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An ensemble of models for integrating dependent sources of information for
the prognosis of the remaining useful life of Proton Exchange Membrane

Fuel Cells

D. Zhang1,2, P. Baraldi3, C. Cadet2, N. Yousfi-Steiner4,5,6, C. Bérenguer2,∗, E. Zio3,7

Abstract

This paper presents a prognostic approach based on an ensemble of two degradation indicators
for the prediction of the Remaining Useful Life (RUL) of a Proton Exchange Membrane Fuel Cell
(PEMFC) stack. When the fuel cell stack experiences variable operating conditions, degradation
indicators, such as the stack voltage and the stack State Of Health (SOH), are not able to indi-
vidually provide precise and robust RUL predictions. The stack voltage does not directly measure
the component degradation, as it is only related to degradation symptoms, which are significantly
affected by operating conditions. The SOH provides aging information but it can only be measured
at low frequency in industrial applications. The objective of this work is to combine the two in-
dicators, leveraging their strengths and overcoming their drawbacks. Two different physics-based
models are used to this aim: the first model receives a signal directly observable and related to the
stack voltage, which can be frequently and easily measured; the second model is fed by periodic
measurements from the physical characterization of the stack, which gives reliable information on
the SOH evolution. The prognostic procedure is implemented using Particle Filtering (PF), and
the outcomes of the two prognostic filters are aggregated to obtain the ensemble predictions. The
ensemble-based approach employs a local aggregation technique that combines the outcomes of two
prognostic models by assigning to each model a weight and a bias correction, which are obtained
considering the individual models’ local performances. The dependence between the two indica-
tors is also accounted for, by dependent Gamma processes. The results obtained show that the
accuracy of the RUL predictions obtained by the proposed ensemble-based method outperforms
that obtained by the individual models.
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1. Introduction

Proton Exchange Membrane Fuel Cell (PEMFC) has been considered as one of the most promis-
ing technologies for both stationary and transportation applications. However, it is not yet ready
for large-scale industrial deployment and commercialization because of its limited durability [1].
Prognostics and Health Management (PHM) approaches offer solutions to estimate the State Of
Health (SOH) of fuel cell stacks and to predict their Remaining Useful Life (RUL). Prognostic re-
sults can be helpful in making decisions on maintenance scheduling and control strategy to properly
operate components and systems [2, 3].

The degradation of a PEMFC stack can be assessed from different measurements. The stack
voltage (or power) is the most commonly used indicator in literature [4, 5, 6, 7]. Since this indicator
can be continuously monitored in PEMFC applications, it is a good candidate for online prognostic
purposes. However, the coexistence of reversible and irreversible degradation phenomena signifi-
cantly limits its accuracy [6]. Degradation information can also be obtained by estimating the SOH
using characterization measurements, such as Electrochemical Impedance Spectroscopy (EIS) [8]
and polarization curves [9, 10]. Although the SOH typically provides an accurate estimation of
the PEMFC degradation, it can only be measured parsimoniously given that this characterization
is intrusive to the stack performance and may introduce additional complex degradation phenom-
ena [6]. The contribution developed in this work aims at proposing a way of using jointly such two
complementary deterioration indicators to elaborate a RUL prognosis result.

Prognostic approaches are typically distinguished into model-based, data-driven and hybrid
approaches [11, 12, 13]. Model-based approaches use mathematical equations to describe degrada-
tion phenomena and predict failure times. They can be applied only when knowledge about failure
mechanisms, material properties and external loading is available [5]. These approaches are used
in specific applications, where an accurate analytic description of the system behavior has been
developed. However, the necessary knowledge is not always available or mature, and for a real sys-
tem, it is difficult (or even impossible) to obtain a degradation model in analytic form to integrate
the degradation phenomena. Data-driven approaches such as those based on neural networks [14]
and other meta-modeling techniques, do not require the availability of analytical models of the
system behavior. They are often considered as ”black boxes” because the behavior of the system is
directly learned from historical data. They are usually easy to implement, as they do not explicitly
model the links between internal phenomena and external observations. Data-driven approaches
are, therefore, flexible to different problems but impose a high cost of data collection [15, 16].
One of the main limitations of data-driven approaches lies in the requirement of training data,
i.e. historical data used to infer correlations, establish patterns and evaluate data trends leading
to failure. Hybrid approaches are the combination of the two previous types. They are based on
physical equations, whose parameters change over time and are estimated by data-driven learn-
ing [7, 17, 18]. The advantage of combining data-driven approaches (such as degradation trend
regression or Artificial Neural Networks) with physical model-based approaches is that the data
limitation and lack of knowledge can be mitigated. In [19], RUL predictions are carried out using
statistical degradation model obtained built on real degradation tests by a Bond-graph technique.
The prognostics problem is formulated as the joint state-parameter estimation problem within a
Particle Filtering framework where estimations of state of health (SOH) is obtained in probabilistic
terms. In [7], an innovative robust prediction algorithm for performance degradation of PEMFC is
proposed based on the combination of a degradation trend model and a Nonlinear Auto Regressive
Neural Network (ANRNN) model. A recent review on PHM for PEMFC is presented in [12]. Al-
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though several important research works have already been reported on PHM and RUL prognosis
of PEMFC systems, this field is still at the early stage and needs further development. One of the
main obstacles identified is the lack of available test and failure data. Another problem is that the
aging and failure mechanisms of the PEMFC are not yet entirely clear, because of the influence of
the different operating conditions.

In this work, we develop a hybrid approach based on an ensemble of models, which uses predic-
tion outcomes provided by different degradation models fed by different deterioration measurements
and properly combines them to provide the prognostic results. Ensemble of models have shown
promising results for the prognostics of industrial systems [20, 21, 22, 23, 24, 25]. For example
in [23], an ensemble approach based on a semi-Markov model and a fuzzy similarity model has been
developed for the predictions of the RUL of a heterogeneous fleet of aluminum electrolytic capac-
itors used in electric vehicle power trains. The ensemble output is obtained by local aggregation
of the outcomes of two prognostic models, assigning to each model a weight and a bias correction,
which are estimated considering the models’ local performances, i.e. the inaccuracies in predicting
the RUL of validation patterns similar to the one under assessment. However, this kind of approach
requires a sufficient amount of historical run-to-failure data, and it cannot be applied to PEMFC,
due to the high cost of run-to-failure testing. Authors in [22] presented an ensemble degradation
model that integrates two regression models: an exponential model and a polynomial model for
RUL prediction of Lithium-ion batteries. The ensemble model is a more accurate parametric model
than each of the above two models because it takes into account on-board applications, and global
and local regression characteristics. To be effective, ensemble-based systems and algorithms need
diversity among the models, which can be achieved in different ways, [26]:

• Different training sets boosting, bagging, which is not the approach followed here, in partic-
ular because we work with time series;

• Different types of mathematical processing models;

• Same mathematical processing models but with different set of input features ; this is the
case of the work presented in this paper.

Our work proposes an ensemble prognosis approach formed on the basis of different and dependent
deterioration data sources, which makes it original when compared to existing ensemble prognosis
approaches using rather a single data source processed through different models. More precisely,
here, our proposition is to use an ensemble approach to take the best benefit from different measure-
ments gathered at different levels in the monitored system, with a different quality and available
with a different periodicity (namely here a stack voltage measurement and a SOH estimation), in
order to improve the quality and the performance of the prognosis of the overall PEMFC system.

Particle Filtering (PF), which has been developed recently among applications for PHM [27],
is applied so that the RUL uncertainties are also obtained.

The remainder of this paper is organized as follows. In Section 2, the problem formulation
and the models for RUL prognosis are presented. Then, the Particle Filtering-based prognostic
approach and the criteria for performance evaluation are presented in Section 3. The Ensemble-
of-models approach to RUL prediction is explained in Section 4. In Section 5, we pay particular
attention to data simulation and the process dependencies, and two different procedures of data
generation are explained. Finally, the results of a numerical experimentation are reported in
Section 6 showing the good performance of the proposed ensemble approach for RUL prognosis.
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2. Problem Formulation

2.1. Fuel Cell Degradation

For fuel cell systems, just like for any other technological system, performance degradation is
unavoidable but can be minimized by proper operation and maintenance, based on a comprehen-
sive understanding of degradation mechanisms. PEMFC degrades due to calendar aging, which
can occur even under constant optimal conditions, start and stop cycles and inadequate operating
conditions such as temperature, pressure and poor water management. In a fuel cell, the aging
process reduces the component performance and modifies its material physical properties. Fig-
ure 1 shows the evolution of the stack voltage degradation. The decreasing trend represents the
irreversible degradation, whereas the voltage jumps represent the reversible behavior caused by
operating conditions modification.
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Figure 1: Voltage degradation with aging (under constant current density) [28].

During the lifetime of a PEMFC, its ”health” and performance gradually deteriorate, due to
irreversible physical and chemical changes, which take place with usage and with aging, until
the moment the stack is no longer usable. The State Of Health (SOH) (e.g. from its Begin Of
Life (BOL) status of full performance to its End Of Life (EOL) status of functional failure, i.e.
its performance does not meet the desired operational standard) provides an indication (not an
absolute measurement) of the performance which can be expected from the PEMFC in its current
condition and of the amount of lifetime already spent by the component.

Any parameter significantly changing with age, such as cell impedance, can be used for in-
dicating the SOH of the cell. These parameter changes are typically identified by performing
characterization measurements such as polarization curves. The polarization curve describes the
working performance of PEMFC. The variations of internal parameters, including physical and
empirical ones, have great impact on the polarization characteristic. Figure 2 shows the variation
of the polarization curves under aging. In this work, physical and empirical parameters are used
to predict the performance of the fuel cell. We will consider two indicators of the PEMFC degra-
dation: the stack voltage and the SOH. The stack voltage Vst can be measured at a high frequency
(≈ 0.6s) and the SOH are characterized every week in practice.
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Figure 2: Polarization curves during aging [28].

2.2. Models Description

2.2.1. Voltage Model

Being electrochemical cells, fuel cells obey to thermodynamic and kinetic laws. The static
voltage of a fuel cell stack, depicted in Figure 2, is given by [9]:

Vst = n · (E − Vohm − Vact − Vtrans) (1)

where Vst is the stack voltage, n is the number of cells in the stack, E is the open circuit voltage
(OCV), Vact is the activation polarization, Vohm represents the ohmic losses (due to the electrical
resistance of individual components and their contact), and Vtrans is the concentration polarization
(due to mass transport limitation). For a stack operating at a current density j [29]:

Vst = n ·
(
E − r · j −A · ln(

j

j0
)−m1 · exp(m2 · j)

)
(2)

where r is the internal resistance, j is the operating current density, A is the Tafel coefficient, j0
is the exchange current density, m1 and m2 are the mass-transfer constants. Considering different
current current density values, a static polarization curve is obtained.

2.2.2. SOH Degradation Model

A limitation of the stack voltage is that it does not allow separating the effect of the load
variation, which causes current density variations, from that of the stack inner degradation, which
influences the OCV [30] and the global resistance parameters [10, 19]. Since physical laws describing
the effects of the degradation on E and r are not known, in this work we adapt linear equations
for simplicity of illustration and without loss of generality of the proposed approach. The changes
in the two parameters are coupled by variable γ(t), which reflects the SOH degradation:

r(t) = r0(1 + γ(t))

E(t) = E0(1− γ(t))
(3)

where r0 and E0 are the initial values of r and E. Since it has been proven in [10, 19] that
the SOH indicator γ(t) can be estimated from polarization curves, in this work we assume the
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availability of the procedure which returns the SOH degradation estimation γ(t) from characteri-
zation measurements of the PEMFC stack. Thus, γ(t) can be taken as an input for our prognostic
procedure.

2.2.3. Prognostic Models for RUL Prediction

Two stochastic state transition models are used for describing the SOH deterioration γ(t) and
the stack voltage degradation Vst(t).

2.3. Problem Statement

When the fuel cell stack experiences variable operating conditions, a single degradation indicator
is not able to provide a precise and robust RUL prediction. The stack voltage does not directly
measure the component degradation but it is only related to degradation symptoms, which are
significantly affected by operating conditions. The SOH provides aging information but it can only
be measured at low frequency in industrial applications.

In this work, we consider prognostics based on two different measurements of the stack degra-
dation:

• An external signal, such as the stack voltage, which is easily accessible and frequently mea-
sured, but of “poor quality”, i.e. its measurement is affected by significant noise.

• A signal which provides an internal characterization of the component, such as the stack SOH,
which is seldom measured due to the complexity and cost of the measurement procedure that
requires to take the fuel cell stack out of service for the measurements.

The objective is to combine the predicted RUL outcomes based on the two signals.

3. Particle Filtering-based RUL Prognosis

3.1. RUL Prognosis

The RUL is the time remaining from the current moment and the moment when the system is
considered failed. As been depicted in Figure 3, degradation measurements are used to train the
prognostic model during the learning phase until the prediction time tλ. Then the learned behavior
of this degradation path is used to predict the future evolution with time. The End Of Life (EOL)
is the time when the estimated degradation state reaches the failure threshold where the RUL can
be computed. The performance of the prognostic model is typically evaluated by comparing the
RUL prediction with ground truth RUL (see Appendix 1).

3.2. Particle Filtering

Particle Filtering (PF) relies on state-space description of the system evolution and observation
with possibly non-linear and non Gaussian features [31]. It is a recursive state estimation techniques
based on a Bayesian approach [32].

For our purposes, the degradation dynamics and its observations are assumed to be governed
by a discrete-time state transition model:

xk = fk(xk−1, ωk−1,Θk−1) (4a)
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Figure 3: Degradation estimation and RUL prediction. tλ is the prediction time.

zk = hk(xk, νk) (4b)

where k is the time index, x is the system state, z is the measurement, f is the degradation
model (state transition function), ω is the system noise, Θ is the vector of model parameters
(Θ = [θ1, θ2, ...]), h is the measurement model and ν is the measurement noise. Both the process
noise ωk and the observation noise νk are assumed to be sampled from a zero-mean Gaussian
distribution, i.e. ωk ∼ N (0, σω

2
k) and νk ∼ N (0, σν

2
k).

The PF algorithm is summarized in Algorithm 1. The approximation of the probability dis-
tribution of the system state is based on sampled particles and associated weights. Bayesian
updating is processed sequentially by propagating particles carrying probabilistic information on
the unknown states and model parameters. The probabilistic model for the particles propagation
relies on the state transition model (4a) and the probability distribution of the process noise ωk:

1. Propagate i = 1, . . . , n particles representing the system state probability density function
(PDF) from xk−1 to xk by the state transition model described in Equation (4a) (Algorithm
1, line 5 ).

2. For each particle, estimate the associated weight by calculating its likelihood given an online
measurement zk (Algorithm 1, line 6 ). This gives the corresponding weight of each particle
(assuming the measurement noise νk ∼ N (0, σν

2
k) is normally distributed):

L(zk|xik, σνik) =
1√

2πσνik
exp[−1

2
(
zk − xik
σνik

)2] (5)

3. Perform resampling [33] to remove the particles with small weights relative to a given weight
limit and replicated those with large weights (Algorithm 1, line 10 to 17 ).

4. The posterior PDF built using resampling in step (3) is used as the prior for the following
iteration.
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Algorithm 1 Particle Filtering

1: Initialize xi0, σω
i
0, σν

i
0 and Θi

0 // drawn from initial uniform distributions
2: Time step k = 1
3: while xik > FT and k ≤ kp
4: for i = 1, . . . , n

// Importance sampling:
5: Draw particles xik ∼ p(xik|xik−1, σωik−1,Θi

k−1) using Equation (4a)
6: Assign weight wik = L(zk|xik, σνik) using Equation (5)
7: end for

8: Normalize weight wik = wik/
n∑
i=1

wik

9: Calculate the cumulative sum of normalized weights:
{Qik}ni=1 = Cumsum

(
{wik}ni=1

)
10: for i = 1, . . . , n

// Resampling (Multinomial):
11: j = 1
12: Draw a random value ui ∼ U(0, 1]
13: while Qjk < ui

14: j = j + 1
15: end while
16: Update state xik = xjk

Update noises σω
i
k = σω

j
k, σν

i
k = σν

j
k

Update parameters Θi
k = Θj

k

17: end for
18: k = k + 1
19: end while
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The process is performed until no measurement is available (prediction time tλ = kp · ∆t
reached).

For the RUL prediction, the posterior PDFs of the state and model parameters, given the
observation sequence up to time tλ, are used to estimate the future evolution of the particles. The
RUL PDF can be obtained when the particles representing the system state reach the preset failure
threshold, as illustrated in Figure 3. The prognostic procedure is summarized in Algorithm 2.

Algorithm 2 RUL prediction

1: k = kp // Start from the prediction time
2: for i = 1, . . . , n // For each particle
3: Use model parameters estimated at time tλ (from Algorithm 1) : Θi

k, σω
i
k

4: while xik > FT
5: k = k + 1
6: Propagate particles xik = f(xik−1, σω

i
k−1,Θ

i
k−1) using Equation (4a)

7: end while
8: Estimate R̂UL

i

k = (k − kp) ·∆t
9: end for

4. Ensemble-based Prognostic Approach

4.1. Prognostic Models for RUL Prediction

For the PF-based estimation stage, the following simplified state models are used for the SOH
deterioration γ(t) and the stack voltage degradation trend Vst(t):

• γ(t) represents the SOH degradation. It assumes values from 0 (healthy) to 100% (failed),
following a linear model:

γ(t+ 1) = c(1)(t) · γ(t) (6)

where c(1)(t) is the time-dependent SOH degradation model parameter [10].

• Vst(t) represents a symptom of the stack degradation, which, according to Equation (6),
follows a linear trend:

Vst(t+ 1) = c(2)(t) · Vst(t) (7)

where c(2)(t) is the time-dependent voltage degradation parameter

The two linear degradation models of Equation (6) and (7) are used in two different particle

filtering algorithms to provide the RUL predictions R̂UL
(m)

t (m=1, 2), respectively. Model 1 in
Equation (6) uses measurements of good quality, but not frequently acquired, whereas Model 2
in Equation (7) uses measurements that are regularly available, whose quality can be poor due
to higher measurements noise and lower correlation with the true health states. The objective is,

then, to combine the individual estimates R̂UL
(1)

and R̂UL
(2)

, taking into account their “local”
qualities.
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4.2. Ensemble of Models

Fusing the outputs of an ensemble of diverse prognostic models can improve overall prediction
accuracy [34]. Local aggregation dynamically assigns weights to each model according to its local
performance, typically evaluated on the available historical patterns [25]. For prognostics, local
aggregation requires the computation of the local performances of the individual models on a set
of run-to-failure degradation trajectories.

RUL*t,k

LE(2)t,k

LE(1)t,k

Ensemble

SOHk

Voltagek

SOH

Voltage

Training set

k

N

RUL(2)t

RUL(1)t

RUL(1)t,k

RUL(2)t,k

RULt
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S
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Figure 4: Scheme of the proposed prognostic approach.

Figure 4 presents the scheme of the ensemble-based prognostic approach proposed in this work.
As mentioned previously, we assume the availability of the measurements of the signals x(1) = γ
and x(2) = Vst collected during the life of K identical fuel cell stacks:

{xtraink }Kk=1 = {(x(1),traink , x
(2),train
k )}Kk=1 (8)

These run-to-failure trajectories form a training set, which is also used within the ensemble ap-
proach for the aggregation of the individual model outcomes. The local fusion approach for the
aggregation of the individual model outcomes is based on the following steps, illustrated in Figure 4:

Step 1 : Similar trajectories retrieval - For the test trajectory xtest, evaluate the most simi-
lar trajectories in the training set by computing the point-wise Euclidean distance on a time
window of length L. The lower the Euclidean distance, the greater is the similiarity between
the trajectories. For each model m, identify among the training trajectories the most sim-
ilar to the test trajectory xtest, by finding the ones with the minimum Euclidean Distance
(ED) [25]:

d
(m)
t = min{ED

(
x
(m),train
(t−L):t,k , x

(m),test
(t−L):t

)
}Kk=1 (9)

where d
(m)
t is the minimum ED of the test trajectory for the mth model at time t, on a time

window L. Then, select the N nearest (i.e. most similar) trajectories among the K training
trajectories of each measurements for future analysis.
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Figure 5: Selection of similar trajectories for RUL prediction assessment.

Figure 5 illustrates the similar training trajectories retrieval for one test trajectory. For
example, five nearest trajectories in the training set are selected regarding their ED to the
test trajectory, which is computed during a time window of 100 hours. Note that at different
prediction time, different trajectories are considered as the nearest ones. Therefore, the
similar trajectories are selected locally.

Step 2 : Local weights determination - The local weight assigned to each model of the en-
semble is computed based on its local performance in terms of RUL prediction accuracy on

the N selected training trajectories [20]. Consider the average local error LE
(m)
t on the RUL

prediction defined at time step t for the mth model as:

LE
(m)
t =

1

N

N∑
k=1

|RUL∗t,k − R̂UL
(m)

t,k | (10)

where RUL∗t,k is the corresponding ground truth RUL and R̂UL
(m)

t,k is the estimated RUL of

the kth trajectory predicted by the mth model. The larger the prediction error on the RUL
predicted by a model, the poorer the performance of prediction of this model, at least locally

(i.e. at the considered time step t). Thus, the local error LE
(m)
t provides information about

the (poor) performance of the mth model in the reconstruction of the patterns of the training
set which are closer to the test pattern. The weight associated to each model in the ensemble
should then be a decreasing function of its local error, and we use the inverse of the local
error to compute the weight [20]:

w
(m)
t =

1/LE
(m)
t

M∑
m=1

(
1/LE

(m)
t

) (11)

where M is the number of models (in our case M = 2). The local weights w(m) are non-
negative and sum to 1. Note that the weights are “local” in the sense that the RUL estimation
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RUL
(m)
t is evaluated at different time steps dynamically. Before aggregating the RUL predic-

tions with their corresponding weights, a bias correction B
(m)
t of the ith model is subtracted:

B
(m)
t =

1

N

N∑
k=1

(
RUL∗t,k − R̂UL

(m)

t,k

)
(12)

This quantity represents the accuracy of the RUL predictions obtained by each mth model on
the N selected training trajectories. The reason of introducing the bias correction is that at
the early prediction stage, due to insufficient available observations, the prognostic algorithm
usually provides predictions characterized by large variability. Exploiting the historical data,
the average variation can be learned from the training trajectories and used as an offset.

Step 3 : RUL predictions for the different models - Predict the RULs for the test trajec-
tory using the PF method described in Section 3, based on the M models.

Step 4 : Ensemble RUL aggregation - Aggregate RUL predictions based on the individual
models and weighted based on prognostic performances:

R̂ULt =

M∑
m=1

w
(m)
t ·

(
R̂UL

(m)

t −B(m)
t

)
(13)

where R̂UL
(m)

t ,m = 1, 2, . . . ,M , is the predicted RUL of the test trajectory xtest and B
(m)
t

is the bias correction evaluated on all N training trajectories.

The ensemble approach allows obtaining the PDF density of the predicted RUL. Various
mathematical methods and approaches for combining probability distributions are discussed
in [35]. Among them, in this work, we consider the Linear Opinion Pool (LOP), which is a
common method for weighted linear combination of the experts probabilities [36, 37, 38] and
it is easily understood and calculated:

p(R̂ULt) =
M∑
m=1

w
(m)
t · p

(
R̂UL

(m)

t

)
(14)

where p(R̂ULt) represents the merged probability distribution, and p(R̂UL
(m)

t ), represents
the RUL distributions predicted by the M particle filters.

5. Data Generation

Because of the lack of real data available to test and validate the proposed approach, we have
to resort to simulated data. Under this situation, it is necessary to clearly show how the chosen
procedure to generate the simulated data allows to mimic reasonably the reality and how their
generation can be controlled to test different aspects, i.e. here the variability of the considered
measurements, and their dependency. Hence, we aim at simulating a realistic evolution of the
signals γ(t) and Vst(t), properly accounting for temporal and stack-to-stack variability, and also
the dependence between the two signals. By “realistic”, we mean that both signals should be
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correlated, but not fully equivalent nor exchangeable with respect to the degradation information
they carry. Given the unavailability of real data describing the degradation of a fleet of similar
PEMFC stacks, the degradation trajectories are generated by applying the physics-based models
of Equation (2) described in Section 2.2. This procedure allows obtaining the SOH and the voltage
degradation paths of similar stacks, realistically taking into account their variaibility and depen-
dence by resorting also to stochastic processes, and in particular here to Gamma processes. The
simulated degradation trajectories are then divided into a training set made by K trajectories and
a test set made by J trajectories.

5.1. Gamma Process

An homogeneous Gamma process is a stochastic process with independent, non-negative incre-
ments following a Gamma distribution. If (Xt)t≥0 is a Gamma process, then:

∆Xt−s = Xt −Xs ∼ G(α.(t− s), β) for all 0 ≥ t ≥ s (15)

where X0 = 0, with probability equal to 1, ∆Xt are independent, G(α, β) denotes the Gamma
distribution with shape parameter α and scale parameter β, with the following probability density
function

f(x;α, β) =
βαxα−1e−βx

Γ(α)
(16)

Over a time interval t, the average degradation rate (slope) is x = α · β · t, the process variance
V ar = α · β2 · t.

The Gamma process is suitable to model gradual damage monotonically accumulating over
time in a sequence of tiny increments, such as wear, fatigue, corrosion, crack growth, degrading
health index, etc [39]. Thus it is used here for simulating the irreversible degrading SOH of the
PEMFC stack. The choice of α and β allows one to set different values for the deterioration average
and variance, and hence to model various degradation behaviors, from almost-deterministic to very
chaotic. Given the degradation measurements, both parameters can be estimated using classical
statistical methods, such as maximum likelihood method, moment method, Bayesian statistics
method, etc.

Using a stochastic process-based (specifically here a Gamma process-based) degradation mod-
els make it possible to take both the temporal variability and the item-to-item variability into
account [40]. Several kinds of stochastic processes could have been used ; one advantage of using
a Gamma process for degradation modeling is that the required mathematical calculations are
relatively straightforward. The RUL can be, thus, obtained in an analytic form if necessary.

5.2. Signal Simulation

5.2.1. SOH Simulation

The degradation path of γ(t) is generated by a Gamma process, which accounts for the ran-
domness of the degradation process. The failure threshold FTγ , here set to the value of 0.15, is
obtained by estimating the internal resistance from EIS characterization [8]. Figure 6 shows one
simulated degradation path. The average Gamma process γ classifies the type of fuel cell stack,
and the variation from stack to stack is represented by drawing different realizations from γ. The
average End Of Life (EOL) can be found at the time point when γ crosses the threshold FTγ :

EOL =
FTγ
α · β

(17)
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Figure 6: Simulated average SOH degradation γ and one realization of signal γ representing one stack.

5.2.2. Stack Voltage Simulation

The degradation pattern of PEM fuel cells degradation in stack power is not linear; the de-
creasing trends are not monotonic. According to Equation (2), the stack voltage is influenced by
the loading current density j, which is here simulated by a Markov process [41]. It is used here
to simulate the operating conditions during stack usage (Figure 7). In order to be as realistic as
possible, the current profile is simulated to its practical value around 0.7mA/cm with 5% random
variation in a test bench [28].
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Figure 7: Loading current density j of one stack.

From a given γ, the degradation path of Vst is simulated using Equation (2) where the failure
threshold FTVst is obtained by substituting t = EOL (Figure 8). Note that this failure threshold
is deduced from the failure time EOL.
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Figure 8: Voltage state Vst of one stack.
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5.2.3. Observation

The two γ and Vst trajectories simulated above are considered as the ground truth. Since
measurements revealed by sensors are affected by noises, we randomly sample their values by
adding to the ground truth states zero-mean Gaussian noises:

γmeas = γ +N (0, σ2γ) (18)

Vstmeas = Vst +N (0, σ2Vst) (19)

where γ and Vst are the system true states, γmeas and Vstmeas are the measurement readings, σγ
and σVst are the standard deviations of those two types of measurements, respectively. Note that
σγ < σVst given that the SOH measurements γmeas is more precise than the voltage measurements
Vst.

5.2.4. Data Availability

As mentioned in Section 2.2, the stack voltage can be measured more frequently than the SOH
degradation. Thus, the measurement data of SOH degradation are constrained such that they
are available only every 100 hours, whereas the measurement data of stack voltage are available
every hour. The γ and Vst measurements for one single stack are shown in Figure 9. For compu-
tational convenience, ten-time steps between two successive measurements are considered for the
measurements of Vst.
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Figure 9: SOH degradation γ and voltage Vst measurements of one stack.

5.3. Degradation Simulation Procedure : Introducing Dependence between γ and Vst

The algorithm developed in 5.2 allows the simulation of synthetic deterioration data with
temporal and item-to-item variability and with measurements uncertainty. However, it does not
take into account the dependence between γ and Vst. It can be seen from Equations (2) and (3)
that Vst(t) is a symptom of the degradation γ(t), the deterioration levels of the two indicators are
correlated. To properly produce realistic simulations of the degradation trajectories that model
the different sources of variability, randomness, and dependence between the signals, it is necessary
to introduce dependence in the proposed simulation scheme and to control the level of dependence
between both deterioration indicators. Two approaches have been proposed to this aim :
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• Approach 1 : the two indicators Vst and γ are generated from the same realization of a
Gamma degradation process, with different additive noises ;

• Approach 2 : the two indicators Vst and γ are simulated from two different degradation
processes, dependent by construction. To this aim, a bivariate dependent Gamma process is
constructed by trivariate reduction in the case of bivariate Gamma random vectors [42].

The technical details of these two approaches and the complete algorithms for synthetic data
simulation are given in Appendix 2.

6. RUL Prognosis Results & Performance Evaluation

Considering that in real industrial applications we expect to have available a limited number of
PEMFC stacks degradation trajectories. We simulate 100 trajectories of which we use each type
of measurement: K = 50 for training and J = 50 for testing. By performing a sensitivity analysis
(See Appendix 3) regarding the prediction accuracy and the computation time, we have set the
number of nearest trajectories in the training set to N = 5 and the time window for the similarity
calculation to L = 100 hours.

6.1. RUL Prognosis for Data Simulation Approach 1

The variance of the degradation process, αβ2, depends on the choice of the Gamma process
parameters α and β. It stands for the similarity in degradation behavior of identical PEMFC
stacks. As being discussed in the presentation of the simulation procedure (see Appendix 2), the
objective of introducing the variance is to represent stack-to-stack variability around the average
behavior. Figure 10 shows three examples of degradation paths with different levels of variance:
1) low variance (α = 0.6, β = 2.5e−4); 2) medium variance (α = 0.1, β = 1.5e−3); 3) high variance
(α = 0.03, β = 5.0e−3).
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Figure 10: Data simulation with three levels of variance: (1) Low variance; (2) Medium variance; (3) High variance.

The RUL predictions for all the degradation trajectories are carried out by the Particle Filtering-
based approach described in Section 3. For each trajectory in the test set (J = 50 trajectories),
the RUL predictions are made every 100 time steps with Model 1 and every 10 time steps with
Model 2. The RUL predictions based on Model 1 are less frequent than the ones based on Model
2, because the measurements that feed Model 2 are intermittently taken. Thus, to have a fair
comparison between the two models, the missing predictions of Model 1 are reconstructed by linear
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interpolation. The simulation is carried out with the data dependence generation of Approach 1
and Gamma process with medium variance. Figure 11 shows the Local Error (LE) at different
prediction time steps obtained for a single test trajectory (№40).

6.1.1. RUL Aggregation

Figure 12 shows the corresponding weights which are dynamically assigned to the two models
according to their local error evaluated at each time step. Notice that:

• Model 1 weights are larger at the beginning of the component life compared to that of Model
2. This can be justified by the fact that Model 1 is fed by more precise SOH measurements
and it is not influenced by loading current variations.

• Model 2 weights are larger than those of Model 1 after approximately 600 hours. This can
be justified by the fact that Model 2 is trained by using more data. Thus, its prediction
performance is improved much faster than the one of Model 1, especially near the end of life
when Model 1 is no longer updated due to lack of new incoming measurements.
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Figure 11: Local error evaluated over 50 training trajectories for test trajectory №40.
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Figure 12: Weight assigned to each model for test trajectory №40.

The RUL predictions based on both models are aggregated according to Equation (13). Fig-
ure 13 shows the RUL predictions and the aggregation for one test trajectory. The ensemble
RUL predictions take advantage of the complementary behaviors of individual models. Indeed, the
analysis of Figure 13 suggests that:
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• The predictions provided by the two models are comparable, even if Model 1 8 provides more
accurate RUL predictions at the early life stages of the stack №40, Model 2 provides more
accurate predictions when this stack approaches the EOL.

• The ensemble of the two models allows obtaining more accurate predictions throughout the
RUL predictions of stack №40 than each individual model.
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Figure 13: RUL predictions aggregation for trajectory №40.

Figure 14 provides a global view of the average local error for all 50 test trajectories. Since
each trajectory (stack) has different EOL, we normalized the time index considering the EOL ratio

λj =
tλ

EOLj
. Globally, Model 1 prediction errors are lower at earlier life stages, whereas Model 2

errors gradually decrease thanks to the updating by sufficient incoming measurements and finally
becomes lower.
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Figure 14: Average local error from 50 test trajectories.

Figure 15 shows the average prediction error for each test trajectory. It is the average local
error of each trajectory along the entire prediction horizon (from 100 hours to 1000 hours): we can
see that the ensemble gives the smallest prediction error for almost all the test trajectories.

8Here “Model 1” stands for “the prognostic approach based on Model 1”, “Model 2” for “the prognostic ap-
proach based on Model 2”, and “Ensemble” for “the prognostic approach based on the ensemble of models”. This
simplification is to avoid the wordy expression, and is used in the rest of the paper.
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Figure 15: Mean absolute error for 50 test trajectories.

6.1.2. RUL Uncertainty Aggregation

Figure 16 shows the 25th and 75th percentiles of the RUL PDF provided by the Ensemble,
which is obtained by merging the RUL PDFs of Model 1 and Model 2 according to Equation (14),
for trajectory №40. By aggregating the two PDFs, we obtain not only the RUL but also the
uncertainty of the predictions, which is very important for post-prognosis maintenance decision-
making. As expected, the prediction becomes closer to the ground truth RUL and the uncertainties
(PDFs) of the ensemble become smaller when approaching the end of life. Figure 17 depicts the
RUL uncertainty at different life stages: at the early prediction time of 200 hours (Figure 17.1),
at half-life of 500 hours (Figure 17.2) and near the EOL of 800 hours (Figure 17.3). All three
models become less spread and centered to the true RUL accuracy zone when the prediction
time approaches the end of life. The less spread distribution indicates that the RUL predictions
become more accurate and more precise when more observations become available, which meets
our expectation.
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Figure 16: Aggregated RUL predictions with uncertainty for trajectory №40 with accuracy and confidence interval
(CI) bounds.

6.1.3. Prognostic Performance Evaluation

The quality of the RUL predictions of the individual models and the ensemble are evaluated
using the prognostic performance metrics in Table 1, which reports the average performance over
J = 50 test trajectories and all tλ time steps.

The metrics used for performance evaluation in this work consist of the accuracy index Acc,
the α-λ accuracy αAc, the steadiness index Std, the risk index Rsk, the precision index Prc and
the coverage index Cvg, as explained in Appendix 1. The values in Table 1 suggest that:
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Figure 17: Histogram of aggregated RUL uncertainties for trajectory №40 at different prediction time steps: (1)
tλ = 200 hours; (2) tλ = 500 hours; (3) tλ = 800 hours.

Table 1: Prognostic performance metrics (Approach 1, medium variance)

Average Model 1 Model 2 Ensemble
Performance Point PDF

Acc 0.52 0.12 0.55 0.56
αAc 0.31 0.24 0.54 0.49
Std 0.16 0.14 0.07 0.07
Rsk 0.34 0.49 0.44 0.36
Prc 0.25 0.27 – 0.32
Cvg 0.48 0.37 – 0.74
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• The Ensemble shows better performance than any individual model with respect to Acc,
αAc, Std and Cvg indexes.

• Model 1 shows better performance in Rsk index, which means that the RUL predictions
based on Model 1 are early notifications. This does not mean that all early predictions
are good predictions: an early notification which is too far from the true failure time leads
to unnecessary maintenance, which incurs extra cost. The Rsk performance needs to be
considered jointly to the accuracy indexes (Acc and αAc). The Rsk of the Ensemble is
between Model 1 and Model 2, with respect to both point values and uncertainty.

• The Prc index of the Ensemble is the weakest, whereas its Cvg index is the strongest. This is
due to the fact that the PDFs of the Ensemble merges Models 1 and 2 PDFs. The spread of
its distribution is, thus, broader than the individual models, but it provides a larger coverage.

Above all, in this example of Approach 1 with medium variance, we can conclude that the
Ensemble-based approach globally provides the best prognostic performance.

6.2. RUL Prognosis for Data Simulation Approach 2

Similarly to what has been done for the data simulation Approach 1, three different levels of
process variance are simulated. Furthermore, for each level of variance, seven different levels of
processes dependence between γ(t) and Vst are considered to represent the underneath correlation
between the two signals.

6.2.1. Parameters Used for the Simulated Examples

The parameters used for the generation of the simulated examples of dependent Gamma pro-
cesses are reported in Table 2. The correlation coefficient ρ (0 ≤ ρ ≤ ρmax = min(α1,α2)√

α1α2
) indicates

the dependence level of the two final degradation processes after the trivariate reduction.

Table 2: Parameters used for the simulated examples (ρmax = 0.9128)

ρ α1 α2 β a1 a2 a3

0 0.60 0.50 4.00 0.60 0.50 0
10%ρmax 0.60 0.50 4.00 0.55 0.45 0.05
25%ρmax 0.60 0.50 4.00 0.47 0.38 0.13
50%ρmax 0.60 0.50 4.00 0.35 0.25 0.25
75%ρmax 0.60 0.50 4.00 0.22 0.13 0.38
90%ρmax 0.60 0.50 4.00 0.15 0.05 0.45
ρmax 0.60 0.50 4.00 0.10 0 0.50

6.2.2. Prognostic Performance Evaluation

Figures 18 and 19 show the performance improvements of the Ensemble with respect to the
two individual models, considering different dependence scenarios, for point values and uncertainty,
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respectively. The improvements of performance metrics are computed in terms of percentage
increased in the metrics’ values, for example:

Acc(gain) =
AccEnsemble −max (AccModel1, AccModel2)

max (AccModel1, AccModel2)

Std(gain) =
min (StdModel1, StdModel2)− StdEnsemble

min (StdModel1, StdModel2)

(20)

The values indicate the improvements of the Ensemble with respect to the best between Model
1 and Model 2. Gains above 0 indicate that the Ensemble performance is more satifactory than
that of the individual models.
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Figure 18: Point values aggregation: prognostic performance gain vs. dependence.

With respect to the point values, notice that:
• Considering the Acc, αAc and Std metrics, the Ensemble always outperforms any of the

individual models. Therefore, we can conclude that the Ensemble is more accurate than
Models 1 and 2. The larger the process variance, the larger the gain in performance for the
Ensemble approach.

• Similar to the case of data simulation Approach 1, the Rsk index of the Ensemble tends to
decrease, which means that the Ensemble provides RUL predictions exceeding the ground
truth RUL, even though they are located in the accuracy zone.

For the uncertainties aggregation, the analysis of Figure 19 indicates that:
• Considering the Acc, αAc and Std metrics, the Ensemble model with any process dependence

outperforms any of the individual models. The gains of Std are nearly the same as the one
with point values.

• The Rsk index for low variance processes is sometimes improved. It can also be noticed that
this index is better than the one with point values aggregation, which indicates that with
complete information (uncertainties), some “risky” predictions can be avoided.

• Not surprisingly, the Prc index of the Ensemble is the weakest and, on the other hand, its
Cvg index is the strongest. This can be explained by the fact that the RUL PDF obtained by
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Figure 19: Uncertainties aggregation: prognostic performance gain vs. dependence.

23



the ensemble approach results from the merging of of both RUL PDFs obtained with Model
1 and Model 2. The spread of the distribution is, thus, broader than those of the individual
models, which provides for a larger coverage.

Hence, the ensemble models approach can largely improve the prognostic performance for degra-
dation processes with different variances and different dependencies.

7. Conclusion

In this work, the coexistence of two different sources of information on the degradation of a
component, characterized by different levels of accuracy and acquisition rates, has been considered.
We developed an ensemble approach that combines the RUL predictions from two different sources
of information on the system deterioration, gathered at different levels. The RUL predictions of
both models are dynamically aggregated according to their local weights estimated considering the
prognostic performance evaluated on a set of historical data. The method has been applied to
the prediction of the RUL of simulated PEMFC stack SOH and voltage degradation signals. The
results show that the prediction accuracy is improved.

This work can be extended in several directions:

• In our approach, the weights are computed on the basis of offline historical run-to-fail data
and a significant amount of historical data can thus be required, which makes it impossible to
validate the proposed approach on a real PEFMC test-bench because of the cost of obtaining
enough run-to-fail data. To improve the applicability of this approach it can be worthwhile to
investigate other solutions for the weights definition, that are less dependent on the quantity
of historical data.

• As already explained, ensemble approaches aims at taking advantage of the diversity in
the data, processing methods and models. In this work, we have mainly investigated the
interest of using deterioration data from different sources, with different characteristics, to
improve the prognosis performance. It could be interesting to couple this use of different
data sources with different ways of modeling the deterioration evolution (both physics-based
and data-driven) and different ways of processing the data using these different models. Such
an increased diversity could be a way to devise a more performant ensemble approach for
prognosis.
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Appendix 1. Prognostic Metrics

In order to evaluate the average performance of RUL predictions, the common way is to apply
several RUL predictions at different time steps to obtain a sequence of predicted RULs [43, 44].
To evaluate the quality of prognostic outcomes, a synthesis of the prognostic metrics is used [21,
45, 46, 47, 24].
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Figure 20: RUL predictions at different prediction times tλ.

Figure 20 illustrates the RUL predictions with uncertainties at different prediction time steps
tλ. The uncertainties are represented by the Probability Density Function (PDF). The accuracy
bounds of a width of 2α shrinks with the prediction time index tλ, which creates the α-λ accuracy
zone covering the true residual life RUL∗. The upper bounds and the lower bounds of the α-λ
accuracy zone:

α+ = RUL∗t · (1 + α)

α− = RUL∗t · (1− α)
(21)

R̂UL
+

and R̂UL
−

are the upper and lower bounds of the predicted RUL uncertainties, whereas
CI+ and CI− are the bounds of the confidence interval.

Based on those characteristics, different metrics are described as the follows:

• The accuracy index Acct directly reflects the prediction errors relative to the true RUL:

Acct = 1− |RUL
∗
t − R̂ULt|
RUL∗t

(22)

where RUL∗t the true RUL and R̂ULt the median value of predicted RULs at prediction time
tt. A larger value of Acct indicates a better accuracy.
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• The α-λ metric considers whether the predicted R̂UL lies within the ±α interval stating
whether the required accuracy is met at a given time tλ. As being illustrated in Figure 20,
the probability of lying within the α-λ accuracy zone is described by Equation (23):

αAct = p
(
α−t ≤ R̂ULt ≤ α

+
t

)
(23)

where α+
t and α−t are the upper and lower bounds of the accuracy zone. A higher value

represents a better performance.

• The coverage index Cvgt considers whether the true RUL lies within the RUL prediction
interval at time index λ for each trajectory:

Cvgt = p
(
R̂UL

CI−
t ≤ RUL∗t ≤ R̂UL

CI+

t

)
(24)

The value of Cvg close to 80% indicates a good representation of the uncertainty [21].

• The precision index Prct computes the relative width of the prediction interval, which is
defined by:

Prct =
R̂UL

CI+

t − R̂UL
CI−
t

RUL∗t
(25)

where R̂UL
CI+

t and R̂UL
CI−
t are the upper and lower bounds of the Confidence Interval (CI)

of the predicted RULs distribution (e.g. CI = 50%) while RUL∗t is the corresponding true
RUL. Smaller values of Prct indicate more precise predictions.

• The steadiness index Stdt measures the variance of the estimated value of the End of Life
(EOL) when new measurements become available. It is defined as:

Stdt =

√
var(ÊOL(t−L):t)

EOL∗
(26)

where L is the length of a sliding time window filtering the variances of the predicted EOL.
Smaller values of Stdt indicate better performance.

• The risk index Rskt is the probability of obtaining an estimated RUL larger than the true
RUL:

Rskt = p(R̂ULt > RUL∗t ) (27)

This index indicates the probability of receiving a later notification of a failure such that
scheduling a maintenance after the failure is risky. Lower values correspond to a lower risk,
which means a better performance.

Appendix 2. Introducing and controlling dependence in simulated deterioration tra-
jectories

This appendix gives technical details on the simulation of dependent trajectories of the two
deterioration indicators γ and Vst. Two approaches have been considered in this work.
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Approach 1

The two indicators Vst and γ are generated from the same realization of a Gamma degradation
process, with different additive noises, which introduces some dependence between both indicators.
Different parameters αi and βi are used for the ith stack. The objective of the simulation procedure
is also to represent stack-to-stack variability around the average behavior given by:

γ(t) = γ(t− 1) + ∆γ(t) (28)

where ∆γ(t) follows a Gamma law G(α∆t, β). The average values of the Gamma process parameters
α and β are preset according to our knowledge of PEMFC stack degradation in the following way.
The failure threshold FTγ (degradation rate) is set to 0.15, the average End of Life EOL is set to

1000 hours, and the slope of the degradation path is fixed to the computed value of α · β =
FTγ
EOL

,

whereas the degradation variance is the value of α · β2. Thus, for the ith PEMFC stack:

γi(t) = γi(t− 1) + ∆γi(t) (29)

where ∆γi(t) follows a Gamma law G(αi∆t, βi), and αi (resp. βi) is drawn from a normal distri-
bution around α (resp. β) with 5% variation. The measurements data are simulated according to
Algorithm 3.

Algorithm 3 Data simulation Approach 1

1: Choose FTγ , EOL, α, β
2: for i = 1 : number of simulated stacks
3: Draw αi, βi, from normal distributions with average values α and β
4: Generate realization γi(t) of a Gamma process with parameters (αi, βi)
5: Add noises to γi(t) to obtain the SOH degradation indexes for building the signals for Model

1 and Model 2:
γi1(t) = γi(t) + ε1 where ε1 ∼ N (0, σ21(t))
γi2(t) = γi(t) + ε2 where ε2 ∼ N (0, σ22(t))

6: Generate V i
st index via Equations (2) and (3) using γi2(t)

7: Add measurement noises:
γimeas(t) = γi1(t) + εmeas,1 where εmeas,1 ∼ N (0, σ2meas,1(t))

Vst
i
meas(t) = V i

st(t) + εmeas,2 where εmeas,2 ∼ N (0, σ2meas,2(t))
8: end for

Approach 2

The two indicators Vst and γ are simulated from two different degradation processes, dependent
by construction. To this aim, a bivariate dependent Gamma process is constructed by trivariate
reduction in the case of bivariate Gamma random vectors [42].

Let us first recall that an univariate Gamma process [48] with parameters (α, β) (where α,
β > 0) is a subordinator such that for every t ≥ 0, the random variable G(t) is Gamma-distributed
(αt, β) with probability density function :

f(x;α, β) =
βαxα−1e−βx

Γ(α)
for x, α, β > 0 (30)
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The principle of this second approach is to generate a bivariate Gamma process γt consisting of
two dependent deterioration process γ1,t and γ2,t. γ1,t is then used directly as the SOH deterioration
index measurements, and γ2,t to generate the stack voltage measurement Vst, see Algorithm 4.

Starting from three independent univariate Gamma processes gjt with (aj , bj) for j = 1, 2, 3,
one can build two dependent Gamma processes (or a bivariate dependent Gamma process) by
trivariate reduction:

γ1,t = g1,t + g3,t

γ2,t = g2,t + g3,t
(31)

The process γt = (G1,t, G2,t) is, then, a bivariate subordinator [49] with Gamma marginal processes
and marginal parameters (αj , βj) where αj = aj + a3 for j = 1, 2. The linear correlation between
the two random variables G1,t and G2,t is independent of time t and described by the Pearson’s
correlation coefficient [49, 50]:

ρ =
a3√
α1α2

(32)

where ρ is the Pearson’s correlation coefficient, α1 and α2 are the marginal gamma parame-
ters. Consequently, we have the following link between the two parametrizations (a1, a2, a3) and
(α1, α2, ρ):

a1 = α1 − ρ
√
α1α2

a2 = α2 − ρ
√
α1α2

a3 = ρ
√
α1α2

(33)

where 0 ≤ ρ ≤ min(α1,α2)√
α1α2

.

This link allows to choose a1, a2 and a3 so as to generate a bivariate Gamma process with
desired α1, α2 and ρ. Within the range 0 ≤ ρ ≤ min(α1,α2)√

α1α2
, trivariate reduction leads to one of

the fastest algorithms known to date for bivariate Gamma distributions [42]. As in Approach 1,
the desired parameters α1, α2, β are determined to be consistent with the available knowledge of
PEMFC stack degradation : the failure threshold FTγ (on the SOH level) and the average End of
Life EOL.

Appendix 3. Data Size Analysis

This appendix proposed the results of a sensitivity analysis applied to decide for the data size
for the experiment presented in this work. Two parameters need to be taken into account: 1) the
number of training trajectories K, and 2) the number of selected nearest neighbor trajectories N .
The following analysis are carried out under data generation with medium variance (α = 0.1, β =
1.5e−3) and dependency ρ = 0.5ρmax.

Figure 21 shows the accuracy surface of the ensemble with different training size K from 2 to
50, and neighbor size N from 1 to 15. The optimal values are not strict. We can obtain best
accuracy outcomes with a larger number of training size and a larger number of nearest neighbors.

During the simulation, it is noticed that the number of the nearest neighbors N strongly affects
the simulation time (changes exponentially). Thus, we would prefer smaller N while maintaining
a good accuracy.
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Algorithm 4 Data simulation Approach 2

1: Choose FTγ , EOL
2: Determine α1, α2 and β for marginal Gamma distributions
3: Given ρ, 0 ≤ ρ ≤ min(α1,α2)√

α1α2

4: for i=1 : number of simulated stacks
5: Generate the realizations of Gamma processes with parameters

a1 = α1 − ρ
√
α1α2, a2 = α2 − ρ

√
α1α2, a3 = ρ

√
α1α2, b = β:

gi1(t) : Gamma process realization with parameters (a1, b)
gi2(t) : Gamma process realization with parameters (a2, b)
gi3(t) : Gamma process realization with parameters (a3, b)

6: Generate dependent SOH indexes by trivariate reduction:
γi1(t) = gi1(t) + gi3(t)
γi2(t) = gi2(t) + gi3(t)

7: Generate V i
st index via Equations (2) and (3) using γi2(t)

8: Add measurement noises:
γimeas(t) = γi1(t) + εmeas,1 where εmeas,1 ∼ N (0, σ2meas,1(t))

Vst
i
meas(t) = V i

st(t) + εmeas,2 where εmeas,2 ∼ N (0, σ2meas,2(t))
9: end for
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Figure 21: Accuracy surface with different training size K and neighbor size N .
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Figure 22: Accuracy Acc vs number of training trajectories K (with N = 5).
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Figure 23: Accuracy Acc vs number of nearest neighbors N (with K = 50).
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Figure 22 shows the impact of training data size K on the prognostic accuracy. It implies that
larger size gives better accuracy.

Figure 23 shows the number of nearest neighbors K with the accuracy. It can be noticed that,
after more than around 15 nearest trajectories, the accuracy does not vary significantly. With
K = 50, a better accuracy can be obtained with a smaller N around 5.

As been mentioned before, a smaller N is preferred and compared with it, the training size K
does not affect the simulation time too much. Therefore, we set the number of training trajectories
K = 50 and the number of nearest neighbor trajectories N = 5 for the experiment presented in
this work.
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