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Abstract

This paper presents the self-motion conditions of the 3-PPPS parallel robot with an

equilateral mobile platform and an equilateral-shaped base. The study of the direct

kinematic model shows that this robot admits self-motion of the Cardanic type as the

3-RPR planar parallel robot where the first revolute joint of each leg is actuated or

the PamINSA parallel robot. This property explains why the direct kinematic model

admits an infinite number of solutions in the center of the workspace but has never been

studied until now. The condition of this singularity is described and the location of the

self-motion in the workspace with respect to all the singularities is then presented. The

quaternion parameters are used to represent the singularity surfaces and the self-motion

conditions in the workspace.

Keywords: Parallel robots, 3-PPPS, singularity analysis, kinematics, self-motion.

1. Introduction1

It has been shown that by applying simplifications in parallel robot design param-2

eters, self-motions of the mobile platform may appear [1, 2, 3]. Most of the time, the3

presence of this type of motion is not desired by robot designers. Indeed, a self-motion4

is defined as a finite mobility of the robot when all actuators are locked. This prop-5

erty should be avoided in most industrial cases because the knowledge of the pose of6

the mobile platform requires the presence of sensors attached to the actuated and pas-7

sive joints. Unfortunately, this does not allow the pose of the mobile platform to be8

controlled in a known direction of the self-motion.9

The best-known example is the 3-UPU robot. At first, the authors thought that10

the parasitic movement came from joint clearance [4], while later it was found that11

the movement was due to a particular singularity [5]. On the other hand, Bonev et12

al. demonstrated that all singular orientations of the popular 3-RRR spherical parallel13

robot design (known as the Agile Eye) correspond to self-motions [6], but arguably14

this design has the “best” spherical wrist. Among the motions followed by mobile15
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platforms, the Cardanic motion can be found as self-motion for two robots in literature,16

the 3-RPR parallel robot [7] and the PamInsa robot [8]. For the first robot, there is only17

one set of actuated joint values to allow this motion to occur. For the second, this18

property exists for any values of z but under the same conditions as the first example.19

Most of the examples for a fully parallel 6-DOF manipulators can be categorized by20

the type of their six identical serial chains namely UPS [9, 10, 11, 12, 13], RUS [14]21

and PUS [15]. However for all these robots, the orientation of the workspace is rather22

limited due to the interferences between the legs. To solve this problem, new parallel23

robot designs with six degrees of freedom appeared recently having only three legs with24

two actuators per leg. The Monash Epicyclic-Parallel Manipulator (MEPaM), called25

3-PPPS is a six DOF parallel manipulator with all actuators mounted on the base [16].26

Several variants of this robot have been studied were the three legs are made with three27

orthogonal prismatic joints and one spherical joint in series. The first two prismatic28

joints of each leg are actuated. In the first design, the three legs are orthogonal [17].29

For this design, the robot can have up to six solutions to the Direct Kinematic Problem30

(DKP) and is capable of making non-singular assembly mode change trajectories [17].31

In [16], the robot was made with an equilateral mobile platform and an equilateral-32

shape base. In [18], the robot was designed with an equilateral mobile platform and33

a U-shaped base. For this design, the direct kinematic problem is simple and can be34

solved with only quadratic equations.35

The common point of these three variants is that the parallel singularity is indepen-36

dent of the pose of the end-effector. This paper presents the self-motion of the 3-PPPS37

parallel robot derived from [16] with an equilateral mobile platform and an equilateral-38

shaped base.39

The structure of this article is as follows. The architecture of the manipulator and40

its associated constraint equations are explained. Then, calculations for parallel singu-41

larities and self-motions are presented. The article then concludes.42

2. Mechanism Architecture43

The robot under study is a simplified version of the MEPaM that has been developed44

at the Monash University [16, 19]. This architecture is derived from the 3-PPSP that45

was introduced earlier [20]. For this parallel robot, the three legs are identical and it46

consists of two actuated prismatic joints, a passive prismatic joint and a spherical joint47

(Fig. 1). The center of the circum-circle defined by the base points Ai forms the origin48

of an orthogonal reference frame.49

We assume an origin Ai for each leg and the radius of circum-circle is considered as50

2. The coordinates of Ai are given by:51

A1 = [2,ρ1y,ρ1z]
T (1)

A2 = [−1−
√

3ρ2y/2,
√

3−ρ2y/2,ρ2z]
T (2)

A3 = [−1+
√

3ρ3y/2,−
√

3−ρ3y/2,ρ3z]
T (3)

The coordinates of the point C1 are ρ1x, ρ1y and ρ1z, wherein the last two are actuated.52

The coordinates of C2 and C3 are obtained by a rotation around the z axis by 2π/3 and53
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Figure 1: A scheme for the 3-PPPS parallel robot with the actuated prismatic joints in blue, the passive joints

in white and the mobile platform drawn in green with x = 1/
√

3,y = 0,z = 0,q1 = 1,q2 = 0,q3 = 0,q4 = 0

−2π/3 respectively and the coordinates are as follows:54

C1 = [ρ1x,ρ1y,ρ1z]
T (4)

C2 = [−ρ2x/2−
√

3ρ2y/2,
√

3ρ2x/2−ρ2y/2,ρ2z]
T (5)

C3 = [−ρ3x/2+
√

3ρ3y/2,−
√

3ρ3x/2−ρ3y/2,ρ3z]
T (6)

The origin on the mobile equilateral platform is similar to the parameters used in [18],55

meaning on the mobile platform.56

V1 = [0,0,0]T (7)

V2 = [−
√

3/2,1/2,0]T (8)

V3 = [−
√

3/2,−1/2,0]T (9)

Generally, in the robotics community, Euler or Tilt-and-Torsion angles are used to rep-57

resent the orientation of the mobile platform [17]. These methods have a physical58

meaning, but there are singularities to represent certain orientations. The unit quater-59

nions gives a redundant representation to define the orientation but at the same time, it60

gives a unique definition for all orientations. In addition, the associated rotation matrix61

is algebraic, which simplifies the use of the Siropa library [21] and Gröbner basis [22].62

The rotation matrix R is described by:63

R =





2q2
1 + 2q2

2 − 1 −2q1q4 + 2q2q3 2q1q3 + 2q2q4

2q1q4 + 2q2q3 2q2
1 + 2q2

3− 1 −2q1q2 + 2q3q4

−2q1q3 + 2q2q4 2q1q2 + 2q3q4 2q2
1 + 2q2

4− 1



 (10)

With q2
1 + q2

2 + q2
3 + q2

4 = 1 and q1 ≥ 0. We can write the coordinates of the mobile64
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platform using the previous rotation matrix as:65

Ci = RVi +P where P = [x,y,z]T (11)

Thus, we can write the set of constraint equations with the position of Ci in both refer-66

ence frames by the relations:67

ρ1y = y (12)

ρ1z = z (13)

(2q1q4 − x)
√

3+ 2q1
2 + 3q2

2 − q3
2 − y− 2ρ2y = 1 (14)

−
√

3q1q3 +
√

3q2q4 − q1q2 − q3q4 +ρ2z = z (15)

(2q1q4 + x)
√

3− 2q1
2 − 3q2

2 + q3
2 − y− 2ρ3y =−1 (16)

−
√

3q1q3 +
√

3q2q4 + q1q2 + q3q4 +ρ3z = z (17)

3. Constraint equations and self-motion conditions68

The main problem is to find the location of the mobile platform by looking for the69

value of the passive prismatic joints [ρ1x,ρ1y,ρ1z] as proposed in [23]. The distances70

between any couple of points Ci are given by:71

||C1 −C2||= ||C1 −C3||= ||C2 −C3||= 1 (18)

It was shown in [16] that using dialytic elimination [24], the Eq. 18 could be reduced72

into a univariate fourth degree polynomial in ρ1x. Thus, the direct kinematic model73

can accommodate up to four solutions. However, when we want to solve the DKP74

with ρiy = 0 and ρiz = 0 for i = 1,2,3, we have an infinite number of solutions, which75

correspond to the self-motion. This result remains the same if we set ρ1z = ρ2z = ρ3z.76

Assuming that this motion is in a plane parallel to the plane (0xy), we write the system77

coefficients for ρiz = 0 with i = 1,2,3. The univariate fourth degree polynomial in ρ1x78

then degenerates and a quadratic polynomial equation is obtained which is given by:79

9(ρ1y +ρ2y +ρ3y)
2
ρ

2
1x+

6
√

3(ρ1y +ρ2y+ρ3y)
2(ρ2y −ρ3y)ρ1x+ (19)

(ρ1y +ρ2y+ρ3y)
2(ρ2

1y + 2ρ1yρ2y + 2ρ1yρ3y + 4ρ
2
2y− 4ρ2yρ3y + 4ρ

2
3y− 3) = 0

In this form, all the terms of the equation cancel each other out when (ρ1y+ρ2y+ρ3y)=80

0.81

In general, the analysis of the Gröbner basis is done by using the InfiniteEquations82

function from the Siropa library. Three equations characterize the locus where the83

5



constraint equations are rank deficient.84

ρ1z−ρ2z = 0 (20)

ρ1y +ρ2y+ρ3y = 0 (21)

3ρ
4
1z− 8ρ

3
1zρ2z − 4ρ

3
1zρ3z + 6ρ

2
1zρ

2
2z + 12ρ

2
1zρ2zρ3z− 12ρ1zρ

2
2zρ3z +ρ

4
2z− 4ρ

3
2zρ3z

+12ρ
2
2zρ

2
3z − 8ρ2zρ

3
3z + 2ρ

4
3z (22)

If we substitute the Eq. 20 in the Eq. 22, we have85

ρ3z−ρ2z = 0 (23)

Finally, the self-motion conditions can be written as86

ρ1z = ρ2z = ρ3z (24)

ρ1y +ρ2y+ρ3y = 0 (25)

With these conditions, the robot becomes similar to the 3-RPR parallel robot for which87

its self-motion produces a Cardanic motion as described in [7] for the 3-RPR parallel88

robot and in [8] for the PamInsa robot. Geometrically, the self-motion could be de-89

scribed when the motion axes of passive joints intersect at a single point and an angle90

of 2π/3 is formed between each axis. An example is shown in Fig. 2 where the green91

mobile platform has one assembly mode. Since the self-motion corresponds to singu-92

lar configurations, the objective now will be to locate these singularities with respect93

to other singularities.94

xy
z

xy
z

Figure 2: Set of postures to describe the Cardanic motion starting from the “home” pose

4. Singularity Analysis and self-motion locus95

The singular configurations of the 3-PPPS robot have been studied in several articles96

with either a parametrization of orientations using Euler angles or Quaternions [18].97
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Serial and parallel Jacobian matrices can be calculated by differentiating the constraint98

equations with respect to time [25, 26, 27]. These Jacobian serial and parallel matrices99

must satisfy the following relationship:100

At+Bρ̇ = 0 (26)

where t is the twist of the moving platform and ρ̇ is the vector of the active joint veloc-101

ities. According to the leg topology of the 3-PPPS robot, there is no serial singularity102

because the determinant of the B matrix does not vanish. Using the same approach as103

in [19], we can determine the matrix A and its determinant can be factorized as follows:104

(

q1
2 − q2

2 − q3
2 + q4

2
)

(q1 − q4) (q1 + q4) = 0 (27)

To represent this surface, we eliminate q1 thanks to the relation on the quaternions105

(

q2
2 + q3

2 + 2q4
2 − 1

)(

2q2
2 + 2q3

2 − 1
)

= 0 (28)

One of the surfaces represents a cylinder and the other an ellipsoid. In general, if the106

system is plotted, inifinite cylindrical trace will be obtained. In our case, the limits of107

cylinder should have an intersection with the spherical quaternions. With the help of108

Plot3D function of the Siropa library, this representation is made possible by respecting109

the inequality condition q2
1 + q2

2 + q2
3 + q2

4 ≤ 1[21] and is shown in Fig. 3.110

q4

q3 q2

Figure 3: Parallel singularity of the 3-PPPS robot with quaternion representation

By writing the conditions from Eq. 24 and Eq. 25 with the constraint equations111

defined in Eqs. 12-17, the Gröbner basis elimination method makes it possible to obtain112
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a set of equations that depends on q2, q3 and q4.113

q2q4 = 0 (29)

q3q4 = 0 (30)

q2

(

q2
2 + q3

2 − 1
)

= 0 (31)

q3

(

q2
2 + q3

2 − 1
)

= 0 (32)

q4
3 − q4 = 0 (33)

q2
4 +

(

q3
2 + q4

2 − 1
)

q2
2 + q3

2q4
2 = 0 (34)

The solutions of the Equations 29-34 are114

[q1 = 0, q2 = 0, q3 = 0, q4 = 1] (35)

[q1 = 0, q2 = 0, q3 = 0, q4 =−1] (36)

[q1 = 1, q2 = 0, q3 = 0, q4 = 0] (37)

[q1 =−1, q2 = 0, q3 = 0, q4 = 0] (38)

[q1 = 0, q2 = 0, q3 = 1, q4 = 0] (39)

[q1 = 0, q2 = 0, q3 =−1, q4 = 0] (40)

[q1 = 0, q2 = q2, q2
2 + q2

3 = 1, q4 = 0] (41)

The postures defined in Equs. 35-38 are non-singular postures of the robot. If we115

substitute these values in Eq. 27, we obtain −1 or 1. Only the set of postures from116

Equs. 39-41 are a subset of the singularity surface defined in Eq. 27. This means that117

the self-motions conditions obtained by studying the direct kinematic are necessary but118

not sufficient conditions.119

Its graphical representation is a unit radius circle centered at the origin of the plane120

(0 q2 q3) as shown in Fig. 4. This circle lies on the surface of parallel singularity and121

is shown in Fig. 3.

q4

q3 q2

Figure 4: Location of self-motions in the workspace.

122

The same solution can be obtained if we add the singularity constraints from Eq. 27,123

the self-motion conditions from Eq. 24-25 and the constraint equation from Eqs. 12-17124

during the procedure elimination to have the self-motion locus as a function of q2, q3125
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and q4.126

As the singularity does not depend on the pose of the mobile platform, the self-127

motion exists for an infinite number of poses of the mobile platform. This phenomenon128

may not be found if numerical methods are used to solve the DKP because the rela-129

tions (ρ1y +ρ2y +ρ3y = 0) and ρ1z = ρ2z = ρ3z are never fully satisfied. This is what130

happens when we use Matlab or Scilab which uses a floating number representation for131

computation.132

5. Conclusions and Perspectives133

In this article, we have studied the parallel robot 3-PPPS to explain the presence134

of self-motionsThis motion is a Cardanic motion that has already been studied on the135

3-RPR parallel robot or the PamInsa robot. Self-motions can often explain the prob-136

lems of solving the DKP when using algebraic methods. The calculation of a Gröbner137

base makes it possible to detect this problem but the characterization of this motion138

for robots with six degrees of freedom is difficult because of the size of the constraint139

equations when we mix the pose and the orientation of the mobile platform. Other140

robots, such as the CaPaMan at the University of Cassino have the same type of singu-141

larity despite the phenomenon never being studied. The objective of future works will142

be to identify architectures with passive prismatic articulations connected to the mobile143

platform which are capable of having the same singularity conditions for more general144

shapes of the base and mobile platforms. Such results can be useful for design engi-145

neers to avoid the use of such architectures that comes from optimization procedures146

where the numerical functions cannot detect the issues.147
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