P(H", ES) have the same meaning.

It is proved in [38] that Ag ) is hypoelliptic and maximal hypoelliptic in the
sense of [24]. In general, if £ is a differential operator on D’(H",R™"), then £
is said hypoelliptic if for any open set ¥V C H" where L« is smooth, then « is
smooth in V. In addition, if £ is homogeneous of degree a € N, we say that L is
maximal hypoelliptic if for any 6 > 0 there exists C' = C(d) > 0 such that for any
homogeneous polynomial P in Wi,..., Wa, of degree a we have

||Pa||L2(Hn,RNh) <C (l|£a||L2(Hn,RNh) + ”O‘HLQ(H",RNh)) .

for any a € D(B,(0, ), RV»).
Combining [38], Section 3, and [7], Theorems 3.1 and 4.1, we obtain the following
result.

Theorem 4.4 (see [7], Theorem 3.1). If 0 < h < 2n + 1, then the differential
operator Aw.p is homogeneous of degree a with respect to group dilations, where
a=2ifh#nn+1anda=4if h=n,n+ 1. It follows that

i) for j=1,..., Ny, there exists
(26) Kj:(Klj,...,KNhj), 7=1,...Np

with K;; € D'(H")NEMH™\ {0}), 4,5 =1,...,N;

ii) if a < Q, then the K;;’s are kernels of type a for i,5=1,..., Ny

If @ = Q, then the K;;’s satisfy the logarithmic estimate |K;j(p)| <

C(1 4 |Inp(p)|) and hence belong to Li (H"™). Moreover, their horizontal
derivatives WeK;j, £ =1,...,2n, are kernels of type Q —1;

iii) when o € D(H",RM), if we set

(27) Aﬁ}ha IZ(Zaj*Klj,...,Zaj*KNhj),
J J
then AhAﬁ}ha = . Moreover, if a < Q, also Aﬁ}hAha =a.
iv) if a = Q, then for any o € D(H",RNr) there exists Bo := (B1,.-.,8nN,) €
RN» | such that

Aﬁ}hAhoz —a = fq.
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Remark 4.5. Ifa < Q, AH,h(A]}E}h — VAHE},L) =0 and hence Aﬁ}h = VAﬁ}h, by the
Liouville-type theorem of [7], Proposition 3.2.

Remark 4.6. From now on, if there are no possible misunderstandings, we identify
Aﬁlh with its kernel.

We notice that, if n > 1, then Ay 1h is associated with a kernel of type 2 or 4 and

therefore Aﬁ}h f is well defined when f € L'(H", E}). More precisely, by Lemma
3.9 we have:

Lemma 4.7. If n > 1, 1 < h < 2n, then for any horizontal differential operator
W1 with homogeneous order d(I), we have

i) if h#n,n+1 and d(I) =1, then
I+« W A Iere-n < Cllfll o em, g1y
for all f € LY(H", E});
ii) ifh=n,n+1 and 1 <d(I) <4, then
1+ WAL | ares@-arauy < Cllfll o, 0y
for all f € L*(H", E}).
By Corollary 3.8, in both cases f+ W1 AH . € L (H", E}). In particular, the map
(28) Aﬁ,lh : Ll (Hn7 ES) — Lloc(Hnu E{)k)
18 continuous.

Remark 4.8. Let n > 1. If a € LY(H" E3), then Ay’ o is well defined and
belongs to L, (H", E3). In particular, is a vector-valued distribution. By Lemma
3.11, if ¢p € D(H", E}), then

(29) (Agaly) = (alAg),v).

In this equation, the left hand side is the action of a matrix-valued distribution
on a vector-valued test function, see formula (25), whereas the right hand side
is (with a slight abuse of notation, since Aﬁ)lhw is not a test function) the inner
product of an L' vector-valued function with a L> vector-valued function.

4.4. Commutation relations. Typically, the operator used to invert d. is d; Ay L
It inverts d. because d. commutes with A{ﬂl. Since d. and d’ commute with Agy, it
is natural that they commute with its inverse. One first shows this for test forms,
and then (in a slightly weaker form) for L! forms by duality.

Lemma 4.9 (see [5], Lemma 4.11). If o € D(H", E}) and n > 1, then

i) dAﬁlha:Aﬁlh_Hda h=0,1,...,2n, h#n—1,n+1.
i) dAg),_ja=dedi Ay dea (h=n-1).

iti) d.did AH1n+1a—AHn+2d a, (h=n+1).

iv) df Hhoz—Ath e h=1,...,2n+1, h#mn,n+2.
v) d*AHnHa—ddAHlana (h=n+2).

vi) didediAg) o= Agl _ dia, (h=mn).
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Lemma 4.10. Let h > 1. Let w € L*(H", E}) be a d.-closed form. Then Aﬁ}hw

is well defined and belongs to Li (H", E}}). Furthermore, dzchﬁ}hw = 0 in distri-
butional sense.

Proof. Let ¢ € D(H", E%). By definition, by Corollary 4.8 and by Lemma 4.9, iv),
(dedeAg wl@) = (oA wlded) = (Ag jwldided) = (W] Ay dided) = (W]di Ay ), ded).

One can write Aﬁlhdcgb = ¢ x K where K is a kernel of type 1 or 2. Let us show
that

(30) /(w,dZ((b*K))dx: 0.

By Lemma 3.3, ¢ * K is smooth and bounded on H", as well as all its horizontal
derivatives. If N € N, let on be a cut-off function supported in B(e, N + 1) and
identically 1 on B(e, N). By dominated convergence theorem

Jtwdionmy s = im_[(o.ondio 1)) do.

On the other hand, by Lemma 4.1,
Jwondiws K)o = [w.diox K)o+ [ (o, ldzon)(6 ) do
— (dulow(+ ) + [ dz.on)(6 K) da
:/<w,[dz,aN](¢*K)>dx—>0 as N — oo,

again by dominated convergence theorem, since horizontal derivatives of any order
of oy vanish as N — oo and ¢ * K € L*°(H") by Lemma 3.3. We conclude that
<dZdCAﬁ_ﬂ}hw|¢) = 0 for all test forms, hence dZdCAﬁ_ﬂ}hw =0.

O

5. GAGLIARDO-NIRENBERG INEQUALITIES

The following is the core estimate of the paper. It provides primitives for globally
defined d.-closed L! forms, under an extra assumption on the vanishing of averages.
This assumption is necessary. Indeed, it is obviously satisfied for forms admitting
a compactly supported primitive. The extension to L' primitives is not hard, see
Lemma 6.3. The case of forms admitting an L? primitive for some ¢ > 1 is more
subtle, we refer to [43].

The starting point is the collection of Gagliardo-Nirenberg inequalities proven
in [3].

Theorem 5.1 ([3], Theorem 1.6). Let u be a compactly supported Rumin (h —1)-
form on H"™. Assume that duw = 0. Then

(31) lull pas@-v@n gr-1y < Clldetl|pin gy ifh#n+1,2n41
(32) H’UJHLQ/(sz)(Hn)E(;) < C”dCuHLl(H”,Eg”l) ifh=n+1.

In [3], Theorem 1.6, the first case corresponds to statements i), first line (h = 1),
ii) first line (h = 2), iv) fourth line (h = n + 2), iii) (other values of h # 2n + 1),
and the second case to statement iv) first line (h = n + 1).
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Given a d.-closed L' form w, one would like to apply Theorem 5.1 to u =
dzAﬁ}hw, since du = 0. Since u is not compactly supported, a cut-off is necessary,
but this produces error terms which can be estimated thanks to Theorem 3.13,
provided averages vanish.

5.1. Estimate for H", n > 1.
Theorem 5.2. Denote by L}(H™, EY) the subspace of L*(H", ES) of forms with

vanishing average. If n > 1 we have:
i) ifh#n,n+1and1<h<2n+1, then

||dzAﬁ,1hWHLQ/(Q—U(Hn,E{;*I) < Cllwllprn,gpy  for allw € Lo(H™, Eg) Nker d,;
il) if h =n, then
|\d;dcd:Aﬁ}nw||LQ,(Q,1)(HHngl) < Cllwllprny  for allw € LE(H", EY) Nkerd,;
ili) if h=n+1, then
||dzAﬁ7ln+1w||LQ/(Q—2)(Hn7E(’;L) < Cllw|l L @my for allw € Ly(H"™, By Nker d,;
If n =1, then statement i) still holds with h = 3.
If n=1and h = 1,2, similar (but slightly different) inequalities are discussed in
Proposition 5.3.
Proof. We notice that, if n > 1, then Aﬁ}h is a kernel of type 2 or 4 and therefore,

as we pointed out in (28), if w € L§(H", E}), then Af{}hw is well defined and
belongs to Li (H", E}) for 1 < h < 2n + 1. Thus we can consider the convolution

loc
operator w dzAﬁ_lhw that is associated with a kernel of type 1 if h # n,n + 1
and of type 2 if h =n+1. Analogously, if h = n, then the convolution operator
w — did.d} Ay’ w is associated with a kernel of type 1.
If N € N, let now X~ be a cut-off function supported in B(e,2N), xny = 1 on
B(e,N). If e < 1 let J. be an usual Friedrichs’ mollifier (for the group structure).

Then, set

(33) Ve, N 1= Je x d (XNA]{{},IW) it h #n,
while
(34) ven = Jex di(XNdedi Ay w)  ifh=n.

Notice now that both d (XNAﬁ}hw) if h # n, and dZ(XNdcdzAﬁ}hw) if h =n are
compactly supported and uniformly bounded in L!(H", Eg ~1). Indeed, in the first
case we can write

A2 (O D) = X (dE AR )W) + [d2, XN] A e,

and both terms on the right hand side are bounded in L'(H", E!~') by Lemmata
4.1 and 4.7. An analogous argument can be carried out in case h = n, keeping in
mind that d} is an operator of order 1 and dcdzAﬁ}h is associated with a kernel of
type 2.
We observe that
diven = Jex (d)? (XN Ag pw) = 0,
if h # n. In case h = n,
dyve,n = Jex (d2)* (xnded; A jyw) = 0



24 ANNALISA BALDI, BRUNO FRANCHI, PIERRE PANSU

again.

Let us prove sentences i) and iii) simultaneously. To avoid cumbersome notations,
in the sequel when LP-spaces are involved, we shall drop the target spaces. We apply
Theorem 5.1 to ve, N
HUE,NHLQ/(Qfl)(HmE(’;*l) < C”che,NHLl(H")

= C||Je * d.d;, (XNA]I;I,th)HLl(H”)
< O{|1Je * [dedg, XN (Ag @)l L iy + | Je 5 xv (dedi Agg o) | 1 ey }
< O{l[ded, xN)(Ag )l + X (dedi Ag )| L1 ean) }-
If h = n+ 1, then (35) still holds provided we replace [[ve x| Le/@-1)@n, gp) With
[ve,nllLa/@-2 mn, Ep)-
By Lemma 4.10,
(36) dcd:A]{{}hw =w-— d:dCA{{}hw = w.

By Lemma 4.1, [dcd}, xn] can be written as a sum of terms of the form PJ'(W*)
with j =0,1,j+k=2ifh#n+1, and with j =0,1,2,3, j+ k=4 if h=n+1.
By Proposition 3.2, ii), in both cases the norm ||[d.dZ, XN](AﬁthU)”Ll(Hn) can be
estimated by a sum of terms of the form

1

m /B(e,2N)\B(e,N

where K is a kernel of type k > 1. Thus, we can apply Theorem 3.13 to conclude
that

‘Kw’dx,
)

H[dcdz,XN](Aﬁ}hW)HLl(Hn) —0 as N — oo.

If e — 0, then ve y — d (XNAﬁ}hw) in L'(H", E2~") (and therefore we may assume
a.e.). By Fatou’s theorem, this provides an L%/(?=Y bound on d¥ (yyAj; ,w). Since

d (XN A jw) = xv (de Ay jw) + [d, xv]Ag jw,
as N tends to oo, this converges a.e. to d:Aﬁlhw. By Fatou again,

s Ag hwll Les@-v @y < Cllwll @n)-

This completes the proof of i) and iii). Finally, the proof of ii) can be carried
out through the same argument, provided we keep in mind Lemma 4.9-1) in order
to obtain that ded}ded; Ay w = w. O

5.2. The case of H'. When n = 1 and h = 1 or 2, the statement and the proof
are slightly different, due to the fact that Aﬁ}h in degrees h = 1, 2 has a logarithmic
behavior, since the order of A j equals the homogeneous dimension ) = 4 (see
Theorem 4.4, ii)). Incidentally, if » = 0 or h = 3 the order of Ay j is 2 < @ and
there is no difference from the case n > 1.

If h = 1,2, the way to circumvent this obstacle is to avoid mentioning Aﬁ}h

and focus on dZAﬁlh which is still given by convolution with a kernel of type

2 or 3. Indeed, suppose first w € L'(H', E!), is compactly supported. Then,
keeping in mind that K € L, by Theorem 4.4, ii) again, we obtain that Aﬁ}hw €
Li (HY, E}) (therefore it is a distribution), and we can write

(37) dZAﬁ}hw = wx K,
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where (keeping in mind Proposition 3.2) K is a kernel of type 3 if h = 1 and of
type 2 if h = 2.

Proposition 5.3. Assume that h = 1 or 2 and n = 1. Let K the convolution
operator associated with the kernel K. Letw € Ll(]HIl,E(}}) without any support
assumption, then Kw € Li (HY, EY),
(38)

||d:dCI~(WHLQ/(Q—I)(HI)ES) S CHWHLl(Hl,E%) fO’I’ all w S L(l)(Hl, E&) n kerdc;

and
(39) HKW||LQ/(Q—2)(H17E‘5) < Ollwl| 1@, 52 for all w € Ly(H, EZ) Nker d,;

Proof. Let us prove for instance (39). The proof is a mere reformulation of that of
Theorem 5.2.
Take w € L{(H', EZ) Nkerd,. First of all, we want to show that

(40) dKw=w and d;Kw = 0.

To this end, we take a sequence (wy)nen of compactly supported forms con-
verging to w in L'(H!, E3). It is easy to see that

d:A;leszwN%f(w in L}

loc

(HY, E}) as N — o0,

and hence Kwy — Kw in D' (H?, E}) together with all their derivatives. In partic-
ular

(41) d*Kw= lim d:d:A; 'wy = 0.
N —o00

By Lemma 4.10 (and keeping in mind Remark 3.12) for all ¢ € D(H?, E3), so
that

lim (did.did.Ay ' wn|¢) == lim (A wy|did.did.¢)
N —o0 N —o00
= lim (wy|Ay didodided) = lim (wy|diA; N dodid.d).
N —o0 N —o00

On the other hand, since d:A; " is a kernel of type 2 and hence d:A;'d.dd.¢ €
L>(H?, EY),
Jim (wn]diA, dedded) = (uldi Ay ded]dg) =0

— 00
ie.
(42) Nlignoo<d2dchdCAﬁ}th|¢> =0.
Therefore, by Theorem 4.4, iv) there exists a left invariant form 5 = §(¢) such that

(d-Kul¢) = lim (d.Kwy|o) = lim (ded; A3 wnl|e)

= lim ((ded; + (dcd ) )A twnle) = lim (AsA; wn|e)

= hm (wN|A§1A2¢> (by Remark 3.12)

= hm L (Nl +B) = (wlo + B) = (w]é),

i.e. d.Kw = w. Thus, the proof can be completed arguing basically as in the proof
of Theorem 5.2. More precisely, let x x be a cut-off function supported in B(e, 2N),
xn =1 on B(e,N). If J. is an usual Friedrich’s mollifier for € < 1, let us consider

Ve, N 1= Je * XN(R'w)
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(notice the slight difference from (33), due to the fact that we cannot split K as
d*A51). As in Theorem 5.2, v, xy € D(H', E}) and ve x — xn(Ku) in L' (H', E})
(and therefore we may assume a.e.) as e — 0. If we apply the estimates of [3],
Theorem 1.3 - iv) and (40) above, we get (to avoid cumbersome notations, when
LP-spaces are involved, we shall drop the target spaces):

ven Nl ar@-2 @y < C{lldeve x|l L1y + lldedive Nl L) }
= C{||Je * dexnv (Kw)|| 1y + || Je  deds (x v (Kw))[| pr ) }
< C{HdCXN(Kw)”Ll(Hl) + Hdch(XN(f(w))”Ll(Hl)}
< C{lxvwllzr@) + lde, xal(Kw) | 1y
+ |l[deds, xn)(Kw)ll L1y }
< C{|ullprqey + [l[de, xn)(Ew)|| Loy + ||[deds, X ] (Kw)| 1y }-

Thus, by Fatou’s lemma

Ixnv (Kw)llpr@ny < C{llwllzr
+ | [des XN (Kw) || L2y + [ deds, XN ] (Kw)| gy }-

Keep now in mind that Kw is a form of degree 1, so that both d. and d.d}
are horizontal operators of order 2. By Lemma 4.1 the two terms containing the
commutators can be bounded by terms of the form

1 .
— Kwld
N? /Nslplszzv} “|dp

or by a sum of terms of the form

1

— Wy Kw|dp.
N N§|p|§2N| ] dp

Thus we can conclude obtaining (38) again by Fatou’s lemma and Theorem 3.13.
O

Once Theorem 5.2 and Proposition 5.3 are proved, the proof of Theorem 1.1 is
straightforward:

5.3. Proof of Theorem 1.1. In the Heisenberg case, Theorem 5.2 and Proposition
5.3 provide LY primitives (with the announced values of q) for d.-closed L' forms
with vanishing averages, in all degrees but the top degree. The Euclidean case is
even simpler. This proves Theorem 1.1.

6. INTERIOR INEQUALITIES

Interior inequalities are proven in three steps. Applying cut-offs on forms and on
kernels, one first constructs a homotopy K which slightly increases differentiability.
Then Rumin’s homotopy is used to replace Rumin forms with usual differential
forms. Finally, Iwaniec-Lutoborsky’s Fuclidean homotopy is applied.
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6.1. The function space L' Nd_'L'. A homotopy is an operator K such that
d.K + Kd. equals identity (up to a loss on domain). To make sense of such an
identity, one must restrict to forms o which belong to L' and such that d.a belongs
to L' as well.

Lemma 6.1. Let B be a ball in H". We set

(L' Nd;'LY(B,Ey) == {a € LY(B,E}); dea € L' (B, EJT)},
endowed with the graph norm. Then C*(B, Eg) is dense in (L* Nd L) (B, EY).
Proof. Take u € (L* Nd_1LY)(B, ES). If u is compactly supported, then it can be
approximated by convolution with Friedrichs’ mollifiers J, for the structure of the
group, since d.(Je * u) = J. x dou. The proof of the statement for non-compactly
supported forms can be carried out by mimicking verbatim the classical Meyers-

Serrin’s proof (see [41], Theorem 1.3.3, and [21]).
O

Lemma 6.2. Let B be a ball in H". Set K = dzAﬁl ifn>1and, ifn=1~1s
defined by (37). If
(43) Ky:=K in degree h # n and Ko :=d.d.K in degree h = n.
Then:
e Ky is a kernel of type 1 on forms of degree h, h # n+ 1 and of type 2 if
h=n+1;
e if x is a smooth function with compact support in B, then the identity
X = deKox + Kodex
holds on the space (L* Nd;'L')(B, EY).
Proof. It h # n—1,n,n+ 1 and D(H", E), then, by Theorem 4.4 and Lemma 4.9,
i),
u=dodiAg u+ didAgtu = dodi Agtu + &AL
=d.Ku+ Kd_.u.
If h=n —1, then
u=ded: Agtu+ did Ayt = dodi Ayt u + dided Ayt dou

=d.Ku+ d:d.Kd.u.
If h = n, then
u = (ded?)?Agtu+ didAg'u = (ded))?Ag'u + &AL deu
=d.d}d.Ku+ d;Kd.u.

Finally, if h = n + 1, then
u=ddi Ay u+ didodid.- Ayt u = dod Ay u+ dE A deu
=d.Ku+ Kd.u.
In other words, with notations of (43), for any h we can write
u = d.Kou + Kod.u,

where Ky is a kernel of type 1 when it acts on forms of degree h, h # n + 1 and of
type 2if h=n+1,
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Take now u € (L' Nd;1LY) (B, El), 0 < h <2n+1. By Lemma 6.1 the exists a
sequence (un)nen of smooth h-forms on B such that

uy —>u in LY(H", E}) as N — oo0.

and
deuny — dou in Ll(]HI",Eg“) as N — oo.

Obviously

xuny = dKo(xun) + Kode(xun) for all N € N.
Since yuy — xuin L'(H", E}) as N — oo, then Ko(xun) — Ko(xu) in LY(B, Ej~"),
and d.Ko(xun) — d.Ko(xu) in the sense of distributions. Let us consider now
Kod.(xun) = Ko(xdeuy + [de, x]u). Obviously, ydeuy — xdeu in L'(H", EST)
as N — oo, and then Ko(xd.un) — Ko(xd.u) in LY(B, E}).

Let us consider the term Ky|d, x]un. If h # n, then, by Lemma 4.1, [d., xJuny —
[de, x]u in LY(H", E!) and we can conclude as above. Thus we are left with the
case h = n. By Lemma 4.1, [d., x]u can be written as a sum of terms of the form
(WiW;x)un and of the form W;{(W;x)(un)e¢}, where (un)e is the ¢-th component
of un. The terms of the form (W;W;x)un can be handled as above. On the other
hand, KoW; is a kernel of type 1, and, again, (W;x)(un)e — (Wix)ue in L' (H")
and we can conclude as above. O

6.2. A local smoothing homotopy. It is obtained by cutting off the global in-
verse of d. provided in Section 5. This operator can be applied only to global forms
whose averages vanish. Therefore we begin by checking that averages vanish for
d.-exact forms.

Lemma 6.3 (see [6], Remark 2.16). Let ¢ € L*(H", E}) be a compactly supported
form with dep € LY(H™, EY'™Y), and let € € AN"7" be a left-invariant invariant

form. Then
/ dap NE=0.

Proof. By [6], identity (16), we have
dep N§ = dep A (I, €),

so that we can assume that &€ € EZ"~" (and € is still a “constant coefficient form”).
Moreover, by Lemma 6.1, we can assume that ¢ € ’D(H",E(’}). Thus we can
conclude by Remark 2.16 in [6]. O

Proposition 6.4. Let B € B’ be concentric balls in H". For h = 1,...,2n, let
g=Q/(Q—-1)ifh#n+1andqg=Q/(Q—2)if h=n+1. For every s € N,
there exists a smoothing operator S : LY(B', E}) — W4(B, E}™") and a bounded
operator T : L'(B', El) N d_ ' (LY(B', E}™)) to LY(B,E!™"), and such that, for
L'-forms o on B’ such that d.ov € L',

a=dTa+Td.oo + Sa on B.

In particular, d.S = Sd. on L* N d;'L'. Furthermore, there exist r > 0 and
p > 1 such that for all s > 0, T extends to a bounded operator Ll(B’,EZ}) —
W"P(B, B and WoP(B', El) — WtbP(B,E)™Y). In degree n+ 1, if W is a
horizontal derivative, WT extends to a bounded operator L*(B', E}) — W"P(B, E})
and W*P(B' | E}) — WstLP(B E}).
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Finally, T and S merely enlarge by a small amount the support of differential
forms.

Proof. Le us fix two balls By, B with
(44) BeBye B, €eB,

and a cut-off function x € D(B1), x = 1 on By. If a € (L' Nd ') (B, ES), we
set ap = xc«, continued by zero outside B;. Denote by ko the kernel associated
with Ky in Lemma 6.2. We consider a cut-off function i supported in a R-
neighborhood of the origin, such that ¥ = 1 near the origin. Then we can write
ko = kotr + (1 —r)ko Let us denote by Ky r the convolution operator associated
with ¢ rko. By Lemma 6.2,

ag = dcKoop + Kodeovg

45
(45) = d.Ko,rao + Ko,rdcao + Soov,

where Sy is defined by
Soag = dc((l — wR)kO * ao) + (1 — ’Q/JR)kO * deog.
We set
Tla = KQJ{CYQ, S’la = S()Oéo.
Since the kernel vgko € L', Ko, r maps L' to L'
If B € LY(By), we set
Tlﬂ = KO,R(XB)} 5 SlOé = S()Oéo} .
B

B
We notice that, provided R > 0 is small enough, the values of 775 do not depend
on the continuation of 3 outside Bi. Moreover
= KoyR(Xdca)‘ =Ti(d.),

B

Ko,Rdcao’ = Ko,Rdc(XOé)’
B

B

since d.(xa) = xd.a on By. Thus, by (45),
a=d T a+Tid.a+ S1a in B.

Write ¢ = Ty € LY(By). By difference, d.¢ = a — Sy — Thd.oo € L' (By).
Unfortunately, so far one cannot assert that ¢ € L9(By) and we must in some
sense “iterate” the argument. Let us sketch how this iteration will work: let ¢ be a
cut-off function supported in By, identically equal to 1 in a neighborhood U of B,
and set w = d.(C¢). Obviously, the form (¢ (and therefore also w) are defined on
all H” and are compactly supported in By. In addition, w is closed. Suppose for a
while we are able to prove that
a) we L'(H");
b) || Ko,rwl|Lagny < Cllal|z1(pry for some g > 1,
and let us show how the argument can be carried out (here and in the sequel of the
proof, to avoid cumbersome notations, when LP-spaces are involved, we drop the
target spaces).
First we stress that, if R is small enough, then when = € B, Ky rw(z) depends
only on the restriction of d.¢ to U, so that the map

a — Ko pw| g

is linear.
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Notice that w = yw, so that, by (45),
de(Cp) = w = d. Ko, rw + Sow.
Therefore in B
a—Sia—Tidea=dep =d.(Cp) = dcKo rw + Sow,
and then in B
a="Td.a+ dc(KO,Rw‘B) + S1Oé|B + 50W|B
=Tide.oo + dc(KQR(xw)}B) + Sa

:Tdeoo + d.Ta + Sa.

First notice that the map o — w = w(a) is linear, and hence T, T and S are
linear maps. In addition, by b),

ITallLas) < [Ko.r(xw)llLa@n) = [1Ko.r(@) [ Lagn) < C (s + lldell L))

As for the map a — Sa we have just to point out that, when € B, Sa(x) can
be written as the convolution of g with a smooth kernel with bounded derivatives
of any order.

We observe that the cut-offs , ¢ have no influence on the restriction of Ta or Tav
to B. Therefore T and T coincide as bounded operators L(B’) Nd;*(L*(B')) —
LY(B).

Thus we are left with the proof of a) and b). To this end, we must deal separately
with the case when degree of w equals n + 1.

With our previous notations, if the degree of ¢ is different from n (i.e. if the
degree of w is different from n + 1), then [d., (] is a linear operator of order 0 with
coefficients compactly supported in By. Therefore

w = (de¢ + [de, (o € L (H").
Thus, we can apply Lemma 6.3 to ¢ := (¢ and we conclude that
w € L{(H™) Nker(d).
Therefore, by Theorem 5.2, Kow € LY(H"), where ¢ = Q/(Q — 1). Let us prove
that the same assertion holds for Ky rw and hence ¢ € LY(B’). In fact,
Ko pw(z) = Kow(z) + (¥r — 1)ko * w(x)

— Kow(o) + [ (0 = Doy~ 2)es)d

Notice now that (/g — 1)k is a smooth function and that y = x lies in a compact
set when z € B’ (since w is compactly supported). Thus

(¥R — ko x| pa(py < Cll(¥r — DkollLasn lwllLisy < C w11

Suppose now the degree of ¢ equals n.

Then, by Lemma 4.1 [d., (], is the sum of a linear operator Py(W?2() of order 0
with coefficients compactly supported in By, and of a linear operator P, (W¢) of
order 1 with coefficients compactly supported in By. As above,

w = Cded+ [de, (o = Cdetp + Po(W2)p + PL(W )
Again
Cdep + Py(W?3C)¢ € L' (H™).
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Notice now that, if ¢ has degree n, then
PLW ()¢ = PL(W()Ko,r(xa).

But « has degree n + 1, so that, by Lemma 6.2, it is associated with a kernel of
type 2. Thus, by Lemma 3.10 and Corollary 3.8, and keeping in mind that the
coefficients of P, are compactly supported in By

P(W()¢ € LH(H"),
so that again
w e LY(HY)
and
(46) [wllzr@my < Cllallpy sy
Again, we can apply Lemma 6.3 to 1 := (¢ and we conclude that
w € L§(H™) Nker(d).

This proves a). On the other hand, by Theorem 5.2, Kow € LI(H"), where ¢ =
Q/(Q — 2). Arguing as above, the same assertion holds for Ky pw and b) follows
keeping in mind (46).

We observe that Tw = Ko g(xw), where K has compactly supported kernel
Yrko, with kg of type 1 (resp. type 2if h=n+1). If h #n + 1, Lemma 3.26 and
Theorem 3.27 apply. If h =n + 1,

(47) WTw =W (xw *Yrko) = xw * W(¢rko)
(48) = xw x (Wipr)ko + xw * Yr(Wk).

Lemma 3.26 and Theorem 3.27 apply to both terms. They provide an r > 0 and
a p > 1 such that T (resp. WT) maps L'(H") to W P(H") and W*P(H") to
Wioc P (H").

O

6.3. Composition of homotopies. This is the final step which provides an in-
verse to d. on d.-closed L' forms defined on a ball, as stated in Theorem 1.2.

Corollary 6.5 (Interior Poincaré and Sobolev inequalities). Let B € B’ be concen-
tric balls in H™. Forh=1,...,2n,letq=Q/(Q—-1)ifh #n+1andq=Q/(Q—2)
if h = n+1. For every d.-closed h-form o € L*(B’, EY), there exists an h—1-form
¢ € LY(B,El™), such that

dep =g and || pop g1y < Cllallpis my)-
Furthermore, if o is compactly supported, so is ¢.

Proof. Proposition 6.4 allows to replace o with Sa whose first 3 derivatives, in L?
norm, are controlled by ||«|l;. Then 8 = Ig(S«a) and its 2 first derivatives are
controlled by ||||1, and df = 0. Apply Iwaniec-Lutoborski’s homotopy [25] to get
a differential (h — 1)-form v on B such that dy = § and with 2 first derivatives
controlled by ||a||; in L? (IL’s homotopy is an operator of type 1). The Euclidean
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Sobolev inequality implies that ||v||4 is controlled by |a||1, for ¢ = Q/(Q —2). A
fortiori, for ¢ = Q/(Q — 1). So is ||¢||q, where ¢ = IIg,~y satisfies

de¢ = g, dllgllg,y
=g, dy
=g, lgSa
= Sa.

This proves the interior Poincaré inequality.

Allowing S to win 4 derivatives instead of 3 provides a control on the WP
norm of g for some p > 1. This allows to replace Iwaniec-Lutoborski’s homo-
topy [25] with Mircea-Mircea-Monniaux’ homotopy [31] which preserves compactly
supported forms. When « is compactly supported, so are S«, 3, the primitive ~
provided by Mircea-Mircea-Monniaux, and ¢. This proves a Sobolev inequality. [

Remark 6.6. Without loss of generality, in Corollary 6.5 we can assume that
di¢ = 0, provided we replace B by a smaller ball B € B. Indeed, let v be a cut-off
function, ¥ =1 on B and supp ¥ C B. Set

¢ = did Ay (Vo).

Obuviously, dzqg = 0. Since dzchﬁl 1s associated with a kernel of type 0 and ¢ > 1,
we have

H(Z;”LQ(B’,E(’{’l) < H‘?;”Lq(H"-EQ*l)
< CldlLan, ) < Clol Lo, msr) < Cllallnags -
Notice now that
v = ded; Ay () + dideAy" (V) = ded; Ay (10) + ¢.
Thus in B
dep = dc(Yop) = dep = .

The following globalization procedure, established for spaces of LP differential
forms, p > 1, in [5], extends to L!.

7. BOUNDED GEOMETRY RIEMANNIAN AND CONTACT MANIFOLDS

A contact structure on an odd-dimensional manifold M is a smooth distribution
of hyperplanes H which is maximally nonintegrable in the following sense: if 6 is
a locally defined smooth 1-form such that H = ker(6), then df restricts to a non-
degenerate 2-form on H, i.e. if 2n+1 is the dimension of M, then 6 A (d0)™ # 0 on
M (see [30], Proposition 3.41). A contact manifold (M, H) is the data of a smooth
manifold M and a contact structure H on M.

Contact diffeomorphisms are contact structure preserving diffeomorphisms be-
tween contact manifolds.

We recall that, by a classical theorem of Darboux, any contact manifold (M, H)
is locally contact diffeomorphic to the Heisenberg group H™ (see [30], p. 112).

We recall that the construction of Rumin’s complex can be carried out for general
contact manifolds (see, e.g. [38], [39]) yielding a complex of differential forms - still
denoted by (Eg,d.) - such that

i) d? =0;
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ii) the complex (Eg,d.) is homotopically equivalent to the de Rham complex
Q = (2°,d). Thus, if D C H" is an open set, unambiguously we write
H"(D) for the h-th cohomology group;

iit) d. : B} — E!is a homogeneous differential operator in the horizontal
derivatives (i.e. derivatives along H) of order 1 if h # n, whereas d. : EJ} —
Eg“ is an homogeneous differential operator of order 2 in the horizontal
derivatives.

Moreover, if ¢ is a contactomorphism from an open set 4 C H" to M, and we
denote by V the open set V := ¢(U), we have
i) o B3 (V) = Ba(U);
ii) de.o” = ¢7d,.
iii) if ¢ is a smooth function in M, then the differential operator in U C H"
defined by v — ¢#[d.,(](¢~1)*v is a differential operator of order zero if
v € EMU), h # n and a differential operator of order 1 if v € EJ(U)

(see [5], Proposition 3.11).

If a Riemanniam metric ¢ is defined on H, we refer to the (M, H,g) as to a
sub-Riemannian contact manifold.

In turn, in any sub-Riemannian contact manifold (M, H, g) we can define a sub-
Riemannian distance dy; (see e.g. [32]) inducing on M the same topology of M
as a manifold. In particular, Heisenberg groups can be viewed as sub-Riemannian
contact manifolds. If we choose on the contact sub-bundle of H" a left-invariant
metric, it turns out that the associated sub-Riemanian metric is left-invariant, too.

7.1. Bounded geometry and controlled coverings. We give now the definition
of Riemannian manifold of bounded geometry as well as the definition of contact
manifold of bounded geometry.

Definition 7.1. Let k be a positive integer and let B(0,1) denote the unit ball in
R™. We say that a Riemannian manifold (M, g) has bounded C*-geometry is there
exist constants r,C > 0 such that, for every x € M, there exists a diffeomorphism
preserving ¢, : B(0,1) — M that satisfies

(1) B(z,r) C ¢2(B(0,1));

(2) ¢n is C-bi-Lipschitz, i.e.

1
(49)  &lp—al < du(¢a(p), 2(a)) < Clp—al ~ for allp,q € B(0,1);
(3) coordinate changes ¢, o ¢;1 and their first k derivatives are bounded by C.

The counterpart of the above definition for subRiemannian contact manifolds
reads as follows:

Definition 7.2. Let k be a positive integer and let B(e,1) denote the unit sub-
Riemannian ball in H™. We say that a subRiemannian contact manifold (M, H, g)
has bounded C*-geometry is there exist constants v,C > 0 such that, for every
x € M, there exists a contactomorphism (i.e. a diffeomorphism preserving the
contact structure) ¢, = B(e,1) — M that satisfies

(1) B(z,7) C ¢(B(e,1));

(2) ¢ is C-bi-Lipschitz, i.e.

(60) (b 0) < da(62(0), 6a(0)) < Cllp,a)  for all p,g € Ble, 1);



34 ANNALISA BALDI, BRUNO FRANCHI, PIERRE PANSU

(3) coordinate changes ¢, o gb;l and their first k derivatives with respect to unit
left-invariant horizontal vector fields are bounded by C'.

In [5], Lemma 5.10, we proved the following covering lemma (that is basically
[29], Theorem 1,2). We state it for subRiemannian contact manifolds, but it still
holds in the Riemannian setting.

Lemma 7.3. Let (M,H,g) be a bounded C*-geometry subRiemannian contact
manifold, where k is a positive integer. Then there exists p > 0 (depending only on
the radius v of Definition 7.2) and an at most countable covering {B(z;,p)} of M
such that

i) each ball B(xj,p) is contained in the image of one of the contact charts of
Definition 7.2;
it) B(xj, 5p) N B(wi,5p) =0 if i # j;
iii) the covering is uniformly locally finite. FEven more, there exists a N =

N(M) € N such that for each ball B(x, p)
#{k € N such that B(zg,p) N B(z,p) # 0} < N.

In addition, if B(zk,p) N B(x,p) # 0, then B(xy,p) C B(z,r), where
B(z,r) has been defined in Definition 7.2-(2));

iv) all balls B(zk, p) have comparable measures.

7.2. Sobolev spaces of Rumin forms on contact manifolds. A key feature
of Rumin’s complex for Heisenberg groups is its invariance under smooth contac-
tomorphisms: if U and V are open subsets of H” and ¢ : U — V is a contact
structure preserving diffeomorphism, then ¢ pulls back Rumin forms. We use the
same notation ¢ as for the pull-back of usual differential forms. We use this to de-
fine Sobolev spaces on bounded geometry contact subRiemannian manifolds. They
will be needed in the construction of global smoothing homotopies, Proposition 8.1.

In the Riemannian setting, Sobolev spaces of differential forms are invariant
with respect to the pull-back operator associated with sufficiently smooth diffeo-
morphisms (see, e.g. [41], Lemma 1.3.9). An analogous statement holds for Folland-
Stein Sobolev spaces in Heisenberg groups, provided we restrict ourselves to contact
diffeomorphisms. Indeed we have:

Lemma 7.4. If k is a positive integer, let U,V C H™ be connected open extension
subsets of H" (see Definition 3.22). Let Uy, Vo be open neighborhoods of U and V.,
respectively, and let ¢ : Uy — Vi be a C*-bounded contact diffeomorphism such that
o(U) Cc V. If p>1 and s is a real number, 0 < s < k — 1 then the pull-back
operator ¢7 from WSP(V,ES) to WP (U, E3) is bounded, and its norm depends
only on the C* norms of ¢ and ¢~'. This extends to p =1 if s is an integer.

Proof. Consider the case p > 1. The proof for the case p = 1 is analogous but
shorter, since we do not need interpolation arguments. Let ¢ € D(H") be a cut-off
function supported in Vg, ¥ = 1 on V. If u € D(H", EY), then ¢ (ry, (Yu)) is well
defined and supported in Uy, so that can be continued by zero outside Uy. Denote
by (6% (ry, (z/m)))o this extension. Suppose now u € D(H", E), and consider the
map

u— L(w) = (6*(rvo (9)))

If s is an integer, by the chain rule and our assumptions on ¢

(& (rve (W) g llwsr an, gy < Cllutllws o e, g)-
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Thus, by density and interpolation, L is a bounded linear operator from W*?(H", E3)
to WP(H", E3) for s > 0.

Take now o € WHP(V, E3), an let & € W#P(H", E3) an arbitrary extension of
o outside V. We notice that (¢ (ry, (z/Jd))O is an extension of ¢7 () outside U.
Indeed, if € U (and therefore ¢(z) € V) and v1,...,ve are tangent vectors at z,
we have

(x)(v1,...,Ve)
(do(x)vr, ..., dp(x)ve)

oy do(x)ve)

= a(o(x))(d(x)vr, . .., do(x)ve)

= ¢ (a)(z)(v1,...,vs).

I
<
o)
BSS
—
8
— =
N~—
U
=
8
S~—
4
o

Then

167 (@) lwew i) < (&% (rvy (V@) llwep @zn ) < Cllallwes @, mg)-
Taking the infimum of the right-hand side of this inequality for all extensions & €

WeP(H"™, EJ) of «, the assertion follows.
O

Definition 7.5. Let k be a positive integer, and let (M, H,g) be a bounded C*-
geometry subRiemannian contact manifold, and let {x;} be a partition of unity
subordinate to the atlas U := {B(xj, p), ¢, } of Lemma 7.3. From now on, for the
sake of simplicity, we shall write ¢; := ¢,,. We stress that ¢;1(supp x;) C B(e, 1).
Fixa>1l,p>1lands e R, 0<s<k—1. If a is a Rumin differential form on
M, we say that a € (L*(W*P )y (M, ES) if

o (xja) € WHP(H", E3)  for j €N

(notice that (bf(xja) is compactly supported in B(e,1) and therefore can be con-

tinued by zero on all of H™) and the sequence H(bf(xjoe)ﬂgvs,p(ﬂn ey s summable.
g

Then we set
1/a

||O‘H€“(W5’p)u(M,E5) = Z H(bf(XjOé)HWs’p(Hn,E;)
J

Obviously, the same definition can be formulated for bounded C*-geometry Rie-
mannian manifolds. One recovers global W*? spaces of R™ and H™ by taking
a=np.

The following result shows that the definition of the Sobolev spaces £%(W*P), (M, EJ)
do not depend on the atlas &. An analogous statement holds in the Riemannian
setting. Therefore, once the proposition is proved, we drop the index U from the
notation for Sobolev norms.

Proposition 7.6. Let k, a, p and s be as above, and let (M, H,g) be a bounded
C*-geometry subRiemannian contact manifold. If U' = {B(y;, p'), ¢y, } is another
atlas of M satisying Definition 7.2 and Lemma 7.3 with the same choice of p, and
{X}} is an associated partition of unity, then

WP (M, Eg) = (WP ) (M, Eg),
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with equivalent norms.

Proof. Let j € N be fixed, and let (B(z;, p), ¢;) be a chart of . We can write

Xi = D> XiXis

kel;

where #I; < N, since, by Lemma 7.3 iii), B(x;, p) is covered by at most N balls of
the covering associated with U’. Thus, by Definition 7.2-(3) and keeping in mind
that supp x}, C B(x;,r) (since 3p < r), we have

||¢;'#(Xja)”WSvP(Hn,E5) < Z ||¢;#(X2Xja)”WSvP(H",E(’))

]CEIJ'
sc Z ||¢;#(X;ca)”W5’P(H",E5)
kGIj
=c Y [0 V#S7 (xha) lwenan )
]CEIJ'
<e 8 ) llwen e gy
]CEIJ'

< eNllallwer,eg)-

A similar inequality holds for a-th powers, since the number of terms in the sum is
bounded. O

8. SMOOTHING HOMOTOPIES ON BOUNDED GEOMETRY (CONTACT) MANIFOLDS

8.1. Proof of Theorem 1.3. Here, we piece together local smoothing homotopies
using contact charts and a partition of unity. The formula for the global smoothing
operator S mixes local smoothing operators S and homotopies T', therefore the gain
in differentiability is less than 1. It needs be measured in terms of fractional Sobolev
spaces. Iterating the initial operator allows to gain arbitrarily large numbers of
derivatives.

Proposition 8.1 (Global smoothing homotopies). Let k > 3 be an integer index,
and let M be a subRiemannian contact manifold of dimension 2n + 1 and bounded
Ck-geometry. Forh=1,....2n,letq=Q/(Q—1)ifh#n+1andq=Q/(Q —2)
ifh =n+1. Let 1 < ¢ < q. There exist an operator Th; on h-forms on M
which is bounded from LY(M,E3) N d~'L*(M, E3) to LY (M, E3) and an operator
Syr which is bounded from LY (M, E)Nd~ "L (M, E3) to W*=14" (M, E3) such that
1=Sy+d Ty + Tyd..

Proof. The global operators Sy, and Th; are obtained in two steps. First, one
transports by charts ¢; the local operators S and 7' constructed on Heisenberg
balls in Proposition 6.4 and one pieces them together using a controlled partition
of unity {x;}. Note that the following formulae differ from those of [5], section 7.

Tu := ZXj((¢;1)#(T(¢f(u|1037'))B,H)Bﬂ)‘Bﬂ"
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= Z Xj ((¢]‘_1)#(S(¢;#(UIIOB]'))B/H)B]H) | B;
= >0 de] (65 (T (6] (wn0m,)) ) B 15,

In these formulae, u is a Rumin form defined globally on M. The chart ¢; is defined
on the larger Heisenberg ball B’, it maps it into 10B;. The image of the smaller
Heisenberg ball B’ contains B;. Therefore T' can be applied to the pulled-back form
qﬁf (u) and the form T(;Sf(u), which depends only on the restriction of u to 10B;,
is defined on all of B. Its push-forward to M is defined on B;. The product of this
form with y; has compact support in B;. Therefore the sum is locally finite (only
boundedly many terms do not vanish at a given point). In the sequel, the notation
will be abbreviated as

(51) Tu —Zx TIETHT (u)
and
(52) Su = ng D# 67 (u) Z Xj» del (67 )V FT ST (w).

Second, one iterates S, i.e. one sets Sy = S¢ for £ large enough.

Given a function space F' of forms on the unit Heisenberg ball, let us denote by
(%(F) the space of differential forms w on M such that the sequence ||¢fw‘3j |7
belongs to £*.

Since the covering has bounded multiplicity,

LY (M, Eg)) = L'(M, Ej)
and
CH(LY(M, Eg) ndg (LY (M, Eg))) = LY (M, Eg) Nd; M (LY (M, E)).

Indeed, let us prove (for instance) the first equality. If N is an upper bound for the
multiplicity of the covering {10B;}, for every form wu,

lwller(zr(ar,m8)) = Z lupoB; 21 oB;,m3) < NllullLiarzs)-
J

Let us show that S and T win a bit of differentiability:

e Sand T : (Y(LY (M, E3)Nd; (LY (M, EY))) — L1(W™P(M, E3)) are bounded
for some r > 0 and some p > 1;

o foralll1 <s<k—1,Sand T: (X (WS LP(M,ES)) — (L(W*P(M, E3)) are
bounded;

o forall0 < s<k—1, Td. and d.T : (L{(W*P(M, E})) — (1(W*P(M, ES))
are bounded.
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First, let us understand local continuity properties. In the expressions for S, T,
d. T and Td., we find the following types of terms:

(53) Xi (65 V#SeT = (671 (xS)o]

(54) D del (67 ) FTo¥ = (671 ([x.d ])#
(55) Xi (6 VFTeT = (67 )* (XT) o]

(56) Xi(6; VT de = (¢ 1) (XTd, )¢
(57) Xide(d; VT T = (67 1) (xdoT) ¢

where x = x; o ¢;. From Theorem 3.19, we know that multiplication by a function
X € D is a bounded operator on all Sobolev spaces W*P?  with norm depending on
the size of horizontal derivatives of x only. Since functions x; o ¢; have uniformly
horizontal bounded derivatives, we can ignore them in the sequel.

Proposition 6.4 takes care of terms of the form S, T, T'd. and d.T. Only [x, d.]T
remains. If b # n 4+ 1, then the commutator has order zero and [y, d.]T can be
written as a linear combination of components of 7" multiplied by smooth compactly
supported functions. If h = n 4 1, then the commutator has order 1 and [x, d.|T
can be written as a linear combination of horizontal derivatives composed with
components of 7', multiplied by smooth compactly supported functions. Keeping
in mind Theorem 3.19, we can apply Proposition 6.4 in both cases, and conclude
that all types of terms correspond to operators on the Heisenberg ball which are
bounded as required.

By construction, since the covering has bounded multiplicity and derivatives
of cut-offs and charts are controlled uniformly, summing up each type of term
gives bounded operators from ¢}(L*(M, EJ) Nd; (LY)(M, ES)) to (1(LI(M, E))
or to (X(W"P(M, ES)) for some r > 0 and p > 1, and (H(W*=1P(M,ES)) —
(WP (M, ES)) or LH(WSP(M,ES)) — ({(W*P(M, E3)), as announced.

By construction, S + d.T + Td. = 1, hence d.S = Sd..

When iterating, we write St =1—d.Ty — Tyd,. The recursion formula is Toy1 =
Te+T—d. T, T —Ted.T.

Let us show by induction on ¢ that

e T, maps ¢(*(L*(M,E3) N d_ (LY (M, EY))) to £1(LY(M, EJ)) and to
Cr(WTP(M, ES)) for some r > 0 and p > 1.
e d.T; and Tyd. are bounded on (X (W*P(M,ES)) for all s < k—1and p > 1.

Note that T} = T. We have just shown that d. T} and Tyd.. are bounded on ¢! (W *P)
and Ty maps (Y (LY (M, E$) N d; Y (LY(M, EY))) to £1(LY(M, EJ)). Assume that T,
does as well. The induction formula

dcTé—i-l = dcTé + dch - dchdch, Tf-l-ldc = dec + Tldc - dchTldc - Tédchdc-

shows that d.Ty4+1 and Ty41d. are bounded on £*(W*P(M, Eg)). This implies that
Tyy1 maps (L(LY (M, E$)Nd; (LY (M, ES))) to (1 (L(M, E3)) and to £*(W"P(M, ES))
for some r > 0 and p > 1, and completes the induction proof. For ¢ larger enough,
Sy =S maps (LY (M, E$) Nd (LY (M, EO))) to (L(Wk=La(M, ED)).

Finally, if 1 < ¢ <q, (* c (7 and LY C Ly

loc loc? hence

(Y (LY(M,ES)) C ¢4 (LY (M, ES)) = LY (M, E).
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This completes the proof that Ths := Ty, ¢ large enough, maps L'(M,ES) N
d-Y (LY (M, ES)) to L (M, E3) and Sy maps L' (M, EQ)Nd; (LY (M, E3)) to Wk=14' (M, EY).
O

8.2. Application to geometric group theory. According to [37], such smooth-
ing homotopies are the necessary ingredient in order to prove that Rumin’s complex
can be used to compute the £%'-cohomology of a subRiemannian contact manifold.
We shall not define this quasiisometry invariant of groups here, but merely state a
consequence of Theorems 1.1, 1.2 and 1.3 for geometric group theory.

Corollary 8.2 (/9!-cohomology of Heisenberg groups). For h = 0,...,2n, let
q=Q/(Q—-1)ifh#n+1andq=Q/(Q—2) if h=n+1. Then (S H"(H") is
finite dimensional.

Proof. [37] asserts that for all subRiemannian contact manifolds M of C3-bounded
geometry, and all ¢ > 1, (2 H"(M) is isomorphic to the quotient of the space
of d.~closed h-forms by the image of d. on LI(M, El) Nd; ' (L' (M, E!~")). This
applies in particular to M = H".

Fix h =0,...,2n. Let C denote the space of left-invariant Rumin 2n + 1 — h-
forms on H”. Integrating closed L'-forms w against left-invariant forms 8 defines
a bilinear map

(w,B) WA B, (LYH", H') Nker(d.)) x C — R,
Hn

whence a map
I: LY(H", H}) Nker(d.) — C*.

Pick d.-closed L' forms (¢1,...,) such that (I(31),...,1(¢x)) is a basis of its
image.
Let w be a d.-closed h-form. There exist real numbers Aq,..., \; such that

k

I(w) = Z Aid (3).

i=1

Then wy = w—zle i is de-closed and belongs to Lj. According to Theorem 5.2,
there exists an h — 1-form ¢ € LI(H", E(}}_l) such that wy = d.¢ (here, ¢ = Q/Q—1
or Q/Q — 2 depending on h). This shows that the dimension of /41 H"(H") is at
most k. (]
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