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This paper presents the self-motion conditions of the 3-PPPS parallel robot with an equilateral mobile platform and an equilateral-shaped base. The study of the direct kinematic model shows that this robot admits self-motion of the Cardanic type as the 3-RPR planar parallel robot where the first revolute joint of each leg is actuated or the PamINSA parallel robot. This property explains why the direct kinematic model admits an infinite number of solutions in the center of the workspace but has never been studied until now. The condition of this singularity is described and the location of the self-motion in the workspace with respect to all the singularities is then presented. The quaternion parameters are used to represent the singularity surfaces and the self-motion conditions in the workspace.

Introduction

It has been shown that by applying simplifications in parallel robot design parameters, self-motions of the mobile platform may appear [START_REF] Husty | A special type of singular stewart-gough platform[END_REF][START_REF] Karger | Singularities and self-motions of a special type of platforms[END_REF][START_REF] Wohlhart | Synthesis of architecturally mobile double-planar platforms[END_REF]. Most of the time, the presence of this type of motion is not desired by robot designers. Indeed, a self-motion is defined as a finite mobility of the robot when all actuators are locked. This property should be avoided in most industrial cases because the knowledge of the pose of the mobile platform requires the presence of sensors attached to the actuated and passive joints. Unfortunately, this does not allow the pose of the mobile platform to be controlled in a known direction of the self-motion. The best-known example is the 3-UPU robot. At first, the authors thought that the parasitic movement came from joint clearance [START_REF] Han | Kinematic sensitivity analysis of the 3-UPU parallel mechanism[END_REF], while later it was found that the movement was due to a particular singularity [START_REF] Zlatanov | Constraint singularities of parallel mechanisms[END_REF]. On the other hand, Bonev et al. demonstrated that all singular orientations of the popular 3-RRR spherical parallel robot design (known as the Agile Eye) correspond to self-motions [START_REF] Bonev | Working and assembly modes of the agile eye[END_REF], but arguably this design has the "best" spherical wrist. Among the motions followed by mobile platforms, the Cardanic motion can be found as self-motion for two robots in literature, the 3-RPR parallel robot [START_REF] Chablat | Self motions of special 3-RPR planar parallel robot[END_REF] and the PamInsa robot [START_REF] Briot | Self-motions of general 3-RPR planar parallel robots[END_REF]. For the first robot, there is only one set of actuated joint values to allow this motion to occur. For the second, this property exists for any values of z but under the same conditions as the first example.

Most of the examples for a fully parallel 6-DOF manipulators can be categorized by the type of their six identical serial chains namely UPS [START_REF] Merlet | Parallel Robots[END_REF][START_REF] Pierrot | From hexa to hexam[END_REF][START_REF] Corbel | Optimal design of a 6-dof parallel measurement mechanism integrated in a 3-dof parallel machine-tool[END_REF][START_REF] Stoughton | A modified stewart platform manipulator with improved dexterity[END_REF][START_REF] Ji | Identification of placement parameters for modular platform manipulators[END_REF], RUS [START_REF] Honegger | Adaptive control of the hexaglide, a 6 dof parallel manipulator[END_REF] and PUS [START_REF] Hunt | Structural kinematics of in-parallel-actuated robot-arms[END_REF]. However for all these robots, the orientation of the workspace is rather limited due to the interferences between the legs. To solve this problem, new parallel robot designs with six degrees of freedom appeared recently having only three legs with two actuators per leg. The Monash Epicyclic-Parallel Manipulator (MEPaM), called 3-PPPS is a six DOF parallel manipulator with all actuators mounted on the base [START_REF] Chen | A six degree of freedom epicyclic-parallel manipulator[END_REF].

Several variants of this robot have been studied were the three legs are made with three orthogonal prismatic joints and one spherical joint in series. The first two prismatic joints of each leg are actuated. In the first design, the three legs are orthogonal [START_REF] Caro | Non-singular assembly mode changing trajectories of a 6-dof parallel robot[END_REF].

For this design, the robot can have up to six solutions to the Direct Kinematic Problem (DKP) and is capable of making non-singular assembly mode change trajectories [START_REF] Caro | Non-singular assembly mode changing trajectories of a 6-dof parallel robot[END_REF].

In [START_REF] Chen | A six degree of freedom epicyclic-parallel manipulator[END_REF], the robot was made with an equilateral mobile platform and an equilateralshape base. In [START_REF] Chablat | Kinematics and workspace analysis of a 3PPPS parallel robot with u-shaped base[END_REF], the robot was designed with an equilateral mobile platform and a U-shaped base. For this design, the direct kinematic problem is simple and can be solved with only quadratic equations.

The common point of these three variants is that the parallel singularity is independent of the pose of the end-effector. This paper presents the self-motion of the 3-PPPS parallel robot derived from [START_REF] Chen | A six degree of freedom epicyclic-parallel manipulator[END_REF] with an equilateral mobile platform and an equilateralshaped base.

The structure of this article is as follows. The architecture of the manipulator and its associated constraint equations are explained. Then, calculations for parallel singularities and self-motions are presented. The article then concludes.

Mechanism Architecture

The robot under study is a simplified version of the MEPaM that has been developed at the Monash University [START_REF] Chen | A six degree of freedom epicyclic-parallel manipulator[END_REF][START_REF] Caro | Singularity analysis of a sixdof parallel manipulator using grassmann-cayley algebra and groebner bases[END_REF]. This architecture is derived from the 3-PPSP that was introduced earlier [START_REF] Byun | Analysis of a novel 6-dof, 3-PPSP parallel manipulator[END_REF]. For this parallel robot, the three legs are identical and it consists of two actuated prismatic joints, a passive prismatic joint and a spherical joint (Fig. 1). The center of the circum-circle defined by the base points A i forms the origin of an orthogonal reference frame.

We assume an origin A i for each leg and the radius of circum-circle is considered as 2. The coordinates of A i are given by:

A 1 = [2, ρ 1y , ρ 1z ] T
(1)

A 2 = [-1 - √ 3ρ 2y /2, √ 3 -ρ 2y /2, ρ 2z ] T (2) 
A 3 = [-1 + √ 3ρ 3y /2, - √ 3 -ρ 3y /2, ρ 3z ] T (3)
The coordinates of the point C 1 are ρ 1x , ρ 1y and ρ 1z , wherein the last two are actuated.

The coordinates of C 2 and C 3 are obtained by a rotation around the z axis by 2π/3 and

A 1 B 1 C =P 1 A 3 B 3 C 3 A 2 B 2 C 2 ρ 1x ρ 1z ρ 1y ρ 2x ρ 3x ρ 2z ρ 3z ρ 2y ρ 3y x y z O x y z
Figure 1: A scheme for the 3-PPPS parallel robot with the actuated prismatic joints in blue, the passive joints in white and the mobile platform drawn in green with x = 1/ √ 3,y = 0,z = 0,q 1 = 1,q 2 = 0,q 3 = 0,q 4 = 0 -2π/3 respectively and the coordinates are as follows:

C 1 = [ρ 1x , ρ 1y , ρ 1z ] T (4) 
C 2 = [-ρ 2x /2 - √ 3ρ 2y /2, √ 3ρ 2x /2 -ρ 2y /2, ρ 2z ] T (5) C 3 = [-ρ 3x /2 + √ 3ρ 3y /2, - √ 3ρ 3x /2 -ρ 3y /2, ρ 3z ] T (6) 
The origin on the mobile equilateral platform is similar to the parameters used in [START_REF] Chablat | Kinematics and workspace analysis of a 3PPPS parallel robot with u-shaped base[END_REF], meaning on the mobile platform.

V 1 = [0, 0, 0] T (7) V 2 = [- √ 3/2, 1/2, 0] T (8) V 3 = [- √ 3/2, -1/2, 0] T (9)
Generally, in the robotics community, Euler or Tilt-and-Torsion angles are used to represent the orientation of the mobile platform [START_REF] Caro | Non-singular assembly mode changing trajectories of a 6-dof parallel robot[END_REF]. These methods have a physical meaning, but there are singularities to represent certain orientations. The unit quaternions gives a redundant representation to define the orientation but at the same time, it gives a unique definition for all orientations. In addition, the associated rotation matrix is algebraic, which simplifies the use of the Siropa library [START_REF] Jha | Workspace, joint space and singularities of a family of delta-like robot[END_REF] and Gröbner basis [START_REF] Cox | Using algebraic geometry[END_REF].

The rotation matrix R is described by:

R =   2q 2 1 + 2q 2 2 -1 -2q 1 q 4 + 2q 2 q 3 2q 1 q 3 + 2q 2 q 4 2q 1 q 4 + 2q 2 q 3 2q 2 1 + 2q 2 3 -1 -2q 1 q 2 + 2q 3 q 4 -2q 1 q 3 + 2q 2 q 4 2q 1 q 2 + 2q 3 q 4 2q 2 1 + 2q 2 4 -1   (10) 
With q 2 1 + q 2 2 + q 2 3 + q 2 4 = 1 and q 1 ≥ 0. We can write the coordinates of the mobile platform using the previous rotation matrix as:

C i = RV i + P where P = [x, y, z] T (11) 
Thus, we can write the set of constraint equations with the position of C i in both reference frames by the relations:

ρ 1y = y ( 12 
)
ρ 1z = z (13) (2q 1 q 4 -x) √ 3 + 2q 1 2 + 3q 2 2 -q 3 2 -y -2ρ 2y = 1 (14) 
-√ 3q 1 q 3 + √ 3q 2 q 4 -q 1 q 2 -q 3 q 4 + ρ 2z = z (15)

(2q 1 q 4 + x) √ 3 -2q 1 2 -3q 2 2 + q 3 2 -y -2ρ 3y = -1 (16) 
-√ 3q 1 q 3 + √ 3q 2 q 4 + q 1 q 2 + q 3 q 4 + ρ 3z = z (17)

Constraint equations and self-motion conditions

The main problem is to find the location of the mobile platform by looking for the value of the passive prismatic joints [ρ 1x , ρ 1y , ρ 1z ] as proposed in [23]. The distances between any couple of points C i are given by:

||C 1 -C 2 || = ||C 1 -C 3 || = ||C 2 -C 3 || = 1 ( 18 
)
It was shown in [START_REF] Chen | A six degree of freedom epicyclic-parallel manipulator[END_REF] that using dialytic elimination [START_REF] Angeles | Fundamentals of Robotic Mechanical System. Theory, Methods, and Algorithms[END_REF], the Eq. 18 could be reduced into a univariate fourth degree polynomial in ρ 1x . Thus, the direct kinematic model can accommodate up to four solutions. However, when we want to solve the DKP with ρ iy = 0 and ρ iz = 0 for i = 1, 2, 3, we have an infinite number of solutions, which correspond to the self-motion. This result remains the same if we set ρ 1z = ρ 2z = ρ 3z .

Assuming that this motion is in a plane parallel to the plane (0xy), we write the system coefficients for ρ iz = 0 with i = 1, 2, 3. The univariate fourth degree polynomial in ρ 1x then degenerates and a quadratic polynomial equation is obtained which is given by:

9(ρ 1y + ρ 2y + ρ 3y ) 2 ρ 2 1x + 6 √ 3(ρ 1y + ρ 2y + ρ 3y ) 2 (ρ 2y -ρ 3y )ρ 1x + (19) 
(ρ 1y + ρ 2y + ρ 3y ) 2 (ρ 2 1y + 2ρ 1y ρ 2y + 2ρ 1y ρ 3y + 4ρ 2 2y -4ρ 2y ρ 3y + 4ρ 2 3y -3) = 0

In this form, all the terms of the equation cancel each other out when (ρ 1y +ρ 2y +ρ 3y ) = 0.

In general, the analysis of the Gröbner basis is done by using the InfiniteEquations function from the Siropa library. Three equations characterize the locus where the constraint equations are rank deficient.

ρ 1z -ρ 2z = 0 (20)

ρ 1y + ρ 2y + ρ 3y = 0 (21) 3ρ 4 1z -8ρ 3 1z ρ 2z -4ρ 3 1z ρ 3z + 6ρ 2 1z ρ 2 2z + 12ρ 2 1z ρ 2z ρ 3z -12ρ 1z ρ 2 2z ρ 3z + ρ 4 2z -4ρ 3 2z ρ 3z +12ρ 2 2z ρ 2 3z -8ρ 2z ρ 3 3z + 2ρ 4 3z ( 22 
)
If we substitute the Eq. 20 in the Eq. 22, we have

ρ 3z -ρ 2z = 0 (23)
Finally, the self-motion conditions can be written as

ρ 1z = ρ 2z = ρ 3z ( 24 
)
ρ 1y + ρ 2y + ρ 3y = 0 (25)
With these conditions, the robot becomes similar to the 3-RPR parallel robot for which its self-motion produces a Cardanic motion as described in [START_REF] Chablat | Self motions of special 3-RPR planar parallel robot[END_REF] for the 3-RPR parallel robot and in [START_REF] Briot | Self-motions of general 3-RPR planar parallel robots[END_REF] for the PamInsa robot. Geometrically, the self-motion could be described when the motion axes of passive joints intersect at a single point and an angle of 2π/3 is formed between each axis. An example is shown in Fig. 2 where the green mobile platform has one assembly mode. Since the self-motion corresponds to singular configurations, the objective now will be to locate these singularities with respect to other singularities.
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Singularity Analysis and self-motion locus

The singular configurations of the 3-PPPS robot have been studied in several articles with either a parametrization of orientations using Euler angles or Quaternions [START_REF] Chablat | Kinematics and workspace analysis of a 3PPPS parallel robot with u-shaped base[END_REF].

Serial and parallel Jacobian matrices can be calculated by differentiating the constraint equations with respect to time [START_REF] Gosselin | Singularity analysis of closed-loop kinematic chains[END_REF][START_REF] Sefrioui | Singularity analysis and representation of planar parallel manipulators[END_REF][START_REF] Chablat | Working modes and aspects in fully parallel manipulators[END_REF]. These Jacobian serial and parallel matrices must satisfy the following relationship:

At + B ρ = 0 ( 26 
)
where t is the twist of the moving platform and ρ is the vector of the active joint velocities. According to the leg topology of the 3-PPPS robot, there is no serial singularity because the determinant of the B matrix does not vanish. Using the same approach as in [START_REF] Caro | Singularity analysis of a sixdof parallel manipulator using grassmann-cayley algebra and groebner bases[END_REF], we can determine the matrix A and its determinant can be factorized as follows:

q 1 2 -q 2 2 -q 3 2 + q 4 2 (q 1 -q 4 ) (q 1 + q 4 ) = 0 (27) 
To represent this surface, we eliminate q 1 thanks to the relation on the quaternions

q 2 2 + q 3 2 + 2q 4 2 -1 2q 2 2 + 2q 3 2 -1 = 0 (28) 
One of the surfaces represents a cylinder and the other an ellipsoid. In general, if the system is plotted, inifinite cylindrical trace will be obtained. In our case, the limits of cylinder should have an intersection with the spherical quaternions. With the help of Plot3D function of the Siropa library, this representation is made possible by respecting the inequality condition q 2 1 + q 2 2 + q 2 3 + q 2 4 ≤ 1 [START_REF] Jha | Workspace, joint space and singularities of a family of delta-like robot[END_REF] and is shown in Fig. 3. By writing the conditions from Eq. 24 and Eq. 25 with the constraint equations defined in Eqs. 12-17, the Gröbner basis elimination method makes it possible to obtain a set of equations that depends on q 2 , q 3 and q 4 . q 2 q 4 = 0 (29) q 3 q 4 = 0 (30) q 2 q 2 2 + q 3 2 -1 = 0 (31)

q 4 q 3 q 2
q 3 q 2 2 + q 3 2 -1 = 0 (32) q 4 3 -q 4 = 0 (33) q 2 4 + q 3 2 + q 4 2 -1 q 2 2 + q 3 2 q 4 2 = 0 (34)
The solutions of the Equations 29-34 are

[q 1 = 0, q 2 = 0, q 3 = 0, q 4 = 1] (35) [q 1 = 0, q 2 = 0, q 3 = 0, q 4 = -1]

(36) [q 1 = 1, q 2 = 0, q 3 = 0, q 4 = 0] (37)

[q 1 = -1, q 2 = 0, q 3 = 0, q 4 = 0] (38) [q 1 = 0, q 2 = 0, q 3 = 1, q 4 = 0] (39) [q 1 = 0, q 2 = 0, q 3 = -1, q 4 = 0] (40) 
[q 1 = 0, q 2 = q 2 , q 2 2 + q 2 3 = 1,

q 4 = 0] (41) 
The postures defined in Equs. 35-38 are non-singular postures of the robot. If we substitute these values in Eq. 27, we obtain -1 or 1. Only the set of postures from Equs. 39-41 are a subset of the singularity surface defined in Eq. 27. This means that the self-motions conditions obtained by studying the direct kinematic are necessary but not sufficient conditions.

Its graphical representation is a unit radius circle centered at the origin of the plane (0 q 2 q 3 ) as shown in Fig. 4. This circle lies on the surface of parallel singularity and is shown in Fig. 3. The same solution can be obtained if we add the singularity constraints from Eq. 27, the self-motion conditions from Eq. 24-25 and the constraint equation from Eqs. 12-17 during the procedure elimination to have the self-motion locus as a function of q 2 , q 3 and q 4 .

q 4 q 3 q 2
As the singularity does not depend on the pose of the mobile platform, the selfmotion exists for an infinite number of poses of the mobile platform. This phenomenon may not be found if numerical methods are used to solve the DKP because the relations (ρ 1y + ρ 2y + ρ 3y = 0) and ρ 1z = ρ 2z = ρ 3z are never fully satisfied. This is what happens when we use Matlab or Scilab which uses a floating number representation for computation.

Conclusions and Perspectives

In this article, we have studied the parallel robot 3-PPPS to explain the presence of self-motionsThis motion is a Cardanic motion that has already been studied on the 3-RPR parallel robot or the PamInsa robot. Self-motions can often explain the problems of solving the DKP when using algebraic methods. The calculation of a Gröbner base makes it possible to detect this problem but the characterization of this motion for robots with six degrees of freedom is difficult because of the size of the constraint equations when we mix the pose and the orientation of the mobile platform. Other robots, such as the CaPaMan at the University of Cassino have the same type of singularity despite the phenomenon never being studied. The objective of future works will be to identify architectures with passive prismatic articulations connected to the mobile platform which are capable of having the same singularity conditions for more general shapes of the base and mobile platforms. Such results can be useful for design engineers to avoid the use of such architectures that comes from optimization procedures where the numerical functions cannot detect the issues.
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 2 Figure 2: Set of postures to describe the Cardanic motion starting from the "home" pose
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 3 Figure 3: Parallel singularity of the 3-PPPS robot with quaternion representation
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 4 Figure 4: Location of self-motions in the workspace.