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Abstract

We present an analysis of the transient electronic and transport properties of a nanojunction in the
presence of electron—electron and electron—phonon interactions. We introduce a novel numerical
approach which allows for an efficient evaluation of the non-equilibrium Green functions in the time
domain. Within this approach we implement different self-consistent diagrammatic approximations
in order to analyze the system evolution after a sudden connection to the leads and its convergence to
the steady state. These approximations are tested by comparison with available numerically exact
results, showing good agreement even for the case of large interaction strength. In addition to its
methodological advantages, this approach allows us to study several issues of broad current interest
like the build up in time of Kondo correlations and the presence or absence of bistability associated
with electron—phonon interactions. We find that, in general, correlation effects tend to remove the
possible appearance of charge bistability.

1. Introduction

For decades, studies of quantum transport in nanoscale devices have mainly focused on steady state properties
[1]. While the potential interest of transient dynamics was pointed out long ago [2, 3] such studies have recently
received an increasing attention in connection with advances in experimental techniques for time-resolved
measurements [4—13]. These studies are also motivated by the important technological goal of increasing the
operation speed of devices while reducing their energy consumption. Moreover, studies of the transient
dynamics after a quench of a given parameter are currently undertaken in many fields of physics ranging from
coldatoms [14, 15], correlated materials [ 16], dynamical phase transitions [17] and, more generally, in
connection to the question on the existence of a well defined stationary state for any given model of interacting
particles [18].

On the theoretical side transport transient dynamics has been addressed using different methods valid for
different regimes. Thus, the scattering approach or the non-equilibrium Green function formalism have been
used for describing the dynamics in the coherent non-interacting regime [ 19-30]. However, the inclusion of
interactions is essential to analyze the transport dynamics through localized states, as is the case of molecular
junctions or semiconducting quantum dots. For these cases, rate equations approaches, adequate for the
sequential tunneling regime, have been extensively used [31, 32]. The most interesting and general coherent-
interacting regime constitutes a great theoretical challenge. This regime has been addressed using several
complementary approaches: diagrammatic techniques [33—47], quantum Monte-Carlo (MC) [48-55], time-
dependent NRG [56—63], time-dependent DFT [64—70] among others [71-75].However, all of these techniques
as they are actually implemented have some limitations. For instance, numerically exact methods like quantum
MC are strongly time-consuming, require finite temperature and typically do not allow to reach long time scales.
Similar concerns can be applied to the case of time-dependent NRG.

©2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft
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This situation suggests the convenience of revisiting perturbative diagrammatic methods for analyzing
transport transient dynamics in interacting nanoscale devices. Although these methods have been partially
explored in previous works [33, 37], these implementations did not, in general, include self-consistency which
can become of essence in order to increase the accuracy and range of validity of these methods. Moreover, in the
case of models including electron—phonon interactions further methodological developments are needed in
order to take into account properly the dynamical build up of a non-equilibrium phonon distribution.

In this work we present an efficient algorithm for the integration of the time-dependent Dyson equation for
the non-equilibrium Green functions applied to different models of correlated nanoscale systems, including
electron—electron and electron—phonon interactions. To deal with these correlations we use a diagrammatic
expansion of the system self-energies at different levels of approximation including self-consistency effects. In
the case of electron—phonon interactions we introduce novel theoretical tools for solving the Dyson equations
associated with the phonon propagator in order to account properly for the build up of a non-equilibrium
phonon population. As a check of these approximations we study the convergence of the system properties like
mean charge, current and spectral density to their stationary values and also compare them to available
numerically exact results. When not available we have implemented our own NRG calculations. We show how
this time-dependent approach is quite convenient for including self-consistency in a straightforward way. We
exemplify the use of this methodology to investigate the issue of bistability for the molecular junction,
demonstrating how the inclusion of correlation effects beyond the mean-field approximation tends to eliminate
the bistable behavior of charge and current for certain parameter regimes.

The paper is organized as follows: in section 2 we introduce the formalism and the numerical techniques
used for computing the transient electronic and transport properties; in section 3 we analyze the dynamics ofa
system with strong electron—electron interactions taking the non-equilibrium Anderson model as a
paradigmatic example. Section 4 is devoted to the study of the transient properties in the presence of electron—
phonon interactions by means of the spinless Anderson—Holstein model. In section 5 we consider a situation
where both electron—electron and electron—phonon interactions are present using the spin-degenerate
Anderson—Holstein model. Finally we present the conclusions and provide a brief overlook of our main results
in section 6.

2. Keldysh formalism for the transient regime

For describing a nanoscale central region coupled to metallic electrodes we consider a model Hamiltonian of the
form H = Hyeqs + H. + Hy + Hiy, where

A A t q t
Hieads = Z Eko,ucjjg,l,cka,w H, = Z €0CosCo0»  Hr = Z [VkU,V(t)Ckg,yCOU + h.], (1)
g

ko,v ko,v

where ¢, with v = L(R) labeling the left (right) electrode, and ¢y, are annihilation operators for electrons in
the leads and in the central region respectively and vy, ,(t) is the tunneling amplitude which will depend on time.
The two electrodes can be kept at different chemical potentials via a constant bias voltage eV = i — pg. For
simplicity the central region will consist of a single quantum level denoted by ¢,. The last term, Hiy, in H
describes the many body interactions in the central region, which we shall specify later. Hereafter we assume
e=h=kg=1

In what follows we will consider the wide-band approximation for the electrodes. Within this
approximation the tunneling rates can be taken as constants, I}, = ©> " |[Vko,, 26 (W — €ks,,) ~ T|V[]? pp, where
pris the density of states at the Fermi edge, the resonant level width beingI" = I'; + I'g. Our aim is to analyze
the transient dynamics of such a correlated system after a sudden quench of the coupling to the electrodes at an
initial time that we take att = 0. Thus, v, () = 0(t)Vk,..» which allows us to define a time-dependent tunneling
rate I'(f) = O(1)I". Although this work is focused on this sudden connection case, more general time-dependent
Hamiltonians could be considered within the formalism presented below.

The dynamical electronic and transport properties can be obtained from the central level Green functions in
Keldysh space, G, (t, t') = 7i<f} cor () (1)), where T, is the chronological time-ordering operator along the
Keldysh contour [76] (see figure 1(a)). In the absence of interactions the problem is exactly solvable even in the
presence of an arbitrary time dependent potential [2, 3]. However, in the presence of interactions the problem of
obtaining the dynamical behavior of the system usually becomes extraordinarily demanding. On the one side,
there is the problem of finding an appropriate treatment of correlation effects by means of an adequate self-
energy. This is not always a simple task in the dynamical problem. On the other hand, even if an appropriate self-
energy is found, the numerical solution of the Dyson equation for the Keldysh propagators (which in the time
domain becomes an integral equation) is a formidable numerical problem.

In this section we present an efficient numerical procedure for the calculation of the Keldysh propagators in
the transient regime. It allows us to obtain accurate results for the electronic and transport properties such as the
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Figure 1. (a) Keldysh contour considered to analyze the transient regime, At being the time step in the discretized calculation of the
time dependent Green function. (b) Self-energy diagrams for the Coulomb interaction up to second order. The solid line represents
the electron propagator and the wavy line the interaction. In the HF diagram the double line indicates the charge calculated using the

b)

YHr =

$2) —

central region charge and current. The power of the method is additionally checked by analyzing the
convergence of these quantities (together with the central region spectral density) to their expected stationary

values.

We start from the Dyson equation for the central level Green function in Keldysh space, which can be

formally inverted

GU:[g(:I_ZU,T_

Za,int]7l >

2)

where gAU’1 is the inverse free electron propagator of the uncoupled central level, 3.,  the tunneling self-energy

and 3, i, the interaction self-energy. Interactions mixing the spin degree of freedom could be also included in
the equation as discussed in [77, 78]. Equation (2) can be numerically solved by discretizing time in the Keldysh
contour (see figure 1(a)). From now on the discretized matrix propagators and self-energies will be denoted in
bold type. The inverse free level Green function discretized on the contour is then given by [79]

-1
h_

—1
h_

-,

-1

ig,' = — : 3)

2Nx2N

where h = 1 F iegAt, Arindicates the time step in the discretization with N = t/At. In this expression the
initial level charge is determined by n,(0) = p,/(1 + p,). Note that the discretization over the contour is made
starting from ¢ = 0 to the final time through the positive Keldysh branch and returning to = 0 through the
negative one.
The time-dependent tunneling self-energies can be evaluated straightforwardly and at zero temperature
have the simple form [44]
T e—iu,,(t—t’) _ eiD(tft/) T

St =~ , SrE ) = —
T,(r( ) 71_2”: (t* t/) T,( ) 71_2”:

efi;tl/(tft/) _ e—iD(t—t’)
(t—1)

2D being the leads bandwidth. Alternatively, it is possible to take the limit D — oo provided that a finite

temperature, taken as the smallest energy parameter, is introduced (see [44]). In all the results given below we

consider this infinite bandwidth limit except when comparing with numerically exact methods where an energy
cutoff with a precise value is used. The other Keldysh self-energy components are then given by

St t)=—0@ — S it t') — (" — ST (¢, 1),
Ei;(t) t/) = —0(1‘ - t,)zf(:(t) t/) - a(t/ - t)Z}j(t, t/)’ (5)

, 4)

where 6(¢) is the Heaviside step function. Notice that there is an ambiguity in the definition of these self-energies
at equal times. It turns out that the different possible choices in the definition of X7 /.(¢, t) and 7. (¢, ) can
significantly affect the convergence and stability of the system properties with time. Although the precise value
of X1 (t, t)and X7, (#, t) depends on the whole energy range of the leads density of states, if one is not
interested in the dynamics on time scales smaller than 1/D there is freedom to choose this value. We have found
that the most stable algorithm corresponds to the choice

Y15 1) + Sri 1)
> .

We have checked that this choice appropriately recovers the correct stationary limit and perfectly reproduces the
transient behavior in the cases where an analytic expression is available (see section 3.1).

SE ) =S, 1) = — ©)
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The evaluation of the interaction self-energy will be discussed in sections 35 for the cases of electron—
electron and electron—phonon interactions. For computing the correlation part of the interaction self-energy we
also find that the most stable algorithm consists on the calculation of the non-diagonal Keldysh components
(flzl: (t, t"yand f);j(t, t")) and then using the relations of equations (5), (6) for the diagonal ones.

The self-energies are then evaluated in the discrete time mesh (figure 1(a)). The propagators in Keldysh space
can now be obtained by numerically inverting the matrix
6, =g, — (AEn, + S @)
Notice the factor (At)* introduced by the discretization procedure.

The knowledge of G, (t, ') enable us to calculate the evolution with time of the electronic and transport
properties of the system such as the central level charge, the spectral density and the current. Thus, the level
charge can be calculated as 1, (t) = iG, (t, t), while the current through the interface between the central
region an the electrodes is given by

t
L=> j; (G (1, X7, 1) — G F (@, 1) 27, (6, 1)]dH. ®)

Finally, following [54, 80], it is possible to define a time dependent auxiliary spectral density function per
spin A, (w, t) by calculating the current to weakly coupled probes and which tends to the correct stationary value
atlarge times A, (w) = Im[G2(w) — GX(w)] /2. For the present system we have

t —iw (t—t")
A,y = Im [ drS——— 1G], 0 - G ), ©)
0 ™

and the spin averaged spectral densityas A(w, t) = > A, (w, t) /2.

3. Flectron—electron interaction: the Anderson model

In this section we will consider the Anderson model [81] consisting of a single spin degenerate level with on-site
electron—electron repulsion, coupled to metallic electrodes. The interaction term in the Hamiltonian of
section 2 is given by H,_, = Ui, where i, = ¢4 cor and U'is the local Coulomb repulsion.

3.1. Hartree—Fock (HF) solution

The dynamical HF solution of the Anderson model provides an ideal test of the accuracy of the numerical
method presented in section 2 as in this case the time-dependent problem can be exactly solved [2, 3]. Thus,
within this approximation, the model becomes an effective single electron problem with a spin and time-
dependent central level

€ (t) = € + Ung(t), (10)

where 1,(%) is the central level occupation per spin. As commented in the previous section, the problem of an
impurity level in a time-dependent potential coupled to metallic leads is exactly solvable using the Keldysh
method. For the HF case addressed in this paper, the Keldysh Green function can be written in a very compact
way as

Gyt ) = e(t)0<t'>ie‘i[“(”‘”“me_rw){no@ + if d“’[ > %(w)]gg(w, 1g; @, t'>}’ (11)
m v=L,R

where
1 t 3 . R
et = [ dra@), g n= [ dreilenroaon (12)
0 0

The time evolution of the central level occupation is then obtained as n,, (t) = iG;f ae(t, t) and has the form

no (1) = em{ng«n + [ %‘”l )> Fyfy(w] 8, t)|2}. (13)

v=L,R

One can compare the result of the numerical method proposed in section 2 with equation (13). In the HF
approximation the self-energy is given by the left diagram of figure 1 (b) and has the form

24t ) = aU ny()6(t — t')8up (14)

where o, § = =+ are the Keldysh branch indexes. Notice that the Dirac delta in the previous equation is converted
to a Kronecker 6 function, including an additional 1 /At factor when discretizing in the time mesh. We can now
obtain the propagators in the HF approximation by inverting

4
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Figure 2. Time evolution of the level charge for the Anderson model. (a) Average population per spin at different levels of
approximation compared to MC simulations from [37], with U/I" = 8,V = 0,¢y = —U/2,T = 0.2', D = 10I"and
(n1(0), 1,(0)) = (0, 0) initial configuration. (b) and (c) results for the up (solid lines) and down (dashed lines) spin and the initial
configuration (1,0). In (b) the HF approximation (blue lines) is compared to the analytic expression (black points), given by
equation (13) for U/I" = 4, ¢y = —U/2 and in the infinite bandwidth limit. The arrows denote the stationary solution. The red lines
correspond to the second-order self-energy case. In (c) the level charge for the same parameters and three different Coulomb
interactions U/I" = 4 (red), 6 (green) and 8 (black) is shown for the second order approximation. In a continuous line we show the
evolution of the spin up and in dashed the evolution of the down spin.

A1

Gy, = Q;I — (A1, + Bup), (15)

and following the numerical procedure presented in the previous section. The dynamical properties of the
system can be now calculated from GHF,U.

It is worth remarking that the self-consistency condition on the charge in this approximation is particularly
straightforward as it is simply achieved by storing the charge values obtained in the discrete mesh by inverting
equation (15) at each time step, starting from the initial one #,(0). The undefined components of the self-energy
at each final time can be accurately approximated as the self-energy one time step before i.e.

YHE.o (N tn) & Xk o (tn— 1, tn—1)- The error introduced by this approximation becomes negligible for a
sufficiently small At. In the finite bandwidth situation this means At < 1/D and in the wide band limit Athas to
be taken smaller than the inverse of the greatest energy scale. It can be checked that this procedure leads to the
proper stationary values of 1,(¢) in the unrestricted self-consistent HF approximation.

In figure 2 we show the time evolution of the central level charge per spin at different levels of
approximation. In figure 2(a) we compare the exact MC results from [37] with the ones obtained for the self-
consistent and the non self-consistent (first order) HF approximation for the electron—hole symmetric situation
(6o = —U/2)and the (1;(0), 1,(0)) = (0, 0) initial configuration. As can be observed, the non self-consistent
approximation tends to deviate from the exact results, leading to a stationary charge overpassing the electron—
hole symmetric stationary value. This result is in agreement with [37], where the authors analyzed the level
population by means of a first order perturbation theory in the Coulomb interaction parameter U/I". Although a
good agreement is found for small values of U/T', the charge progressively deviates from the exact results for
increasing U/T". This pathological behavior is corrected within a fully self-consistent HF treatment, where the
average charge per spin n,(#) tends to the correct singlet state for all U/T" values. As shown below, inclusion of
correlations provided by the second order diagrams further improve the agreement with the numerically exact
results.

In figure 2(b) we show the level population evolution for an initially trapped spin, (1(0), 7,(0)) = (1, 0).
We have chosen a case with electron—hole symmetry (¢, = —U/2) and with parameters such that U/7I" > 1,
which leads to a magnetic solution in the stationary case within the HF approximation [81]. As can be observed,
the numerical solution is in remarkable agreement with the exact expression of equation (13). Let us comment
that for initial conditions with unbroken spin symmetry, i.e. (n;(0), 7,(0)) = (0, 0), (1, 1), the system always
tends to a non-magnetic solution for all values of U/T".

Finally, it is worth remarking that the prediction of a magnetic solution within the HF approximation at
zero-temperature is well known to be unphysical as the ground state of the system should be always a singlet
[82—84]. This behavior should be corrected when including electronic correlations in an appropriate way. In the
next section we will analyze the effect of correlations beyond the HF approximation in the transient regime.
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3.2. Effects of correlation beyond the Hartree—Fock approximation

Within a Green functions approach, correlation effects are included in the electron self-energy. In a stationary
situation an appropriate second-order self-energy in the interaction parameter U/I" can include these effectsin a
rather satisfactory way. Indeed it can be shown that the exact self-energy in the limit U /T" — oo has a functional
form close to the second order one and is in fact proportional to U? [85]. This fact has been used in different
interpolative approaches based on the second-order self-energy giving a reasonable approximation for the
Anderson model between the weak and strong coupling limits [85-88].

We will concentrate in the symmetric case, ¢y = —U/2, where correlations effects are more important. It
can be shown that the inclusion of the second-order self-energy yields a spectral density in the equilibrium
stationary case in rather good agreement with numerical renormalization group (NRG) calculations [89].
Indeed in this approximation the charge peaks in the spectral density are well described, fulfilling the Friedel
sum rule at zero energy, although somewhat overestimating the width of the Kondo resonance at very large U/T".
Itis important to notice that the second-order self-energy diagram has to be calculated with propagators
including the HF correction to the energy level (i.e. the HF propagators) in order to ensure electron—hole
symmetry. On the other hand, it can be shown that a fully self-consistent calculation of the diagrams (i.e. using
fully dressed propagators) yields instead a poor description of the spectral density [90].

In a general time-dependent non-equilibrium situation the self-energy diagrams must be calculated in
Keldysh space. The +— (—+) components of the second order self-energy have the simple expressions

&2+ — A+— A+— A=+

Yo (1)) = —U%Gyy (1, t') Gy 51, 1)) Gyg 4(1, 1),

&2)—+ A—+ A—+ A+—

Yo (1) =—=UGy o(t, t")Gyp 5t 1) Gyp st 1), (16)

where the HF propagators are calculated as indicated in equation (15). The other Keldysh components are then
given by the usual Keldysh relations, making the same choice for equal times as in equation (6). The propagators
in Keldysh space can now be evaluated inverting equation (7) with f]im,g = XA]HF,U + if)

We will now analyze the effect of correlations on the electronic and transport properties of the system. In
figure 2(a) we show the population evolution for the case discussed in the previous section and an initial
configuration (#11(0), #;(0)) = (0, 0). As can be observed, the inclusion of electron correlation effects improve
the agreement with the exact MC calculations.

In figure 2(b) we show the evolution of 7,(¢) with an initial configuration (#;(0), #,(0)) = (1, 0) in whicha
magnetic solution was predicted by the HF approximation. As it can be observed, when including correlations
(electron—hole pair creation) the system evolves to a non-magnetic solution corresponding to a singlet state in
the stationary limit. In figure 2(c) we analyze the evolution of 11,(¢) for the same initial magnetic configuration
for increasing values of the electron—electron interaction parameter. It is found that for U /T" 2 8 the initial
localized spin is no longer screened by the electrodes, tending to a magnetic solution. This indicates a
shortcoming of the approximate self-energy for sufficiently large interaction strength. The singlet stationary
state is, however, always reached when starting from a configuration without spin-symmetry breaking.

In figure 3(a) we analyze now the long time evolution of the DOS, A (w, t — 0). These results demonstrate
that the second order self-energy provides a good approximation to the problem [91], leading to a remarkable
agreement with results from NRG calculations for moderate U/T" values [89]. The inset in this panel shows a
blow up of the Kondo resonance, where it can be observed that the second order self-energy tends to
overestimate its width for large U/T values.

It should be remarked that the convergence time increases with U/I". In this respect it is interesting to analyze
the convergence in time of the Kondo resonance, an issue that has been addressed in previous works [63, 92]. One
would expect this convergence time to be of the order of Tg !, T being the Kondo temperature. In figures 3(b) and
(c) we show the time evolution of the spectral density for two values of the interaction strength, U/I" = 4and 8.
The formation in time of the Kondo resonance is illustrated, showing a longer time for the larger interaction.
Considering the expression for the Kondo temperature in the electron—hole symmetric Anderson model, i.e.

Tx = JUT/2 exp[— 7TU/8F], for these cases we have the ratio Tx(U/T" = 4)/T(U/T" = 8) ~3.4. Thus, one
would expect a Kondo resonance formation time for the U/I" = 8 case roughly 3.4 times larger than for U/I" = 4.
The ratio of formation times that can be estimated from figures 3(b) and (c) is somewhat smaller due to the slight
overestimation of the width of the Kondo peak by the second order diagrammatic approximation for the larger

U/T value. On the other hand, figure 3(d) shows the evolution of the height of the central peak, A(w = 0, ), to its
stationary value fixed by the Friedel sum rule A(w = 0, + — o0) = 1/7[". Akinkin the evolution is observed at
times ~1/U, mainly visible for large U/I" values, due to the appearance of the charge bands.

Let us discuss now the voltage biased situation. In figure 4(a) we show the evolution of the current for the
second order perturbation expansion together with results from the MC simulations finding also a good




I0OP Publishing New J. Phys. 20 (2018) 083039 RS Souto etal

a)

Numerics
NRG

0.8
=
£ 06
3
I
g o4
<
02 E
§ UM =4 e
< U =8
0 . . . . .
-6 -4 2 0 2 4 6 0% 5 a 15
o[I] trl

Figure 3. (a) Long time DOS for different electron—electron interactions, U/I" = 4 (red curves) and 8 (blue curves) and V = 0. We
compare the results of the perturbation expansion up to second order (full lines) with those from the exact NRG calculation of [89]
(dashed lines). The inset show the convergence of the Kondo resonance. (b) and (c) time evolution of the density of states, showing the
formation of the Kondo peak for U/I" = 4and U/T" = 8, respectively. In (d) the height of the Kondo peak is represented as a function
of time for these two cases.
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Figure 4. (a) Short time symmetrized current (I) = (I, — Iz)/2), comparing the results for the perturbation expansion up to second
order (solid lines) with the ones obtained using MCin [37] (symbols) for U/T" = 0,4and 8, with V = 10I', ¢, = —U/2, T = 0.2I"and
D = 10T". The asymptotic current as a function of the voltage is shown in (b) for increasing values of the electron—electron interaction,
compared with the exact MC results from [93] (symbols).

quantitative agreement. For very large interaction strengths the agreement becomes somewhat poorer although
still capturing the general trend.

Finally in figure 4(b) we show the asymptotic I(V) characteristic for increasing U/I" values compared to the
MC results of [93]. As can be observed, there is an overall good agreement specially for V' > I". However, for
V < T"the second order self-energy tends to slightly overestimate the current due to the already mentioned
shortcoming in the description of the Kondo resonance. In fact, this approximation is unable to describe the
splitting of this resonance for V' < Tk. This shortcoming would be removed in this electron—hole symmetric
case by including the fourth order diagrams, as shown in [94] in the stationary limit.

4. Electron—phonon interaction: spinless Anderson—Holstein model

In order to analyze the transient regime in the presence of electron—phonon interactions we will first consider
the spinless Anderson—Holstein model [95]. In this model an electron in the central level is coupled to a single
vibrational mode. The Hamiltonian of the system is given by

H=Hy + Hy + A (17)

where Hj is the non-interacting part in the Hamiltonian of section 2, Flph = wyb'b, wybeing the frequency of
the local phonon mode and b (b") the phonon annihilation (creation) operator. The electron—phonon
interaction at the central region is described by the term ﬁe,ph = \(b" + b)d'd, where X\ measures the
electron—phonon coupling strength.




I0OP Publishing New J. Phys. 20 (2018) 083039 R S Souto et al

a) b)
i]X = &
& - — W AW DWW A-..
EH = EX,BOT‘T?, — '& rPA MM %
MIGDAL WAy = WAV WV IV ...

Figure 5. Second order self-energy diagrams for the spinless Anderson—Holstein interaction. (a) Diagrams for the Born
approximation, using the bare phonon propagator (wavy line). In (b) similar approximations are shown with two different schemes
for dressing the phonon propagator: RPA [96], where the electronic propagators are considered to be undressed, and the self-
consistent MIGDAL [27], where the electronic propagators are fully dressed.

4.1. Hartree solution

Asin the previous section, we begin our analysis with the self-consistent mean-field approximation in which the
self-energy is approximated by the ‘tadpole’ diagram of figure 5 (Hartree approximation). Within this
approximation, the self-energy in Keldysh space can be evaluated as

S, ) = ab(t — )X f dridtt@, ) — dt - Dln), T 1) =S ) =0, (18)
where n(?) is the self-consistent central level charge and d is the free phonon propagator in Keldysh space given
by
2, coswy(t — ') + e @wlt=' p emiolt=t) 4 (1, 4 1)elntt=)

A, ty=—i| ~ " o o
n,el =1 4 (n, + 1)e =1 2n, coswy(t — t') + elol=

, 19
where n, = (e“o/T — 1)~!is the free phonon population, described in a thermal equilibrium situation by the
Bose—Einstein distribution. Most of the calculations are performed at zero or very small temperature,
considering n, = 0. Using the Keldysh relations, equations (18) can then be written as

t
90t ) = aXN6(t — t)6ag f drd®(t, T)n(7), (20)
0

where dR(t, t') is the retarded free phonon propagator
dR(t, t") = =20)0(t — t")sin[w(t — t)]. (1)

Itis worth noticing that, at variance with the case of the electron—electron interaction discussed in the previous
section, the electron—phonon interaction introduces retardation effects even in the Hartree approximation. These
effects will be important in the transient regime except in the limit of a sufficiently fast phonon (wy > €y, I') [33]
with a central charge evolving adiabatically. In this limit equation (20) tends to

21

—n(t). (22)

Wo

E(ﬁﬁ(t, t/) ~ —a5(t — t/)éuﬁ

We can now follow a similar procedure to the one used in the previous section to calculate Gy; and the
central level self-consistent charge. Figures 6(a) and (b) show the evolution of the level charge in the transient
regime. As in the case of electron—electron interactions, the charge evolves to the stationary value, indicated by
the arrows in the figure. Figures 6(a) and (b) also illustrate how the solution progressively deviates from the
adiabatic approximation given by equation (22) when reducing the value of wy. The full self-consistent solution
as given by the self-energy in equation (20), describes the time-dependent modification of the central level
charge at time rinduced by its past history at time 7 < . Retardation effects of the phonon dynamics resultsin a
coherent superposition of oscillations with period 27/w, but with different amplitudes (ox#(7)). In the
intermediate regime where the electron and the phonon dynamics are equally fast (wy = I'), the coherence
between those oscillations is lost at long times (¢ > 1/I",27/wy), thus resulting in an effective damping of the
central level charge, see figures 6(a) and (b). However, in the adiabatic regime (wy > I') the dynamics of the
electrons and phonons decouple, and small charge oscillations persist on time, mostly in the n(0) = 1 case
(black curve in figure 6(a)). A natural lifetime describing the decay of those oscillations could be included by
dressing the phonon line in the Hartree term depicted in figure 5(a).

Finally, one can observe in figures 6(a) and (b) that for the smallest values of wy two different asymptotic
charge values are reached depending on the initial level population. This is the charge bistable behavior
predicted by the self-consistent Hartree approximation in the strong-coupling limit [33, 97]. For the case of
electron—hole symmetry considered in figure 6 and at zero temperature and bias voltage, the condition for the
appearance of bistability is 2\*/7T'w, > 1. The possibility of a bistable regime for a molecular quantum dot with
strong electron—phonon interaction was suggested some time ago [98—100]. The interest in investigating such a
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Figure 6. Time evolution of the central level charge for an initially full in (a), and empty level in (b). The dotted lines represent the
evolution using an instantaneous Hartree term equation (22), while the solid ones correspond to the full Hartree self-energy

equation (20). The dependence on phonon frequency is also illustrated for the values: w, = 8I" (black), 2I'(green) and I (blue).

(c) Charge evolution for an initially empty (dashed line) and initially full level (solid line) for the wy = I case. The blue and red lines
correspond to the Hartree and self-consistent Born approximation, respectively. The remaining parametersare A = 1.5I', V = 0and
the central level is set to ey = A\?/wy, thus preserving electron—hole symmetry.

phenomenon has experienced a recent revival. For instance, it has been shown that the displacement fluctuation
spectrum of a nanomechanical oscillator strongly coupled to electronic transport, either in the regime of
semiclassical phonons [101, 102], or for a quantum nanomechanical oscillator entering the Franck—Condon
regime [103] bears clear signatures of a transition to a bistable regime. Moreover, by making a mapping to the
Kondo problem, the bistability was shown to be destroyed in equilibrium conditions by quantum fluctuations if
the temperature is lower than a phonon mediated Kondo temperature [53]. Notice, however, that this phonon
displacement bistability does not correspond necessarily to a bistable behavior for the charge or the current, as
predicted by the mean field approximation. As even this simple spinless Anderson—Holstein model is not exactly
solvable, this issue is still under debate [49, 104, 105]. It seems to us plausible that, at least for equilibrium
conditions and T' = 0 correlation effects destroy the charge and current bistability predicted by the mean field
solution. We address this issue in the following section.

4.2. Effects of correlation beyond Hartree approximation

We will go beyond the mean-field solution by analyzing three different approximations for the self-energy. We
first consider the self-consistent Born approximation given by the diagrams in figure 5(a). This is a conserving
approximation in which the diagrams are calculated from the fully dressed electron propagators. The phonon
propagator is however not renormalized. Within this approximation both diagrams appearing in figure 5(a)

have the expression

a0 t 2.0 Aaf Ao

S, 1) = —2Xa8,58(t — 1) f drsinfwe(t — Dln), 57w, ) = a6 1, hd™ 1, 1),
0

(23)

where G denotes the Keldysh components of the fully dressed electron propagators and n(f) is the final self-
consistent charge.

This fully self-consistent approximation can be straightforwardly implemented within the numerical
procedure of section 2. For each time in the discretized mesh, the self-energies of equations (23) are calculated
from the final Green functions and then stored. As in the case of the Hartree solution previously discussed, when
inverting equation (7) for each time the self-energies at the final time in each iteration are not well defined but its
value can be extrapolated from the ones calculated at the previous mesh point in the time grid. For sufficiently
small Atthe error introduced by this approximation becomes negligible. We have checked the accuracy of this
procedure by verifying that the solution tends to the proper stationary one.

In figure 6(c) we show the evolution of the central level charge for a choice of parameters in which the
Hartree approximation predicts a bistable behavior. As can be observed, the inclusion of correlations eliminates
the charge bistability appearing in the Hartree approximation, tending to the same asymptotic value for the
initially empty and full cases. We have checked that this behavior is maintained up to quite large values of
N /w,T, although eventually the self-consistent Born approximation breaks down in the strong polaronic
regime. This indicates that another kind of approximation has to be used to explore this parameter regime, like
for instance in the lines of the ones discussed in [105—-109]. These results suggest that the bistable behavior of the

9
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central level charge predicted in [33, 97] is a spurious feature of the mean field approximation which disappears
when correlation effects are included. This is in agreement with the predictions of exact numerical calculations
of [53], atleast for the equilibrium case and at sufficiently low temperatures. It does not imply that an apparent
bistability might not be observed for a continuous bath model or adopting more general initial conditions for the
phonon mode density matrix [110, 111].

So far, the renormalization of the phonon propagator has been neglected. The simplest way to include this
effect is by means of an RPA-like approximation [96]. The phonon propagator will satisfy a Dyson equation in
Keldysh space similar to the electronic one given in equation (2)

D=@ " -1, (24)

where D(t, t') = —1(T.[p(t) $T(#)]), with p = b + b'. d 'is the inverse free phonon propagator and IT is the
phonon self-energy given by

1%, ') = —iaBNGY (1, GOt 1), (25)

Asin the electronic case, equation (24) can be discretized in a time mesh along the Keldysh contour. In order to
solve numerically the corresponding matrix equation, an expression for the inverse free phonon propagator
discretized on the contour must be obtained. This is a task which, to best of our knowledge, has not been
achieved in the literature, the mathematical difficulty lying in the fact that the inverse phonon propagator
becomes singular in the free limit. This singularity must be then somehow regularized. To obtain an expression
of A" wehave developed a regularization procedure which is discussed in the appendix, finding

hy —1 hon
-1 h -1
-1 h -1
1ot
FRENRE Lhyle : 26)
26 c |hy 1
1 —h 1
1 —h 1
hon L h 2NX2N

where § = Atwyandh = 2(1 — 6°/2). The information about the initial phonon state is encoded in the
components hy” = £h/2 + i6(1 + pg)/(1 — po)and hoy = —2ibp, /(1 — p3), where pg = 1,(0)/[1,(0) + 1]
and 71,(0) is the initial phonon population. We will consider that phonons are initially in thermal equilibrium
and thus p, = e /7. The regularization procedure requires introducing an infinitesimal quantity ) which
enters in the matrix elements connecting both Keldysh branches: ¢ = —2i6/nand hy; = +h/2 — ¢.The
parameter 7) can be interpreted as a small phonon relaxation rate which has to be taken suchas 1/ > t,1/w, for
a good convergence to the expected free propagator when inverting equation (26).

It should be noticed that this problem with the inversion of the free phonon propagator has been avoided in
the literature by neglecting fast oscillating terms of the type (T [b (£)b (/)]) and (T (b ) A (t)]) in the
diagrammatic expansion of D . This corresponds to the so-called rotating wave approximation, which describes
the regime where the phonon timescale is much faster than the electron dynamics (wy > I', A\)[112, 113]. For
the calculation of the phonon self-energy, IT, we will analyze two different approximations. In the first one (that
will be denoted as RPA) the propagators in the electron ‘bubble’ are the non-interacting ones, whereas the fully
dressed propagators will be used in the second one (denoted as MIGDAL), see figure 5(b).

In figure 7 we show the long-time DOS at the central level for the three approximations considered in this
section using the same parameters as in figure 6 with wy = 2I'; a case with a rather strong electron—phonon
coupling although still far from the polaronic limit (\*/(w,") > 1). Notice the dip in the DOS at w ~ wyin the
self-consistent Born approximation, which is a feature due to the logarithmic divergence of the second order
self-energy S (w) atw = wy [106, 114]. As it can be observed, both RPA and MIGDAL approximations, which
include phonon renormalization eliminate this pathological divergence. A slight shift of the resonance around
wy due to the renormalization of the phonon mode in both approximations can be observed. Notice also that all
these approximations lead to an additional feature at ~2wy, associated to the appearance of a second phonon
sideband. As an additional remark, in all cases the zero energy spectral density tends to reach the expected value
predicted by the Friedel sum rule [115].

A further check of these approximations can be made by comparing their long-time DOS with the one
predicted by a NRG calculation. To this end we have performed a NRG calculation of the stationary DOS for the
parameters of figure 7. As can be observed the agreement with the results of both RPA and MIGDAL is quite
good for this parameter range. It should be commented that neither of these approximations are expected to be
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Figure 7. Long time spectral density for the self-consistent MIGDAL (solid line), RPA (dashed) and Born (dotted) approximations,
compared to NRG calculations (yellow dots). The inset shows the convergence of the central peak to the expected stationary value for
the Born and RPA approximations. Parameters: A = 1.5,wy = 2,V = 0,¢y = X /we, I = land D = 30.
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Figure 8. Comparison of the left (a) and (d), right (b) and (e) and symmetrized (c) and (f) current results with the MC simulations of
[48]. Results for V = 4, (a)—(c) and 32 (d)—(f) cases are shown, and for the three approximations described in the text: self-consistent
Born (dotted line), RPA (dashed line) and MIGDAL (solid line) approximations. The remaining parameters are: A = 8, w, = 10,

D =20,T=0.2andI' = 1.

valid in the strong polaronic limit. Thus, features like the exponential decrease of the central resonance together
with the appearance of a multiphonon structure in the DOS [105-109] would require an approximation for the
self-energy valid in the polaronic regime, as commented above.

Finally, in figure 8 we show results from the three approximations for the transient left, right and average
currents compared to results obtained using MC simulations in [48]. Both cases correspond to a rather strong
interaction (A = 8,wy = 10andI" = 1) but two different bias voltages. Strikingly, as can be observed, RPA
captures remarkably well the quantitative behavior of the numerically exact results in the small voltage case, see
figures 8(a)—(c), whereas for very large bias it is the MIGDAL approximation that gives a better quantitative
agreement with the MC numerical results, see figures 8(d)—(f). This would indicate that the inclusion of phonon
renormalization and non-equilibrium effects (like heating of the local vibrational mode under increasing bias
voltage) are essential for a good description of this regime. Furthermore, the higher the bias voltage the better
this effects are included in the fully self-consistent approach given by MIGDAL.

5. Electron—electron and electron—phonon interactions

In this section we study the transient regime in the presence of both electron—electron and electron—phonon
interactions. We consider the spin-degenerate Anderson—Holstein model defined as
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Figure 9. Spectral density in the spin-degenerate Anderson—Holstein model. (a) Long time values for RPA (lines) compared with
equilibrium NRG results (symbols) from [116], for two different electron—phonon coupling parameters: A = 1.89 (red)and A = 3.14
(blue). The remaining parametersare U = 6.3,w = 3.14, 6y = X*/wy — U/2and Ty = T'; = 0.5. (b) and (c) time evolution of the
density of states for A\ = 0 and A = 2. In (d) we represent the central peak height evolution, showing in red the A\ = 0 and in blue the
A = 2 case. The remaining parametersare U = 8,wy = 2,¢) = X/wy — U/2,T = landV = 0.

I:I = Z Ho,g' + I:Ie—e + I:Iph + I:Iefph) (27)
o=T,l

where Ho,a is the non-interacting part of the Hamiltonian given in section 2, H_,= Un, iy, ﬁph = wyb'band
He,Ph = A(b + b)Y, fi,. In this case we combine the approximations used in section 4 for the electron—
electron self-energies with the ones in the previous section for the electron—phonon case, i.e.

it = Ye—e + Xe_ph (seefigures 1 and 5).

In figure 9(a) we show the long time spectral density compared to the exact NRG results from [116] using the
RPA for ¥, _ . Similar results are obtain for the MIGDAL approximation. As can be observed, for the smaller A
case the RPA exhibits an overall agreement with the exact results. However, for larger values of the electron—
phonon interaction the agreement becomes poorer (blue curve). In fact, this diagrammatic self-consistent
approximations would not describe properly the transition to an insulating phase which is expected when
increasing the electron—phonon interaction for X/w, = U/2[106, 116, 117]. To explore this parameter
regime, one would need to develop an approximation correctly interpolating between the perturbative regime
and the strong polaronic limit.

Finally, in figures 9(b) and (c) we show the time evolution of the spectral density for A/I" = 0 in figure 9(b)
and A\/I" = 2in figure 9(c), with U/I" = 8 for the RPA. We show that, even in the Kondo dominated regime, the
electron—phonon interaction modifies significantly the system dynamics, leading to longer convergence times.
This is illustrated in c) where the height of the central resonance, A(w = 0, 1), is represented. We show that,
although the central resonance width in the long time regime is not significantly modified with respect to the
pure Kondo case, it exhibits different dynamical properties like oscillations with a period ~27/wy. Furthermore,
the decay time of these oscillations is considerably longer with respect to the U = 0 case (not shown), indicating
that the electron—electron interaction increases phonon retardation effects.

6. Conclusions

We have presented an accurate and stable algorithm to calculate the transient transport properties of interacting
nanojunctions. We have shown how different self-consistent diagrammatic approximations can be
implemented within this framework, yielding accurate results for both the transient and the steady state regimes.
The method has allowed us to address several issues of great current interest in the condensed matter
community like the dynamical build up of Kondo correlations and the possible existence of bistability in the
presence of strong electron—phonon interactions.

For the Anderson model we have analyzed the evolution of the spectral density explicitly exhibiting the
formation of the Kondo resonance. In both cases of zero and finite voltage bias, the results are in good agreement
with available numerically exact calculations. For the electron—phonon case we have implemented two different
schemes for dressing the phonon propagator (denoted as RPA and MIGDAL), showing the importance of a good
description of the phonon dynamics to obtain accurate results. As a technical requirement for this
implementation we have derived an expression for the inverse of the time-discretized Keldysh free phonon
propagator, allowing us to go beyond previous approaches to the problem based on a rotating-wave like
approximation. Comparison with numerically exact results shows that the RPA and the MIGDAL
approximation can provide accurate results for the transient currents up to rather strong coupling values in the
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low and high voltage regimes, respectively. Regarding the possible bistable behavior, we have found that electron
correlation effects beyond the mean-field approximation tend to suppress its appearance, in agreement with
recent numerically exact results [53]. However, this does not imply that upon choosing a different initial
condition for the vibron density matrix in a model including low frequency modes, one should not observe an
apparent bistability, as indicated in [104, 110].

Finally, we have analyzed the situation where both interactions are present showing a reasonable agreement
with the available numerically exact results for moderate electron—phonon coupling. We have also shown that
the presence of electron—phonon interactions in the Kondo dominated regime introduces additional dynamical
features in the evolution of this resonance. We notice, however, that addressing the strong polaronic limit would
require the implementation, within the present framework, of non-perturbative approximations for the self-
energy in the spirit of [107-109].
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Appendix. Inverse free boson propagator

In this appendix we discuss the problem of obtaining the inverse of the free phonon propagator discretized along
the Keldysh contour. This problem has already been discussed by Kamenev in [79], where the author considers
the problem of bosonic particles occupying a single level of energy wy

Hy, = wob'p, (A1)

with the free phonon propagator defined as do(t, t') = — i(T.b(t)b" (t")). The inverse propagator in this case is
formally similar to the electronic one (3), finding

-1 p(wo)
ho —1
h_ -1

id;! = K , (A2)

he -1

2Nx2N

withhy = 1 £ iAtwy. This expression constitutes a discretized version of the i0;, — w, operator on the time
contour with an initial condition p(wy) = 1,(0)/[1 + 1,(0)], which depends on the initial phonon population
1,(0). The obtention of the inverse free phonon propagator defined as dt, t') = —UT () QT (")), with
@ = b + b’ becomes more demanding since it involves the discretization of the second order differential
operator H = p2/2 + wix?/2withp = —id,and x = /1/2wy ®. Moreover, it can be checked that the
discretized version of the free phonon propagator given in equation (19) is not invertible as it becomes singular.
In this section we discuss the way to obtain this inverse propagator by including a regularization procedure. By
definition, the system partition function is given by [79]

7 Tr[Up] , (A3)

Trip]

where U, = UT(tyn, tn 1)U (tn, 1) is the contour evolution operatorand p = e~
matrix. Expanding Z in coordinate space and for N = 3 we find

Tr[U.p] = fdxl oo g (el nel x5) (XsIU_Ael x4) (xal1] x3) (xalUnel ) (olladl x) (xalpl x6)s (A4)

where Un, = e 2 Ttis worth noticing that the last term in the integrand correspond to the contour closing
and the third one is the branch changing in the Keldysh contour at the final time. The relevant matrix
components are given by so-called Mehler kernel [118]

exp{i[(x? + y?)cos(wot) — 2xy]/2sin(wyt)}

J2misin(wgt)

H/T s the initial density

(xle ] y) = (A5)
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Discretizing the expression and considering the time step At as the smallest timescale we find
exp{Fi[(x* + y2)(1 — 6%/2) — 2xy]/26}

xlquiHAtl — (A6)
< 7 N2mib
with 6 = wpAt. A similar expression can be found for the contour closing term
D A+ )+ 2up
(ol y) = | =" exp| — — ol (A7)
7T(1 - po) 2(1 - p()) I p()

where py = 1,(0)/[1,(0) + 1] contains information about the initial phonon population, 11,,(0). The final step
for obtaining the inverse is to regularize the delta function, i.e. we should take

1
x|l ~

being 7 an infinitesimum. Finally, the inverse of the free phonon propagator can be obtained identifying the
components of

e~ (=»?/2n, (A8)

Z = fdxl dX2N ei"Tdflx, (A9)

finding the expression of equation (26). It is worth commenting that all the prefactors in the Mehler kernel
expression normalize the partition function, without affecting the phonon dynamics. The particular case for
N = 2 can be written as

2
1—%2+151f’;§ -1 0 —211‘?‘23
&% ) )
. —1 1 - Y + 2177 —21; 0
dy-, = 5 s s . (A10)
0 —2i— -1+ — + 21— 1
n 2

opy 52 . 1+/)(2)
2 1_—/)(2) 0 1 —1 =+ 7 + 1(51 —pé
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