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WHITNEY CELLULATION of WHITNEY STRATIFIED SETS

and GORESKY’S HOMOLOGY CONJECTURE

C. MUROLO and D.J.A. TROTMAN

Abstract. We use the proof of Goresky of triangulation of compact abstract stratified sets and the
smooth version of the Whitney fibering conjecture, together with its corollary on the existence of a local
Whitney wing structure, to prove that each Whitney stratified set X = (A,Σ) admits a Whitney cellulation.

We apply this result to prove the conjecture of Goresky stating that the homological representation map
R : WHk(X ) → Hk(X ) between the set of the cobordism classes of Whitney (b)-regular stratified cycles
of X and the usual homology of X is a bijection. This gives a positive answer to the extension to Whitney
stratified sets of the famous Thom-Steenrod representation problem of 1954.

1. Introduction. The cellulation of a topological space is frequently a very useful tool in
many mathematical applications. In singularity theory an important problem is to restratify a
singular space X in such a way that the strata of the new stratification satisfy better properties
than the initial stratification.

Some classical examples occur when one finds classes of null obstructions, extensions of maps or
vector fields or of a frame field. In the more interesting cases the restratification must be made so as
to remain in the same class of equisingularity ; that is if the initial stratification X satisfies certain
regularity conditions such as (a), (b), (c), . . . then the new strata must satisfy these conditions
too. Since cells are contractible, finding a cellulation of a space is often as important as finding a
triangulation.

In 1978 Goresky proved an important triangulation theorem for compact Thom-Mather
stratified sets [Go]3 whose proof (by induction) can be used to obtain a Whitney cellulation of
a Whitney stratified set provided one knows how to obtain Whitney stratified mapping cylinders.
Goresky used this idea based on his Condition (D) for Whitney stratifications having only conical
singularities ([Go]2, Appendix A1) for which he gave a solution of Problem 1 (below) and deduced
as applications the proofs of Theorems 1 and 2 below.

In 2005 M. Shiota proved that compact semi-algebraic sets admit a Whitney triangulation [Sh]
and more recently M. Czapla gave a new proof of this result [Cz] as a corollary of a more general
triangulation theorem for definable sets.

An old problem posed by N. Steenrod [Ei] is (roughly speaking) the following : “Given a closed
n-manifold M , can every homology class z ∈ Hk(M ; Z) be represented by a submanifold N of M
?” Such classes were called realisable (without singularities).

In his famous paper of 1954 [Th]1, R. Thom answered Steenrod’s problem by proving that
“for a manifold M having dimM = n ≥ 7, the answer is no in general, but there exists λ ∈ Z such
that the class λz is represented by a submanifold of M . Moreover for k ≤ n

2 and z ∈ Hk(M ; Z2)
the Steenrod problem has a positive solution”.
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Since the Steenrod problem does not have a positive answer in general for a manifold M
(because the classes are too frequently singular spaces) one can consider its natural extension :

“For which regular stratified sets X , can every class z ∈ Hk(X ; Z) be represented by a
substratified cycle satisfying the same regularity conditions as X ?”.

In this spirit, in his Ph.D. Thesis of 1976, M. Goresky considered Thom-Mather abstract
stratified sets X ([Go]1 2.3 and 4.1) and defined singular substratified objects W to represent the
geometric chains and cochains of X with the aim of introducing homology and cohomology theories
having many nice geometric interpretations.

Using in the definition of geometric stratified cycle a certain “condition (D)” Goresky proved
that if X = M is a manifold every geometric stratified cycle of M is cobordant to one which is
“radial” on M and then it can be represented by an abstract stratified cycle ([Go]1 3.7).

This result is the main step in proving his important theorem on the bijective representability of
the homology of a C1 manifold M by its geometric abstract stratified cycles and of the cohomology
of an arbitrary Thom-Mather abstract stratified set ([Go]1 Theorems 2.4 and 4.5).

In 1981, in [Go]2 (the article which followed his thesis), Goresky redefines for a Whitney
stratification X = (A,Σ) his geometric homology and cohomology theories using only Whitney
(that is (b)-regular) substratified cycles and cocycles of X , denoting them in this case WHk(X )
and WHk(X ) and without assuming this time the condition (D) in their definition.

With these new definitions and replacing the terminology (but for the most part not the
meaning) “radial” by “with conical singularities” Goresky again proved ([Go]2, Appendices 1, 2,
3) the bijectivity of his homology and cohomology representation maps :

Theorem 1.([Go]2 Theorem 3.4.) If X = (M, {M}) is the trivial stratification of a compact
C1 manifold, the homology representation map Rk : WHk(X ) → Hk(M) is a bijection.

Theorem 2. ([Go]2 Theorem 4.7.) If X = (A,Σ) is a compact Whitney stratified set, A ⊆ Rn,
the cohomology representation map Rk : WHk(X ) → Hk(A) is a bijection.

Later the first author of the present paper improved [Mu]1,2 the geometric theories by
introducing a sum operation in WHk(X ) and in WHk(X ) geometrically meaning transverse union
of stratified cycles and of cocycles (and called WH∗ and WH∗, Whitney homology and cohomology).

In the revised theory of 1981 [Go]2, condition (D) was not assumed in the definitions of the
Whitney cycles, however it was once again the main tool to obtain the important representation
Theorems 1 and 2, by using Condition (D) to construct Whitney cellulations of Whitney stratified
sets with conical singularities which allowed one to obtain (b)-regular stratified mapping cylinders
([Go]2, Appendices 1,2,3). We underline that in the homology case the main result “The map
Rk : WHk(X ) → Hk(M) is a bijection” was established only when X = (M, {M}) is a trivial
stratification of a compact manifold M and that the complete homology statement for X an
arbitrary compact (b)-regular stratified set was a problem of Goresky (extending to Whitney
stratified sets the Steenrod problem) which remained unsolved ([Go]1 p.52, [Go]2 p.178) :

Conjecture 1. If X = (A,Σ) is a compact Whitney stratified set the homology representation
map Rk : WHk(X ) → Hk(A) is a bijection.

In this paper we use the techniques and the idea of the proof of triangulation of abstract
stratified sets of Goresky [Go]3 together with consequences of the solution of the smooth Whitney
fibering conjecture [MPT] to answer positively the following :

2



Problem 1. Does every compact Whitney stratified set X admit a Whitney cellulation ?

Then as an application of this result we reply affirmatively to Goresky’s Conjecture 1.
This is also a first important step in a possible proof of the celebrated Thom conjecture :

Conjecture 2. Every compact Whitney stratified set X admits a Whitney triangulation.
This Conjecture 2 will be the object of a future article of the authors of the present paper.

The content of the paper is the following :

In section 2, we begin by recalling the main definitions and properties of Thom-Mather abstract
stratified sets, of Whitney stratifications (§2.1). Then we give the Thom first Isotopy Theorem
[Th]2, [Ma]1,2 in our horizontally-C1 version (§2.2) : an ad hoc improvement which is a consequence
of the solution of the smooth Whitney Fibering Conjecture [Wh] [MPT].

The horizontally-C1 regularity [MPT] of the stratified homeomorphisms of Thom-Mather
local topological triviality Hx0 : U × π−1

X (x0) → π−1
X U) allows us to prove (b)-regularity for some

families of wings and sub-wings which are “radial” in the tubular neighbourhood TX(1) of each
stratum X of X (Theorem 3 and Corollary 1). We obtain similar stronger results by considering
subsets W of TX(1) which are unions of wings or sub-wings parametrized by a link LX(x0, 1) of a
point x0∈X (Theorem 4 and Corollaries 2 and 3).

In §2.3 we recall the results of Goresky on the Whitney stratified mapping cylinders (Proposi-
tion 1), the Theorem of Whitney cellulation for Whitney stratifications having conical singularities
(Proposition 2) and some definitions, notations and properties necessary for Goresky’s proof of
the Triangulation Theorem of abstract stratified sets [Go]3. In particular we state the Theorem of
existence of an interior d-triangulation for an abstract stratified set X (Theorem 5) that we will
use in our main Theorem in section 3 for X a Whitney stratification.

In section 3, we give a solution of Problem 1 above, by proving the main Theorem of this paper
(Theorem 6) stating that :

“Every compact Whitney stratified set X admits a Whitney cellulation g : J → X”.
The proof is obtained by adapting Goresky’s proof of the triangulation of abstract stratified

sets X to a cellular version for a Whitney stratification X . It is given in four steps and requires
giving details of some parts of the proof of Goresky’s Theorem (that he called “a short accessible
outlined construction”).

To prove (b)-regularity of the stratified mapping cylinders, filling in the cellulation near the
singularities of X , we use Theorems 3 and 4 and Corollaries 1, 2 and 3 of section 2.

As corollary of Theorem 6, we find that the cellulation of X can be moreover obtained with
the cells as small as desired (Corollary 4).

In section 4 we recall the basic notations, definitions and results of the geometric homology
theory WH∗(X ) for Whitney stratifications X = (A,Σ) and the definition of the Goresky homology
representation map Rk : WHk(X ) → Hk(A) in Whitney Homology, which corresponds in the
homology WH∗ to the Steenrod map in Thom’s differentiable bordism theory of 1954.

Then, we conclude the paper by proving, as a consequence of the Whitney cellulation Theorem
6, the Goresky homology Conjecture 1 stating that Rk is a bijection for every Whitney stratification
(not necessarily a manifold) of a compact set or with finitely many strata (Theorem 8).
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2. Stratified Spaces and Trivialisations.

A stratification of a topological space A is a locally finite partition Σ of A into C1 connected
manifolds (called the strata of Σ) satisfying the frontier condition : if X and Y are disjoint strata
such that X intersects the closure of Y , then X is contained in the closure of Y . We write then
X < Y and ∂Y = tX<YX so that Y = Y t

(
tX<YX

)
= Y t ∂Y and ∂Y = Y − Y (t = disjoint

union). The pair X = (A,Σ) is called a stratified set with support A and stratification Σ.

A stratified map f : X → X ′ between stratified sets X = (A,Σ) and X ′ = (B,Σ′) is a
continuous map f : A→ B which sends each stratum X of X into a unique stratum X ′ of X ′, such
that the restriction fX : X → X ′ is C1.

A stratified submersion is a stratified map f such that each fX : X → X ′ is a C1 submersion.

2.1. Regular Stratified Spaces.

Extra regularity conditions may be imposed on the stratification Σ, such as to be an abstract
stratified set in the sense of Thom-Mather [Th]2, [Ma]1,2 or, when A is a subset of a C1 manifold,
to satisfy conditions (a) or (b) of Whitney [Wh]1, or (c) of K. Bekka [Be] or, when A is a subset
of a C2 manifold, to satisfy conditions (w) of Kuo-Verdier [Ve], or (L) of Mostowski [Pa].

In this paper we will consider essentially Whitney ((b)-regular) stratifications so called because
they satisfy Condition (b) of Whitney (1965, [Wh]).

Definitions 1. Let Σ be a stratification of a subset A ⊆ RN , X < Y strata of Σ and x ∈ X.
One says that X < Y is (b)-regular (or that it satisfies Condition (b) of Whitney) at x [Wh]

if for every pair of sequences {yi}i ⊆ Y and {xi}i ⊆ X such that limi yi = x ∈ X and limi xi = x
and moreover limi TyiY = τ and limi [yi−xi] = L in the appropriate Grassmann manifolds (where
[v] denotes the vector space spanned by v) then L ⊆ τ .

One says that X < Y is (a)-regular (or that it satisfies Condition (a) of Whitney) at x [Wh]
if for every sequence {yi}i ⊆ Y such that limi yi = x ∈ X and moreover limi Tyi

Y exists in the
appropriate Grassmann manifold then limi Tyi

Y ⊇ TxX.

Let π : TX → X be a C1 retraction onto X induced by a C1 tubular neighbourhood TX of X.
One says that X < Y is (bπ)-regular at x [NAT] if for every sequence {yi}i ⊆ Y such that

limi yi = x ∈ X and moreover limi Tyi
Y = τ and limi [yi−π(xi)] = L in the appropriate Grassmann

manifolds then L ⊆ τ .

The pair X < Y is called (b)- or (a)- or (bπ)-regular if it is (b)- or (a)- or (bπ)-regular at
every x ∈ X. Σ is called a (b)- or (a)- or (bπ)-regular stratification if all adjacent strata X < Y
in Σ are (b)- or (a)- or (bπ)-regular. A (b)-regular stratification is also usually called a Whitney
stratification.

It is well known that Condition (b) at x implies Condition (a) at x and obviously (taking
xi = πX(yi)) implies Condition (bπ). Conversely, if Conditions (a) and (bπ) are satisfied at x for a
retraction π : TX → X, then Condition (b) also holds at x [NAT].

Finally if Condition (bπ) holds at x for every retraction π : TX → X as above then Conditions
(a) and hence (b) hold at x.

Important properties of Whitney stratified sets follow because they are in particular abstract
stratified sets [Ma]1,2.

4



Definition 2. (Thom-Mather 1970) Let X = (A,Σ) be a stratified set.
A family F = {(πX , ρX) : TX → X × [0,∞[)}X∈Σ is called a system of control data of X if for

each stratum X ∈ Σ we have that:
1) TX is an open neighbourhood of X in A (called tubular neighbourhood of X);
2) πX : TX → X is a continuous retraction of TX onto X (called projection on X);
3) ρX :TX → [0,∞[ is a continuous function such that X=ρ−1

X (0) ;
and, furthermore, for every pair of adjacent strata X < Y , by considering the restriction maps
πXY := πX|TXY

and ρXY := ρX|TXY
, on the subset TXY := TX ∩ Y , we have that :

5) the map (πXY , ρXY ) : TXY → X×]0,∞[ is a C1 submersion (then dimX < dimY );
6) for every stratum Z of X such that Z > Y > X and for every z ∈ TY Z ∩ TXZ

the following control conditions are satisfied :
i) πXY πY Z(z) = πXZ(z) (called the π-control condition)
ii) ρXY πY Z(z) = ρXZ(z) (called the ρ-control condition).

In what follows ∀ ε > 0 we will pose T εX := TX(ε) = ρ−1
X ([0, ε[), SεX := SX(ε) = ρ−1

X (ε) , and
T εXY := T εX ∩ Y , SεXY := SεX ∩ Y and without loss of generality will assume TX = TX(1) [Ma]1,2.

The pair (X ,F) is called an abstract stratified set if A is Hausdorff, locally compact and admits
a countable basis for its topology. Since one usually works with a unique system of control data F
of X , in what follows we will omit F .

If X is an abstract stratified set, then A is metrizable and the tubular neighbourhoods {TX}X∈Σ

may (and will always) be chosen such that: “TXY 6= ∅ ⇔ X ≤ Y ” and “TX ∩ TY 6= ∅ ⇔ X ≤ Y or
X ≥ Y ” (where both implications ⇐ automatically hold for each {TX}X) as in [Ma]1, pp. 41-46.

The notion of system of control data of X , introduced by Mather, is very important because it
allows one to obtain good extensions of (stratified) vector fields [Ma]1,2 which are the fundamental
tools in showing that a stratified (controlled) submersion f : X → M into a manifold, satisfies
Thom’s First Isotopy Theorem : the stratified version of Ehresmann’s fibration theorem ([Th]2,
[Ma]1,2 [GWPL]). Moreover by applying it to the maps πX : TX → X and ρX : TX → [0,+∞[
it follows in particular that X has a locally topologically trivial structure and also a locally trivial
topologically conical structure. This fundamental property allows one moreover to prove that
compact abstract stratified sets are triangulable [Go]3.

Since Whitney ((b)-regular) stratified sets are abstract stratified sets, they are locally topolog-
ically trivial and triangulable if compact.

2.2. Some consequences of the solution of the smooth Whitney Fibering Conjecture.
In proving the Whitney condition (b) in our main theorem of section 3 (Theorem 6) we need

some important consequences of the smooth Whitney Fibering Conjecture proved in [MPT]. So
we first recall the main results of the paper [MPT] concerning (b)-regular stratifications.

Let X be a Whitney stratified set in Rm, X a stratum of X , x0 ∈ X and U = Ux0 a
domain of a chart of X. It was proved in [MPT] that there exists a trivialization homeomorphism
Hx0 : U × π−1

X (x0) −→ π−1
X (U) of X over U whose induced foliation is (a)-regular, i.e.

Fx0 =
{
Fz0 = Hx0(U × {z0)}

}
z0∈π−1

X
(x0)

satisfies : lim
z→x

TzFz = TxX ∀x ∈ U ,

(this is the smooth version of the Whitney fibering conjecture, see Theorem 7 in [MPT]) and such
that the tangent space to each Fz (for each z = Hx0(t1, . . . , tl, z0)) is generated by the frame field
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(w1, . . . , wl) where wi(z) = Hx0∗(t1,...,tl,z0)(Ei) and {E1, . . . , El} is the standard basis of Rl× 0m−l.
Moreover Hx0 is a horizontally-C1 homeomorphism rather than just a homeomorphism (see §8,
Theorem 12 of [MPT]).

The (a)-regular foliation Fx0 allows us to construct a family of wings over U :

W x0 :=
{
Wz0 = Hx0

(
U × Lz0

) }
z0∈LX(x0,d)

parametrized by the link LX(x0, d) := π−1
X (x0)∩SX(d) where Lz0 := γz0(]0,+∞[) is the trajectory

of z0 via the flow of the gradient vector field −∇ρX .

Thus each line of the family {Lz0}z0∈LX(x0,d) in the fiber π−1
X (x0) ∩ TX(d) comes out (bπX )-

regular (and since dimLz0 = 1, equivalently (b)-regular) and each wing Wz0 is (b)-regular over U
(see the proof of Theorem 8 in [MPT]).

In the next Theorem 3, for every point z = γz0(t) ∈ Lz0 we will also write Lz := Lz0 and
Wz := Wz0 respectively for the unique trajectory and the unique wing containing z ∈ π−1

X (U).

Theorem 3 (of (b)-regular subwings). Let X be a (b)-regular stratified set, X a stratum of X ,
X0 an h-submanifold contained in a domain U of a chart for X and x0 ∈ X0. Then :

W x0,X0 :=
{
Wz0,X0 := Hx0

(
X0 × Lz0

) }
z0∈LX(x0,d)

is a family of wings (b)-regular over X0 such that each Wz0,X0 ⊆ Wz0 is an (h + 1)-submanifold
(sub-wing).

Proof. Let l = dimX. The analysis being local (via a convenient C1-chart) we can suppose
that X = Rl × 0m−l, X0 = Rh × 0m−h and that (πX , ρX) : Rm → X × [0,+∞[ are the standard
control data.

Since X0 × Lz0 is an (h+ 1)-submanifold of U × Lz0 and Hx0 a diffeomorphism on the strata
Z > X, obviously each Wz0,X0 := Hx0

(
X0 × Lz0

)
is an (h+ 1)-submanifold (sub-wing) of Wz0 .

Remark also that : Wz0,X0 = Hx0

(
X0 × π−1

X (x0)
)
∩Hx0

(
U × Lz0

)
= π−1

X (X0) ∩Wz0 .

To prove that each X0 < Wz0,X0 is (b)-regular we will prove that it is (a)- and (bπX )-regular
at each point x ∈ X0.

a) X0 < Wz0,X0 is (a)-regular at x ∈ X0

Let (E1, . . . , El) be the standard basis of X = Rl × 0m−l.

Since the topological trivialisation Hx0 is horizontally-C1 over X and x ∈ X0 ⊆ U ⊆ X, by
Theorem 8 of [MPT] :

lim
(t1,...,tl,z′)→x

Hx0∗(t1,...,tl,z′)(Ei) = Ei for every i = 1, . . . , l (z′ ∈ π−1
X (x0)).

Since the wing Wz0X0 = Hx0

(
X0 × Lz0

)
, is fixed (together with z0 ∈ LX(z0, d)), every point

z ∈Wz0X0 can be written as z = Hx0(t1, . . . , tl, z
′) with z′ ∈ Lz0 ⊆ π−1

X (x0) and z → X iff z′ → x0.
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Then for every sequence {zn = Hx0(t
n
1 , . . . , t

n
l , z

′
n)}n ⊆ Wz0X0 such that limn zn = x and

∃ T := limn TznWz0X0 , since Wz0,X0 = Hx0

(
X0 × Lz0

)
⊇ Hx0

(
Rh × 0l−h × {z′n}

)
, for every

x ∈ X0 ⊆ U we find :

(∗) : lim
zn→x

zn∈Wz0X0

TzWz0,X0 ⊇ lim
zn→x

zn∈Wz0X0

TznHx0

(
X0×{z′n}

)
= lim

zn→x
zn∈Wz0X0

TznHx0

(
Rh×0l−h×{z′n}

)
= lim

(tn1 ,...,t
n
l
,z′n)→x

[
Hx0∗(tn1 ,...,t

n
l
,z′n)(E1), . . . ,Hx0∗(tn1 ,...,t

n
l
,z′n)(Eh)

]
= [E1, . . . , Eh] = TxX0 ,

which proves the (a)-regularity at x of the pair X0 < Wz0,X0 .

Remark 1. Since each wing Wz0 of the familyW x0 is foliated by the leaves of the “horizontal”
foliation Fz = {Fz = Hx0

(
U × {z′})}z′∈π−1

X
(x0)

then each (sub-)wing Wz0,X0 of the family W x0,X0

inherits by transverse intersection a horizontal (sub-)foliation whose leaves are :

Fz,X0 := Hx0

(
X0 × Lz′

)
∩ Hx0

(
U × {z′}

)
= Hx0

(
X0 × {z′}

)
for every z ∈Wz0,X0 .

In particular, the tangent spaces which allow us to obtain above the (a)-regularity at x of the
pair X0 < Wz0,X0 are exactly these of the sequence Tzn

Fzn,X0

zn→x−→ TxX0.

Figure 1

Remark moreover that, since Fz is (a)-regular over U and so Hx0 is horizontally-C1 [MPT],
over the whole of U , so limzn→x∈U Hx0|Fzn∗zn

= 1U∗x0 , then for every x ∈ (X0 − X0) ∩ U , the
horizontal (a)-regular (sub-)foliation {Fz0,X0 := Hx0

(
X0×{z′})}z′∈Lz0

trace of Wx0 over Fz, allows
us to obtain :

(∗) : lim
zn→x

TznWz0,X0 ⊇ lim
zn→x

TznFz0,X0 = lim
zn→x

Hx0∗zn

(
Tzn

(
X0×{z′n})

)
= lim
zn→x

Tzn

(
X0×{z′n})

We will use this important property in the proof of Corollary 1.
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b) X0 < Wz0,X0 is (bπX )-regular at x ∈ X0.
For the pair X0 < Wz0,X0 , since the trivialization Hx0 is πX -controlled, one has :

πX(Wz0,X0) = πX(Hx0

(
X0 × Lz0)

)
= Hx0

(
πX(X0 × Lz0)

)
= X0 .

Then one can consider as projection on X0 the restriction πX0 := πX| : Wz0,X0 → X0 of the
projection πX : TX(d) → X.

By definition of (bπ)-regularity at x ∈ X0 < Wz0,X0 [NAT]1, we must prove that for every
sequence {zn}n ⊆Wz0,X0 such that limn zn = x and

lim
n
Tzn

Wz0,X0 = T ∈ Gh+1
m and lim

n
znπX(zn) = L ∈ G1

m , then T ⊇ L .

Let Z > X be the stratum of X such that z0 ∈ Z.
By hypothesis X < Z is (b)-regular so we can assume that πX = π : Rn → Rl × 0k and ρX is

the standard distance fonction ρ(t1, . . . , tn) =
∑n
i=l+1 t

2
i , so that −∇ρX(y) = −2(z − πX(z)) and

the vectors generate the same vector space

(1) : [∇ρX(z)] = [z − πX(z)] .

For every n ∈ N, let un be the unit vector un := zn−xn

||zn−xn|| where xn = πX(zn).

Consider the “distance” function defined by ([Ve], [Mu]2 §4.2) :
δ(u, V ) = infv∈V ||u− v || = || u− pV (u)|| for every u ∈ Rn
and
δ(U, V ) = supu∈U,||u ||=1 ||u− pV (u) || for every subspace U ⊆ Rn .

Since X < Z is (b)-regular and so (bπ)-regular at x ∈ X then T ′ := limn TznZ ⊇ L.
Then

L ⊆ T ′ =⇒ lim
n

[un] ⊆ lim
n

Tzn
Z =⇒ lim

n
δ([un], Tzn

Z) = 0 .

Since ρXZ is the restriction ρX|Z of ρX to Z, every vector ∇ρXZ(zn) is the orthogonal
projection pTznZ(∇ρX(zn)) on TznZ of the vector ∇ρX(zn) and, thanks to (1) above, we have:

Tzn
Lzn

= [∇ρXZ(zn)] = pTznZ(∇ρX(zn)) = pTznZ([zn − xn]) = pTznZ([un])

by which, un being a unit vector of the vector space [un], one deduces that :

(2) : δ([un], Tzn
Lzn

) = δ([un], pTznZ([un])) = || un − pTznZ(un) || = δ([un], Tzn
Z) .

On the other hand for every n ∈ N, we have

(3) : Lzn
⊆ Wz0,X0 ⊆ Z and Tzn

Lzn
⊆ Tzn

Wz0,X0 ⊆ Tzn
Z ,
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by which :
δ
(
[un], TznZ

)
≤ δ

(
[un], TznWz0,X0

)
≤ δ

(
[un], TznLzn

)
and by (2), one finds the equality :

(4) : δ
(
[un], TznLzn

)
= δ

(
[un], TznWz0,X0

)
= δ

(
[un], TznZ

)
.

Hence :

lim
zn→x0

δ
(
[un], TznWz0,X0

)
= lim

zn→x0
δ
(
[un], TznLzn

)
= lim

zn→x0
δ
(
[un], TznZ

)
= 0 ,

so that lim
zn→x0

δ
(
[un], Tzn

Wz0,X0

)
= 0 which implies :

L = lim
zn→x0

zn xn = lim
zn→x0

[un] ⊆ lim
zn→x0

Tzn
Wz0,X0 = T

proving that X0 < Wz0,X0 is (bπ)-regular at x, for every x ∈ X0.

Notation. Each (sub-)wing Wz0,X0 = Hx0

(
X0 × Lz0

)
defined in Theorem 3 defines a

stratification W z0,X0 with two strata given by the disjoint union :

W z0,X0 = Hx0

(
X0 × Lz0

)
tX0 which by Theorem 3 is (b)-regular.

Corollary 1 below completes the analysis of the regularity adjacencies proved in Theorem 3.

Corollary 1. Let R < S be a stratification contained in a domain U of a chart of X,
R ⊆ S ⊆ U . Let x0 ∈ U and let

W x0,R :=
{
Wz0,R = Hx0

(
R×Lz0

) }
z0∈L(x0,d)

and W x0,S :=
{
Wz0,S = Hx0

(
S×Lz0

) }
z0∈LX(x0,d)

be the families of subwings of W x0 constructed in Theorem 3.
Then, for every z0 ∈ LX(x0, d), the stratification by four strata

W z0,RtS :=
{
R, S, Wz0,R, Wz0,S

}
satisfies:

1) If R < S is (a)-regular then W z0,RtS is (a)-regular ;
2) If R < S is (bπ)-regular then W z0,RtS is (bπ)-regular ;
3) If R < S is (b)-regular then W z0,RtS is (b)-regular.

Proof. We have to prove the properties 1), 2), 3) for the following adjacency relations :

Wz0,R < Wz0,S ⊆ TX(d)
∨ ∨
R < S ⊆ X .

Proof of 1). First of all suppose that R < S is (a)-regular.

9



By applying Theorem 3 for X0 = S and then for X0 = R we find that the adjacent strata
R < Wz0,R and S < Wz0,S are (a)-regular.

The (a)-regularity of the adjacence Wz0,R < Wz0,S is obtained as follows. Since R < S is
(a)-regular, R × Lz0 < S × Lz0 is (a)-regular too and since Hx0 is a C1-diffeomorphism on each
stratum of X [Ma]1 then

(1) : Wz0,R = Hx0

(
R× Lz0

)
< Hx0

(
S × Lz0

)
= Wz0,S is (a)-regular too [Tr].

To prove that R < Wz0,S is (a)-regular, let us fix a point r ∈ R.
Since R ⊆ U ⊆ X and Hx0 is horizontally C1 over X at r [MPT], the (a)-regularity at r of

R < Wz0,S follows with the same equalities (∗) as in Theorem 3 (replacing X0 by R).

Proof of 2). The (bπ)- (and also the (b)-) regularity of Wz0,R < Wz0,S follows in exactly the
same way as in the proof 1) for the (a)-regularity (see the equalities (1)) because these conditions
are preserved by the C1-diffeomorphism.

To prove that R < Wz0,S is (bπ)-regular, let us fix a point r ∈ R.
Since r ∈ R ⊆ U ≡ Rl, the topological trivialisation Hr “centered at r ≡ 0n” defined by lifting

the frame field (E1, . . . , El) of U on the (a)-regular foliation H induced by Hx0 , defines the same
(a)-regular foliation H [MPT] and hence also the same wings :

Wz0,R = Hx0

(
R× Lz0

)
< Hx0

(
S × Lz0

)
= Wz0,S .

So it is enough to assume x0 = r ∈ R and Lz0 ∈ π−1
X (r) (this will simplify the notations).

We choose moreover local coordinaites of U ≡ Rl× 0n−l in which R ≡ Rh× 0n−h (h = dimR).
Let πR : TR ⊆ U → R be the canonical projection, since TR ⊆ U ⊆ X then for every z ∈ TR

(πX(z) = z and so) πR(t1, . . . , tl, 0n−l) = (t1, . . . , th, 0n−h), then πR(z) = πR(πX(z))
Since R < S is (bπR)-regular, for every sequence {sn} ⊆ S such that there exist both

L := lim
sn→x0≡0n

sn − πR(sn)
||sn − πR(sn)||

and T := lim
sn→r

Tsn
S then L ⊆ T .

We will prove the (bπ)-regularity of R < Wz0,S with respect to the retraction :

π̃R := πR ◦ πX : π−1
X (TR) πX−→ TR

πR−→ R .

Let {zn = Hx0

(
sn, z

′
n

)
}n be a sequence in Wz0,S = Hx0

(
S × Lz0

)
, where every sn ∈ S, such

that lim zn = x0 and

∃ L̃ := lim
zn→x0

zn − π̃R(zn)
||zn − π̃R(zn)||

, we will prove : L̃ ⊆ lim
zn→x0

Tzn
Wx0,S .

Since x0 ∈ R ⊆ TR, for n large enough zn ∈ π−1
X (TR) and sn = πX(zn) ∈ TR.

Since π̃R(zn) = πR
(
πX(zn)

)
= πR(sn) for every n, we can write :

(2) : zn − π̃R(zn) = zn − πR(sn) = (zn − πX(zn)) + (sn − πR(sn)) .

10



With the same equalities (3) and (4) as in the proof of Theorem 3, (and despite now
x0 = r 6∈ S !) we have that the lines

(3) : L′n := [zn − πX(zn)] satisfy : L′ := lim
zn→x0

L′n ⊆ lim
zn→x0

Tzn
Wz0,S .

On the other hand, since R < S is (bπR)-regular and thanks to the property (∗) in Remark 1
one finds that the lines

(4) : Ln := [sn−πR(sn)] satisfy : L := lim
sn→x0

Ln ⊆ lim
sn→x0

TsnS
(∗)
⊆ lim

zn→x0
TznWz0,S .

Finally thanks to (2), (3) and (4) above one concludes that the lines

L̃n := [zn − π̃R(zn)] satisfy : L̃ := lim
zn→x0

L̃n ⊆ lim
zn→x0

Tzn
Wz0,S .

Proof of 3). Since (b)-regularity is equivalent to having both (a)-regularity and (bπ)-regularity
it follows by 1) and 2) that W z0,RtS is (b)-regular.

Let now X0 be an h-submanifold contained in a domain U of a chart for X, x0 ∈ X0 and N a
p-submanifold ⊆ LXY (x0, d) where Y > X. Let us consider

CN := tz0∈NLz0 and respectively C̃N := N t CN t {x0}

the cone union of all open and (resp.) the upper and lower closed cone union of all closed lines
starting, at the time t = 0, from all points z0 ∈ N . Then CN and C̃N are a (p+ 1)-submanfold of
π−1
XY (X0) and (resp.) a (p+ 1)-substratified set of π−1

X (X0), and their images via Hx0 , namely :

WX0,N := Hx0

(
X0 × CN

)
and W̃X0,N := Hx0

(
X0 × C̃N

)
are respectively :WX0,N a (h+ p+ 1)-submanfold of π−1

XY (X0) diffeomorphic to Hx0(X0 × CN ) and to X0 ×N×]0, 1[
and
W̃X0,N a substratified set of π−1

X (X0) homeomorphic to the mapping cylinder of : X0 ×N
pr1−→ X0.

Moreover W̃X0,N := Hx0

(
X0 × C̃N

)
is naturally stratified by :

W̃X0,N := Hx0

(
X0 × C̃N

)
= Hx0

(
X0 ×N) t Hx0

(
X0 × CN ) t Hx0

(
X0 × {x0}) .

In the same spirit and with part of the proofs of Theorem 3 and Corollary 1 we have :

Theorem 4 (of the (b)-regular pencils). Let X be a (b)-regular stratification and X a stratum
of X . Let X0 be a h-submanifold contained in a domain U of a chart for X, x0 ∈ X0 and N a p-
submanifold ⊆ LXY (x0, d) where Y > X. Then the stratification of two strata below is (b)-regular :
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W X0,N := {X0 , WX0,N := Hx0

(
X0 × CN

)
} .

Proof. As in Theorem 3, we prove separately the (a)- and (bπ)-regularity.
a) X0 < WX0,N is (a)-regular at each x ∈ X0.
Using the notations and the (a)-regularity of Theorem 3, since WX0,N ⊇Wz,X0 we find :

lim
z→x

TzWX0,N ⊇ lim
z→x

TzWz,X0 ⊇ TxX0 .

b) X0 < WX0,N is (bπ)-regular at each x ∈ X0 .

Thanks to (3) of Theorem 3 (where ∀n ∈ N, let un si the unit vector un := zn−πX(zn)
||zn−πX(zn)|| ) and

thanks to the inclusions Lzn
⊆Wz0,X0 ⊆WX0,N ⊆ Z, we find :

Tzn
Lzn

⊆ Tzn
Wz0,X0 ⊆ limz→x TzWX0,N ⊆ Tzn

Z

and

δ
(
[un], Tzn

Z
)
≤ δ

(
[un], Tzn

WX0,N

)
≤ δ

(
[un], Tzn

Wz0,X0

)
≤ δ

(
[un], Tzn

Lzn

)
and by (2) of Theorem 3 we have also the equality :

δ
(
[un], Tzn

Lzn

)
= δ

(
[un], Tzn

Wz0,X0

)
= δ

(
[un], Tzn

WX0,N

)
= δ

(
[un], Tzn

Z
)
,

and hence the equalities : limzn→x δ
(
[un], Tzn

WX0,N

)
= limzn→x δ

(
[un], Tzn

Lzn

)
= limzn→x δ

(
[un], Tzn

Y
)

= 0

L = limzn→x zn xn = limzn→x[un] ⊆ limzn→x Tzn
WX0,N .

Corollary 2. Let R < S and x0 ∈ U be as in Corollary 1 and X < Y strata of X .
Then, for every submanifold N ⊆ LXY (x0, d), the stratification by four strata

W RtS,N := W R,N t W S,N =
{
R, S, WR,N , WS,N

}
having the incidence relations below :

WR,N < WS,N ⊆ TX(d)
∨ ∨
R < S ⊆ X .

satisfies:

1) If R < S is (a)-regular then W RtS,N is (a)-regular ;
2) If R < S is (bπ)-regular then W RtS,N is (bπ)-regular ;
3) If R < S is (b)-regular then W RtS,N is (b)-regular.
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Proof. The proof is completely similar to the proof of Corollary 1 using this time Theorem 4
instead of Theorem 3.

Corollary 3 below completes the analysis of the regularity of the adjacencies that we will use
in the proof of our Whitney cellulation Theorem in section 3.

Corollary 3. Let R < S and x0 ∈ U be as in Corollary 1 and X < Y < Z be strata of X .
Then, for every pair of adjacent submanifolds N ′ < N of LX(x0, d), such that N ′ ⊆ LXY (x0, d)

and N ⊆ LXZ(x0, d), the stratification

W RtS,N ′tN :=
{
WR,N ′ , WS,N ′ WR,N , WS,N

}
whose incidence relations are as below :

WR,N < WS,N ⊆ TXZ(d)
∨ ∨

WR,N ′ < WS,N ′ ⊆ TXY (d)

satisfies:

1) If R < S and N ′ < N are both (a)-regular then W RtS,N ′tN is (a)-regular ;
2) If R < S and N ′ < N are both (bπ)-regular then W RtS,N ′tN is (bπ)-regular ;
3) If R < S and N ′ < N are both (b)-regular then W RtS,N ′tN is (b)-regular.

Proof. Since R < S are (a)- or (bπ)-regular, R×CN < S ×CN ⊆ TXZ are (a)- or (bπ)-regular
too and these regularity conditions are preserved by image via Hx0 since the restriction to TXZ
of Hx0 is a smooth diffeomorphism. So WR,N = Hx0(R × CN ) < Hx0(S × CN ) = WS,N is (a)-
or (bπ)-regular too. The same argument, applied to N ′ and using now that Hx0|TXZ

is a smooth
diffeomorphism proves that WR,N ′ < WS,N ′ is (a)- or (bπ)-regular.

The proof of the (a)- and (bπ)-regularity of the vertical incidence relations is similar to the
proof of Corollary 1, using that since Hx0 is H -semidifferentiable ([MPT] Theorem 12) there
exists a (conical) neighbourhood V of each y in Y such that Hx0 coincides on π−1

Y Z(V ) with a local
trivialization HY Z of π−1

Y Z(V ) which is horizontally-C1 over V ⊆ Y . Thus taking images via Hx0 ,
all the three vertical adjacency relations below :

Hx0(R× CN ) < Hx0(S × CN ) ⊆ TXZ(d)
∨ ∨

Hx0(R× CN ′) < Hx0(S × CN ′) ⊆ TXY (d)

are (a)- and (bπY Z )-regular as in Theorem 3 and Theorem 4.

2.3. Goresky’s results and some extension of his notions.
In 1981 Goresky redefined his geometric homology WHk(X ) and cohomology WHk(X ) for

a Whitney stratification X without asking that the substratified objects representing cycles and
cocycles of X satisfy condition (D) ([Go]2 §3 and §4).

The main reason for which Goresky introduced Condition (D) in 1981 was that it allows
one to obtain Condition (b) for the natural stratifications on the mapping cylinder of a stratified
submersion :
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Proposition 1. Let π : E → M ′ be a C1 riemannian vector bundle and M = SεM ′ the ε-
sphere bundle of E. If W ⊆ M , W ′ = π(W ) ⊆ M ′ are two Whitney stratifications such that
πW : W → W ′ is a stratified submersion which satisfies condition (D), then the closed stratified
mapping cylinder

CW ′(W ) =
⊔

Y⊆W

[
(CπW (Y )(Y )− πW (Y )) t πW (Y ) t Y

]
is a Whitney stratified set.

Proof. [Go]2 Appendix A.1 or [Mu]3 for a different proof.

Then Goresky proved the Proposition 2 below, a partial solution of Problem 1 (of which we
give a complete solution in Theorem 6 of the present paper) which is a relatively synthetic amalgam
of the triangulation theorem of compact abstract stratified sets in [Go]3 and its utilization for
Whitney stratifications, and of Proposition 1 in [Go]2 App.1 (both presented in a slightly different
way also in [Go]1).

In Proposition 2 below and in the whole of this paper, a (linear-convex) cellular complex is,
following [Hu], [Mun], the analogue of a simplicial complex where one replaces the simplexes by
the cells and each cell is defined as the linear-convex hull of a finite set of points, not necessarily
independent, of some Euclidian space Rn. Thus a simplicial complex is obviously a cellular complex
while a cellular complex admits a subdivision which is a simplicial complex. A cellular map
f : K → K′ between cellular complexes sends each cell C of K into a cell f(C)of K′.

When K is a polyhedron, support of a given cellular complex [Hu], [Mun], we will denote by
ΣK its family of open cells which is of course a Whitney stratification of K.

In Proposition 2 a map h : K − L → X into a manifold X, where K, L ⊆ Rm are polyhedra,
will be called C1 if there exist cellular complexes ΣK and ΣL such that for every (open) cell σ ∈ ΣK
and point p ∈ σ − L, h is locally extendable to a C1-map on an open neighbourhood of p in the
plaine spanned by σ. We try to keep as much as possible the notations of Goresky.

Proposition 2 (Goresky [Go]3). Every compact Whitney stratified set X = (A,Σ) in Rm with
conical singularities and conical control data admits a Whitney cellulation (see Definition 3 below):
a stratified homeomorphism g : J → X ′ between a cellular complex J = (J,ΣJ) and a (b)-regular
refinement of Σ in (open) cells X ′ = (A,Σ′), Σ′ = {f(C)}C∈ΣJ

of X . Moreover for each stratum
X of Σ, the restriction gX : g−1(X) → X is C1.

In what follows we will consider every simplicial (or cellular) complex K of support K = |K|
as a set of open simplexes (resp. cells) σ ∈ K and for each closed simplex (resp. cell) we will
write σ ∈ K. In this way the set of open simplexes of K is a partition which can be considered as
the stratification of K whose strata are the open simplexes (resp. cells) with the usual adjacency
relations “τ < σ ⇐⇒ τ is a face of σ” and this stratification K is obviously Whitney (b)-regular.

Definition 3. A C1-triangulation (resp. C1-cellulation) of a subset B of a manifold X, is
a homeomorphism f : K − L → f(K − L) ⊆ X with image B = f(K − L), where K and L are
polyhedra (possibly L = ∅) for which there exist simplicial (resp. cellular) complexes K and L of
support |K| = K and |L| = L such that for each open simplex (resp. cell) σ ∈ K and every point
p ∈ σ − L there is an open neighbourhood Up of p in the affine space [σ] generated by σ and a C1

embedding f̃ : Up → X extending the restriction f|Up∩σ.
Note that the C1 extension f̃ is required for all points p ∈ σ − L but for no points p ∈ σ ∩ L.
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Since (b)-regularity is a local C1-invariant [Tr] then when L = ∅, f : K → B ⊆ X transforms
the (b)-regular stratification in simplexes (resp. cells) of K into a partition f(K) of X which is a
(b)-regular triangulation (resp. cellulation) of X.

Definition 4. Let X = (A,Σ) be an abstract stratified set.
A C1-triangulation (resp. C1-cellulation) of X is a homeomorphism f : K → A defined on

a polyhedron K such that for each stratum X ∈ Σ, f−1(X) is a subpolyhedron of K and the
restriction

fX : f−1(X) → X is a C1-triangulation (resp. C1-cellulation) of X .

Example 1. Let f : [0, 1] → A be the map defined by f(t) = te2πi
1
t and f(0) = (0, 0)

whose image A := f([0, 1]) is a spiral of R2, (b)-regular at f(0) = (0, 0). Of course f defines a
C0-triangulation of the C0-manifold with boundary A, but nor A is a C1-manifold with boundary
at (0, 0) neither f defines à C1-triangulation of A in the usual meaning.

If we consider the (b)-regular stratified space X = (A,Σ) where Σ :=
{
f({0}), f(]0, 1[), {f({1})

}
then f is a C1-triangulation (and a C1-cellulation) of X = (A,Σ) since Definitions 3 and 4 hold
∀X ∈ Σ : for X = f(]0, 1[) taking the polyedra K = {{0}, ]0, 1[, {1}} and L = {f(0), f(1)}.

Remark 2. A C1-triangulation (or C1-cellulation) f : K → A of an abstract stratified set
X = (A,Σ) contained in a manifold is not necessarily a (b)-regular stratification X . In fact, although
each stratum X of X inherits a (b)-regular triangulation or cellulation of X, however if τ < σ are
two open simplexes (or cells) such that f(τ) < f(σ) are contained respectively in two different
adjacent strata X < Y of X there is no reason to have (b)-regularity at the points x ∈ f(τ) < f(σ).

Remark 3. Let X = (A,Σ) be an abstract stratified set [Ma]1,2.
Then there exists d > 0 such that every chain of strata X1 < . . . < Xn = Y of X satisfies the

following multi-transversality property:
MT) : for every J ⊆ {1, . . . , n}, every intersection of hypersurfaces ∩j∈JSXjY (ε) of Y is

transverse in Y to the intersection ∩i 6∈JSXiY (ε′) for every ε, ε′ ∈]0, d[.

Notations. For each h-stratum X of X and for every d ∈ ]0, 1] one defines an h-manifold Xo
d

(with corners) and its boundary ∂Xo
d by setting :

Xo
d := X −

⋃
X′<X

TX′(d) ∂Xo
d = Xo

d

⋂ ( ⋃
X′<X

SX′(d)
)
.

Figure 3 Figure 4
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For i = 0, . . . , n− 1 , one denotes Ti(d) :=
⋃

dimX≤i TX(d) and T−1(d) = ∅.

Remark 4. If dimX = i then X − Ti−1(d) = X −
⋃
X′<X TX′(d) = Xo

d .

Definition 5. (Goresky [Go]1,3) Let X = (A,Σ) be an abstract stratified set.
An interior d-triangulation f for X is an embedding f : K → A defined on a polyhedron

K =
⊔
X∈ΣKX which is a disjoint union of polyhedra {KX}X∈Σ such that there exists a simplicial

complex K =
⊔
X∈ΣKX such that for each stratum X ∈ Σ :

1) |KX | = KX (so |K| = K ) and f(KX) = Xo
d ;

2) the restriction fKX
: KX → Xo

d ⊆ X is a C1-triangulation of the subset Xo
d of X ;

3) if i = dimX, f−1(SX(d)) = f−1(SX(d)− Ti−1(d)) is a subpolyhedron of tY >X∂ KY ;
4) the restriction π̃X := f−1 ◦ πX ◦ f| : f−1(SX(d)) → f−1(X) is PL :

f−1(SX(d)) = f−1(SX(d)− Ti−1(d))
f

−−−−−−−→ SX(d)− Ti−1(d)

π̃X ↓ ↓ πX

f−1(X) = f−1(X − Ti−1(d))
f

−−−−−−−→ X − Ti−1(d) .

It follows that :

Remark 5. If f : K → A is an interior d-triangulation of X , then ∀ X ∈ Σ the restriction

f| : f−1(SX(d)) −→ SX(d) is an interior d-triangulation of SX(d) .

Theorem 5. Let X = (A,Σ) be an abstract stratified set. Then :
1) there exists d > 0 small enough such that X admits an interior d-triangulation f .
2) for every d′ ∈]0, d[ there exists an interior d′-triangulation of X extending f .
Proof. [Go]3 section 3.

In 1976 [Go]1,3 Goresky introduced the following very useful notion :

Definition 6. Let X = (A,Σ) be an abstract stratified set. A family of maps{
rεX : TX(1)−X −→ SX(ε)

}
X∈Σ , ε∈]0,1[

,

is said to be a family of lines for X (with respect to a given system of control data
{
(TX , πX , ρX)

}
)

if for every pair of strata X < Y , the following properties hold :
1) every restriction rεXY := rεX|Y : TXY −→ SXY (ε) of rεX is a C1-map ;
2) πX ◦ rεX = πX ;
3) rε

′

X ◦ rεX = rε
′

X ;
4) πX ◦ rεY = πX ;
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5) ρY ◦ rεX = ρY ;
6) ρX ◦ rεY = ρX ;
7) rε

′

Y ◦ rεX = rεX ◦ rε
′

Y .

Goresky proved the following :

Proposition 3. Every Thom-Mather abstract stratified set X admits a family of lines.
Proof. [Go]3 section 2.

Remark 6. Since (b)-regular [Ma]1,2 stratifications admit structures of abstract stratified
sets a family of lines exists for them too.

3. Whitney cellulation of a compact Whitney stratified set

In the same spirit as in section 7 of [MPT], where in Definition 10 Example 1 and Remark 7 ii)
we introduce the notion of conical chart, we prove the Proposition below, in which we introduce the
notion of conical trivialization of X which provides a useful tool to study global or local problems
of a Whitney stratification and which we use as a starting point of the proof of our (b)-regular
cellulation Theorem.

Proposition 4 (and Definition). Let X = (A,Σ) be a compact Whitney stratified set in Rm.
There exists δ > 0 such that, for every d ∈]0, δ[, there exists a complete family of d-small

semidifferentiable conical trivializations of X , {Hx′
j
}j ,X∈Σ of X (see the proof for the definition).

Proof. Since X is (b)-regular it admits a structure of an abstract stratified set and so it is
locally topologically trivial via the Thom-Mather homeomorphism [Ma]1. Also for every stratum
X there exists dX > 0 such that (πX , ρX) : TX(dX) → X × [0, dX ] is a proper submersion [Ma]1.

Since X has finitely many strata we can define δi := min{dX : dimX = i} and δ := mini δi,
so that

(πX , ρX) : TX(d) → X × [0, d] is a proper submersion ∀X ∈ Σ and ∀ d ∈]0, δ] .

Moreover for every i-stratum X of X and x ∈ X, there exists a neighbourhood Ux of x in X
and a trivializing stratified homeomorphism Hx : Ux×π−1

X (x) → π−1
X (Ux)∩TX(d), which is smooth

on each stratum.
For every i ≤ n = dimX , since each i-stratum Xo

d is compact it admits a finite subcovering

(∗) : Xo
d ⊆ ∪rX

j=0 Ux′j so : π−1
X (Xo

d) ⊆ ∪rX
j=0 π

−1
X

(
Ux′

j

)
and

Ti(d)− Ti−1(d) =
⋃

dimX=i

[
TX(d)− Ti−1(d)

]
⊆

⋃
dimX=i

π−1
X

(
Xo
d) ⊆

⋃
dimX=i

rX⋃
j=0

π−1
X

(
Ux′

j

)
.

We call {Hx′
j
| j = 0, . . . , rX} a family of d-small conical trivializations of Xo

d .

Hence, by Remark 4 and the equalities (***) in Step 1 of the next Theorem 6, the whole of A,

(∗∗) : A =
n⋃

i = 0

[
Ti(d)− Ti−1(d)

]
⊆

n⋃
i = 0

⋃
dimX=i

rX⋃
j=0

π−1
X

(
Ux′

j

)
17



is completely covered by this finite family of open neighbourhoods of topological triviality of X .
We call {Hx′

j
}j ,X∈Σ a complete family of d-small conical trivializations of X .

Moreover, thanks to the solution of the smooth Whitney fibering conjecture [MPT], every
trivialization of the family {Hx′

j
: j = 0, . . . , rX }X∈Σ may be assumed to be horizontally-C1

(Theorem 10 of [MPT]) with respect to each stratum and moreover H -semidifferentiable with
respect to each pair of strata of X (Theorem 12 of [MPT]).

Then (in the same spirit as in Remark 7 [MPT] where we constructed conical charts of X )
we obtain, by definition, for every d ∈]0, δ[, a :

“complete family {Hx′
j
}j,X∈Σ of d-small semidifferentiable conical trivializations of X”.

We now prove the Whitney Cellulation Theorem :

Theorem 6. Every compact Whitney stratified set X = (A,Σ) in Rm admits a Whitney
cellulation. I.e. there exists a stratified homeomorphism g : J → X ′ between a cellular complex
J = (J,ΣJ) and a (b)-regular refinement of X in (open) cells X ′ = (A,Σ′), Σ′ = {g(C)}C∈ΣJ

such
that for each stratum X in Σ the restriction gX : g−1(X) → X is a C1-cellulation.

Proof. Let n = dimX .
Since X is a Whitney stratified set, it is an abstract stratified set for which the maps of the

system of control data F = {(πX , ρX) : TX → X× [0,∞[}X∈Σ are the restrictions to A of C1 maps
defined on open tubular neighbourhoods TX in Rm of each stratum X ∈ Σ [Ma]1,2.

The proof of the Whitney cellulation Theorem 6 requires a review of the triangulation theorem
of abstract stratified sets of Goresky [Go]3. We do this below, using various notations and properties
of Goresky without reproving them.

Step 1: Reviewing the triangulation theorem of abstract stratified sets for Whitney stratified
sets.

Let δ > 0 as obtained in Proposition 4 above and of which we will preserve the notations.
Since X is an abstract stratified set, for small enough d ∈]0, δ[ there exists an interior d-

triangulation f of X = (A,Σ) [Go]3 (see Definition 5) :

f : K = tX∈ΣKX −−−−−−−→ f(K) = tX∈ΣX
o
d ⊆ A .

Let us recall that by definition Ti(d) :=
⋃

dimX≤i TX(d) for i = 0, . . . , n−1 and T−1(d) = ∅.

Then the family {Ti(d)}n−1
i=−1 defines an increasing sequence of subsets of A :

∅ =: T−1(d) ⊆ T0(d) ⊆ · · · ⊆ Ti(d) ⊆ · · · ⊆ Tn−1(d) =
⋃

dimX≤n−1

TX(d) ⊆ A

so that by denoting Z :=
⊔

dimX =n X,

Zod :=
⊔

dimX =n

Xo
d and ∂Zod :=

⊔
dimX =n

∂Xo
d one has : f(K)− Tn−1(d) = Zod

18



and so :

(1) : A = f(K) ∪ Tn−1(d) = Zod t Tn−1(d) .

Then the family of subsets of A defined by {Ai := A− Ti−1(d)}ni=0 satisfies :

(∗ ∗ ∗) : Ai := A− Ti−1(d) =
[
A− Tn−1(d)

] ⊔ [
Tn−1(d)− Ti−1(d)

]
=

= Zod
⊔ [

Tn−1(d)− Ti−1(d)
]

= Zod
⊔ n−1⊔

r = i

[
Tr(d)− Tr−1(d)

]
,

and so it is a covering of A increasing for the decreasing index i = n, . . . , 0 with An = Zod and
A0 = A :

Zod = A− Tn−1(d) = An ⊆ An−1 ⊆ · · · ⊆ Ai ⊆ · · · ⊆ A0 = A ,

and moreover Ai−1 −Ai = Ti−1(d)− Ti−2(d) by which one finds :

(2) : Ai−1 = Ai t [Ti−1(d)− Ti−2(d)] .

Figure 5 Figure 6

The Whitney cellulation g : J → X ′ of X will be constructed by defining a finite sequence of
Whitney cellulations

{
gi : Ji → f(K) ∪ Ai

}
i=n,...,0

of the subsets f(K) ∪ Ai of A by extending
each Whitney cellulation

gi : Ji → f(K) ∪Ai ⊆ A to a Whitney cellulation gi−1 : Ji−1 → f(K) ∪Ai−1 ⊆ A

on a polyhedron Ji−1 ⊃ Ji to the new part Ti−1(d)−Ti−2(d) of the image (using the equality (2)).

More precisely, we will prove by decreasing induction on i that there exists a sequence of
stratified homeomorphisms {gi : Ji → f(K) ∪ Ai}i=n,...,0 defined on polyhedra K = Jn ⊆ · · · ⊆ J0

stratified by a sequence of cell complexes Jn, . . . ,J0 :

Jn ↪→ Jn−1 · · · Ji · · · J1 ↪→ J0

gn = f ↓ gn−1 ↓ gi ↓ g1 ↓ ↓ g0 = g

f(K) = f(K) ∪An ↪→ f(K) ∪An−1 · · · f(K) ∪Ai · · · f(K) ∪A1 ↪→ f(K) ∪A0 = A
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such that for every i = n, . . . , 0 one has :

1) |Ji| = Ji and gi(Ji) = f(K) ∪Ai ;
2) ∀X ∈ Σ, the restriction gi | : g−1

i (X) → X is a C1-triangulation of its image and
g−1
i (X) is a cell subcomplex of Ji ;

3) ∀X ′ < X, the subset g−1
i

(
SX′(d)

)
is a cell subcomplex of Ji and

the restriction π̃iX′ : g−1
i (SX′(d)) → g−1

i (X ′) is a cellular map ;
4) the stratification ΣJi = { gi(C) }C∈Ji = {gi(C) | C is a cell of Ji } induced by Ji on

gi(Ji) = Ai ∪ f(K) is (b)-regular (i.e. gi is a Whitney cellulation of f(K) ∪Ai).
In this way, we will obtain the claimed Whitney cellulation g : J → A as the last map g = g0.

As f : K = tXKX −→ f(K) = tXXo
d ⊆ A is an interior d-triangulation of X , then by the

properties 1) and 2) of Definition 5, taking

Jn = K =
⊔
X∈Σ

KX , Jn = K =
⊔
X∈Σ

KX , and gn = f

one finds :

gn(Jn) = f(K) = f(K) ∪ Zod = f(K) ∪ [A− Tn−1(d)] = f(K) ∪An
so the choice f = gn satisfies 1) of the inductive hypothesis above and moreover the properties 2)
and 3) hold too thanks to the corresponding properties 2) and 3) of f in Definition 5.

Moreover, since for every stratum X of X , the stratification in open simplexes underlying the
simplicial complex KX (we denote it again KX) is obviously (b)-regular and by 2) of Definition
5 each fX : KX = f−1(X) −→ Xo

d is a C1-triangulation of Xo
d and since (b)-regularity is

preserved by C1-diffeomorphisms, then the stratification by open simplexes f(KX) induced by the
simplicial complex KX on Xo

d is a (b)-regular stratification of the (cornered) manifold Xo
d ⊆ X and

its boundary ∂Xo
d and the property 4) above holds.

Let us suppose now that, by inductive hypothesis, there exists a sequence of stratified
homeomorphisms {gr : Jr → f(K) ∪ Ar}r=n,...,i defined on polyhedra K = Jn ⊆ · · · ⊆ Ji and
a sequence of corresponding cellular complexes K = Jn ⊆ · · · ⊆ Ji satisfying all the properties
1), . . . , 4).

In order to construct the map gi−1 : Ji−1 → f(K)∪Ai−1 and a cellular complex Ji−1 satisfying
1), . . . , 4), let us consider for each (i− 1)-stratum X of X two cellular complexes AX and BX with
supports respectively AX := g−1

i (SX(d)) and BX := g−1
i (X) such that:

5) the restriction π̃i−1
X = g−1

i ◦ πX ◦ gi| : AX → BX is a cellular map (see also Lemma 1) :

AX = g−1
i (SX(d)) = g−1

i (SX(d)− Ti−2(d))
gi

−−−−−−−→ SX(d)− Ti−2(d)

π̃i−1
X ↓ ↓ πX

BX = g−1
i (X) = g−1

i (X − Ti−2(d))
gi

−−−−−−−→ X − Ti−2(d) .

6) ∀X ′ < X, the sets g−1
i (SX′(d)∩X) and g−1

i (SX(d)∩ SX′(d)) are full subcomplexes of Ji.
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We also require that max{diamgi(τ) | τ ∈ BX } < d < δ < δi so that ∃ j ≤ rX : gi(τ) ⊆ Ux′
j
.

Then :
7) π−1

X gi(τ) ⊆ π−1
X (Ux′

j
) is contained in the image π−1

X (Ux′
j
) of a local trivialisation of X .

Lemma 1. If dimX = i− 1, then for every r ≤ i− 1 one has :
a) g−1

i (SX(d)) = g−1
i (SX(d)− Tr(d)) ;

b) g−1
i (X) = g−1

i (X − Tr(d)).

Proof of a). The proof of (⊇) is obvious so we only have to prove (⊆).

Proof of (⊆). If p ∈ g−1
i (SX(d)) with dimX = i− 1 then y := gi(p) ∈ SX(d).

As d > 0 there exists a stratum Y > X, such that y ∈ SX(d) ∩ Y , so y ∈ Y od .
Since Y > X we have j := dimY > dimX = i− 1, i.e. j− 1 ≥ i− 1 and so Ti−1(d) ⊆ Tj−1(d).
Hence for every r ≤ i− 1 we have Tr(d) ⊆ Tj−1(d) and we conclude that :

y ∈ Y od := Y −Tj−1(d) ⇒ y 6∈ Tj−1(d) ⇒ y 6∈ Tr(d) ⇒ y ∈ SX(d)−Tr(d) .

Proof of b). As in the proof of a) it suffices to prove (⊆).
Proof of (⊆). If p ∈ g−1

i (X), x := gi(p) ∈ X. Then for every r ≤ i− 1 = dimX one has:

x ∈ gi(Ji) = f(K) ∪Ai ⇒

x ∈ f(K) = tY ∈ΣY
o
d ⇒ x ∈ Xo

d ⇒ x 6∈ Tr(d)
or
x ∈ Ai := A− Ti−1(d) ⇒ x 6∈ Ti−1(d) ⇒ x 6∈ Tr(d) .

Hence in each case we find : x ∈ SX(d)− Tr(d) and p ∈ g−1
i (SX(d)− Tr(d)).

Remark 7. The stratified set X being locally topologically trivial, for every closed cell
τ := g−1

i πXgi(σ) ∈ BX the cell gi(τ) is contained in a domain Uxr
of local topological triviality of

the stratum X of X . Then, π−1
X (gi(τ)) is obtained by considering the family of closed cells σ ∈ AX

such that πXgi(σ) ⊆ X, and it has a partition in open cells as follows (where below we denote
π := π̃i−1

X : AX → BX to write π(σ) = τ) :

π−1
X (gi(τ)) =

⊔
π(σ)=τ

π−1
X (gi(π(σ))) =

⊔
π(σ)=τ , σ′≤σ

π−1
X (gi(π(σ′)))

where each σ′ ≤ σ ∈ AX and τ ∈ BX are open cells and each

π−1
X (gi(π(σ′))) is homeomorphic to gi(σ′)× [0, d[∼= σ′ × [0, d[ = σ′ × {0} t σ′×]0, d[ .

Step 2 : Whitney stratifying Ti−1(d)− Ti−2(d) by open cells.
Let X be an (i− 1)-stratum of X . Below we will denote l=dimX = i− 1, k = m− l, g := gi.
Let x0, . . . , xα be the set of the vertices of the cells of Xo

d . As πX : g(AX) → g(BX) is a
cellular map (sending 0-cells of g(AX) in 0-cells of g(BX)), the set V(g(AX)) of vertices of the cells
of g(AX) is contained in the union of the links

V(g(AX)) ⊆
α⊔
j=0

LX(xj , d) =
α⊔
j=0

π−1
X (xj) ∩ SX(d) .
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Since X is locally trivial and X is connected, the stratified fibres π−1
X (xj) ⊆ π−1

X (Xo
d) are all

pairwise homeomorphic and this also holds for every pair of stratified links LX(xj , d) ∼= LX(xj′ , d).
For every cell g(τ) ∈ Xo

d (τ ∈ BX) having maximal dimension l, let U be an open neighbourhood
in X of g(τ) ⊆ Xo

d which is a domain of a chart ϕ : Rl×0k → U of X centered at a vertex xr ∈ g(τ).
It is not restrictive to suppose that U is one of the Ux′

j
covering Xo

d in the formula (*) at begin
of the proof of the Theorem and changing (possibly) the origin xr = x0 and so to suppose U = Ux0 .

By Theorem 7 in [MPT] there exists a local topological trivializationHx0 ofX over U ≡ Rl×0k

defined in the local coordinates of U by :

Hx0 : U × π−1
X (x0) −→ π−1

X (U) , Hx0(t1, . . . , tl, z0) = φl(tl, . . . , φ1(t1, z0) . . .)

and satisfying the smooth version of the Whitney fibering conjecture.
That is, Hx0 induces an (a)-regular foliation:

Fx0 =
{
Fz0 = Hx0(U × {z0)}

}
z0∈π−1

X
(x0)

satisfying (3) : lim
z→x

TzFz = TxX ∀x ∈ U ,

whose tangent spaces to each Fz (for each z = Hx0(t1, . . . , tl, z0)) are generated by the frame fields
(w1, . . . , wl) where wi(z) = Hx0∗(t1,...,tl,z0)(Ei).

Moreover, by Theorem 12, §8 in [MPT]), Hx0 is a horizontally-C1 and a semidifferentiable
homeomorphism rather than just a homeomorphism (see also §2.2 for more recalls). Then, for every
Y > X and y ∈ Y there exists a neighbourhood V of y in π−1

XY (U) such that the foliation

Fx0,Y =
{
Fz0,Y = Hx0(V×{z0)}

}
z0∈π−1

XY
(x0)

satisfies (4) : lim
z→y

TzFz,Y = TyY , ∀y ∈ π−1
XY (U).

Also for every xj vertex of the cell g(τ) ∈ g(BX), Hx0 induces by restriction a stratified
homeomorphism Hx0,xj between the fibers and by restriction between the links :

π−1
X (x0)

Hx0,xj−→ π−1
X (xj)

∪ ∪
LX(x0, d)

Hx0,xj−→ LX(xj , d)

defined by: Hx0,xj (t
j
1, . . . , t

j
l , z0) = φl(t

j
l , . . . , φ1(t

j
1, z0) . . .)

where (tj1, . . . , t
j
l ) ≡ xj are the local coordinates over U of xj and z0 ∈ LX(x0, d) ⊆ π−1

X (x0).

Let be SU (d) := SX(d) ∪ π−1
X (U) and ψ := ψU : SU (d) × [0,+∞[→ TX(d) the restriction of

the flow of −∇ρX(z). Then, for every x ∈ X, lim
z→x∈X

−∇ρX(z) = 0 and lim
(z,t)→(x,+∞)

ψ(z, t) = x.

We re-parametrize now the flow ψ : SU (d) × [0,+∞[→ TX(d) of the vector field −∇ρX by a
map rU : SU (d)× ]0, 1] → TX(d) asking that rU (z, t) = Lz ∩ SX(t).

For every fixed point z ∈ SU (d) and t ∈]0, d] there is a unique time s ∈ [0,+∞[ in which the
trajectory Lz = ψz([0,+∞[) meets SX(t) and it satisfies ρX(ψz(s)) = ρX(ψs(z)) = t.

There is hence a unique decreasing diffeomorphism γ : ]0, d] → [0,+∞[, γ(t) = s making the
following diagram commutative

SU (d)× {t} ↪→ SU (d)× ]0, d]
rt

U−→ SU (t)

1SU (d) × γ ↓ 1SU (d) × γ ↓ ↗ ψγ(t)

SU (d)× {γ(t)} ↪→ SU (d)× [0,+∞[
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and which allows us to re-interpret rtU as a level preserving stratified homeomorphism :

rtU : SU (d)× {t} −→ SU (t) , rtU (z) = ψ(z, γ(t)) = ψz(γ(t))

where γ satisfies γ(d) = 0 (since ψ(z, 0) = z and z ∈ SU (d) implies rdU (z) = z ).

Since πX : g(AX) → g(BX) is a cellular map the link LX(x0, d) is a cellular sub-complex
of g(AX) (see also Remark 5) and recall moreover by (1) of step 1) that Z = ∪X∈Σ ,dimX=nX
(n = dimX ) so LX(x0, d) ⊆ SX(d) ∩ Z ⊆ Z

Then for every σ ∈ AX and open cell g(σ) ⊆ LX(x0, d) ⊆ Z of maximal dimension (n− l− 1)
of the stratified link LX(x0, d) = tY >XLXY (x0, d), the open cone over g(σ) defined (using the
notations of §2.2) by

Cg(σ) :=
⊔

z0∈g(σ)

Lz0 = ψ
(
g(σ)× ]0,+∞[

) ∼= g(σ)× ]0,+∞[ ∼= g(σ)× ]0, d[

is an open (n − l)-cell of the fiber π−1
XZ(x0) vertically foliated by the (bπ)-regular trajectories of

the vector field −∇ρX (see §2.2).
Similarly we have the following partition in open cells :

Cg(σ) :=
⊔

z0∈g(σ)

Lz0 =
⊔

g(σ′)≤g(σ) , z0∈g(σ′)

Lz0 =
⊔

g(σ′)≤g(σ)

⊔
z0∈g(σ′)

Lz0 =
⊔

g(σ′)≤g(σ)

Cg(σ′)

where for every σ′ ≤ σ, dimσ′ = h, the cone Cg(σ′) over g(σ′) is an (h+ 1) open cell, such that :

i) Cg(σ′) < Cg(σ) for every σ′ < σ;

ii) Cg(σ′) ⊆ π−1
XY (x0) ∩ TXY (d) , for every g(σ′) ⊆ LXY (x0, d) with Y > X.

iii) For every open cell σ ∈ AX and z0 ∈ g(σ), let Lz0 = {z0} t Lz0 t {x0} be the closure of
Lz0 in A. Then for every σ′ ≤ σ the upper and lower closed cylinder over σ′, defined by

C̃g(σ′) := ψ(g(σ′)× [0,+∞[) t πX(g(σ′)) =
⊔

z0∈g(σ′)

Lz0 =
⊔

z0∈g(σ′)

{z0} t Lz0 t {x0}

is naturally stratified by :

C̃g(σ′) = g(σ′) t Cg(σ′) t {πX(g(σ′)) } = {x0}

∩ ∩ ∩

SX(d) t TX(d)−X t X

By using the corresponding notations for C̃g(σ) :=
⊔
z0∈g(σ){z0} t Lz0 t {x0} one finds that

the product g(τ) × C̃g(σ) is a closed n-cell contained in U × π−1
X (x0), and then by image of the

stratified homeomorphism Hx0 , one obtains that :

Hx0

(
g(τ) × C̃g(σ)

)
⊆ π−1

X (U) is a closed n-cell
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admitting the following natural stratification in open cells (since πX(g(σ)) = πX(g(σ′)) = {x0}):

(5) : Hx0

(
g(τ) × C̃g(σ)

)
=

⊔
g(τ ′)≤g(τ)⊆X

⊔
g(σ′)≤g(σ)⊆Lk(x0,d)

Hx0

(
g(τ ′) × C̃g(σ′)

)

=
⊔

g(τ ′)≤g(τ)⊆X

⊔
g(σ′)≤g(σ)⊆Lk(x0,d)

Hx0

(
g(τ ′) ×

(
g(σ′) t Cg(σ′) t {x0}

))

=
⊔

g(τ′)≤g(τ)⊆X

g(σ′)≤g(σ)⊆Lk(x0,d)

Hx0

(
g(τ ′)× g(σ′)

)
t Hx0

(
g(τ ′)×Cg(σ′)

)
t Hx0

(
g(τ ′)×{x0}

)
.

which is a refinement of the stratification of π−1
X (g(τ)) = tY≥Xπ−1

XY (g(τ)). We call each cell
Hx0

(
g(τ ′)× Cg(σ′)

)
the open cylinder determined by g(τ ′) ⊆ g(τ) and by Cg(σ′) ⊆ π−1

X (x0).

Lemma 2. If {x0, . . . , xr} are the vertices of g(τ) and g(σ′j) := Hx0(xj , g(σ
′)), then

Hx0

(
g(τ ′) × Cg(σ′)

)
= Hxj

([
g(τ ′)−xj

]
× Cg(σ′

j
)

)
for every xj = (tj1, . . . , t

j
l ) ∈ U .

Thus each open cylinder Hxj

(
g(τ ′) × Cg(σ′)

)
does not depend on the vertex xj chosen as origin

of the topological trivialisation Hxj
to define it.

Proof. Thanks to the solution of the Whitney fibering conjecture [MPT] the frame fields
(w1, . . . wl) whose flows (φ1, . . . φl) define Hx0 , by Hx0(t1, . . . , tl, z0) = φl(tl, . . . φ1(t1, z0)) and Hxj

by the same formula, satisfy [wi, wj ] = 0 and so the flows φ1, . . . φl commute [MPT].
It follows that for every t = (t1, . . . , tl) ∈ U one has

Hx0(t, z) = Hx0(xj + (t− xj), z) = Hxj
(t− xj , zj) where zj := Hx0(xj , z) ∈ π−1

X (xj)

i.e. the diagram below topological trivializations Hx0 and Hxj

U × π−1
X (x0)

Hx0
−−−−−−−→ π−1

X (U)

Hj ↓ ↓ id

U × π−1
X (xj)

Hxj

−−−−−−−→ π−1
X (U) .

is commutative where Hj(t, z) := Hx0(t− xj , z).
Hence, since all vertices {x0, . . . , xr} of g(τ) are contained in the same domain U ⊆ X of

topological triviality, one easily find :
i) if z ∈ π−1

X (x0) then zj := Hx0(xj , z) ∈ π−1
X (xj) ;

ii) if g(σ′) ⊆ LX(x0, d) then g(σ′j) := Hx0(xj , g(σ
′)) ⊆ LX(xj , d) ;

iii) if z0 ∈ LX(x0, d) then Lzj
0

:= Hx0({xj} × Lz0) is a line of −∇ρX starting from zj0.
iv) Cg(σ′

j
) = Hx0({xj} × Cg(σ′)) is the open cone over g(σ′j) .

v) Hx0

(
g(τ ′)× Cg(σ′)

)
= Hxj

((
g(τ ′)− xj

)
× Cg(σ′

j
)

)
.
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Step 3. The stratification of each closed cell Hx0

(
g(τ) × C̃g(σ)

)
is (b)-regular.

The closed cell Hx0

(
g(τ) × C̃g(σ)

)
has three different types of strata (open cells) :

1) Hx0

(
g(τ ′)× g(σ′)

)
⊆ SX(d) ;

2) Hx0

(
g(τ ′)× Cg(σ′)

)
⊆ TX(d)−X ;

3) Hx0

(
g(τ ′)× {x0}

)
⊆ X ,

where g(τ ′) ≤ g(τ) ⊆ Xo
d and g(σ′) ≤ g(σ) ⊆ L(x0, d).

Two cells of type 1) are both contained in the stratification tY >XSXY (d)− Ti−2(d) ⊆ g(AX)
so they satisfy (b)-regularity thanks to the inductive hypothesis on g = gi. The same reason proves
(b)-regularity of any two cells of type 3) contained this time in Xo

d ⊆ g(BX).

So it remains to prove (b)-regularity of two adjacent cells one at least of which is of type 2) and
this reduces the proof of (b)-regularity to the case where the bigger stratum is Hx0

(
g(τ)× Cg(σ)

)
.

We have then the following five cases corresponding via Hx0 to the following adjacencies ;

(6) :

g(τ)× g(σ) g(τ ′)× g(σ′)
∧

g(τ)× Cg(σ) > g(τ ′)× Cg(σ′)
∨

g(τ)× {x0} g(τ ′)× {x0} ,

and since the restriction Hx0|U = id, is the identity over U , corresponding to the adjacencies in the
Figure 7 below.

Figure 7
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Figure 7 represents a closed stratified mapping cylinder over a cell g(τ) in the three strata
cases X(1) < Y (2) < Z(3) ⊆ R3 where g(τ) is stratified by g(τ) and two vertices x0, x1 = g(τ ′) and
dimL(x0, d) = 1 and it is stratified by an arc g(σ) and two points one of which is g(σ′).

Figure 8

Figure 8 represents a closed stratified mapping cylinder over a cell g(τ) in the two strata
cases X(1) < Z(2) ⊆ R2 where g(τ) is stratified by g(τ) and two vertices x0, x1 = g(τ ′) and
dimL(x0, d) = 0 and it is stratified by a point g(σ).

Now the (b)-regularity of the incidence relation of the image via Hx0 of the two lower lines of
diagram (6) :

Hx0

(
g(τ)× Cg(σ)

)
> Hx0

(
g(τ ′)× Cg(σ′)

)
∨

Hx0

(
g(τ)× {x0}

)
> Hx0

(
g(τ ′)× {x0}

)
follows (using the solution of the Whitney fibering conjecture [MPT]) by Corollary 3 of §2.2 by
taking R = g(τ ′), S = g(τ) and N ′ = g(σ′) and N = g(σ).

The (b)-regularity of the incidence relation of the image via Hx0 of the two upper lines of
diagram (6) :

Hx0

(
g(τ)× g(σ)

)
Hx0

(
g(τ ′)× g(σ′)

)
∧

Hx0

(
g(τ)× Cg(σ)

)
Hx0

(
g(τ ′)× Cg(σ′)

)
is obtained as follows.
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Since g(σ)tCg(σ) is a C1 manifold with boundary g(σ) then g(σ) < Cg(σ) is (b)-regular and so
g(τ)× g(σ) < g(τ)×Cg(σ) is too. Moreover the restriction of Hx0 to the stratum of X containing
g(σ) t Cg(σ) being a C1-diffeomorphism then

Hx0

(
g(τ)× g(σ)

)
< Hx0

(
g(τ)× Cg(σ)

)
is also (b)-regular by [Tr].

The proof that Hx0

(
g(τ)×Cg(σ)

)
> Hx0

(
g(τ ′)× g(σ′)

)
is (b)-regular is similar and easier than

the (b)-regularity of Hx0

(
g(τ)× Cg(σ)

)
> Hx0

(
g(τ ′)× g(σ′)

)
.

Step 4) : Definition of a cellulation G : C −→ Ti−1(d)− Ti−2(d) .
Let us consider the closed linear cellular cone Cσ := {t · q |q ∈ σ, t ∈ [0, d] } over σ and the

cylinder of Cσ over τ , defined by Cτ, σ := τ × Cσ with their natural stratifications in open cells.
Let us denote moreover (with obvious meaning of the symbols) by Cσ, Cτ, σ their supports and

by Cσ, Cτ, σ the supports of their corresponding open cells.

Then the map

Gτ, σ : Cτ, σ := τ×Cσ −→ Hx0

(
g(τ)×Cg(σ)

)
⊆ π−1

X

(
g(τ)

)
, Gτ, σ(p, t·q) = Hx0

(
g(p), rtU (g(q))

)
is a stratified homeomorphism which is a cellulation of Hx0

(
g(τ)× Cg(σ)

)
.

Moreover since π−1
X (x0) = ∪σ∈L(x0,d)Cg(σ), using the same trivialization Hx0 , one has

π−1
X (g(τ)) = Hx0

(
g(τ)× π−1

X (x0)
)

=
⋃

g(σ)⊆LX(x0,d)

Hx0(g(τ)× Cg(σ))

and by considering the cellular complex union : Cτ =
⋃
σ Cτ, σ (where g(σ) ⊆ LX(x0, d)) we find

a cellulation Gτ : Cτ −→ π−1
X (g(τ)) of π−1

X (g(τ)).
Then all linear closed cell complexes of the family { Cτ =

⋃
g(σ)⊆LX(x0,d)

Cτ, σ }τ⊆BX , dim τ=l,
each of which defines a cellulation of π−1

X (g(τ)), glue together into a unique (abstract) cell complex
by the equivalence relation identifying the points having the same image via some Hxj j = 0, . . . , α
in A. We obtain thus the cell complex CX :=

⋃
τ Cτ/ ≡ (where g(τ) ⊆ Xo

d , and dim g(τ) = l),
where the equivalence ≡ for every (p, q) ∈ Cτ and every (p′, q′) ∈ Cτ ′ is defined by :

(p, q) ≡ (p′, q′) ⇐⇒ ∃ i , j ∈ {0, . . . , α} :


(p, q) ∈ Cτ,σ with g(τ) ⊆ Uxi

,

(p′, q′) ∈ Cτ ′,σ′ with g(τ ′) ⊆ Uxj ,

Gτ,σ(p, q) = Gτ ′,σ′(p
′, q′) in π−1

X (Uxi
∩ Uxj

) .

In this way, all maps Gτ, σ (or equivalently all Gτ ) glue together defining a map

GX : CX −→
⋃

g(τ)⊆Xo
d
, dim g(τ)=l

π−1
X (g(τ))
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which is a stratified homeomorphism and a cellulation of⋃
g(τ)⊆Xo

d
, dim g(τ)=l

π−1
X (g(τ)) = π−1

X (Xo
d) = TX(d)− Ti−2(d) .

Remark 8. Since g(σ) ⊆ LX(x0, d) ⇐⇒ σ ⊆ g−1
(
LX(x0, d)

)
⊆ AX ⇐⇒ Cσ =

(
σ × [0, d]

)
/(q,0)≡π(q)

g(τ) ⊆ Xo
d ⇐⇒ τ ⊆ g−1

(
Xo
d) = BX ⇐⇒ τ ∈ BX ,

then one has the homeomorphism of cellular complexes :

CX :=
⋃
τ∈BX

Cτ =
⋃
τ∈BX

⋃
π(σ)≤τ

τ×Cσ =
⋃
τ∈BX

⋃
π(σ)≤τ

(
σ×[0, d]

)
/(q,0)≡π(q)

∼=
(
AX×[0, d]∪BX

)
/(q,0)≡π(q)

.

Finally taking X such that dimX = l = i− 1, the union map defined on C := tdimX = i−1CX :

G :=
⊔

dimX = i−1

GX : C −−−−−−−→ Ti−1(d)− Ti−2(d)

fills by open cells the closed subset⊔
dimX = i−1

(
TX(d)− Ti−2(d)

)
= Ti−1(d)− Ti−2(d)

and defines a cellular homeomorphism which is C1 on each stratum of X and induces by image the
cellular stratification G(C) of Ti−i(d)− Ti−2(d).

In analogy with the notations of Goresky, by setting W := g(AX) and W ′ := πX(W ) =
g(BX), the cellular complex G(C) coincides with the stratified mapping cylinder CW ′(W ) whose
largest dimensional closed cells are those of the union below :

CW ′(W ) := G(C) =
⊔

dimX= i−1

⋃
dim g(τ)=l

g(τ)⊆Uxj
⊆Xo

d

⋃
dim g(σ)=n−l−1
g(σ)⊆LX (xj,d)

Hxj

(
g(τ)× Cg(σ)

)

Figure 8
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Remark 9. Since the cellular complex Ji has a (b)-regular natural stratification in open
cells and by property 2) of the inductive hypothesis the map gi = g : Ji → f(K) ∪ Ai ⊆ A
is a C1-embedding on each stratum of X , then gi induces on its image f(K) ∪ Ai a (b)-regular
stratification in cells. Hence, the partitions in cells W and W ′ below ⊆ f(K) ∪ Ai inherit two
Whitney cellulations:

W a (b)-regular cellulation of
⊔

dimX = i−1 SX(d)− Ti−2(d)

and of its projection

W ′ a (b)-regular cellulation of
⊔

dimX=i−1 X − Ti−2(d) =
⊔

dimX=i−1X
o
d .

Remark 10. Every closed cell Hxj

(
g(τ) × Cg(σ)

)
with g(τ) ⊆ Uxj

⊆ Xo
d is the image of the

cellular complex τ × Cσ via the composition map

Hxj
◦ Fτ ,σ : τ × Cσ

Fτ ,σ−→ g(τ)× Cg(σ)

Hxj−→ Hxj

(
g(τ)× Cg(σ)

)
⊆ π−1

X

(
g(τ)

)
⊆ π−1

X (Uxj
)

(p, t · q) −→
(
g(p), rtUxj

(g(q))
)
−→ Hxj

(
g(p), rtUxj

(g(q))
)
.

Since the cellular complex τ × Cσ with its natural stratification in open cells is obviously (b)-
regular, also the map g = gi is (by induction) a C1-embedding, rtUxj

and Hxj
are C1 on each

stratum and Hxj
is horizontally-C1 near each adjacency relation, it follows that the closed cell

Hxj

(
g(τ)× Cg(σ)

)
with its induced stratification is (b)-regular (as we saw in Step 3).

Step 5) : End of the induction and of the proof of Theorem 6 of Whitney cellulation.

Let us denote by π̃i−1 the disjoint union of the cellular maps {π̃i−1
X : AX → BX}dimX=i−1 :

π̃i−1 :=
⊔

dimX=i−1

π̃i−1
X :

⊔
dimX=i−1

AX −→
⊔

dimX=i−1

BX

By gluing the two polyhedra Ji = |Ji| and C = |C| and their corresponding cellular complexes
Ji and C by identifying their points and subpolyhedra p ∈ P ⊆ Ji and p′ ∈ P ′ ⊆ C and their
sub-complexes P ⊆ Ji and P ′ ⊆ C having the same images via gi and G :

p ≡ p′ ⇐⇒ gi(p) = G(p′) in
⊔

dimX=i−1

(
SX(d) tXo

d

)
one finds a new polyhedron Ji−1 := Ji tP≡P ′ C and a new cellular complex Ji−1 := Ji tP≡P ′ C
and one defines a cellulation gi−1 extending gi by :

gi−1 := gi tP≡P ′ G : Ji−1 := Ji tP≡P ′ C −→ gi(Ji) ∪ G(C) .

By the inductive hypothesis and the equality (2) in Step 1 the image of gi−1 is :

gi−1(Ji tP≡P ′ C) = gi(Ji) ∪G(C) = [f(K) ∪ Ai] ∪ [Ti−1(d)− Ti−2(d)] = f(K) ∪Ai−1
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and hence the induced stratification in open cells on Ai−1 satisfies 1) of the inductive hypothesis,
moreover 2) and 3) are satisfied by the construction of the polyhedron Ji−1 and finally the cell
stratification ΣJi−1 := {gi−1(C) | C ∈ Ji−1 } has all incidence relations which are (b)-regular
thanks to Step 3 and so gi−1 satisfies all the inductive hypotheses 1), . . . , 4) and defines a Whitney
cellulation of f(K) ∪Ai−1.

This completes our proof by induction and so the final map g0 : J0 → A defines the desired
Whitney cellulation X ′ := g0(J0) of X .

By the proof of Theorem 6 one can deduce the following Corollaries :

Corollary 4. Let X = (A,Σ) be a compact Whitney stratified set in Rm.

1) There exists ε > 0, such that ∀δ ∈]0, ε], X has a Whitney cellulation X ′ having radius < δ.

2) For every open covering U = {Ui}i of A, there exists a Whitney cellulation X ′ of X
subordinated to U : every (open) cell of X ′ is contained in some open set Ui of U .

Remark 11. When X = (A,Σ) admits 0-dimensional strata in the last step of the induction
each simplex g(τ) ⊆ X 0 reduces to a simple point x0 and so after smoothly triangulating each cell
g(σ) ⊆ LA(x0, d), the mapping cylinder Cg(σ′), for every σ′ < σ becomes (more than a cellular
complex also) a simplicial complex.

Thus in the special case of stratifications having only isolated singularities one finds a Whitney
triangulation. Remark that in this case (b)-regularity of X reduces to (bπ)-regularity.

Corollary 5. Each Whitney stratification having only 0-dimensional isolated singularities
admits a Whitney triangulation.

4. Whitney Homology and the Goresky representation conjecture.

4.1. Whitney homology.

In this section we recall the problem posed by Goresky in his thesis [Go]1 Geometric
cohomology and homology of stratified objects (1976) and later in his paper Whitney stratified chains
and cochains (1981) [Go]2.

In these works Goresky defines for every Whitney stratified set X = (A,Σ), a homology
theory of sets WH∗(X ) whose cycles are Whitney substratified sets of X and whose homologies are
cobordisms of Whitney cycles in X×[0, 1] and defines a representation map Rk : WHk(X ) → Hk(X )
corresponding to the Thom-Steenrod epresentation map between the differential bordism and the
singular homology of a space. Then in a main Theorem (Theorem 3.4. [Go]2) he proves that the
map Rk is a bijection if the stratification X is reduced to a single smooth closed manifold.

Despite the depth of his work Goresky does not obtain the bijectivity of the representation
map Rk : WHk(X ) → Hk(X ) in the case where X is an arbitrary Whitney stratification ; so he
poses the conjecture “Theor. 3.4. may even be true if X . . .” (1981, p.174) or again “it is almost
certainly true . . . that the map Rk is a bijection for an arbitrary Whitney stratification X” (1976,
p. 52).

It is useful also to recall that :
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i) Goresky introduces and develops a corresponding geometric cohomology theory of sets
WHk(X ) and maps Rk : WHk(X ) → Hk(X ), and in this case he proves the bijectivity of the
cohomological representation Rk.

ii) Both Goresky’s theories were reconsidered and slightly improved by the first author of
the present paper in [Mu]1,2 through the introduction of a sum operation geometrically meaning
“transverse union” of stratified cycles and cocycles with which the Goresky sets WHk(X ) (when
X is a manifold) and WHk(X ) (for every Whitney stratification X ) become groups and the
representation maps Rk et Rk become group isomorphisms. Starting from [Mu]1 one says Whitney
homology to refer to the sets WHk(X ) and uses Goresky Representation for the maps Rk.

The formal description below of Goresky’s theory comes from [Mu]1 (§2.1.).

§4.2. Goresky’s representation conjecture.

The Goresky representation. A stratified k-subspace of a Whitney stratified set X = (A,Σ) is
a Whitney stratified set V = (V,ΣV ) of dimension k which has every stratum contained in some
stratum of X .

A k-orientation of V is an element z =
∑

j∈Jk
njV

k
j of the free abelian group Ck(V) on Z

generated by the set of the oriented k-strata V kj of V in which one identifies the elements with
opposite orientations and multiplicity in Z. With these hypotheses the reduction of ξ is defined
as the new chain ξ/ := (V/z, z) obtained by restricting the support of V to its essential part: i.e.
by considering only the strata V kj adjacent to some Vj with maximal dimension k (hence A ⊆ Vj)
and multiplicity nj 6= 0 in Z. Explicitly V/z :=

⋃
nj 6=0 Vj =

⋃
nj 6=0 Vj with the obvious induced

stratification. A k-cycle ξ = (V, z) is a chain whose boundary ∂ξ is zero, where ∂ξ is defined by
the reduction ∂ξ := (Vk−1, ∂z)/ and ∂z is given by the homological boundary operator through the
natural isomorphisms ψk, ψk−1 as in the diagram

∂ : Ck(V )
ψk→ Hk(Vk, Vk−1)

∂k→ Hk−1(Vk−1, Vk−2)
ψ−1

k−1→ Ck−1(Vk−1).

Two Whitney k-cycles ξ, ξ′ of X are called cobordant if there exists a (k+1)-chain ζ of X × [0, 1]
such that ∂ζ = ξ′ × {1} − ξ × {0} and one writes : ζ : ξ ≡ ξ′. This defines an equivalence relation
(the stratified cobordism) on the class of all Whitney stratified k-cycles of X .

Goresky introduces in [Go]1,2 the quotient set WHk(X ) of the class of all k-cycles modulo
stratified cobordism.

Fix now a k-cycle ξ = (V, z); we have ∂z = 0 and therefore ∂kψk(z) = 0. Thus by the exactness
of the pair (Vk, Vk−1) and looking at the diagram

∂k

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−| ↓

Hk(Vk−1) → Hk(Vk)
i∗→ Hk(Vk,Vk−1)

∂→ Hk−1(Vk−1)
j∗→ Hk−1(Vk−1,Vk−2)

I∗ ↓ ψk ↑ ↑ ψk−1

Hk(X) Ck(Vk)
∂

−−−−−−−−−−−−−−−−−−−−−→ Ck−1(Vk−1)
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we get 0 = ∂kψk(z) = j∗∂ψk(z) and ∂ψk(z) = 0.
Hence ψk(z) ∈ Ker∂ = Imi∗ so it comes from a unique element i−1

∗ (ψk(z)) whose image
Rk([ξ]) = I∗i

−1
∗ (ψk(z)) in Hk(A) depends only on the cobordism class [ξ]X ∈WHk(X ) [Go]1,2 and

is called the fundamental class of ξ in Hk(A).
The map Rk : WHk(X ) → Hk(A) is the analogue of the Steenrod map in the differentiable

Thom cobordism theory, thus we call it the Goresky representation map.

Goresky [Go]1,2 proved the following:

Theorem 7. If X is the trivial stratification Σ = {M} of a manifold M , the representation
map

Rk : WHk(X ) → Hk(A) is a bijection.

Thanks to our cellulation Theorem 6 we can now prove Goresky’s Conjecture :

Theorem 8. For every Whitney stratification X = (A,Σ) having finitely many strata the
Goresky homology representation map Rk : WHk(X ) →Hk(X ) is a bijection for every k ≤ dimX .

Proof. The proof is similar to that of Goresky (Theorem 3.4., [Go]2) for a manifold M using
a smooth (so (b)-regular) triangulation of M . We will just give some slight modifications.

Since we consider a Whitney stratification X instead of a smooth manifold M we will consider
a Whitney cellulation X ′ of X , which exists thanks to Theorem 6, instead of a smooth triangulation
of M and we use the cellular homology of X instead of the simplicial homology of M .

Surjectivity. The cellular homology being isomorphic to the singular homology Hk(A) of A,
every α ∈ Hk(A) can be represented by a cellular stratified cycle ξ of X ′. Since the cellulation X ′
is (b)-regular then the cobordism class [ξ]X defines an element of WHk(X ) such that Rk([ξ]X ) = α.

Injectivity. Let ξ = (V, z) and ξ′ = (V ′, z′) be two Whitney cycles of X whose classes [ξ]X and
[ξ′]X represent the same homology class via Rk in Hk(X ) : that is Rk([ξ]X ) = Rk([ξ′]X ).

By considering the restratification H of A× [0, 1] whose strata are those of the partition :
(
X × {0} − V × {0}

) ⊔
V × {0} in X × {0}

X×]0, 1[ in X×]0, 1[(
X × {1} − V ′ × {1}

) ⊔
V ′ × {1} in X × {1} ,

it is easy to see that H is a Whitney stratification and a refinement of X × [0, 1].
Thanks to the Whitney cellulation Theorem 6, H admits a Whitney cellulation H ′ inducing

on V × {0} and V ′ × {1} two refinements W × {0} and W ′ × {1}.
Hence the Whitney substratified object W and W ′ of X define two cycles η = (W , w) and

η′ = (W ′, w′) of X such that [η]X = [ξ]X and [η′]X = [ξ′]X ∈WHk(X ) so that :

Rk([η]X ) = Rk([ξ]X ) = Rk([ξ′]X ) = Rk([η′]X ).

Since Rk([η]X ) = Rk([η′]X ), the cellular homology cycles η et η′ represent the same cellular
homology class of X . Then there exists a cellular homology Z between W et W ′ which is a cellular
subcomplex of H ′ and since H ′ is a (b)-regular cellulation, then Z is (b)-regular too and it defines
a substratified Whitney (k + 1)-chain ζ = (Z, u) of H ′ × {1} such that ∂ζ = η′ × {1} − η × {1}.
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By embedding all these cycles and chains in X × [0, 1], the (k+1)-chain ζ ′ of X × [0, 1] obtained
by adding to ζ the stratified chain η × [0, 1], satisfies :

∂ζ ′ = ∂ζ + ∂ (η × [0, 1]) = (η′ × {1} − η × {1}) + (η × {1} − η × {0}) = η′ × {1} − η × {0}

(modulo reduction) and it defines thus a Whitney cobordism ζ ′ : η ≡ η′.
Hence we conclude that :

[η]X = [η′]X in WHk(X ) and so : [ξ]X = [ξ′]X in WHk(X ) .
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