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Regulation of the downside angular velocity of a drilling string with a
P-I controller

A. Terrand-Jeanne, V. Dos Santos Martins, V. Andrieu

Abstract— In this paper, we demonstrate that a simple
Proportional Integral controller allow to regulate the angular
velocity of a drill-string despite unknown friction torque and by
only using measurement of angular velocity at the surface. Our
model is an one dimensional damped wave equation subject
to an unknown dynamics at one side while one control and
measure at the other side. After turning this system of balance
law into the Riemann coordinates, we design a Lyapunov
functional for proving the exponential stability of the closed-
loop and show how it implies the regulation of the angular
velocity.

I. INTRODUCTION

In order to find and exploit oil, one needs to dig deeper
and deeper into the earth’s surface. The first consequence
on raising the length of the pipe is the increase of several
phenomena causing damage until the break of the device.
These unwanted phenomena are mainly characterized by
oscillations inside the pipe. These oscillations may appear
in axial, radial and lateral directions. According to several
studies (i.e [7], [4]), the radial oscillation, namely Stick-Slip
phenomena, is the most disturbing one. Indeed, it results
on angular deformations traveling along the pipe, leading
to important damage and furthermore and it is the source
of other oscillating phenomena (Bit-Bounced and lateral
oscillation).

From a mathematical point of view, first studies on this
topic were based on lumped parameter model as in [4].
Nevertheless, the increase of the length of the pipe forces
one to consider a distributed parameter model in order to
deal with all the possible oscillations frequencies.

The control theory for such mathematical model is still an
active domain of research. Recently, several works exploiting
a PDE-based model to stabilize oscillating phenomena have
been made. For example, by using a backstepping approach
as in ([3]) or a flatness one in ([10]). Another method
transforms the whole system in an equivalent time-delay
system before ensuring its stability ([7]). Note however, that
this transformation is impossible when taking into account a
distributed damping along the drill pipe.

The main contribution of this article is the analysis of
the closed loop stability when the control is provided in the
form of a proportional integral (P-I) feedback depending on
the topside angular velocity measurement. This shows that
this control regulates the angular velocity of the drill bit to
a given reference.

Since the seminal paper of S.A. Pohjolainen in 1982
[8], the problem of output regulation for PDE systems
have received a huge interest from the control community.
Following this paper, an important effort has been made to

consider more general class of PDE and also to relax some
crucial assumptions. For instance, it has been shown in [14]
that it is possible to relax the compactness requirement on
the operator. Moreover, it has been shown in [5] or [15]
that it was possible to design a P-I for boundary control
for different classes of hyperbollic systems. Following the
route of a recent contributions in [13], [11], [2], we prove
the regulation and the stabilization employing a Lyapunov
approach.

In [3] and [9] the regulation problem of the angular
velocity for drilling is also considered. In these works, an
observer is built to perform a full state feedback and design a
backstepping transformation. To compare, our control design
is fairly simple since it is a P-I control law which only
needs the surface angular velocity measurement. Moreover,
our design methodology employs a novel Lyapunov design
which should allow to consider nonlinear terms in the future.

II. PROBLEM STATEMENT

A. Regulation of the angular velocity

We use the following PDE-ODE model describing the
mechanical oscillations evolving along the drill string as
given in [7] :

ρJθtt(x, t) = GJθxx(x, t)− βθt(x, t),
x ∈]0, L[, t > 0

(1)

GJθx(0, t) = ca(θt(0, t)− Ω(t)) (2)
Ibθtt(L, t) = −GJθx(L, t)− Tfr (θt(L, t)) (3)

where for all x in (0, L) θ(x, t) is the angular position of
the drill string at point x and time t with respect to a given
reference frame. Also, subscripts t, x, tt, .. denote the first
or second derivative w.r.t variables t or x. G, J , ρ, β, ca
and Ib are positive mechanical parameters and Ω(t) is the
velocity of the rotatory table that we will use as controller.
The different parameters are given in Appendix A. Tfr :
R 7→ R is a function which describes the frictions between
the drill bit and the earth. Due to Stribeck effect which occurs
at low velocity when the lubrication is not totally effective
(see for instance [7]), this function is highly nonlinear for
small values of θt(L, t). However, when the drill pipe is
rotating fast enough, this frictions function becomes linear.
Hence, in the sequel we consider that :

Tfr(θt(L, t)) = cbθt(L, t) + T0 (4)

where cb is a real number and T0 is also a real number which
is assumed to be constant but unknown.
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The measured output of this system is the angular position
of the pipe at the top. In other words, we measure the
following quantity :

y(t) = θt(0, t).

Our control objective is to regulate the velocity at the
bottom which is denoted

y(t) = θt(L, t),

to a prescribed constant reference velocity.
The control we intend to solve is the following. We wish

to find a control input Ω(t) depending only on the measured
output such that for every (unknown) constant value of T0,
the to be regulated output y is regulated to a given constant
reference value denoted y

r
. The structure of the control

law we use to solve this problem is simply a proportional-
integral (P-I) control law. More precisely, the control input
is provided by dynamic error feedback modeled by equation
of the form :

Ω(t) = −kp[y(t)−yref ]−kiη , η̇ = y(t)−yref ∀t ≥ 0, (5)

where y
r

is a positive real number which is the constant
speed at which we wish the velocity at the bottom of the pipe
to be regulated. In the following we give sufficient conditions
on the parameters G, J , ρ, β, ca and Ib such that there
exist kp and ki which ensure the exponential stability of
the equilibrium and regulation. In other words, along the
solutions of the system (1) with the control input (5) the
equilibrium has to be exponentially stable and also we need
to have

lim
t→+∞

|y(t)− yref | = 0. (6)

In a first part of the paper, we rewrite the model in
Riemannian coordinates. Defining the state space solution
and its topology we give our main result which shows that
regulation is obtained by our P-I control law. The remaining
part of the paper is devoted to show this result. The proof,
starts by showing that the regulation property is implied
by the exponential stability of the equilibrium state of the
closed loop systems. To show that the equilibrium state is
exponentially stable, we construct a Lyapunov functional.

B. Riemannian coordinates:

The first step of our study is to rewrite the drilling model
given in mechanical coordinates in system (1)-(2)-(3)-(4)
in closed loop with the control law (5) into a normalized
Riemann coordinates. In [2], authors give a general method
to reduce linear hyperbolic systems of conservation law
with ODE at its boundaries in first order transport equation
coupled with ODE via theirs boundaries condition. Note
however, that in eq. (1), β 6= 0, hence, we are dealing with
systems of balance law. If the method remains similar, the
resulting transport equations are coupled with each other. For

x in (0, 1) and t ≥ 0 let :

ϕ−(x, t) =

[
θ(Lx,

Lt

c
)

]
t

−
[
θ(Lx,

Lt

c
)

]
x

, (7)

ϕ+(x, t) =

[
θ(Lx,

Lt

c

]
t

+

[
θ(Lx,

Lt

c
)

]
x

, (8)

z(t) =

[
θ(L,

Lt

c
)

]
t

, (9)

ξ(t) =
2L

c
η(t), (10)

with c2 = G
ρ . Employing equations (1)-(2)-(3)-(4) and (5),

this implies for all t ≥ 0 :

ϕt(x, t) =

[
−∂x − λ

2 −λ2
−λ2 ∂x − λ

2

]
ϕ(x, t), ∀x ∈ (0, 1), (11)

zt(t) = −(a+ b)z(t) + aϕ−(1, t) + d, (12)
ξt(t) = ϕ−(0, t) + ϕ+(0, t)− ỹref (13)

with the boundary conditions :

ϕ−(0, t) = α0ϕ
+(0, t)

+Kp(ϕ
−(0, t) + ϕ+(0, t)− ỹref ) +Kiξ(t),

(14)

ϕ+(1, t) = −ϕ−(1, t) + 2z(t), (15)

with ϕ(x, t) =

(
ϕ−(x, t)
ϕ+(x, t)

)
and the normalized parameters

are given as :

λ =
βL

cρJ
, α0 =

GJ − cac
GJ + cac

, (16)

a =
GJL

Ibc2
, b =

cbL

cIb
, d = −T0L

2

Ibc2
, (17)

the normalized reference and the normalized output to reg-
ulate are respectively :

ỹref =
cyref
2L

, ỹ(t) = ϕ−(1, t) + ϕ+(1, t) = 2z(t) (18)

and the normalized P-I gains are given as :

Kp =
cac

GJ + cac
kp , Ki =

cac

GJ + cac
ki. (19)

Equations (11), (12), (13) with boundary conditions (14)
(15) define a hyperbolic partial differential equation coupled
at the boundaries with two external ordinary differential
equations. The state space denoted by X is the Hilbert space
defined as :

X = (L2(0, 1))2 × R2,

equipped with the norm defined for v = (ϕ−, ϕ+, z, ξ) in X
as :

‖v‖X = ‖ϕ−‖L2(0,1) + ‖ϕ+‖L2(0,1) + |z|+ |ξ|.

We introduce also a smoother state space defined as :

X1 = (H1(0, 1))2 × R2,

As it has been shown in [2], for each initial condition v0 in X
which satisfies the boundary conditions (14) and (15), there
exists a unique weak solution that we denoted v and which
belongs to C0([0,+∞);X). Moreover, if the initial condition
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v0 satisfies also the C1-compatibility condition (see [2] for
more details) and lies in X1 then the solution is strong, and
belongs to :

v ∈ C0([0,+∞);X1) ∩ C1([0,+∞);X).

C. Main result

With all these preliminaries, we are now able to state our
main result.

Theorem 1 (Regulation and stabilization): For all (α0,λ,
a, b) in R4 with 0 ≤ λ < 2, a > 0, b ≥ 0 there exist real
numbers Ki, Kp and positive real numbers k and ν such
that for all constant references ỹref , all unknown d and all
initial conditions in X the following holds.

1) There exists an equilibrium state denoted v∞ which is
globally exponentially stable in X for system (11)-(15).
More precisely, we have :

‖v(t)− v∞‖X ≤ k exp(−νt)‖v0 − v∞‖X; (20)

2) If moreover v0 satisfies the C1-compatibility condition
and is in X1, the regulation is achieved, i.e.

lim
t→+∞

|ỹ(t)− ỹref | = 0. (21)

As in [3] or [9], we solve the regulation problem around
the equilibrium state by acting at the opposed boundary.
Advantages of our approach is that we control the rotatory
table and not directly the quantity θx(0, t) and that we only
use θt(0, t) for designing our controller.

The stability analysis of this kind of models has been
considered in [11], [2]. The dynamics at the top side bound-
ary is due to the integral action of the control law. The
stability analysis of PDE coupled with integral action has
been initiated by [8] for parabolic systems (see also [15] for
hyperbolic systems) following a spectral analysis. Recently,
an analysis for 2x2 hyperbolic PDE has been performed
with a Lyapunov approach in [12]. Our approach follows
this route. Note however that it is not a direct application of
this result due to the other dynamics boundary and that (11)
is a system of balance laws and not a system of conservation
laws (see [2]).

From a practical point of view, it may be not interesting
to ask too much to the proportional part of the control. For
instance, and as it has been shown in [1], canceling the
reflexion when |α0| ≤ 1 with a proportional gain Kp, may
not be an interesting approach due to lack of robustness with
respect to input delays. In the following corollary1, we show
that if |α0| < 1 then a proportional part is not necessary to
obtain regulation.

Corollary 1 (Regulation for stable systems): Assume
|α0| < 1, then for all (λ, a, b) in R3 with 0 ≤ λ < 2,
a > 0, b ≥ 0, then picking Kp = 0, there exist Ki in R and
positive real numbers, k and ν such that the conclusion of
the Theorem 1 holds.

1The proof of this corollary is deduced from the following Lyapunov
analysis picking αp = α0.

III. PROOF OF THEOREM 1

A. Stabilization implies regulation

In this first subsection, we explicitly give the equilibrium
state of the system (11), (12), (13) with the boundary
conditions (14) and (15). We show also that if we assume
that Kp and Ki are selected such that this equilibrium
point is exponentially stable along the closed loop, then the
regulation is achieved.

If we denote v∞ = (ϕ∞, z∞, ξ∞) the equilibrium states
of (11)-(15), we obtain :

z∞ =
ỹref

2
,

ξ∞ =
(1 + α0)(a(1 + λ) + b)− 2aα0

2aKi
ỹref −

1 + α0

aKi
d,

ϕ−∞(x) = −λ
2
ỹrefx+

1

1 + α0
(α0ỹref +Kiξ∞) ,

ϕ+
∞(x) =

λ

2
ỹrefx+

ỹref
1 + α0

− Ki

1 + α0
ξ∞.

In the following, we first show that this regulation problem
can be rephrased as a stabilization of an equilibrium state.

Proposition 1: Assume that there exists a functional W :
X→ R+, and positive real numbers ω and L such that :

‖v∞ − v‖2X
L

≤W (v) ≤ L‖v∞ − v‖2X. (22)

Assume moreover that for all v0 in X and all t0 in R+ such
that the solution v of (11)-(15) initiated from v0 is C1 at
t = t0, we have :

Ẇ (v(t)) ≤ −ωW (v(t)). (23)

Then points 1) and 2) of Theorem 1 hold.
Proof: The proof of point 1) is by now standard.

Let v0 be in X1 and satisfies the C0 and C1-compatibility
conditions. It yields that v is smooth for all t. Consequently,
(23) is satisfied for all t ≥ 0. With Grönwall lemma, this
implies that :

W (v(t)) ≤ e−ωtW (v0) .

Hence with (22), this implies that (20) holds with k = L
and ν = ω

2 for initial conditions in X1. X1 being dense in
X, the result holds also with initial condition in X and point
1) is satisfied.

Let show point 2). With the definition of ỹ(t) in (18) and
the definition of the equilibrium, we have :

ỹ(t)− ỹref = ϕ−(1, t) +ϕ+(1, t)−ϕ−∞(1)−ϕ+
∞(1). (24)

Moreover, if we consider the dynamics of ` = (ϕx, z, ξ), it
can be shown that if we pick initial condition v0 in X1 which
satisfies C1 compatibility condition, ` is in X and satisfies
the dynamics (11)-(15). Hence, ‖`‖X converge to 0. It implies
that along solutions ‖v‖X1 converges also to 0. Since with
Sobolev embedding

sup
x∈[0,1]

|ϕ(x, t)− ϕ∞(x)| ≤ C‖ϕ(·, t)‖H1(0,1),

≤ C‖v(t)‖X1
,
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where C is a positive real number, it implies :

lim
t→+∞

|ϕ−(1, t) + ϕ+(1, t)− ϕ−∞(1)− ϕ+
∞(1)| = 0.

Consequently, (21) holds and point 2) is satisfied.

With this proposition in hand and since the system is
linear, it turns out that to prove the Theorem 1, it is sufficient
to construct a Lyapunov functional. This property doesn’t
depend on the value of yref and the unknown parameter d.
So in the following, it is assumed that yref = d = 0 and a
Lyapunov functional is designed.

B. Lyapunov functional construction

1) Step 1, Let forget the ξ dynamics: In this subsection
we construct a Lyapunov function for the system (11)-(15)
without taking into account the integral part which will be
added in the next subsection. So here, we consider this PDE
system :

ϕt(x, t) =

[
−∂x − λ

2 −λ2
−λ2 ∂x − λ

2

]
ϕ(x, t), ∀x ∈ (0, 1),

zt(t) = −(a+ b)z(t) + aϕ−(1, t),
(25)

with the boundary conditions :

ϕ−(0, t) = α0ϕ
+(0, t) +Kp(ϕ

−(0, t) + ϕ+(0, t)) +Kiξ(t),

ϕ+(1, t) = −ϕ−(1, t) + 2z(t),
(26)

Let V : L2(0, 1)2 × R 7→ R+ be the function defined by :

V (ϕ, z) = qz2 +

∫ 1

0

ϕ−(x)2e−µxdx

+

∫ 1

0

pϕ+(x)2eµxdx (27)

which is well defined. With a slight abuse of notation, we
write V (t) = V (ϕ(·, t), z(t)) and we denote by V̇ (t) the
time derivative of the Lyapunov function along solutions
which are C1 in time.

Proposition 2: For all (λ, a, b, α0) with 2 > λ > 0, a > 0
and b ≥ 0 there exist positive real numbers Kp, p, µ, q, ω1

and ω2 such that along C1 solution of the system (25) and
(26) :

V̇ (t) ≤ −ω1V (t) + ν|ξ(t)|2. (28)
Proof: Let

V (t) = V1(t) + V2(t), (29)

with

V1(t) = qz2(t),

V2(t) =

∫ 1

0

(ϕ−(x, t))2e−µxdx+

∫ 1

0

p(ϕ+(x, t))2eµxdx.

The time derivative of (29) along the system (25) with the
boundary condition (26) can be written for all µ1 and µ2 in

R :

V̇ (t) = −µ2V1(t)− (µ− µ1)V2(t)− w0(t)TPw0(t)

−
∫ 1

0

ϕ(x, t)TN (µ1)ϕ(x, t)dx

− w1(t)TM(µ, µ2)w1(t),

where :

w0(t) =
(
ϕ+(0, t) Kiξ(t)

)T
, w1(t) =

(
ϕ−(1, t) z(t)

)T
,

and :

M =

[
e−µ − peµ 2peµ − aq
2peµ − aq (2(a+ b)− µ2)q − 4peµ

]
,

N =

[
(µ1 + λ)e−µx λ e

−µx+peµx

2

λ e
−µx+peµx

2 p(µ1 + λ)eµx

]
,

P =

[
p− α2

p αp
αp −1

]
,

where :
αp =

α0 +Kp

1−Kp
. (30)

First of all remark that if :

p− α2
p > 0, (31)

then there exists a positive real number ν such that :

−w0(t)TPw0(t) ≤ ν|Kiξ(t)|2.

On top of that, if :

µ2 > 0, (µ− µ1) > 0, M≥ 0, N ≥ 0 (32)

then the candidate Lyapunov functional satisfies : (28).
Let us first show that we can find the parameters such

that (32) are satisfied. Consider the mapping (s1, s2, µ) 7→
F (s1, s2, ) given by :

F (s1, s2, µ) =
√
s1(λ+ s2)− λ

2
(1 + s1e

µ) .

Since λ < 2, picking µ sufficiently small, 0 < µ < 1, the
following inequality is always true :

F (e−2µ, µ, µ) = e−µ(λ+ µ)− λ

2

(
1 + e−µ

)
> 0. (33)

So, let p and µ1 be positive real numbers such that :

0 < p < e−2µ , µ1 < µ,

and F (p, µ1, µ) > 0 which exists by continuity of the
mapping F . Note that :

det(N ) = p(λ+ µ1)2 − λ2

4

(
e−µx + peµx

)2
,

> F (p, µ1, µ)

[
√
p(λ+ µ1) +

λ

2

(
e−µx + peµx

)]
,

> 0.

So, N ≥ 0.
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On another side, M≥ 0 if and only if :

e−µ − peµ ≥ 0 (34)
f(q) ≥ 0 (35)

where :

f(q) = (e−µ − peµ)(q(2(a+ b)− µ2)− 4peµ)
− (2peµ − aq)2

= −a′q2 + b′q − c′,

and a′, b′ and c′ are positives real numbers given as :

a′ = a2

b′ = (e−µ − peµ)(2(a+ b)− µ2) + 4paeµ

c′ = (e−µ − peµ)4peµ + 4p2e2µ = 4p

This function f(q) is a second order polynomial, which
maximum is reached for q = b′

2a′ . In this case, f(q) is strictly
positive if and only if :

b′2 − 4a′c′ = (b′ − 2
√
a′c′)(b′ + 2

√
a′c′) > 0. (36)

Since a′, b′ and c′ are positives, it remains to verify that
b′−2

√
a′c′ is positive. Note that keeping in mind that (e−µ−

peµ) > 0, it yields :

b′ − 2
√
a′c′

(e−µ − peµ)
= (2(a+ b)− µ2)−

4a(
√
p− peµ)

e−µ − peµ
, (37)

= 2a

(
1−

2
√
p

e−µ +
√
p

)
+ 2b− µ2. (38)

Since 2
√
p

e−µ+
√
p < 1, we can select µ2 > 0 sufficiently small

such that f(q) > 0, so M≥ 0.
Finally, we pick Kp such that (31) holds which achieves

the proof.
2) Step 2, adding the integral part: In this section, the

integral parameter Ki is tuned based on the construction of
a Lyapunov functional. Let : W : X 7→ R+ be the function
defined by :

W (ϕ, z, ξ) =V (ϕ, z) + rU(ξ, ϕ, z)2,

where :
U(ξ, ϕ, z) = ξ +m>M(ϕ) + nz,

where r > 0, m = (m1,m2) is a vector in R2 and n a real
number that will be selected later and M : L1(0, 1) 7→ R2

is an operator defined as :

M(ϕ) =

∫ 1

0

(I +Rx)ϕ(x)dx, (39)

with :

R =

[
λ
2 −λ2
λ
2 −λ2

]
.

Again, with a slight abuse of notation, we write W (t) =
W (ϕ(·, t), z(t), ξ(t)) and we denote by Ẇ (t) the time
derivative of the Lyapunov function along solutions which
are C1 in time.

Proposition 3: Assume Kp, λ, a, b, α0, p, µ, q and ω1

are given such that equation (28) is satisfied, then there exist
r, m1, m2, n and Ki such that :

Ẇ (t) ≤ −ω2W (t).
Proof: First of all, note that :

R

[
−λ2 −λ2
−λ2 −λ2

]
= 0.

Hence, we get the property :

Ṁ(t) =

∫ 1

0

(I +Rx)ϕt(x, t)dx

=

∫ 1

0

(I +Rx)

[
−1 0
0 1

]
ϕx(x, t)

+

[
−λ2 −λ2
−λ2 −λ2

]
ϕ(x, t)dx

With an integration by parts, it yields :

Ṁ(t) =

[
−1− λ

2 −λ2
−λ2 1− λ

2

]
ϕ(1, t)−

[
−1 0
0 1

]
ϕ(0, t),

and consequently,

U̇(t) = ϕ−(0, t) + ϕ+(0, t)+

m1

(
ϕ−(0, t)−

(
1 +

λ

2

)
ϕ−(1, t)− λ

2
ϕ+(1, t)

)
+m2

(
−λ

2
ϕ−(1, t) +

(
1− λ

2

)
ϕ+(1, t)− ϕ+(0, t)

)
− n(a+ b)z(t) + naϕ−(1, t)

Employing the boundary conditions (26) and αp defined in
(30), it yields :

U̇(t) = ϕ−(1, t)

(
an−m1

(
1 +

λ

2

)
−m2

λ

2
− n(a+ b)

2

)
+ ϕ+(1, t)

(
m2

(
1− λ

2

)
−m1

λ

2
− n(a+ b)

2

)
+ ϕ+(0, t)(αp + 1 +m1αp −m2)

+ ξ(t)
Ki

1−Kp
(1 +m1) .

Our aim is now to solve in m1, m2 and n the system :−1− λ
2 −λ2

a−b
2

−λ2 1− λ
2 −a+b2

αp −1 0

m1

m2

n

 =

 0
0

−αp − 1


It is possible with :

n =
2(αp + 1)

αp(a(λ− 1) + b) + aλ+ a+ b
,

m2 =
+2aαp

αp(a(λ− 1) + b) + aλ+ a+ b
+ 1,

m1 =
2a

αp(a(λ− 1) + b) + aλ+ a+ b
− 1.
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It can be noticed that since 0 ≤ λ < 2 and a+ b > 0, these
parameters are well defined. In that case, it yields :

U̇(t) = ξ(t)
Ki

1−Kp
(1 +m1) .

So we select Ki such that :

Ki

1−Kp
(1 +m1) < 0.

Hence, we get :

2U(t)U̇(t)

|Ki|
≤ −ξ(t)2

∣∣∣∣1 +m1

1−Kp

∣∣∣∣+ ξ(t)m>M(t) + ξ(t)nz,

≤ −c1ξ(t)2 + c2V (t),

where c1 and c2 are obtained Cauchy Schwartz inequality
and by completing the square. Finally, this yields :

Ẇ (t) ≤ (c2r|Ki| − ω1)V (t) + ν|Kiξ|2

− rc1|Ki|ξ(t)2. (40)

Picking r|Ki| sufficiently small such that c2r|Ki| < ω1 and
|Ki| sufficiently small yields the result.

IV. SIMULATION

In this part, we implemented the PI controller on the
nonlinear model (1)-(2), in a simulation. The numerical
scheme used is a discretization in space of the equation
(1) with 20 space nodes. The boundary conditions are then
computed using ghost nodes for the spatial nodes out of the
interval [0;L]. Values of the parameters are chosen following
[6] and are given in Appendix A. The β is supposed to model
the possible frictions due to bore-hole grabbing or fluid/solid
frictions. Considering the case of deep-water drilling system
as in [9], we take β = 0.05N.s which corresponds to λ ≈
0.3. In the simulation, we consider the following scenario:
Initial values are taken close to the equilibrium state such
that a first regulation occurs. At t = 10s the values of
T0 is increased by 50% during 1sec which leads to the
apparition of the Stick-Slip phenomenon. In the case of a
small |αp| regulation is still effective, whereas, in the case
of integral controller, regulation is not achieve due to the non-
linearity and so the mechanical oscillations go on. In Fig 1
we implement an integral controller with gains kp = 0 and
ki = 0.2, then αp = −0.74.In Fig 2 our gains are kp = 0.8
and ki = 0.2, leading to αp ≈ −0.15.

V. CONCLUSION

In this paper we have presented an analysis of the a P-
I controller to regulate the bottom velocity of a drill pipe.
We have shown that exponential stability to the equilibrium
could be achieved with this type of control laws. The result
has been obtained employing a novel Lyapunov functional
construction which is valid for all admissible mechanical
parameters.
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Fig. 1. Stabilization of the angular velocity
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APPENDIX

A. Mechanical parameters
Name Values

G Shear modulus 79.6× 109 N.m−2

ρ Mass density 7850 kg.m3

J Eq. mass moment of inertia 1.19× 10−5 m4

β Distributed damping 0.05 kg.m.s−1

ca Torque transmitted 2000 N.m.s.rad−1

L Length of the pipe 2000 m
Ib BHA inertia 311 kg.m−2

c Propagation speed 3184.3 m.s−1

cb Dynamic friction 0.03 kg.s−1

T0 Coulomb friction 7500 N
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