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Introduction

Electro-mechanical systems such as mechanical gear transmission driven by induction motors are commonly used in many industrial applications. For this reason, many techniques and tools of control and diagnostics, such as vibration and sound signal analysis [START_REF] Baydar | A comparative study of acoustic and vibration signals in detection of gear failures using wigner-ville distribution[END_REF][START_REF] Tan | A comparative experimental study on the diagnostic and prognostic capabilities of acoustics emission, vibration and spectrometric oil analysis for spur gears[END_REF]), analysis of stator currents [START_REF] Feki | Modelisation electro-mecanique de transmissions par engrenages : Applications à la detection et au suivi des avaries[END_REF], have traditionally been used to supervise the gear element behavior and to detect faults [START_REF] Chaari | Effect of spalling or tooth breakage on gearmesh stiffness and dynamic response of a one-stage spur gear transmission[END_REF]. These techniques are advantageous by their reduced cost and present a high reliability. However, they are sensitive to the positioning of the sensors and in some applications, they present technical difficulties to implement sensors in rotating parts or hostile environment. Although gear monitoring by vibration signal analysis and current stator analysis are still widely used, a new method of electro-mechnical system control and monitoring based on observers will be presented in this paper.

In general, for technical and economic reasons, the state of the system is not completely accessible. Indeed, the complexity of the technical feasibility as well as prohibitive costs for the implantation of several sensors can considerably reduce the number of states measured. In this case, the state vector size is greater than the output vector size. However, under some conditions of existence, the state can be reconstructed using an observer [START_REF] Larroque | Observateurs de systémes linéaires: application à la détection et localisation de fautes[END_REF].

The paper will be organized as follows: a) in section 2, a single stage gear element is accounted for by using torsional model, b) in section 3, an electrical modeling of the induction motor is presented, c) the electro-mechnical coupling is developed in section 4, d) the section 5 is dedicated to implement the used observer and e) the simulation results of the electro-mechanical system dynamic behavior are presented in section 6.

Mechanical modeling

The modeling of the mechanical part (see Fig. 1) contains only the gear element.

To do this, we are based on the modeling in [START_REF] Feki | An integrated electro-mechanical model of motor-gear units?applications to tooth fault detection by electric measurements[END_REF] but reduce the global model of 36 degrees of freedom to 2 degrees of freedom. A driving torque C m is applied to the pinion gear and a load torque C r is applied to the wheel gear (attached to output shaft). The system modeling is accounted for by two degrees of freedom, which correspond to the torsional components. Using Euler-Lagrange equation, the motion equation of the torsional model of the gear element is obtained as follows (1):

M ẍ + C ẋ + K(t, x)x = F, (1) 
where -M : is the mass matrix composed by the polar moment of inertia for the gear k, -K(t, x): is stiffness matrix that depends on the state vector and on the time, -C: is the Rayleigh model damping,

-F = [C m C r ] t ∈ R 2 : external forces, -x = [θ 1 θ 2 ] t ∈ R 2 :
represents the two degrees of freedom vector.

The stiffness matrix can be expressed in terms of a structural vector V (M i ) [START_REF] Maatar | An analytical expression for the time-varying contact length in perfect cylindrical gears: some possible applications in gear dynamics[END_REF] by using the following form

K(t, x) = k(t)V (M i )V (M i )
t , with k(t) the stiffness simulated by a square waveform. Developing (1), we obtain the space representation of the gear element:

ẋ ẍ = 0 I d -M -1 K -M -1 C x ẋ + 0 M -1 F , (2) 
with I d the 2nd order identity matrix.

Electrical modeling

The motor equations are obtained by using the Kron's transformation model.

The key idea of this transformation is to translate the three-phases quantities (abc) of the motor to an equivalent two-phases quantities (see Fig. 2). The stator variables are obtained by θ=θ s =w s t=(a s , d) while the rotor variables are calculated by θ=θ r =ω sl t=(a r , d).

  x d x q x 0   = T 2/3 (θ s )   x a x b x c   , (3) 
  x d x q x 0   = T 2/3 (θ r )   x a x b x c   . (4) 
The voltage equations of the three stator and rotor phases are given by ( 5) and ( 6).

  v as v bs v cs   =   R s 0 0 0 R s 0 0 0 R s     i as i bs i cs   + d dt   φ as φ bs φ cs   , (5) 
  v ar v br v cr   =   R r 0 0 0 R r 0 0 0 R r     i ar i br i cr   + d dt   φ ar φ br φ cr   . (6) 
The flux equations can be written as follows:

φ abcs = L ss i abcs + L sr i abcr , (7) 
φ abcr = L rr i abcr + L rs i abcs , (8) 
where

-L ss =   l s m s m s m s l s m s m s m s l s   : stator inductance matrix, -L rr =   l r m r m r m r l r m r m r m r l r   : rotor inductance matrix, -L sr = L t rs = m sr   cos(θ) cos(θ + 2Π 3 ) cos(θ -2Π 3 ) cos(θ + 2Π 3 ) cos(θ) cos(θ + 2Π 3 ) cos(θ + 2Π 3 ) cos(θ -2Π 3 ) cos(θ)   : mutual induc-
tance matrix between stator and rotor, with the constants parameters:

l s (respectively l r ): self-inductance of the stator (rotor), m s (respectively m r ): mutual-inductance between the stator phases (the rotor phases), m sr : the maximum value of mutual inductances between stator and rotor phases.

Applying the Kron's transformation for (5),( 6),( 7) and (8), we obtain:

v ds = R s i ds + d dt φ ds -ω s φ ds , v qs = R s i qs + d dt φ qs + ω s φ qs , (9) 
v dr = R r i dr + d dt φ dr -ω sl φ dr = 0, v qr = R r i qr + d dt φ qr + ω sl φ qr = 0, (10) 
φ ds = L s i ds + L m i dr , φ qs = L s i qs + L m i qr , (11) 
φ dr = L r i dr + L m i ds , φ qr = L r i qr + L m i qs , (12) 
where L s (respectively, L r ) represents the stator synchronous inductance ( respectively, rotor synchronous inductance) and L m is the magnetizing (synchronous) inductance. The advantage of this transformation is the fact that we get a constant mutual inductance and that along an axis, the fluxes depend only to the rotor and stator currents. Relations ( 9) and ( 10) detail the electro-magnetic behavior of the asynchronous machine written in non a linear differential equations form. These equations can be described in matrix space representation by choosing the space vector z(t) composed by the both stator currents and the both rotor fluxes of the motor:

ż(t) = Az(t) + BU (t), (13) 
with

z(t) = [i ds i qs φ dr φ qr ] t ∈ R 4 , U (t) = [v ds v qs ]
t ∈ R 2 : the input vector, A, B the state, input matrices given by:

A =             -( 1 Tsσ + 1 Tr 1-σ σ ) ω s 1-σ σ 1 LmTr 1-σ σ ωm Lm -ω s -( 1 Tsσ + 1 Tr 1-σ σ ) -1-σ σ ωm Lm 1-σ σ 1 LmTr Lm Tr 0 -1 Tr w sl 0 Lm Tr -w sl -1 Tr             , (14) 
B =     1 σLs 0 0 1 σLs 0 0 0 0     , (15) 
where the constants parameters are explained below:

-σ = 1 - L 2 m
LsLr , T s = Ls Rs , T r = Lr Rr . The electromagnetic torque is represented by ( 16), with p the number of polepairs.

C em = pL m L r (φ dr i qs -φ qr i ds ). ( 16 
)
4 Electro-mechanical coupling

The aim of the electro-mechanical coupling is to obtain a space representation that includes the mechanical system with two degrees of freedom and the induction motor equations (see Fig. 1). This modeling allows to implement control methods to supervise the dynamic behavior of the system. The electro-magnetic torque given by ( 16) is regarded as the input of the mechanical part and the small vibrations caused by the gear element act on the speed rotation of the asynchronous motor. The coupled system leads to a first order differential system of the form:

ζ(t) = A c (t, ζ)ζ(t) + Gu, (17) 
where ζ(t) = [i ds i qs φ dr φ qr θ 1 θ 2 θ1 θ2 ] t : the global state vector,

A c = A 0 P H
is the state matrix, with A the state matrix associated to the electric part expressed in ( 14), P ∈ R (4×4) is the coupling matrix between the electric and mechanical part depending to the electromagnetic torque donated by ( 16) and

H =     0 0 1 0 0 0 0 1 -M -1 K -M -1 C     is the matrix associated to the gear modeling , G =               1 σLs 0 0 0 0 1 σLs 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 M -1 0 0               is the input matrix and u =     v ds v qs 0 C r     the input vector.
The evolution of the system is obtained by introducing the control based on observers to monitor the dynamic behavior of the electro-mechanical system.

Observer form

A state observer is a control method [START_REF] Perruquetti | Sliding mode control in engineering[END_REF] that gives an estimate of the internal state of the real system, only from the measurements given by the sensors and the real input of the system. The observers are used in order to control the behavior of systems, to detect the faults or to identify the unknown parameters of systems [START_REF] Oueder | Synthese des observateurs pour les systemes non linéaires[END_REF]). In our case, four differentiatiors [START_REF] Ghanes | A second order sliding mode differentiator with a variable exponent[END_REF]) are used to estimate the drift of both currents of the asynchronous motor and the displacements of the gear element. Assuming that [s 1 , ..., s 8 ] = [i ds , ids , i qs , iqs , θ 1 , θ1 , θ 2 , θ2 ], the observer equations are written in following form:

   ṡi = ŝi+1 + k 1 µ j |e i | α sign(e i ), ṡi+1 = k 2 αµ j 2 |e i | 2α-1 sign(e i ), e i = s i -ŝi , (18) 
where e i , i = {1, 3, 5, 7} are the output estimation errors, k 1 , k 2 are constants acting on the stability of the system, µ j , j = 1, 2 are positive constants, the first one associated to the electric model and the second one is related to the mechanical part.

Simulation and Results

In this simulation, a spur gear system is considered. The main characteristics of the gear are given in table 1 and the motor parameters are shown in table 2. As it can be noticed, the applied observer gives a good performances (see Fig . 3,4, 5 and 6). In these figures, the estimated states converge, in finite time, to the real quantities states. Fig . 3 and Fig. 4 represent the two stator currents expressed in (dq0) frame. They show that the periodic recurrence of gears meshing frequency t m is regained in the electrical states. Fig. 5 illustrates that the rotational speed of the pinion is of the order to 300 rad/s. This value represents the average meshing speed added to the small vibrations of the gear.

The last figure (Fig. 6) displays the evolution of the error transmission given by the equation R b1 θ 1 + R b2 θ 2 (where R b1 , R b2 are, respectively, the base radii of the pinion and the wheel). All results confirm the good convergence of the applied observer. This convergence has appeared in the frequency content and the amplitude of the electromechanical system behavior signals. Meaning that the evolution of the real states and those of the estimated quantities are perfectly confused in the frequency study. The observer gives a rapid and accurate convergence for all system states.

Conclusion

In this paper, an electro-mechanical coupling of the gear transmission system driven by a asynchronous motor has been studied. The monitoring of this model is obtained by using the control based on observers. Further work is in progress in order to implement other types of observers with presence of gear faults and variation of the sensors noise.
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 3 Fig. 3: State ζ1 and its estimate
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 6 Fig. 6: Real and estimated transmission error

Table 1

 1 

	: Gears parameters Parameters value Module (mm) 4 Tooth number of Pinion 21 Tooth number of wheel 31 Face width (mm) 10 Pressure angle 20	Table 2: Electric parameters Parameters Stator resistance R s (Ω) Rotor resistance R r (Ω) Stator inductance L s (H) Rotor inductance L r (H) Magnetizing inductance L m (H) 0.0943 value 9.163 5.398 0.115 0.0943 Number of pole-pairs p 1